
Zstd & LZ4
Brian Bockelman, Oksana Shadura
University of Lincoln-Nebraska

Background: Compression algorithms comparisons

● As part of the DIANA/HEP to improve ROOT-based analysis, we have continued
work in comparing compression algorithms. For this update, we include:

○ LZ4: lossless data compression algorithm that is focused on compression and decompression
speed.

○ ZSTD: Relatively new algorithm in the LZ77 family, notable for its highly performant reference
implementation and versatility.

○ ZLIB / Cloudflare: Update on work to include Cloudflare patches in ROOT.

● We will be comparing algorithms based on three metrics:
○ Compression ratio: The original size (numerator) compared with the compressed size

(denominator), measured in unitless data as a size ratio of 1.0 or greater.
○ Compression speed: How quickly we can make the data smaller, measured in MB/s of input data

consumed.
○ Decompression speed: How quickly we can reconstruct the original data from the compressed

data, measured in MB/s for the rate at which data is produced from compressed data.
2

Testing setup - Software

● Performance numbers based on modified ROOT test
“Roottest-io-compression-make” with 2000 events (unless noted).

● Branches:
○ https://github.com/oshadura/root/tree/latest-zlib-cms-cloudflare (latest cloudflare zlib, ported into

ROOT Core)
○ https://github.com/oshadura/root/tree/brian-zstd (B.Bockelman’s ZSTD integration with CMake

improvements)
○ https://github.com/oshadura/root/tree/zstd-default (branch enabling ZSTD as default, used only for

testing purposes)
○ https://github.com/oshadura/roottest/tree/zstd-allcompressionlevels (roottest compression test

with extended cases presented here, covering all zlib and zstd compression level)

● We are trying to measuring the ROOT-level performance - numbers include all
overheads (serialization / deserialization, ROOT library calls, etc).

3

https://github.com/oshadura/root/tree/latest-zlib-cms-cloudflare
https://github.com/oshadura/root/tree/brian-zstd
https://github.com/oshadura/root/tree/zstd-default
https://github.com/oshadura/roottest/tree/zstd-allcompressionlevels

Testing setup - Hardware

● Platforms utilized:
○ Intel Laptop: Intel Haswell Core i7 + SSD

○ Intel Server: Intel Haswell Xeon-E5-2683

○ AARCH64neon Server: Aarch64 ThunderX

○ AARCH64neon+crc32 Server: Aarch64 HiSilicon's Hi1612 processor (Taishan 2180). Includes CRC32
intrinsic instruction.

● Tests were repeated multiple times to give a sense of performance variability.

4

ZSTD
https://github.com/facebook/zstd.git

ZSTD Background

● Given ZSTD performance claims on their website (facebook.github.io/zstd/), we
should expect:

○ Better than ZLIB in all metrics: compression speed, decompression speed, and compression ratio.
○ Like all LZ77 variants, decompression speed should be constant regardless of compression level.
○ High dynamic range in tradeoff between compression speed and compression ratio.
○ Does not achieve compression ratio of LZMA.
○ Does not achieve decompression speed of LZ4.

6

Write Tests - Write Speed and Compression Ratio

7

La
rg

er
 is

 b
et

te
r

Larger is better

● Largely validates our
expectations for
compression!

● Note there is some
performance noise
between ZSTD-1 and
ZSTD-2. Not
understood.

● NOTE: Compression
ratios are flatter than
expected. Will do
cross-comparisons with
LHC files in a future
follow-up.

Test used: roottest-io-compression-make with 2000 events
Raw data: http://jsfiddle.net/oshadura/yzusyhco/show/

LZ4

LZMA

ZSTD

ZLIB

http://jsfiddle.net/oshadura/yzusyhco/show/

ZSTD - Read Speed Tests (Intel Laptop)

8

● As expected,
decompression rates are
mostly identical, regardless
of compression level.

● Again, some curious
outliers.

Test run: 2000 events
TTree-roottest-io-compression-make

Read Speed - Compare across algorithms
La

rg
er

 is
 b

et
te

r!

9

● At the current compression
ratios, reading with
decompression for LZ4 and
ZSTD is actually faster than
reading decompressed:
significantly less data is
coming from the IO
subsystem.

● We know LZ4 is significantly
faster than ZSTD on
standalone benchmarks:
likely bottleneck is ROOT IO
API.

ZSTD - LHCB

ZLIB-cloudflare

ZLIB Progress

● We have been trying to land the Cloudflare ZLIB (“CF-ZLIB”) patches into ROOT.
● ZLIB current version is 1.2.11; CF-ZLIB is based on 1.2.8.

○ Difference between 1.2.11 and 1.2.8 are mostly for build systems, bug fixes, and regression fixes in
parts of the library unrelated to ROOT.

○ Rebasing Cloudflare to 1.2.11 proved very difficult. Decided to stay on 1.2.8.

● In addition to CloudFlare patches, we have added:
○ “Fat library”: When intrinsics are not available at runtime, switch to base implementation.
○ Build improvements: Now builds on ARM and Windows.
○ adler32 optimization: CloudFlare only optimizes CRC32; ROOT uses adler32.

● Here, we compare CF-ZLIB with upstream ZLIB.

12

Cloudflare ZLIB vs ZLIB - Intel Laptop/Intel Server
(http://jsfiddle.net/oshadura/npp670kr/show)

13

Laptop / CF-ZLIB

Laptop / ZLIB

Server / CF-ZLIB

Server / ZLIB

La
rg

er
 is

 b
et

te
r

Note: small dynamic
range for y-axis.

The CF-ZLIB
compression ratios do
change because
CF-ZLIB uses a
different, faster hash
function.

http://jsfiddle.net/oshadura/npp670kr/

Compression write speed (Intel Laptop)

14

Reductions in speed:
● ZLIB-1: -40%
● ZLIB-6: -28%
● ZLIB-9 -72%

CF-ZLIB-9 is the same
speed as ZLIB-6.

Read speed (Intel Laptop)

15

Small improvement of
CloudFlare's version ~
7%.

Cloudflare zlib vs zlib -AARCH64+CRC32 HiSilicon's Hi1612 processor
(Taishan 2180) http://jsfiddle.net/oshadura/qcwsx9y4/show

16

● Significant improvements for aarch64
with with Neon/CRC32

● Improvement for zlib Cloudflare
comparing to master for:

○ ZLIB-1/Neon+crc32: -31%
○ ZLIB-6/Neon+crc32: -36%
○ ZLIB-9/Neon +crc32-9: -69%
○ ZLIB-1/Neon: -10%
○ ZLIB-6/Neon: -10%
○ ZLIB-9/Neon: -50%

CF-ZLIB/Neon+crc32

CF-ZLIB/Neon

ZLIB/Neon

ZLIB/Neon+crc32

http://jsfiddle.net/oshadura/qcwsx9y4/

Lz4 - Extremely Fast Compression algorithm
http://www.lz4.org)

http://www.lz4.org
http://www.lz4.org

During spring ROOT I/O workshop was recommended to turn on the LZ4
compression algorithm as a default with compression level 4

LZ4: previous tests

● Winter ROOT I/O Workshop: https://indico.fnal.gov/event/15154
○ https://indico.fnal.gov/event/15154/contribution/8/material/slides/0.pdf (Jim Pivarsky)

https://indico.fnal.gov/event/15154
https://indico.fnal.gov/event/15154/contribution/8/material/slides/0.pdf

Roottest-compression-test: compression test

LZMA

ZLIB

LZ4

Roottest-compression-test: decompression test

Roottest-compression-test: compression
RT and compressed size comparison

Smaller is better! Smaller is better!

8% - 10%
difference
zlib vs lz4

GeneROOT experience with compression
algorithms (Fons Rademaker)

Results was tested on genomics files used for testing ROOT I/O that contain 10% of a human genome. The files contain exact the same data,
only the ROOT compression algorithm differs. For each algorithm, compression level 1 was used. The code to work with these files is in:
https://github.com/GeneROOT/ramtools.

The following observations can be made:

- LZ4 is almost 2x the LZMA file size and 30% larger than the ZLIB version.

- Running the viewing script (reads in a region all 11 columns, i.e. a range of alignment records) we see that:

The LZ4 file, while bigger, is just as fast scanning 5400000 records as the ZLIB file. There is no reason to use LZ4, except to waste space.

 .

In these measurements, it was not taken in account compression speed and
compression levels..

Browsing files with GeneROOT/ramtools.git

● All files are identical (I got access to the full collection of files)
● Baskets in compressed files are very small!
● Files are translated from SAM format data to ROOT data format

H0E3UALXX:5:1101:5441428:0 147 7 9644968 60 150M = 9644807 -311
CAACACGATATTATTAACTATATTCACAATAAACCCACGTGCACTGATGGTAGGAATGTAAATTGATACAGCCCTTATGAGGTGGTTGTTTTTACTCCTTTTTTGTGTTTGTGTATGAAATTCTTATTCAAT
GAAAGAAAAGAGTGTATG
JJJJFJFJJJJFJJJJJJJFJJFJJJJJJJJJJJJJFJJJJJJJJFFJJJJJJJJJJJJJJFJJJFJJJFJJJJJJJJJJJJJFJFJJAFFFFF
NM:i:0 MD:Z:150 AS:i:150 XS:i:21 RG:Z:id MC:Z:150M MQ:i:60

H0E3UALXX:2:1117:4842492:0 147 7 9645026 60 16S134M = 9644775 -385
AAAGCTACCACTATGCTAAATTGATACAGCCCTTATGAGGTGGTTGTTTTTACTCCTTTTTTGTGTTTGTGTATGAAATTCTTATTCAATGAAAGAAAAGAGTGTATGATTCATTTGAAAGAAAGCATGACT
CCATTTGTCCTGTACAGC
-----7---F--<----A-<<7-A<-AA-<-F7A--7--F7<FAFAF<AF<FFFJAJFFJA<JF7JJFAJ-FJ<FJFFFJJFJFFJJ-FFF<FJFF7FJJFJJFJJFJAJ<FJFJJFJJFJJJFJJJJA<FJJJAA<FFFJFJAJFAFAA NM:i:0
MD:Z:134 AS:i:134 XS:i:21 RG:Z:id MC:Z:146M4S MQ:i:60

Writing GeneROOT files with different compression

Seems to be a
“corner case”
for LZ4...

Writing GeneROOT files with different compression

Suggestions: to use ROOT
recommended compression levels

ZLIB 6

LZMA 7-8

LZ4 4 [ROOT Winter I/O Workshop]

ZSTD Still not validated

This is recommended compression levels, defined after step-by-step
evaluation of performance of compression algorithms used ROOT

LZ4 and zlib-cloudflare - next steps

● LZ4: enable in a ROOT (expected in next development release)
○ Check LZ4 1.8.1 with possibility to use compression algorithm dictionaries

● ZLIB-cloudflare: merge into ROOT builtins
● LZ4 & ZLIB-cloudflare: extend rootbench.git with compression tests (artificial and

LHC datasets)

ZSTD - next steps:

● Follow-up with a wider corpus of inputs (e.g., LHCb ntuples, CMS NANOAOD).
● These tests indicate ZSTD would be a versatile addition to ROOT compression formats.
● Worthwhile to explore read rates for LZ4-vs-ZSTD: can we show cases where reading LZ4 is more

significantly faster?
● ZSTD has an additional promising mode where the compression dictionary can be reused between

baskets.
○ Facebook reports dictionary reuse provides massive improvements over baseline ZSTD for

compression / decompression speeds and compression ratio when compressing small buffers
(ROOT’s use case!).

○ Naive tests did not bear out this claim: however, Facebook tested against a text-based corpus while
we have binary data.

○ Needs investigation.

28

Thank you for your
attention!

29

Backup Slides

30

ZSTD - Haswell x 56core - no SSD
https://jsfiddle.net/oshadura/af6xt4n1/view

La
rg

er
 is

 b
et

te
r

31

LZMA

ZSTD

ZLIB

LZ4

https://jsfiddle.net/oshadura/af6xt4n1/view

ZLIB-NG

● Fork of ZLIB, cleaning up and merging patches.
● Drop support of 16-bit platforms, ancient compilers
● Merged with all optimizations from Intel and Cloudflare. Supports more

architectures than those forks.
● More actively developed.
● Check it out: https://github.com/Dead2/zlib-ng/tree/develop

○ Worth watching! Perhaps not enough history to make the jump yet...

32

https://github.com/Dead2/zlib-ng/tree/develop

