

Your visual blueprint™ for developing
dynamic Web content

by Adam McDaniel

Perl and Apache

01_556801-ffirs.indd i01_556801-ffirs.indd i 8/31/10 9:15 AM8/31/10 9:15 AM

Perl and Apache: Your visual blueprint™
for developing dynamic Web content

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Published simultaneously in Canada

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011,
fax 201-748-6008, or online at www.wiley.com/go/permissions.

Library of Congress Control Number: 2010934753

ISBN: 978-0-470-55680-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Trademark Acknowledgments
Wiley, the Wiley Publishing logo, Visual, the Visual logo, Visual Blueprint,
Read Less - Learn More and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates.
All other trademarks are the property of their respective owners. Wiley
Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER
AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE
SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS
NAMES, COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR
INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY RESEMBLANCE
OF THESE FICTITIOUS NAMES, ADDRESSES, PHONE AND FAX
NUMBERS AND SIMILAR INFORMATION TO ANY ACTUAL PERSON,
COMPANY AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL.

Contact Us
For general information on our other products and services please contact
our Customer Care Department within the U.S. at 877-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For technical support please visit www.wiley.com/techsupport.

Sales

Contact Wiley
at (877) 762-2974
or (317) 572-4002.

The Diwan-I-Khas of the palace complex at Fatehpur Sikri

The history of this intriguing pavilion is almost as enigmatic
as the structure itself. Dating to the 17th century, this private
audience hall is remarkable for its richly carved central pillar,
unique in Mughal architecture. One school of thought holds
that the design of the building and its stone centerpiece may
reflect some
Hindu mandala
in which the
central column
represents the
axis of the
world. As such,
it conferred
superior status
upon the
emperor who
received visiting
dignitaries while
seated at its base.

Explore India’s countless architectural treasures in Frommer’s
India, 4th Edition (ISBN 978-0-470-55610-8) available
wherever books are sold or at www.Frommers.com.

01_556801-ffirs.indd ii01_556801-ffirs.indd ii 8/31/10 9:15 AM8/31/10 9:15 AM

Acquisitions Editor
Aaron Black

Project Editor
Jade Williams

Technical Editor
Allen Wyatt

Copy Editor
Marylouise Wiack

Editorial Director
Robyn Siesky

Editorial Manager
Rosemarie Graham

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher

Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator
Patrick Redmond

Graphics and Production Specialists
Andrea Hornberger
Jennifer Mayberry

Quality Control Technician
Jessica Kramer

Proofreading
Tricia Liebig

Indexing
Potomac Indexing, LLC

Media Development Project Manager
Laura Moss

Media Development Assistant Project
Manager

Jenny Swisher

Screen Artist
Ana Carrillo

Jill Proll
Ron Terry

Illustrator
Cheryl Grubbs

Credits

01_556801-ffirs.indd iii01_556801-ffirs.indd iii 8/31/10 9:15 AM8/31/10 9:15 AM

Adam McDaniel has been desgining, developing, modifying, and maintaining computer programs of one
language or another since 1993, and has been an active proponent of Perl since being introduced to the
langauge in 1998. In early 1999, Adam led a team of developers implementing an E-Commerce fulfillment
engine written entirely in Perl for a virtual shopping mall. Afterwards, he worked for Hitachi ID Systems for
over 8 years, during which he designed and implemented security recommondations and software for
various Fortune 500 companies across the United States and Europe.

Always interested in new technologies and architectures, development credits include an open-source offline
HTML reader for the Palm OS platform, contributions to the Linux Kernel, plus countless utility and
speciality programs. In 2006, Adam produced the Array.org Netbook Kernel software download and Web
site, allowing users to download an optimized build of the Linux kernel, specific for the Ubuntu Linux
distribution. This site, implemented using Perl and Apache, became hugely popular resulting in millions
unique visitors in just a few months. It actually prompted him to move away from security architecture and
design and into a new field: Linux distribution architecture. Today, Adam works as the Lead OS Architect
for Jolicloud, a Paris-based Linux distribution that specializes in a cloud-based user interface designed for
netbooks, tablets, and other portable computers.

This book is actually the product of many significant people, projects, and events, without all of which, this
project would never have been possible.

First and foremost, I must thank my wife, Shauna, for her un-ending patience, understanding,
encouragement, and love, both silent and vocal, which she happily supplied while I toiled away endlessly on
this project. I must also thank my editors at Wiley Publishing, espcially Aaron Black and Jade Williams, for
their expert guideance, advice, and patience, despite their occasional prodding over e-mail.

This book could not be possible without hundreds of thousands of developers who have dedicated their
time and expertise to open-source software. Projects like the Linux Kernel, Perl, Apache, and everything
in-between serves as an excellent model of design, efficiency, and dedication to people like me and other
technology enthusiasts.

Finally, regarding significant events, I have to thank our unpredictable Canadian winter weather. In January
2008, we experienced seven days of -40 degree weather; this caused a water pipe to burst and flood my
basement with 18 inches of water while I was away from home. Had my basement not flooded, I would never
have replaced an old waterlogged laptop with a brand new EeePC netbook through the insurance claim.
Without that, I would have never become interested in netbook hardware, nor in customizing the Linux kernel
for that hardware. And I certainly would have never created my Array.org Netbook Kernel Web site, through
which Aaron Black would never have contacted me, and this book would never have come into existence.

Author’s Acknowledgments

About the Author

This book is dedicated to my father, William McDaniel, who knew about this project, but never got the chance to see the
final result.

Dedication

01_556801-ffirs.indd iv01_556801-ffirs.indd iv 8/31/10 9:15 AM8/31/10 9:15 AM

Who This Book Is For
This book is for advanced computer users who want
to take their knowledge of this particular technology
or software application to the next level.

The Conventions in This Book
1 Steps
This book uses a step-by-step format to guide you
easily through each task. Numbered steps are
actions you must do; bulleted steps clarify a point,
step, or optional feature; and indented steps give
you the result.

2 Notes
Notes give additional information — special
conditions that may occur during an operation, a
situation that you want to avoid, or a cross
reference to a related area of the book.

3 Icons and Buttons
Icons and buttons show you exactly what you need
to click to perform a step.

4 Extra or Apply It
An Extra section provides additional information
about the preceding task — insider information and
tips for ease and efficiency. An Apply It section takes
the code from the preceding task one step further
and allows you to take full advantage of it.

5 Bold
Bold type shows text or numbers you must type.

6 Italics
Italic type introduces and defines a new term.

7 Courier Font
Courier font indicates the use of scripting
language code such as statements, operators, or
functions, and code such as objects, methods, or
properties.

How to Use This Book
Ch

apter 8: U
sin

g Perl R
eferen

ces an
d M

odu
les

3

3

3

4
5

1

3

It is possible to pass additional variables to the module’s functions, just like any other subroutine. The only
difference is that the $self variable is the first parameter in the @_ array. If your function allows for other
parameters, then you can write them as

sub Function {

 my ($self, $param1, $param2) = @_;

 [...]

}

When Function is executed within the context of a Perl script, the $self parameter is implicitly passed to the method.

$test->Function($param1, $param2);

However, if two methods within a module need to execute each other, they should be treated like regular
subroutines, not methods. For example, if Function has to call the method Calculate, then it must specify
$self explicitly.

sub Function {

 my $self = shift;

 &Calculate($self, ...);

}

0 Execute the Perl

script.

 The module is

imported, and its

subroutine is

executed as a method

in your Perl script.

• Output of the Perl

module function.

• Output of the

Dumper, showing

the contents of the

module handle.

6 Type use
Data::Dumper;

7 Type print Dumper(
$handle); to

examine the

contents of the

module handle.

8 Save the Perl script.

9 Open a Command

Prompt in the same

directory with your

Perl script.

4 Type my $handle = Module-
>new(); to declare a new

scalar, initialize the module,

and store the module

reference.

5 Type $handle->Function(); to

execute one of the exported

functions in the module.

Note: Even though Function is a
subroutine, it is not correct to
precede it with an ampersand.

1 Open a new Perl script in a

text editor.

2 Identify a Perl module that

you want to load.

3 Type use Module;

Call a Module’s Subroutines as Methods

B efore a Perl script can take advantage of the
subroutines contained within a module, a module
reference needs to be established. Just like an

array or hash reference, a module reference is a scalar
that points to a particular instance of a module. That
scalar then acts as a handle to the module’s contents,
including its variables, methods, and shared $self hash
reference.
Naturally, a single script may have many module
instances running in tandem, even multiple instances of
the same module, if required. It is the individual scalar
that holds the module reference that keeps everything
organized.
It is that same scalar that is used to access the module’s
subroutines as methods. This happens through an arrow

(->), similar to what you saw earlier in this chapter when
dereferencing a reference.
use Module;
my $h = Module->new();
$h->method();

You can even use the handle to access the same $self
variable used within the actual module. In the exact same
way that subroutines are executed as modules, variables
can be manipulated using the handle.
$h->{ KEY } = VALUE;

Regardless of whether your module utilizes KEY anywhere,
the script can use it to store additional data, just like any
type of complex hash reference. When the program ends,
all active module references are automatically released
from memory. It is possible to manually destroy a module
by calling undef on the module reference.

Call a Module’s
Subroutines as Methods

4

1

2

5

6

7

01_556801-ffirs.indd v01_556801-ffirs.indd v 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

vi

HOW TO USE THIS BOOK . XII

1 INTRODUCING PERL AND APACHE WEB SITE
DEVELOPMENT . 2

Introducing Apache and Perl ..2
Introducing the Common Gateway Interface...4
Understanding CGI from the End-User’s Point of View ..6
Understanding CGI from the Web Browser’s Point of View8
Understanding CGI from the Web Server’s Point of View10
Understanding CGI from the CGI Program’s Point of View12
Compare Perl to Other CGI Languages ...14
Compare Apache to Other Web Servers ..16
Developing Your Web Site..18
Find Perl- and Apache-Friendly Hosting Providers ..20
Find Help Developing CGI Programs ..22

2 INSTALLING PERL ON WINDOWS 24
Introducing ActivePerl for Windows ..24
Introducing Strawberry Perl for Windows ..25
Download ActivePerl for Windows ...26
Install ActivePerl for Windows ...28
Download Strawberry Perl for Windows ..30
Install Strawberry Perl for Windows ..32

3 INSTALLING PERL ON LINUX 34
Install Perl for Debian/Ubuntu Linux ...34
Install Perl for Red Hat Linux ..35
Download ActivePerl for Linux or Unix ...36
Install ActivePerl for Linux or Unix ...38

4 INSTALLING APACHE ON WINDOWS 40
Download Apache for Windows ...40
Install Apache for Windows ...42
Configure Apache on Windows ..44
Start and Stop the Apache Service on Windows ...46

02_556801-ftoc.indd vi02_556801-ftoc.indd vi 8/31/10 9:15 AM8/31/10 9:15 AM

vii

5 INSTALLING APACHE ON LINUX 48
Install Apache for Debian/Ubuntu Linux ...48
Install Apache for Red Hat Linux ...49
Configure Apache on Linux ...50
Start and Stop the Apache Service on Linux ..52

6 INTRODUCING THE FUNDAMENTALS
OF PERL . 54

Understanding Perl Syntax ..54
Understanding the Anatomy of a Perl Script ..57
Create a New Perl Script ...58
Print Output to the Screen ...60
Execute a Perl Script ..62
Introducing Perl Scalars ...64
Store Data into Scalars ...66
Retrieve Data from Scalars ...67
Introducing Perl Arrays ..68
Store Data into Arrays ...70
Retrieve Data from Arrays ...71
Introducing Perl Hashes ...72
Store Data into Hashes ..74
Retrieve Data from Hashes ..75

7 BUILDING AN INTERACTIVE PERL SCRIPT 76
Introducing Perl Conditions ..76
Introducing Perl Operators ...78
Control Program Flow with if, elsif, else ..80
Introducing Perl Loops ...82
Loop Program Flow with foreach, while ...84
Introducing Perl Subroutines ...86
Organize Program Code with Subroutines ..88
Manipulate Variables in Subroutines ...90

8 USING PERL REFERENCES AND MODULES 92
Introducing References ..92
Understanding Compound Data Structures ..94
Build an Array or Hash Reference ...96

02_556801-ftoc.indd vii02_556801-ftoc.indd vii 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

viii

Deconstruct a Reference ...98
Nest Variable Types with References ...100
Introducing Perl Modules ...102
Create a New Module ...104
Call a Module’s Subroutines as Methods ..106

9 INSTALLING THIRD-PARTY PERL MODULES 108
Introducing CPAN ..108
Configure CPAN ...110
Search for Perl Modules with CPAN ...111
Install Perl Modules with CPAN ...112
Introducing ActivePerl Perl Package Manager ..114
Configure ActivePerl PPM ..116
Search for Perl Modules with ActivePerl PPM ..118
Install Perl Modules with ActivePerl PPM ..119
Search for Perl Modules in Debian/Ubuntu Linux ..120
Install Perl Modules in Debian/Ubuntu Linux ..121
Search for Perl Modules in Red Hat Linux ...122
Install Perl Modules in Red Hat Linux ...123
Search for and Download Perl Modules Manually ..124
Build and Install Perl Modules Manually ...126

10 CONFIGURING APACHE TO EXECUTE PERL . . . 128
Introducing the Apache CGI Handler ..128
Create a User Directory for Apache in Windows ..130
Create a User Directory for Apache in Linux ..132
Enable the Apache CGI Module and Handler ..134
Configure a Directory to Use the CGI Handler ..136
Understanding the Apache Logs ..138
Configure the Apache Logs ..139
Read the Apache Logs ...140
Forward Perl Activity into the Apache Logs ...141

11 INTRODUCING DO-IT-YOURSELF PERL/CGI
INTERACTION . 142

Create an HTML Form ..142
Read HTTP GET/POST Parameters ...144
Introducing Cookies ...146

02_556801-ftoc.indd viii02_556801-ftoc.indd viii 8/31/10 9:15 AM8/31/10 9:15 AM

ix

Store HTTP Cookies ...148
Retrieve HTTP Cookies...150
Send an E-Mail Message ..152

12 USING PERL’S BUILT-IN CGI LIBRARY 154
Introducing the Built-In CGI Library ..154
Import the CGI Library as an Object ...156
Import the CGI Library’s Routines as Functions ...157
Read HTTP GET/POST Parameters with the CGI Library158
Store HTTP Cookies with the CGI Library...160
Retrieve HTTP Cookies with the CGI Library ..162
Return Useful Error Messages with CGI::Carp ..164

13 SEPARATING HTML CODE FROM PERL CODE . . .166
Understanding the Benefits of Separating HTML from Perl166
Introducing the Perl HTML::Template Module ..168
Understanding the Structure of an HTML::Template File170
Create a New Template File ..172
Import the HTML::Template Module ..174
Display Data with TMPL_VAR ...176
Control Template Content with TMPL_IF, TMPL_ELSE178
Repeat Template Content with TMPL_LOOP ...180
Nest Templates with TMPL_INCLUDE ..182
Create an HTML::Template Header and Footer ...184
Create an HTML::Template Toolbar ..185
Link the Header, Toolbar, and Footer with Dynamic Perl Content186
Extend HTML::Template to Non-HTML Formats ..188

14 ADDING DYNAMIC CONTENT WITH
SERVER-SIDE INCLUDES (SSI). 190

Introducing Server-Side Includes ...190
Enable the Apache SSI Module and Output Filter...192
Configure a Directory to Use SSI ..194
Understanding SSI Elements ..196
Import Files with SSI ..198
Execute Programs with SSI ..199
Set Variables within SSI ...200
Retrieve Variables with SSI ..201

02_556801-ftoc.indd ix02_556801-ftoc.indd ix 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

x

Use Conditional Expressions with SSI ..202
Display File Statistics with SSI ...204
Link the Header, Toolbar, and Footer with Static HTML Content206

15 AUTHENTICATING A USER SESSION 208
Understanding Apache User Authentication ..208
Secure a Directory Path with Apache ...210
Use an Authentication Password File ...212
Require Only Authorized Users..214
Understanding User Authentication in Perl ..216
Create a Perl Authentication Module ..218
Access a User’s Database ...220
Store User Credentials in a User’s Database ...222
Check for Session Authorization (Step 1) ..224
Display a Login Prompt (Step 2) ..226
Validate a User’s Credentials (Step 3) ..228
Authorize a User’s Session (Step 4) ..230
Restrict Access to a CGI Script..232
Terminate a User Session ..234

16 INTERFACING YOUR WEB SITE
WITH FACEBOOK . 236

Register Your Web Site as a Facebook Application ..236
Add a Facebook Social Plugin to Your Web Site ..238
Enable Facebook Connect on Your Web Site ..240
Understanding the Facebook Canvas Feature for Applications244
Create a Facebook Application with Perl ..246

17 INTERFACING WITH THE TWITTER
API USING PERL. 248

Introducing the Twitter APIs ..248
Introducing the Perl Twitter Modules ...250
Register a New Twitter Application ..252
Authenticate to Twitter Using OAuth ...254
Create a MyTwitter Perl Module That Inherits Net::Twitter258
Post a Twitter Status Update ..260
Retrieve a Twitter Timeline ..261
Retrieve a List of Twitter Users you Follow ...262

02_556801-ftoc.indd x02_556801-ftoc.indd x 8/31/10 9:15 AM8/31/10 9:15 AM

xi

Retrieve a List of Twitter Followers ...263
Search for Content Using the Twitter Search API ...264
Use the Twitter @Anywhere JavaScript API ...266
Follow Real-Time Activity with the Twitter Streaming API268

18 CREATING DYNAMIC IMAGES WITH PERL 270
Accept a File for Upload ...270
Open an Image with Image::Magick ...272
Resize or Crop an Image with Image::Magick...273
Manipulate an Image with Image::Magick ..274
Save an Image to Disk ...275
Display a Dynamic Image to the Browser ...276
Implement an Image Captcha Test ...278
Produce an Image Gallery ..280

19 FACILITATING DYNAMIC AJAX
CALLS WITH PERL . 284

Introducing AJAX ..284
Introducing CGI::Ajax ...286
Add CGI::Ajax into Your Perl CGI Scripts ...288
Call Perl Subroutines Through JavaScript ...290
Call JavaScript Through Perl Subroutines ...292
Enable Debug Mode in CGI::Ajax ...294
Integrate Perl and XML ..296
Integrate Perl and JSON ...297

20 PROCESSING CREDIT CARD TRANSACTIONS
WITH PERL. 298

Introducing PayPal ...298
Sign Up for a PayPal Sandbox Account ...300
Create Buyer and Seller Sandbox Accounts ..302
Retrieve Your Seller’s Sandbox API Credentials ...303
Use Business::PayPal::NVP to Connect to PayPal ...304
Process a Credit Card Payment with PayPal ...306
Use the PayPal Express Checkout API ...308
Search Your PayPal Transaction History ..312
View a PayPal Transaction’s Details ..313
Refund a PayPal Transaction ...314

02_556801-ftoc.indd xi02_556801-ftoc.indd xi 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

xii

21 ACCESSING A BACK-END MYSQL DATABASE
WITH PERL. 316

Introducing the MySQL Database ...316
Understanding the SQL Syntax ..318
Download MySQL for Windows ...320
Install MySQL for Windows ...322
Install MySQL for Debian/Ubuntu Linux ..324
Install MySQL for Red Hat Linux ...325
Introducing the Perl DBI Library ..326
Connect to a MySQL Database with the DBI Library ..328
Retrieve SQL Data Using the DBI Library...330
Display SQL Data Through HTML::Template ..332
Change SQL Data Using the DBI Library ..334

22 SECURING DYNAMIC WEB SITES 336
Understanding TLS/SSL Encryption ...336
Create a Private SSL Key ..338
Generate an SSL Certificate Signing Request ..339
Sign Your Own CSR to Create a Test SSL Certificate ..340
Submit Your CSR to Be Signed by a Certificate Authority341
Configure Apache to Use TLS/SSL ...342
Understanding Security in Perl CGI Development ...346
Limit CGI Access in Apache ...348
Identify Unusual Activity on Your Web Site...350
Sanitize User Content in Perl CGI ...352
Validate User Content in Perl CGI ...354

23 SPEEDING UP DYNAMIC WEB SITES 356
Introducing the Apache mod_perl Module ..356
Install the Apache mod_perl Module for Windows ...358
Install the Apache mod_perl Module for Linux ..359
Configure the Apache mod_perl Module...360
Understanding mod_perl’s Caveats ..362

APPENDIX A: PERL REFERENCE. 364
Access Perl Documentation ..364
Execute Perl on the Command-Line ...367

02_556801-ftoc.indd xii02_556801-ftoc.indd xii 8/31/10 9:15 AM8/31/10 9:15 AM

1

Available Built-In Perl Functions ...368
Using Perl Pre-Defined Variables ...376
Perl Operators ..380
Perl Regular Expressions ...384

APPENDIX B: APACHE CONFIGURE AND MODULE
REFERENCE. 386

Apache Run-Time Configuration Directives ...386
Apache Base Modules and Directives ...391
Apache Authentication and Authorization Modules and Directives398
Apache Extended Modules and Directives..404

APPENDIX C: USEFUL PERL MODULES 418
Useful Perl Modules ...418

02_556801-ftoc.indd 102_556801-ftoc.indd 1 8/31/10 9:15 AM8/31/10 9:15 AM

2

Introducing
Apache and Perl

S ince the inception of the World Wide Web in 1989,
users, academics, and professionals have been
inspired by this new canvas to present information

over the Internet. The jump from a text-based interface to
a graphical interface would capture the world’s
imagination on presenting information to the masses.
Content-owners can now store information in a series of
files on a server, with end-users accessing that data at
their convenience. In the earlier days of the Internet, the
server-side information was stored as simple static text
files and images, meaning that files were only changed
when someone manually made a change and uploaded
the new file to the server. As a result, most Web sites
did not change very often. With the introduction of the
Common Gateway Interface (CGI), Web sites could now
use programs in place of static files to dynamically create
on-demand content that was unique for every user.
Anyone wanting to participate on the graphical Internet
requires a client-side program, called a Web browser.
This program is installed onto a local workstation, and
requires an outgoing connection to the public Internet.
The browser establishes a communication link through
the network to a server-side counterpart, called a Web

server, submits a request, and waits for a response. It
is the server’s job to interpret the request being made,
assess the requester’s credentials, open the file or execute
a program using CGI, and transmit the results back to the
user. Once the browser receives the data, it must decode
the transfer and render a graphical representation of the
text and images so that the user can interpret the
information.
Many Web browser programs are freely available for
download, depending on the user’s choice of operating
system. Popular options include Mozilla Firefox, Google
Chrome, Microsoft Internet Explorer, and Apple Safari.
For the content-owner, a Web site is delivered to the
user’s browser by various Web server programs, like
Apache HTTP Server or Microsoft Internet Information
Service (IIS). Again, the options available depend on the
choice of operating system on the server.
The program that utilizes CGI typically runs on the same
computer as the Web server. There are multiple languages
available today that can interact with CGI, including PHP,
Java, and even C and C++, but this book focuses on the
Practical Extraction and Report Language, more
commonly known as Perl.

The Apache HTTP Server

A History of Apache

First released in 1995, Apache evolved from the remains of
the now defunct NCSA HTTPd program, which was the first
Web server created to support the Hypertext Transfer
Protocol, or HTTP.

Early Web servers were only capable of relaying static content
directly from files stored on the Web server’s hard drive.
Eventually, the CGI protocol was standardized and support
was added to Apache.

Versions of Apache

Because Apache has been in development for many years,
new versions are constantly being released as major version
milestones. The latest major release, Apache 2.2, supports a
wide range of configuration features, performance
enhancements, and third-party modules.

Earlier releases, such as Apache 2.0 and 1.3, are still available
and supported. However, you should only consider using an
older version if you have a specific reason to do so. If you are
just starting out with Apache, use the latest stable release
available, Apache 2.2.

The Apache HTTP Server, widely viewed today as the de facto Web server for Unix and Windows platforms, handles more than
90 percent of World Wide Web traffic.

03_556801-ch01.indd 203_556801-ch01.indd 2 8/31/10 9:16 AM8/31/10 9:16 AM

3

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Because today’s Internet has many options for dynamic
content, a Web site author may choose any type of
technology that is available: client-side, server-side, or even
both. Intelligently mixing technologies that complement
each other can create a memorable site that your users will
want to visit again.

The End-User Experience

To provide a pleasurable and esthetically pleasing Web site,
the Web site author composes HTML content that
describes the site’s text, images, and layout. Early Web
browsers lacked many of today’s client-side technologies
that are used to create dynamic content, such as Flash,
Java, and JavaScript. Instead, they relied on the Web
server to provide the entire end-user experience.

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

The Perl Programming Language

A History of Perl

When Perl was originally developed, it was not intended to
help Web servers deliver dynamic content. Perl 1.0 was
released in 1987 as a tool to read, print, sort, report, and
interpret large amounts of data efficiently; it quickly
became a useful tool for programmers and system
administrators. Today’s generation, Perl 5, is widely viewed
as the most common and most stable version available.
The next generation of the language, Perl 6, is currently
under development and available as an experimental
release.

Versions of Perl

Like Apache, Perl has experienced several major release
milestones. The latest stable release, Perl 5.12, is a staple
program on virtually all recent releases of Unix-based
operating system distributions.

The latest experimental release of Perl 6 introduces major
changes to Perl 5 syntax and internals. Because both
generations will remain in active development, there is no
need to switch your programming focus to Perl 6 after you
learn Perl 5, however converting a script is not
complicated.

The New, Dynamic Internet

By 1993, Perl was being used in tandem with Web servers
to supply content over the Web by executing a program.
With the new CGI protocol facilitating program execution
on a Web server, Web sites could now provide the means
to display dynamically changing content to Internet users.

Shortly after CGI was adopted, Web site authors were
creating programs using Perl to support more complex
features online. It was now possible to automate Web site
features that changed very often, such as news reports,
stock quotes, and sports scores, all of which previously
required a human to sit at a computer and update files on
a server.

Even more enhanced real-time features were developed,
such as user authentication, data validation, and database
access. This allowed Web sites to produce larger portals
that were designed to only allow registered users access to
secure information.

Following its own development path, Perl matured independently from Apache as a multi-purpose scripting language for
Unix. The Perl programming language uses a syntax structure that is very similar to C in design, yet free and malleable
in implementation. The Perl language is classified as a third-generation, or high-level, programming language; the
programmer does not need to worry about complex memory allocation or architecture-specific, low-level CPU interaction.
The program file source code, or script, is scanned and interpreted, not compiled, by the Perl interpreter at run time.

03_556801-ch01.indd 303_556801-ch01.indd 3 8/31/10 9:16 AM8/31/10 9:16 AM

4

T he Common Gateway Interface, or CGI, is a
protocol used by the Web server to communicate
with other programs that are stored locally on the

Web server. These programs use CGI to identify unique
information about the user’s session. When a user directs
her Web browser to your Web site, you can instruct the
Web server’s CGI handler to execute a custom program,
like a Perl script, to generate dynamic HTML code, and
relay it back to the user’s browser.

The CGI acronym has many meanings. More commonly
it refers to the Computer Generated Imagery created for
television and movies. However, in the context of the
Internet Web browser, server, and this book, CGI only
refers to this communication protocol.
The output of a typical CGI program is most often HTML
code, but it can be of any file type. See the section,
“Understanding CGI from the Web Browser’s Point of
View,” for a description of how this works.

Introducing the Common
Gateway Interface

HTTP Response Headers

The Web server sends HTTP response headers back to the
Web browser, followed by the requested content. This informs
the browser on how much data content to expect, how it is
formatted, and any new cookies that the browser must store.

CGI scripts have limited control of the HTTP response
headers. To conform to HTTP standards, the Web server
provides the majority of response headers automatically but
still expects the CGI script to provide the content-type HTTP
response header. This allows the CGI script to forewarn the
Web browser, advising whether the output data it is sending
is HTML code, a JPEG image, or a downloadable Zip file.

HTTP Headers

Regardless of what the user is requesting or receiving, all communication traffic handled by the Web server is prefixed by a
series of HTTP headers. These headers supply information that is vital for CGI, but they are only visible to the Web browser,
server, and CGI programming languages like Perl. The user never sees these headers when the browser renders the Web page.

CGI Process Flow

When a user requests a Web page, the Web server decides whether or not to launch a CGI process based upon the filename the
user requests. If he requests a static file, such as index.html or report.txt, the server relays the file back to the user as-is.
If he requests a dynamic Perl script, such as index.pl or report.pl, the server launches the CGI process, executes the Perl
interpreter, and relays the program’s output back to the user.

HTTP Request Headers

The Web browser sends HTTP request headers to the Web
server on every page request. This tells the server which URL
is being requested, what languages and encryption protocols
are supported, any established cookies, and any submitted
content from the user through an HTML form.

CGI scripts have access to these request headers through
the server’s environment variables. Perl CGI scripts interpret
environment variables by way of a special variable called
%ENV.

03_556801-ch01.indd 403_556801-ch01.indd 4 8/31/10 9:16 AM8/31/10 9:16 AM

5

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

POST Method

The POST method sends the submitted content
immediately after the HTTP request headers. This allows
for more data to be sent than GET, and it is hidden from
the browser’s Address bar. The main difference of the
POST method is that bookmarks and page reloads may not
work as the user expects; for example, the actual submitted
information might not be maintained if the user refreshes
the bookmarked URL at a later date.

HTML Forms

In order to collect information from the user, data is submitted through an HTML form. You can use this form to collect
any type of information, and bind the user’s typed answer to a specific identifier. When the user clicks the Submit button,
a new URL is requested and the data is relayed to the server.

On the server-side, you need to configure a CGI script to collect the information being submitted and process it. You
must configure the HTML form to use a specific method to encode and relay its information to the server. The two most
popular methods are GET and POST.

GET Method

The GET method appends the submitted content onto the
end of the URL receiving the request. Due to the limited
length of URLs in some browsers, which only support 256
characters, not much data can be submitted with GET.
Also, the actual data is visible in the URL’s Address bar
when the new page loads.

Common Environment Variables

Several environment variables are available to you that are passed in the context of CGI. The HTTP request headers and
the Web browser populate most of these variables, but the Web server also provides some of them. You can use them
within a Perl CGI script to control the interaction with the user within the CGI protocol.

VARIABLE NAME DESCRIPTION

SERVER_NAME The server name responding, according to the browser

REQUEST_METHOD The method of the request (GET or POST)

HTTP_USER_AGENT A string identifying the user’s browser

HTTP_COOKIE A string of active cookies relative to the user’s session

QUERY_STRING Any additional data passed after the question-mark (?) in the URL for GET requests

SCRIPT_NAME The script being executed, from the perspective of the server

REQUEST_URI The script being executed, from the perspective of the browser

REQUEST_ADDR The user’s IP address that originated the request

SERVER_ADDR The server’s IP address that received the request

Additional environment variables may be available; this depends on the type of the request, the content, the Web server, the
Web browser, and any other technologies such as secure sockets layer (SSL) encryption, or server-side includes (SSI).

03_556801-ch01.indd 503_556801-ch01.indd 5 8/31/10 9:16 AM8/31/10 9:16 AM

6

Accessing the CGI Source Code

When you properly configure a CGI protocol on the Web
server, any requests by the user to access a CGI program by
its URL are met with the program’s output, not the program’s
file content.

In the case of a Perl script, a user may access the URL as
http://servername/cgi-bin/search.pl. The CGI
handler knows that any files in the cgi-bin directory should
be executed, and not read. If your Perl script exists in another
directory, one that does not have the CGI handler enabled,
then the full source is visible.

For this reason, you need to properly secure your server
hardware, and ensure that only appropriate people have
access to the Web site source code on the server. In the
previous example, if someone were to carelessly copy
search.pl into another directory that lacks a CGI handler,
all sensitive data within would be exposed online.

Accessing the HTML Source Code

The Web site’s HTML code is the only source-level content
the user can access directly. Most Web browsers support an
option to view the page’s source code by simply right-clicking
on the page and selecting View Source.

There is nothing you can do to prevent this. Regardless of
whether a page is static or dynamic, the user can always view
the HTML content.

Naturally, if a CGI program generated this content, there
should be no indication of what program you used, or the
contents of the CGI program’s source code.

The HTML Interface

W hen a user directs her Web browser to a
particular page, she may never know if she is
requesting a dynamic CGI program or static

file, or have any idea about the CGI programming
language being used on the server. Even if she does
recognize that the page is dynamically generated, it is
nearly impossible to identify what program is being used
behind the CGI interface on the Web server.
Any astute user who has an idea about CGI development
and Web servers may identify several clues from a Web
site, thus identifying what software it runs. Even as you

start generating CGI pages, you may start to notice some
of these subtle clues on other Web sites and infer what
they use to generate and display their content and
services.
The problem with these “subtle clues” is that malicious
users may be able to take advantage of your Web site,
after identifying what software it runs, and leverage any
number of known security attacks against your server.
Ultimately, these types of attacks are fairly easy to
circumvent. See Chapter 22 for simple tips on preventing
common attacks.

Understanding CGI from
the End-User’s Point of View

When most users visit your Web site, they only experience and interact with it through their Web browser’s window. By default, this
is all most users can see; however, users who are interested in how your Web site is constructed can still access the actual HTML
code and syntax used.

03_556801-ch01.indd 603_556801-ch01.indd 6 8/31/10 9:16 AM8/31/10 9:16 AM

7

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

This can be useful if one CGI program originally generated
the HTML form, and it needs to send additional data to
another CGI program that will process the form.

Submit Buttons

All forms should have some sort of Submit button. This is
what the user clicks to send the form to the Web server.
You can often use <input type=submit>, but a button
with the literal text, “Submit Query,” displays. To change
the button text, add the attribute value=text.

It may look weird in that this is the only input element that
may have a value attribute, but not a name attribute. If
you include a name, then the CGI program will receive the
button’s value as an input field. This can be particularly
useful if you have multiple buttons on the same form, each
with different processing functionality.

Finish the Form

Complete the HTML form with a closing </form> tag.
This instructs the browser that the form is complete.

Viewing Data Returned by the Server

Once the data has been populated by the user, and
submitted to a CGI program, the program should display
something useful or intelligent to the user to indicate the
results of their request. This may be as simple as
displaying a “Thank You” message, maybe even stating
that all information was received correctly. Or, if the user
failed to correctly populate a field, the CGI program needs
to inform the user which field was incorrect and why, and
re-display the form. It is always good etiquette to have your
CGI program pre-populate the fields that were correctly
submitted with the original value, and to highlight the fields
that were incomplete or incorrect.

Building an HTML Form

Most HTML forms follow the same structure. A form
element introduces the form and surrounds several input
elements, which collect data in the browser. The following
is just an introduction to basic HTML forms. For more
information, consult the W3C HTML specification.

Start a New Form

An HTML form always begins with <form method=
method action=url>. The method is either GET or
POST, and the action url should be a CGI script that
opens when the user submits the form.

Single-Line Text Input

You can use the HTML element <input type=text
name=text> to create a single-line text input field. The
name attribute is used later by the CGI script as a key to
the value provided by the user. You can use an additional
attribute, value=text, to pre-populate the form with a
default value in the field.

Multi-Line Text Input

To handle multiple lines of input from the user, use
<textarea name=text></textarea>. The name
attribute works the same way as the single-line input, but
any default text should instead be defined between the
opening and closing textarea elements. Additional
attributes such as rows=num and cols=num can control
the dimensions of the multi-line text input box.

Hidden Text Input

Use the HTML tag <input type=hidden name=text
value=text> to pass additional information in the HTML
form, but not allow the user to see it or change it directly.

Prompting for User-Submitted Data

A CGI program needs to be developed that accepts any user-submitted data provided by an HTML form. When the browser
first displays the form to the user, the form defines which URL should receive the data, and the method to use. It is that URL
that the browser goes to when the users clicks the Submit button. The CGI program responding to that URL must collect the
data, process it, and display an appropriate message back to the user.

03_556801-ch01.indd 703_556801-ch01.indd 7 8/31/10 9:16 AM8/31/10 9:16 AM

8

MIME Types

All content delivered by Web servers is preceded with a special Multipurpose Internet Mail Extension (MIME) type header. This
introduces the HTTP content coming from the Web server to the user’s browser. As the name implies, MIME originated in the
realm of e-mail, allowing for multiple message content blocks to be bundled into a single e-mail message. This allows the client
to choose how to display the content by announcing its content type. The HTTP protocol uses a subset of MIME and requires all
content delivered by a Web server to specify an appropriate content-type HTTP response header called an Internet Media Type.

INTERNET MEDIA TYPE / MIME TYPE DESCRIPTION COMMON FILE EXTENSIONS

text/plain A plain-text file with no special
formatting

.txt

text/html An HTML-formatted Web page .html .htm

image/jpeg An image saved in the JPEG format .jpeg .jpg

application/zip A compressed ZIP archive .zip

T he Web browser actually receives a lot more
information from the Web server than it displays.
The user is completely unaware of the subtle

interactions between the browser and server, including

various CGI communications. As a dynamic Web site
author, you need to be aware of what is going on here so
that you can better interact with your user’s browser and
provide a dynamic Web site experience.

Understanding CGI from the
Web Browser’s Point of View

Environment Variables

All CGI programs have access to several environment
variables related to each Web page request. The Web
server provides some of these variables, while the Web
browser provides others.

Apache comes with a useful CGI script called printenv.
pl, which you can use to see all environment variables
that are in use, and to validate that CGI program execution
is working correctly. To enable this script, you must first
enable the CGI handler in Apache; see Chapter 10 for more
information.

The Web browser provides the CGI with several
environment variables including the following: the current
URL (HTTP_REQUEST_URI), the referring URL (HTTP_
REFERER), the browser’s language (HTTP_ACCEPT_
LANGUAGE), and the browser’s software (HTTP_USER_
AGENT). By reading these environment variables, your CGI
program knows what URL the user is requesting, what
URL he is coming from, what languages are supported,
and the browsing software version, respectively.

Cookies

Cookies are portions of data that a Web server or CGI
program can assign to a user’s Web browser, allowing it to
“remember” a user from an earlier Web site visit. When a
CGI program wants to remember a user, it sends an initial
cookie to that user’s browser using the HTTP response
headers. This could include Web site preference
information such as the user’s preferred language, or a
uniquely generated authentication token.

The Web browser’s job is to accept and store the newly
assigned cookie. The Web browser does not care about the
cookie’s content, only that it must relay that same cookie
back to the Web server on any subsequent Web page
request using the HTTP request headers.

If that same CGI program receives its cookie back again, it
knows that this user has visited before, and retrieves the
data that it asked the browser to store. It is possible for a
user to configure her Web browser to reject new cookies,
or manually delete existing cookies. Doing so makes it
impossible for the CGI program to remember the user,
forcing it to treat the user like a first-time visitor.

03_556801-ch01.indd 803_556801-ch01.indd 8 8/31/10 9:16 AM8/31/10 9:16 AM

9

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

MIME Types (continued)

At first glance, MIME types in HTTP headers seem redundant; the Web browser should be able to identify the file type
based upon its extension. When the user requests the address http://mysite.com/index.html, she is obviously
viewing an HTML file as the Web page. However, if the user requests a CGI address such as http://mysite.com/
index.pl, the Web browser does not know what format .pl files represent, and neither does the Web server. Instead,
the Web server blindly executes the program, relaying all output back to the browser. The CGI program provides the
content-type response header in its output, and the Web server relays this to the browser. So, if the CGI program
announces content-type text/html, then the browser knows to render the CGI’s output as an HTML page.

Processing User-Submitted Data

Encoding the HTML Form’s Values

The data being sent is encapsulated within a format that
uses special characters to separate fields and values. If the
user happens to type in a character that is sensitive to this
format, a macro must replace that character so that it does
not interfere with the expected formatting.

Fortunately, all alphanumeric characters are generally safe
as-is, but some non-alphanumeric characters must be
converted into their percent-hexadecimal-ASCII format by
the Web browser. For example, the equals sign (=) is
represented in ASCII as value 61, or in hexadecimal as 3D.
If a user types an equals sign into an HTML form, the
browser encodes the character as %3D.

Some of the characters that require conversion include the
equals sign, plus sign (%2B), carriage return (%0D), line
feed (%0A), question mark (%3F), and ampersand (%26).

The only exception to this rule is the space character. While
%20 is perfectly legal, Web browsers often convert it into a
literal plus sign (+).

Receiving Data from the Web Server

The Web server never handles form data directly. Instead,
a CGI program is responsible for processing the data. The
program simply reverses the process performed by the Web

browser: it splits the name=value pairs by the ampersand,
and then decodes all of the percent-hexadecimal-ASCII
values back into their original character values.

Sending Data to the Web Server

Before the data is sent to the Web server, the Web
browser serializes the HTML form’s fields into a string of
name=value pairs, joining each pair with an ampersand
(&). Because each value has had any sensitive non-
alphanumeric characters encoded, these characters cannot
affect the overlying structure of each pair, and the user’s
original value is maintained.

FORM FIELD
NAME

USER VALUE ENCODED STRING

name John Smith name=John+Smith&
age=40&children=
Chris+%26+Jason

age 40

children Chris & Jason

If the HTML form specifies the GET method to send the
data, the URL is appended with a question mark (?)
followed by the encoded string of names and values.

If the HTML form specifies the POST method, the URL is
not appended. Instead, the encoded string is sent after the
standard HTTP request headers.

When an HTML form displays on the browser, the user is prompted to populate its fields and click a button to submit the data
to the server. Each field has an identifier that is used as a lookup to match the field’s value. The Web browser’s role is to
collect the information from the fields and encode them in a way that can be transmitted safely to the Web server.

03_556801-ch01.indd 903_556801-ch01.indd 9 8/31/10 9:16 AM8/31/10 9:16 AM

10

T he Web server’s role is to facilitate the flow of
information between the Web browser and the
online content hosted by the server. This may

require the Web server to execute a CGI program to
provide the dynamic features of a Web site. Fortunately,
because the CGI protocol has been standard for years, it
does not matter which Web server or Web browser is
used.
This section, in fact this entire book, uses Apache as the
example Web server. If you compare it to another Web

server such as Microsoft Internet Information Server (IIS),
you will see that the majority of the concepts revolving
around CGI are basically the same. The only real
difference is the implementation and configuration of the
actual Web server.
The Web server’s role is basically transparent to the Web
browser and CGI program. Its sole purpose is to forward
request information being sent from the browser to the
CGI program, and to relay response information from
the CGI program back to the browser.

Understanding CGI from the
Web Server’s Point of View

Receiving Data from the Browser

When the user goes to a Web site, his browser generates an
HTTP GET or POST request and sends it to the site’s Web
server. This request consists of the specific site URL and the
user’s current HTTP environment settings, along with any
cookies, secure socket layer (SSL) encryption status, and any
other relevant information.

This information is bundled up into an HTTP request message
and sent over the Internet. The Web server receives the HTTP
request, reads the information that it deems relevant, and
identifies if either a static file or a CGI program is needed to

complete the request. So, if the user requests a static HTML
file, then a CGI program does not run. The contents of the
static file are relayed back to the user, encapsulated in an
HTTP response message.

If the user requests a file that identifies itself as a CGI
program, then Apache recognizes this, locates the program on
the Web server’s hard drive, and executes it appropriately. The
program’s output is sent back to the Web server, which it
bundles with a similar HTTP response message.

Executing a CGI Program

A CGI program can be either a compiled binary or a standalone script. The Web server needs to know how to execute the
program so that the intended output is sent back to the user.

In order for the Web server to identify if a CGI program is required, the server must have an understanding on the various ways
a CGI program can be called. For example, it could be called directly, by the user specifying a Perl script in the Web browser’s
URL, or indirectly, hidden within an SHTML file using server-side includes. Once the CGI program is identified and located, it is
executed.

03_556801-ch01.indd 1003_556801-ch01.indd 10 8/31/10 9:16 AM8/31/10 9:16 AM

11

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
tSending Data to the End User

After the initial request for the Web page, the user sits and
waits for his Web browser to render the page. The Web
browser waits for the Web server to return the results of
the request. The Web server in turn waits for the CGI
program to return its output. All this time, the CGI program
may be using the server’s CPU processing power,
calculating some complex task. Only when the CGI
program finishes does the process unravel: the program’s
output is sent to the Web server, then to the Web browser,
and then to the user.

As data flows back to the user, it changes slightly with
each step. The Web server actually appends additional
HTTP response header fields to what it receives from the
CGI program, completing the HTTP response message.

Naturally, problems can happen in this process. Most
often, it may be due to a problem in the actual CGI

program’s execution. If the program crashes, then no
output is sent back to Apache, which in turn sends a
generic error message back to the user, something like
“Error 500: Internal server error.”

Or, if the CGI program takes too long to respond, Apache
simply gives up waiting. Instead, it sends a timeout error
back to the user, perhaps with some bundled text asking
the user to try again later.

Regardless of the response from the CGI program, Apache
needs to send something back to the user’s Web browser
as its HTTP response message. Apache constructs the
response data, based upon conditions set out by the
request. It tacks on the data received from the CGI program
if applicable, or the contents of the file requested, sending
everything back to the requesting user’s Web browser over
the Internet.

Executing a CGI Program (continued)

Receiving Data from the CGI Program

Once the CGI program is launched and performs its
function, it sends its generated output back to the Web
server by way of standard-output. In other words, the CGI
program simply prints the output back to the Web server.

Prior to sending any of the actual data, though, the first
line of the CGI program’s output must define a content-
type MIME header. Because a CGI program can technically
output any type of content, be it an HTML-formatted Web
page, a JPEG image, or a Zip file, it must introduce the
content type to the Web browser. This is required because
the CGI program cannot output the extension to the actual
file format, such as HTML, JPEG, or XML. The extension
simply does not exist in the HTTP response message.

By providing the content-type, the Web server knows the
formatting of the CGI program’s output, and can relay this
information back to the Web browser, which then handles
it appropriately given the content. Ultimately, the Web
server does not care about the format of the data it
receives from the CGI program. Its sole purpose is to send
that data back to the user’s Web browser.

Forwarding Data to the CGI Program

The Web server relays the CGI data to the CGI program in
multiple ways. Regardless of the HTTP method used, the
program’s environment settings are populated with CGI
data. Also, if the HTTP POST method is used, additional
information can be found on standard-input.

It is the CGI program’s responsibility to interpret, parse,
and analyze the CGI data into usable segments. In the case
of a Perl CGI script, it should relay this information to the
programmer in a way that is easily accessible.

The information being sent to the CGI program includes
any request data, cookies, HTML form fields and values,
the user’s environment settings, the Web server’s
environment settings, and any other information relevant
to the request.

03_556801-ch01.indd 1103_556801-ch01.indd 11 8/31/10 9:16 AM8/31/10 9:16 AM

12

A Web site’s author may choose to build her site
with HTML content split into several individual
files, such as index.html or aboutus.html.

Static files are relatively easy to construct, but makes it
difficult to provide any type of dynamic content. Instead,
the author may create one or more CGI programs to
dynamically generate each Web page.
The CGI approach has the advantage of controlling what
information displays, and making it unique to the end-
user given his particular session. This may be as simple
as including the current date and time in the top-right

corner of the Web site, or as complex as an e-commerce
store with a shopping cart and a credit-card processing
checkout.
The CGI handler provides the conduit between a CGI
program, such as a Perl script, and the user. The program
must collect the incoming information provided by the
Web server through the CGI handler including the user’s
environment, cookies, and session. The program must
analyze this information, process it, and generate output
from it, like a dynamic Web page.

Understanding CGI from the
CGI Program’s Point of View

CGI Handler Executes the Perl Interpreter

For every user who requests a Web page that is dynamically
generated, the Apache CGI handler must launch a new
instance of the Perl interpreter into memory to process the
request. The CGI handler also instructs the Perl interpreter
which Perl script it needs to execute, and finally forwards the
incoming CGI data to the script’s run-time input.

Naturally, if the user references a Perl script filename in the
URL, Apache does not necessarily know that it is executing a
Perl script, or a binary file written in machine language.
Because a script file is nothing more than text that follows a
specific syntax, it cannot be executed directly by the operating
system like a compiled binary.

In the Unix world, when a program file is launched on the
command line, the operating system relies the system shell to
identify if the file is binary and can be executed directly, or if it
requires a helper program. To do this, the shell reads the first
line of the file, looking for a shebang (#!) interpreter directive.
This is why all Perl scripts begin with the following line:

#!/usr/bin/perl

The shell sees this and knows that it must execute /usr/
bin/perl first, as this is the program that can properly
interpret the contents of the script file.

In the Windows world, the same basic thing happens, except
the explorer.exe “shell” does not look for an interpreter
directive. Instead, it recognizes Perl scripts by way of a .pl
extension. It knows that .pl files first require the program
C:\Perl\bin\perl.exe. When executing CGI scripts on
Windows, Apache does not use explorer.exe, but instead
assumes the role of a Unix system shell. Apache opens the file
being referenced and looks for a shebang interpreter directive,
which must describe the location of the Perl interpreter binary
installed on Windows:

#!C:/Perl/bin/perl.exe

Reading Data Sent from the CGI Handler

Once the Perl interpreter is running, and it has parsed the Perl script and executed it, the first thing the script should do is read
introductory information about the HTTP request session from the CGI handler.

The CGI handler supplies most of its information to Perl by way of environment variables into the Perl interpreter session. The
CGI handler provides the URL requested, the user’s IP address, the Web browser name and version, all cookies related to the
Web site, and so on. All of this information is gleaned from the Perl session’s global environment variable.

03_556801-ch01.indd 1203_556801-ch01.indd 12 8/31/10 9:16 AM8/31/10 9:16 AM

13

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Sending Data Back to the CGI Handler

the Perl script to communicate directly to the user’s
browser, within the guidelines of the HTTP specifications.

At a minimum, the Perl script must print the content-type
MIME header. This is absolutely required, and enforced by
Apache. If it is missing, Apache sends a generic error code
back to the user, regardless of the Perl script’s output.

Additional headers may also be provided to further fine-
tune the HTTP session. Cookies, for example, are also
created by way of the outgoing HTTP headers. After the
Perl script defines any outgoing headers, it must print one
blank line, followed by the actual generated content.

It is the Perl script’s job to enhance the user’s Web-
browsing experience. Usually this happens by way of
dynamically generated HTML, but it could be any type of
formatted data, composed by the Perl script’s logic. The
Perl script simply “prints” this information on its standard-
output handle, with Apache listening intently to this handle
while the Perl script is running.

However, prior to printing any HTML code, the Perl script
must first print any outgoing HTTP headers. Apache relays
these HTTP headers back to the user’s Web browser in the
HTTP response message. In essence, these headers allow

Shutting Down

Given enough traffic on a dynamic Web site, constantly
starting up and shutting down the same group of CGI
programs can be rather demanding on the CPU. In the case
of a Perl script, the Perl interpreter is the actual binary
program that is being launched on each request. For every
single request, the interpreter parses the script into
machine code, executes it, and exits. It is possible to
configure Apache to actually embed Perl directly into itself.
This means that the Perl interpreter is persistently running
in RAM within every process of Apache, so you can avoid
the actual startup and shutdown of Perl; the interpreter
simply remains idle until a CGI request is received. This
feature is provided by an extension module for Apache
called mod_perl. See Chapter 23 for more information on
implementing mod_perl on your Web site.

Once the Perl script has finished, and its output has been
sent back to Apache for relaying to the user’s Web
browser, the Perl interpreter closes its connection to the
CGI handler and shuts down.

Normally, Apache waits until the Perl interpreter has exited
before sending any data back to the user. Apache actually
buffers the Perl script’s output and only sends it once the
CGI program is complete. Most of the time this is not an
issue; however, if you have a Perl script that takes several
seconds, or even minutes, to run, the user will be waiting
for some time before the browser displays the results of
the Web page request. If the delay is unavoidable, you can
at least instruct Apache to provide some content back to
the user, such as a “Please wait...” message, by flushing
the output buffer in the middle of program execution.

03_556801-ch01.indd 1303_556801-ch01.indd 13 8/31/10 9:16 AM8/31/10 9:16 AM

14

A lthough this book focuses on using Perl as a CGI
language, Perl is certainly not your only option.
Technically speaking, any programming

language that can access environment variables, read
incoming data, and write outgoing data will support the
Apache CGI handler.
Not all programming languages are created equal. Some
have libraries specially designed to access CGI data, while
others have modules that make constructing HTML very

easy. Some have a language syntax that is very easy to
remember, and others have third-party modules that
make complex calculations very simple.
You may find that as you experiment with different
languages, some work better than others. There is no rule
that says you must select one specific language for an
entire Web site. Feel free to mix and match languages
and technologies and see for yourself what works best.

Compare Perl to Other
CGI Languages

PHP

PHP is an interpretive language that was designed to
specialize in CGI development. While influenced by other
languages such as C, JavaScript, and even Perl, PHP makes
building dynamic Web sites very easy.

PHP’s strength comes mainly from its ability to embed itself
directly within an HTML file. Static Web site content is
represented as standard HTML in a PHP script. Content that
is dynamic is written as PHP code, contained within special
<? ... ?> tags.

A lot of the mundane CGI handler interactions are automated
by PHP. For example, the PHP interpreter takes care of tasks

such as parsing HTML forms for values, and accessing details
from the CGI environment. At a minimum, Perl requires you to
either import its CGI library, or to produce 15 to 20 lines of
code by hand, to accomplish the same thing.

PHP does have its flaws. For example, its ability to parse, sort,
and organize raw data is not as efficient as that of Perl. Also,
its library of third-party modules is not as robust or mature as
the Perl CPAN repository. For simple CGI programming,
however, many developers find PHP to be more than
adequate.

Active Server Pages

Active Server Pages, or ASP, is a Microsoft framework for
dynamically executing server-side code in-between standard
HTML. First released in 1996, ASP refers to the engine on the
Web server; the underlying language is actually VBScript.

At first glance, ASP-formatted files look like PHP files, using the
tags <% ... %> instead of PHP’s <? ... ?>. However, the
feature set available to VBScript is much more robust than PHP,
especially with the ASP engine providing a series of object
handles that you can use to manage the application, as well as
request, response, server, and session classes.

The VBScript language is limited to running on Microsoft
Windows-based hosts; however, it is not limited to IIS. A
third-party module is available for making ASP and VBScript
Web sites run under Apache on Windows.

VBScript supports many standard functions found in most
programming languages, such as built-in file, date, math,
string, and binary methods. ActiveX objects provide additional
functionality, but design problems in ActiveX and VBScript
have led to problems with malicious third-party code, and
several security advisories and patches.

ASP.NET replaced ASP in 2002. The shift to ASP.NET meant
that it is no longer an interpretive language; code must now
be compiled natively within the .NET framework. While this
does mean more overhead in terms of memory utilization, the
code is generally faster and more responsive than the original
ASP. Many ASP.NET developers have chosen to continue
using classic ASP, especially to develop simple Web sites.

03_556801-ch01.indd 1403_556801-ch01.indd 14 8/31/10 9:16 AM8/31/10 9:16 AM

15

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Ruby on Rails

group the Web site development into interaction, display,
and structure components. By forcing the programmer to
separate her code into these three components, Ruby on
Rails developers argue that Web sites can be built more
efficiently and quickly. Perl CGI does not mandate that you
design using this model, but you are welcome to if you
prefer this type of organization.

Some developers of larger Web sites have criticized Ruby
on Rails for not scaling efficiently, even opting to mix
technologies such as Perl on more resource-intensive
operations.

Ruby on Rails is an application framework for developing
dynamic Web sites using the Ruby programming language.
Ruby is an interpretive language that has been around for
years, and is influenced by other languages such as Perl
and Python. However, Ruby on Rails is a fairly recent
framework that is gaining in popularity. It makes key
assumptions about common features and functionality, and
strives to maximize code re-use.

Directly comparing Ruby on Rails to Perl is not exactly fair.
Ruby on Rails enforces a specific architecture method to

C, C++, C#, and .NET

The disadvantage to using a native language is that there is
more work involved in creating and debugging a program,
as compared to a similar program that you would write
using an interpretive language. It is more tedious because
the programmer must manually compile the binary object
before installing it in a location where the Web server can
access it. With an interpretive language, the compile-and-
install steps are not applicable.

The programmer must also worry about lower-level
memory management, and system-level hardware
interaction — something that is taken care of automatically
by a higher-level interpretive language such as Perl or PHP.

Ultimately, for established Web sites that are larger, busier,
and make significant resource demands on server
hardware, a natively compiled binary is a better long-term
solution, provided that you can invest the extra effort into
writing and maintaining the program. For a newer Web site
with little traffic or resource demands, using an interpretive
language such as Perl will help you develop the site more
quickly.

Programs written in C, C++, C#, or .NET are compiled into
binary-code, which is executed natively by the operating
system. With these languages, there is no interpretive
program involved. Instead, these programs need to be
compiled once, and then executed by the Web server each
time it receives a CGI request.

This method of developing CGI programs is very different
from the other examples in this section; however, natively
compiled programs do have their own unique strengths
and weaknesses that you should consider.

One huge advantage to using one of these languages is
that the program is already converted into a format that the
CPU can quickly and efficiently execute. This means that
larger programs can run much faster and are generally
more responsive than interpretive-based languages.

Strictly speaking, using an interpreter means that your
source code is re-compiled for every single CGI request
that the Web server receives. In addition, the actual
execution of the interpreter affects the server’s memory
and CPU resources.

03_556801-ch01.indd 1503_556801-ch01.indd 15 8/31/10 9:16 AM8/31/10 9:16 AM

16

Just as many other languages have implementations of
the CGI protocol, so do many Web servers. As of the
March 2010 Netcraft survey of Web server software,

Apache represented a 54 percent market share of all Web
sites surveyed — over 112 million servers. Naturally, the
software must be good if so many people are using it;
however, some find it overly complicated and difficult to
set up, especially with its text-based configuration files.
Programs such as Microsoft Internet Information Server
(IIS) have stolen market share from Apache partly because
they are easier to configure and deploy.
Unless you run your own server hardware on the Internet,
you may not have much of a choice regarding which Web

server to run on your Web-hosting provider’s servers.
Apache is the standard on practically all Unix-based
hosting providers. Windows-based hosting providers tend
to only provide IIS as an option. However, it is strongly
recommended that you install a Web server locally on
your workstation for development and testing purposes.
When choosing a Web server, at a minimum you need
something that supports CGI. Additional support for
features such as server-side includes, secure socket layer
encryption, virtual domain hosting, and basic/digest
authentication are all certainly nice to have, but your
specific application may not require them.

Compare Apache to
Other Web Servers

Internet Information Server

Microsoft first released IIS 1.0 in 1995 with Windows NT
3.51. Since then, the program has been steadily upgraded and
improved with each new release of Windows. The most recent
major version is IIS 7.5 for Windows Server 2008.

As of March 2010, about 24 percent, or roughly 50 million
Web sites, use IIS. This is impressive because only Windows
servers can deploy the program; however, IIS’s level of
adoption has bounced between 20 percent and 40 percent
since late 1997. Since peaking in late 2007, its market share
has dropped to a new four-year low.

IIS and Apache have been competing for market share for
many years. In fact, the two programs have become so
synonymous with their respective operating systems that
many Web site developers have simply accepted either
program as the default option — immediately after selecting a
development platform. The key advantage Apache has over
IIS, with respect to market share, is that Apache can run on
either Windows or Unix servers, whereas IIS is limited to
Windows-server platforms only.

Unlike Apache, IIS’s license and source code are proprietary,
and not freely available. Rather than charging for it, Microsoft

has been shipping it out as a standard component of all
Windows installs since Windows XP.

Strictly speaking, as a CGI Web server, IIS is fully compatible
with Apache in terms of handling Perl or other interpretive
languages. In other words, if you use IIS on your personal
workstation to develop and test your Web site, and Apache on
your Web-hosting provider’s server to deploy it publically,
your CGI scripts should be equally usable at both sites,
regardless of any minor compatibility adjustments to the CGI
source code.

Depending on whom you ask, several studies have been
released that argue that Apache is better than IIS and vice
versa when compared on similar hardware. The only real
disadvantage to IIS may be its performance serving CGI
scripts under high-volume conditions; after all, IIS is designed
to run ASP, a competitor to the CGI standard. You can use a
third-party program called FastCGI to address this CGI
deficiency on IIS. FastCGI runs underneath IIS and acts as
sub-server for all CGI traffic deferred by IIS. FastCGI is also
available for Apache.

03_556801-ch01.indd 1603_556801-ch01.indd 16 8/31/10 9:16 AM8/31/10 9:16 AM

17

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

nginx

The real strength of nginx comes in load balancing, fault
tolerance, and serving static files. For this reason, it is not
the best choice for CGI-centric content. Instead, it is best
suited for busier Web sites that want to split the CPU load
of static and dynamic content from a single server farm.
You can let nginx handle the mundane tasks of serving the
static HTML and images, and let the more powerful
machines running Apache handle the dynamic work.

On its home page, http://wiki.nginx.org, you can
read about downloading, installing, and configuring nginx
on Unix, Windows, and Mac platforms.

The Web server program nginx, pronounced “engine-X,”
was the surprise contender on the March 2010 Netcraft
survey. More than 13 million Web sites, a 6.74-percent
share, were counted as running nginx, a surprise in that
this program was only first registered on the survey in
early 2008, but also because it has just one developer.

Nginx supports most of the basic features that are standard
in the popular Web servers; what makes it special is that
whatever feature it does not support can be added using a
well-documented plug-in API. One feature sorely lacking in
nginx is native CGI support; fortunately, it is compatible
with a FastCGI background process where, when enabled,
nginx acts as a proxy to FastCGI.

lighttpd

impressive that a Web server such as lighttpd is very small
and yet of such high quality. The source code and
installation footprint of the core server is roughly 10
percent the size of a comparable Apache footprint. The only
real problem with lighttpd is its small developer and
support base — only 12 people compared to hundreds for
Apache.

The lighttpd source code is available at www.lighttpd.
net with pre-built packages available for various Linux
distributions. Using lighttpd under Windows is possible,
but you need to compile and run the code within a Cygwin
environment. Cygwin is a separate project that has ported
many useful Unix-based libraries and utilities into the
Windows operating system.

Lighttpd is advertised as a lightweight, fully featured Web
server that focuses on being secure, fast, and flexible. As
of March 2010, its share was reported to be 0.53 percent
of all domains, or slightly over one million. As its level of
market share grows, it boasts that it can comfortably
handle more than one thousand hits per second on a single
server managing static Web content.

The default installation is fully CGI-compliant. You can
further improve the level of CGI responsiveness by adding
the aforementioned FastCGI program underneath the
lighttpd public serving layer.

Similar to Apache, lighttpd’s configuration uses files;
however, the syntax is more akin to programming
statements such as config key = value. It is very

03_556801-ch01.indd 1703_556801-ch01.indd 17 8/31/10 9:16 AM8/31/10 9:16 AM

18

Ideally, you need to maintain readability with your code. This
includes using appropriate variable names, function names,
and spacing.

One standard that is widely accepted by the open-source
community is the GNU Coding Standard. This document
describes everything in a C-based model, but there are
sufficient similarities with syntax that it translates easily to
Perl. The document is available in HTML and PDF format at
www.gnu.org/prep/standards/.

Comments

Commenting your code is never a bad idea, but there is no
need to write comments inefficiently and excessively. With a
little extra effort, you can create comments that are concise
and effective. A good rule to follow is this: if it is not
inherently obvious what a portion of code does, precede the
code with a little comment that explains it.

Comments are also used to introduce subroutines. They
explain the subroutine’s purpose, what variables it accepts as
input, and what it produces as output.

Regarding more complex code, if you have to spend several
minutes building the logic for a specific piece of functionality,
then comment your development thoughts and efforts like a
mini-diary. You will save yourself time if you ever need to
revisit that particular segment of code.

The Vim Text Editor

The text editor is the primary tool that you use to write code,
and this is where you will be spending most of your time
programming. Choosing a text editor involves experimenting
with the different editors that are available. One extremely
powerful editor is called Vim.

Vim is a console-based text editor that allows you to use
colored syntax highlighting, automatic code spacing,
command completion, and macros; it is also extendible
through hundreds of plug-ins. One common complaint with
Vim is that its method for entering commands is very different
from other editors. The commands will seem too imposing
and complex, and many new users will find concentrating on
them gets in the way of concentrating on the code. However,
if you simply learn five basic commands (open, save, insert,
move, and quit), Vim will start to pay dividends in
productivity.

A simple tutorial designed for people starting out is standard
with every installation of Vim. Just run the command-line
program, vimtutor, which is available for both Windows
and Unix installations.

Coding Style

There are a many guidelines available on the Internet that
summarize the best coding style to use. Perl is very open in
its interpretation of your code; however, some argue that it is
“too open.” This may lead you to develop code that is messy,
obfuscated, and difficult to maintain.

Your Development Environment

W hen first starting out as a developer, learning
to program in a new language involves an
investment of time and an expectation of

problems. The degree of which varies from programmer
to programmer.

You will also find that the various third-party programs,
techniques, and recommendations discussed in this book
or on the Internet actually contradict what you know
works for you. By keeping an open mind, experimenting
with new ideas, and building upon what you have learned,
you become a more proficient programmer over time.

Developing
Your Web Site

The development environment refers to your local workstation, programs, and documentation. This is where you will be spending
your time actually developing the code for your Web site. You will need several tools and techniques in order to efficiently create a
new program. Feel free to experiment with what works best.

03_556801-ch01.indd 1803_556801-ch01.indd 18 8/31/10 9:16 AM8/31/10 9:16 AM

19

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

the code here from his development environment, no code
is expected to crash or fail.

This environment should be a dedicated test server,
separate from the development and production servers.
With respect to server hardware, it should be as close to
the production environment as physically possible. The
primary people using this environment should be testers in
charge of quality assurance. They must validate specific
bugs have been fixed, new features work, and that there
are no regression problems.

The URL for accessing this environment should be
restricted to internal testers; however, you may find it
beneficial to provide regular users access, and try to gauge
their opinion. From here, you decide if the change is safe to
be promoted to the production environment, or demoted
back to development to be fixed.

The Production Environment

The production environment is the public’s window to your
project. This is where all Internet traffic goes, so obviously
this has to be the most stable code available, with no
known bugs or issues. Everything must work as designed.

Only code that passes quality assurance testing can be
promoted from the test environment. Absolutely no new
code can just suddenly appear here without first going
through development, and then testing stages. Think of
installing new code into the production environment as a
quasi “software upgrade,” complete with a new version
number and change log.

Project Deployment

The Development Environment

The purpose of the development environment is to house
newer, experimental code. This includes changes to your
Web site that could either perform correctly or crash. The
point is that you do not know until you place the change
somewhere on a Web server and try it for yourself.

This environment should remain hidden from the general
public; only internal developers should have knowledge of
it. This environment may exist directly on your individual
workstation, or be managed by a dedicated development
server.

You will find that your production environment matures
with real-world data over time. Being able to import this
data into your development environment can be very
helpful. This is always a good idea just prior to starting on
a new development task, as you will gain a unique
perspective on how users are actually interacting with your
Web site.

The Web server software that runs on the development
environment should be either the same version or newer
than the test and production environments. This is required
in order to validate whether a potential server upgrade will
have an adverse effect on the actual Web site.

The Test Environment

The test environment is intended for relatively stable code,
and is used to find any remaining bugs and do final quality
assurance testing. Because the developer promoted all of

Regardless of the size of your Web site, a good project deployment policy means having distinct server environments set
up for your site. Each environment focuses on a specific state of your code: new work occurs on the development
environment; it is validated on the testing environment, and finally deployed to the public on the production environment.

Controlling the flow of new code in these three stages ensures that your experimental development environment stays private,
and your public production environment remains stable.

03_556801-ch01.indd 1903_556801-ch01.indd 19 8/31/10 9:16 AM8/31/10 9:16 AM

20

O nce your new Web site is built, you need to
make it available online. An Internet hosting
provider allows you to lease a portion of their

professionally managed servers to your Web site,
granting you access to Perl and Apache.
Many Web developers find hiring a hosting provider to be
very beneficial because they offer a dedicated high-speed
Internet connection, professional staff for monitoring and

maintaining the network, and support staff in case any
problems arise.
You also need to register your Internet domain name with
a domain registrar, which may be separate from your
hosting provider. A registrar reserves a specific domain
name and offers you a domain name service (DNS)
assignment program, allowing you to link your domain
name to the hosting provider’s network.

Find Perl- and Apache-Friendly
Hosting Providers

Compare Hosting Plans

Simple Domain Hosting

Often the cheapest option available to Web developers, simple
domain hosting implies the bare minimum required to put a
static Web site online. This is not usually sufficient for sites
that require Perl and Apache, nor is there any access to the
server hardware. Access is usually only made available
through file transfer protocol (FTP).

Some hosting providers may offer some form of CGI access
with these plans. Usually this includes a default installation of
the Perl interpreter, except with no extra third-party modules
or enhancements, or even the opportunity to apply them
yourself. This can be very limiting for a complex Perl CGI Web
site, but may be sufficient for a site with only simple Perl CGI
scripts.

Virtual Hosting

A virtual hosting service plan gives you access to a stand-
alone Linux or Windows operating system installation that is
virtually hosted within a single physical server. That single
server may have multiple virtual accounts, just like yours,
each one sharing a slice of the host’s CPU and memory
resources. Each virtual server sees itself as a complete
operating system, segregated from its virtual peers and the
host operating system.

Virtual hosting is best for startup Web sites as the monthly
leasing costs are fairly low. Often you are granted unrestricted
access to a root account if Unix-based, or the administrator
account if Windows-based, by way of a remote access
program such as Remote Desktop or an encrypted terminal

program called SSH (secure shell). This grants you full rights
to the virtual server, allowing you to install your own third-
party support programs or modules, as required by your
Web site.

One disadvantage to virtual hosting is that your virtual
neighbors may suddenly execute a CPU-intensive task that
draws most computing resources away from your own site.
This can happen sporadically, and without warning. Usually,
there is no guarantee for virtual hosting providers regarding
available CPU resources. This means that the actual level of
computing power may not be consistently as advertised.

Cloud Hosting

A cloud-based hosting plan is very similar to a virtual hosting
plan in terms of usability and execution. However, instead of a
single physical host server, there could be hundreds or even
thousands of clustered host servers, synchronized together,
acting as a singular cloud entity.

The cluster could manage any number of virtual operating
system environments at once. Each one is allocated a specific
slice of the collective CPU strength of each cloud node.

Cloud hosting has the advantage of scalability and cost
effectiveness. As the CPU power is evenly distributed, you are
much less likely to encounter a sudden reduction in CPU
resources as with a single-host virtual hosting provider. Even
if you do need more processing power, you can simply lease a
larger slice of the cloud service.

Hosting providers offer various plans that range in price, service, bandwidth, and level of server access. Selecting a specific
company’s plan depends largely on your needs, budget, and anticipated Web site growth.

03_556801-ch01.indd 2003_556801-ch01.indd 20 8/31/10 9:16 AM8/31/10 9:16 AM

21

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Compare Hosting Plans (continued)

Dedicated Hosting

When outsourcing your hosting services, the most
expensive plan is dedicated hosting. This means that a
dedicated physical machine is set up for you, and your
Web site is the only resident.

Dedicated hosting is offered in two ways: by leasing server
hardware or by co-locating hardware. In both cases, you

pay for the bandwidth used, which may be a flat or variable
rate, but when leasing hardware you also pay for the rental
of the physical machine. Some dedicated providers offer
professionally managed maintenance and security services,
which also add to the cost.

Dedicated hosting is best suited for established Web sites
that service a lot of traffic, and where users expect a
certain level of performance and responsiveness.

Use Your Own Server

Many Web site developers forgo the cost of leasing a
hosting provider’s server and instead choose to deploy
their Web site locally, running through a home or office
Internet connection. While there is nothing inherently
wrong with this, you are taking responsibility for
purchasing, maintaining, and securing your own server
hardware. Before you begin serving incoming Internet
traffic, you need to be aware of your Internet service
provider’s (ISP) policy on serving an outgoing connection;
you may need to purchase an upgraded connection.

Your local server needs to be connected to the Internet
with a fully routable IP address. This means that there is no
router or firewall with network address translation (NAT)
enabled in between your server and the Internet
connection. You can tell if you have a fully routable IP by
comparing your computer’s locally reported IP address to a
service such as www.whatismyip.com; if the values
match, then your IP is fully routable. Many ISPs also
enforce automatic IP address rotation to discourage self-
hosting on their standard end-user network. Again,

purchasing an upgraded Internet connection ensures that
you have a static IP address, which makes DNS
assignments to your domain name significantly more
stable.

You still require a firewall to control access between your
server and the public Internet. Not enabling a firewall
creates a very high security risk, depending on your
operating system. Usually you should configure the firewall
to block all incoming connections from the public Internet
except for what is minimally required, such as TCP ports
80 for HTTP and 443 for HTTPS.

Many retail ISPs provide a high-speed connection that is
designed only for regular end-user traffic, such as
browsing Web sites, downloading videos, and playing
games. If your ISP installs a NAT firewall, blocks port 80,
or enforces frequent IP address rotation, anyone looking to
serve their own Web site will be stymied. In this case, there
is nothing you can do other than to pay for an upgraded
connection, or hire a professional hosting provider.

03_556801-ch01.indd 2103_556801-ch01.indd 21 8/31/10 9:16 AM8/31/10 9:16 AM

22

For example, the Perl Documentation’s table of contents is
available under the page name perltoc. You can view it to
display all the other pages that are available in the Perl
Documentation. The exhaustive Perl FAQs is also an excellent
resource, and its summary is under the page name perlfaq.
Installed, built-in, and third-party modules also make their
documentation available by way of perldoc. Simply append
the module’s full class and name as a parameter:

perldoc Class::Name

You can access the syntax for individual Perl functions using
the -f argument. This is a great way to review the specifics
about how an individual function works:

perldoc -f function

You can find a complete list of all available Perl functions
under the page name perlfunc.

The support documentation that describes how a program
works is extremely important. If there is no documentation
available to diagnose a problem or describe a feature, the end-
user can feel lost, disillusioned, and generally disappointed in
the program’s original author. Effectively, the program is now
useless to the end-user if he cannot figure out how it works.
Fortunately, Perl and Apache have extensive documentation
libraries that are frequently updated and reviewed after every
software release.

Perl Documentation

Perl includes extensive documentation that is installed by
default alongside the Perl interpreter. This documentation
describes every built-in Perl function, module, and command-
line argument, and even provides an in-depth series of FAQs
and tutorials.

Local Perl Documentation

You can access the Perl Documentation locally by way of the
command-line program perldoc. You can access individual
documentation pages by appending the applicable page name
as an argument:

perldoc pagename

Documentation

A s your Web site becomes more dynamic and
complex, you will encounter problems and have
development questions. This could mean tackling

problems with your source code syntax, its execution,
responsiveness, or usability. You should address these
problems as quickly as possible as they could negatively
impact the experience of end-users.
In the case of a Web site with many CGI programs, there
can potentially be a large number of independent parts,
including the Perl binary, various third-party libraries,
and your actual program. Deciding where to go for help

depends on you correctly identifying the failing
component. If the failure is a misunderstanding of how
to use the component, you should always review its
documentation first.
There are many resources available to provide you with
help writing Perl CGI code, and these are available online
and locally within your Perl server’s documentation.
Quickly locating these resources allows you to deal with
the problem sooner, potentially avoiding any major site
downtime and unhappy users.

Find Help Developing
CGI Programs

03_556801-ch01.indd 2203_556801-ch01.indd 22 8/31/10 9:16 AM8/31/10 9:16 AM

23

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

to access it is directly from the Apache Web site, http://
httpd.apache.org/docs/2.2/.

The Apache documentation site groups the content by
reference manual, users’ guide, tutorials, and platform-
specific articles. The format of the documentation implies
a steep learning curve, and topics range from moderate to
advanced usage.

Unfortunately, the layout and topics covered on this page
assume that you are already fairly familiar with the Apache
Web server, that you have no problems understanding
where to apply changes in the multitude of Apache
configuration files, and that you already fully understand
all the various related acronyms. The documentation is
not well suited for beginning Apache users, and actually
discourages a lot of people from using the program.

This book is designed to fill that gap and help the
beginning Apache user: however, the online documentation
acts as an excellent reference manual. Apache uses
hundreds of configuration file directives; if you want to
learn more about how a specific one works, where you can
use it, and its syntax, consult the “Run-time Configuration
Directives” section of the online manual.

Online Perl Documentation

In case the local Perl Documentation is inaccessible or not
installed, the latest version is available in HTML and PDF
formats at http://perldoc.perl.org. Many Perl
developers find it easier to access the Perl Documentation
on this Web site than through the command-line perldoc
program. This may be because the local documentation
program works under the assumption that you already
have a rough idea of what you are looking for, and so it
excludes the table of contents page; as a result, there is no
real way to simply browse through the Perl Documentation
library other than through the Web site. The Web site also
has the advantage of being able to cross-link specific terms
from one page to another, something that is impossible to
do in perldoc.

Ultimately, the command-line program is better suited for
quick, one-time references to a specific module or function;
however, when learning a new concept or simply browsing
the Perl Documentation library, you should just use the
Web site.

Apache Documentation

The complete Apache documentation is not usually
installed alongside the Apache Web server. The best place

Documentation (continued)

Forums

When documentation fails to provide an answer, you can
use online forums to ask your peers about the problem. It
is paramount to find the right forum to post a question to;
posting to the wrong forum does not give you a usable
answer, and posting to a sparsely populated forum may
result in no one having the expertise to provide an answer.

Once you locate a forum, chances are someone has already
encountered your problem in the past and a solution has
been proposed. Before you post anything, do a search
within the forum’s archives for your problem.

Forums can be a frustrating place for new members. Often
a developer becomes discouraged because her problem is
persistently ignored by the regular user-base. Most of the
time, this is caused by not asking the right question, or not
providing enough detail about the problem.

A useful read for anyone posting a technical question to a
forum is Eric S. Raymond’s essay, How to Ask Questions
the Smart Way, available at

http://catb.org/~esr/faqs/smart-questions.html

FORUM NAME URL

Apache Lounge www.apachelounge.com

Apache Forums www.apache.com/forums

PerlMonks www.perlmonks.org

Perl Guru Forums www.perlguru.com

03_556801-ch01.indd 2303_556801-ch01.indd 23 8/31/10 9:16 AM8/31/10 9:16 AM

24

Introducing ActivePerl
for Windows

B ecause Perl is an open-source programming
language, it is possible for you to select from
multiple, customized versions, called distributions,

of the language for your particular operating system. One
popular Perl solution for Windows is called ActivePerl,
provided by ActiveState Software Inc.
ActiveState provides a community-supported distribution,
called ActivePerl, and a corporate-level distribution, called

ActivePerl Enterprise. Although both versions are fully
compatible with the core Perl project, the Enterprise
distribution provides additional options for professional
support and maintenance agreements.
Along with Windows, ActivePerl installation packages
are also available for Linux, Mac OS X, and other Unix
systems. ActiveState also produces similar packages for
the Python and Tcl languages.

ActivePerl License

ActivePerl is licensed by the ActiveState Community
License as described at www.activestate.com/
activeperl/license. Because ActiveState has
packaged the original Perl software, originally produced by
Larry Wall, the original Artistic License for Perl has been
maintained for all Open Source software content. You can
find information on the Artistic License online at www.
perl.com/language/misc/Artistic.html. In
essence, ActivePerl can be freely used by anyone looking
to learn about, utilize, develop, and deploy Perl applications
within a corporate or personal environment.

ActivePerl for Business

Even though Perl source code is available freely on the
Internet, and supported by hundreds of thousands of Perl
developers striving to produce the highest-quality product,
many corporations require a higher-level service that they
can use to support enterprise-level Perl applications and
deployments.

ActiveState provides ActivePerl Enterprise for this purpose.
Other features include a guaranteed Service Level Agreement
(SLA), unlimited support queries, and access to in-house
professional developers of ActiveState. You can find more
information online at www.activestate.com/
business_solutions.

Third-Party Modules

ActivePerl provides its own infrastructure for searching,
downloading, and installing third-party modules, called
Perl Package Manager (PPM). ActiveState maintains the
PPM repositories, keeping them as up-to-date as
possible, and providing pre-compiled binary modules
sourced from the Comprehensive Perl Archive Network
(CPAN) repository.

The ActivePerl PPM program runs as a Windows
application, and is compatible with the Perl CPAN program.
You can use either program interchangeably to install new
Perl modules. You can find information on using PPM and
installing third-party modules over PPM in Chapter 9.

Community Resources

ActiveState hosts a number of services that are free to the
ActivePerl community. These include all core Perl
documentation, a support forum, mailing lists, FAQs,
screencasts, blogs, and third-party code examples. You
can find these services on the ActiveState Programmer
Network at http://aspn.activestate.com.

Documentation and Support

ActiveState supplies all documentation for all original
programs through online resources such as ActiveState Docs,
and through the ActivePerl User Guide, which is included with
the ActivePerl installation. ActiveState also provides the
perldoc program, which is a documentation resource built
into Perl. Because the PerlDoc utility is available on all Perl
distributions, this book will refer you to this utility for more
information on a particular function or module.

You can run the perldoc program from the DOS prompt. It
takes several different arguments, but most of the time, you
will only need two. To query a particular function’s
documentation, run perldoc -f function. To query a
particular module’s documentation, run perldoc module.
Finally, run perldoc perldoc to bring up the help manual.
See Appendix A for more information on how to use PerlDoc.

04_556801-ch02.indd 2404_556801-ch02.indd 24 8/31/10 9:16 AM8/31/10 9:16 AM

25

Ch
apter 2: In

stallin
g Perl on

 W
in

dow
s

Built-In Perl Documentation

Strawberry Perl does provide a built-in documentation
resource for Perl, the perldoc program.

Because the perldoc utility is available on all Perl
distributions, this book will refer you to this utility for more
information on a particular function or module.

You can run the perldoc program from the DOS prompt.
It takes several different arguments, but most of the time,
you will only need two. To query a particular function’s
documentation, run perldoc -f function. To query a
particular module’s documentation, run perldoc module.

Finally, run perldoc perldoc to bring up the help
manual. See Appendix A for more information on how to
use PerlDoc.

Online Resources

Virtually all online resources that are available for Perl also
apply to the Strawberry Perl distribution for Windows. The
best online source for Perl documentation is http://
perldoc.perl.org. The primary online resource for the
Win32 Perl community is http://win32.perl.org.
Strawberry Perl does have a support page, which describes
its focus and goals, and includes a mailing list and other
links, at http://strawberryperl.com/support.
html. An IRC channel is also available for live support at
#win32 on irc.perl.org.

Documentation and Support

S trawberry Perl is a community-supported, free
software distribution of Perl that provides all
the features of Perl on Unix to Windows

systems. Users who are already familiar with Unix Perl
but require a Windows development environment
should use Strawberry Perl.
The developers who produce and maintain Strawberry
Perl recommend their program for intermediate or

advanced Perl users. Beginners are directed to install
ActivePerl from ActiveState as no graphical interface
is provided by Strawberry Perl.
Strawberry Perl is compatible with Windows XP,
Windows Vista, Windows 7, Windows Server 2003
and 2008, and supports both 32-bit and 64-bit OS
environments. Strawberry Perl is available online at
http://strawberryperl.com/.

Introducing Strawberry
Perl for Windows

Strawberry License

Because Strawberry Perl contains various modules and
programs, its license is an aggregate of many open-
source-compatible licenses, including the GNU General
Public License (GPL), published by the Free Software
Foundation, and the Perl Artistic License. After installing
Strawberry Perl, you can find specific information about
the various licenses involved under the directory
C:\strawberry\license\.

Third-Party Modules

Strawberry Perl is fully compatible with modules
delivered through the CPAN repository. Included with the
Strawberry Perl installation package is a C compiler and
build environment, which can handle any complex CPAN
package that generates C code or libraries. You can find
information on using CPAN and installing third-party
modules over CPAN in Chapter 9.

Strawberry Perl Quirks

The biggest quirk that you will encounter is its non-
standard installation path. This path needs special attention
when you start developing CGI code with Strawberry Perl
and Apache on Windows. For more information, see
Chapter 10.

Strawberry Perl is a newer distribution of Perl for
Windows. Originally based upon the Vanilla Perl Project,
the distribution has only been available since January 2008.
It strives to adhere as closely as possible to the core Perl
fundamentals, but it does have its own way of doing things.

Because Strawberry Perl is a community-supported project, no commercial support options are available. If you require
premium-level support options, the Strawberry Perl developers recommend using ActivePerl Enterprise.

04_556801-ch02.indd 2504_556801-ch02.indd 25 8/31/10 9:16 AM8/31/10 9:16 AM

26 4

3

2
1

 ActiveState prompts you to
subscribe to the ActiveState
Newsletter.

4 If you are interested in the
ActiveState newsletter, complete
the form fields and click Sign Up.

Note: The newsletter sign up is
optional, but is available if you are
interested in knowing more about how
to use ActivePerl.

1 Open a Web browser.

2 Type http://www.
activestate.com/
activeperl/downloads/
and press Enter.

 The ActiveState ActivePerl
Web site loads.

3 Click the Download
ActivePerl link.

Download ActivePerl for Windows

A ctivePerl is a Perl binary distribution made
available by ActiveState. To install it, you need
to download a Windows Installer (MSI) package

of ActivePerl which provides a Perl interpreter,
documentation, and several standard Perl modules that
you can use on a Windows system.
ActivePerl is available in two stable versions, ActivePerl
5.8 and ActivePerl 5.10, which are based upon Perl 5.8
and Perl 5.10. Perl 5.10 changed in a way that affected
backward-compatibility with some Perl functions, pre-
compiled binaries, and existing sample scripts. Some
large-scale programs that were written for Perl 5.8 and
earlier may require minor code adjustments to run as a
Perl 5.10 program. Also, some third-party modules
available on CPAN or the ActivePerl PPM Network are not
compatible under Perl 5.10.

If you already have a large amount of code written for Perl
5.8, or you require a number of obscure and out-of-date
third-party modules, it may be best to stay with ActivePerl
5.8. However, if you are relatively new to Perl and do not
have a specific reason to remain on Perl 5.8, you should
download Perl 5.10. The ActivePerl download is about
17MB, and uses about 90MB of disk space when
installed.
After you finish installing ActivePerl, read the release notes
for known incompatibilities between ActivePerl 5.8 and
5.10. Downgrading ActivePerl is as simple as uninstalling
version 5.10 and downloading and installing version 5.8.
You can download other versions of ActivePerl that are
older than version 5.8 from the ActiveState Downloads
site at http://downloads.activestate.com/
ActivePerl/.

Download ActivePerl
for Windows

04_556801-ch02.indd 2604_556801-ch02.indd 26 8/31/10 9:16 AM8/31/10 9:16 AM

27

Ch
apter 2: In

stallin
g Perl on

 W
in

dow
s

6

5

Additional tools for ActivePerl are available for download on the ActiveState site. The Komodo Integrated
Development Environment, or IDE, provides a multi-language editor, debugger, and front-end to various source-
code managers such as Concurrent Versions System (CVS) and Subversion. The Perl Dev Kit, or PDK, provides a set
of critically acclaimed tools for developing large-scale Perl applications.

ActivePerl Pro Studio provides both the IDE and PDK, as well as access to Safari Books Online, an electronic library
of thousands of technical publications.

The Komodo IDE and the PDK are commercial applications that require you to purchase a license from ActiveState.
ActivePerl Pro Studio requires a yearly subscription.

This process of downloading ActivePerl for Windows assumes that the browser is on the same computer where you
will install ActivePerl. If this is not the case, you can manually select an ActivePerl download for alternative
Operating System environments.

It is also possible to download older and experimental releases of ActivePerl on this page.

• The ActivePerl installation
package appears in the
folder you saved the
download into.

 The Downloads dialog box
appears, confirming that the
download is complete.

5 Right-click the ActivePerl
download.

6 Click Open Containing
Folder.

04_556801-ch02.indd 2704_556801-ch02.indd 27 8/31/10 9:16 AM8/31/10 9:16 AM

28

4

3

2
1

5

6

 The ActivePerl Setup
window opens.

4 Click Next.

 The ActivePerl License
Agreement window
opens.

5 After reading the license,
click the option to accept
the terms of the license
agreement.

6 Click Next.

1 Open the folder containing
the ActivePerl download.

2 Double-click the
ActivePerl installer.

3 If a security-warning
message appears, click
Run.

Install ActivePerl for Windows

Y ou must install the ActiveState ActivePerl
installation package onto each Windows
workstation or server that you will be developing

Perl CGI scripts on, or servicing Perl CGI queries online.
The supported versions of Windows for ActivePerl 5.10.1
are Windows XP, Windows Vista, and Windows Server
2003 and 2008.
The installation of ActivePerl for Windows is handled by
a Windows Installer Package with an .msi extension. The
installation process requires administrative privileges on
the system. As a result, the user performing the installation
must be a member of the local Administrators security
group.

In general, the ActivePerl default options are the best
choices for new users. The recommended default folder
where ActivePerl will be installed is C:\Perl.
The installation process prompts you for a series of
custom setup options. One set of options confirms
whether you want to add Perl to the PATH environment
variable, and whether you want to create Perl file
extension association. It is important to leave both of
these options enabled, which is the default setting.
The size of a new ActivePerl installation is about 90MB,
but as other programs are used, such as PPM and CPAN,
the overall footprint can grow to 250MB or more.

Install ActivePerl
for Windows

04_556801-ch02.indd 2804_556801-ch02.indd 28 8/31/10 9:16 AM8/31/10 9:16 AM

29

Ch
apter 2: In

stallin
g Perl on

 W
in

dow
s

0

8 9

Once you complete the installation, ActivePerl becomes available globally in the system path. To confirm that
everything is installed correctly, open up a Command Prompt by clicking Start ➔ Programs ➔ Accessories ➔
Command Prompt, and run the Perl interpreter’s version command.

 The Custom Setup
screen appears.

7 Click Next to
continue.

 The Choose Setup
Options window
appears.

Note: Do not uncheck the
first two check boxes.
These selections are
required for proper CGI
Perl script execution.

8 Click Next.

 The Ready to Install
screen appears.

9 Click Install.

 A window appears,
stating the Setup
Wizard is complete.

0 Click Finish.

 The ActivePerl
Release Notes
appear.

TYPE THIS

perl -v

RESULTS

This is perl, v5.10.1 built for MSWin32-x86-multi-thread
(with 2 registered patches, see perl -V for more detail)

Copyright 1987-2009, Larry Wall

➔

It should not matter what directory you type the perl -v command in; after you complete the installation, the
Perl interpreter should be available globally in the system path. If Windows reports that this command is invalid,
log out of the Windows session and log back in again.

By default, the installation’s home directory path is C:\Perl. You can change and customize this path during the
installation procedure. If you do customize this path, be aware that your CGI scripts will need to reflect the new
path. For information on how to do this, see Chapter 10.

04_556801-ch02.indd 2904_556801-ch02.indd 29 8/31/10 9:16 AM8/31/10 9:16 AM

30

3

2

1

 If you use Firefox, the
Downloads dialog box
appears, confirming that
the download is complete.

1 Open a Web browser.

2 Type http://
strawberryperl.com and
press Enter.

 The Strawberry Perl Web
site loads.

3 Click the Download
Strawberry Perl link.

Download Strawberry Perl for Windows

S trawberry Perl is a Perl binary distribution made
available by the open-source community. To
install it, you need to download either a Windows

Installer (MSI) package or a Zip file of Strawberry Perl,
which provides a Perl interpreter, documentation, and
several standard Perl modules that can be used on a
Windows system.
Strawberry Perl is available in two stable versions,
Strawberry Perl 5.8 and Strawberry Perl 5.10. Perl 5.10
changed in a way that affected backward-compatibility
with some Perl functions, pre-compiled binaries, and
existing sample scripts. Some large-scale programs that
were created with Perl 5.8 and earlier may require some
code adjustments to run as a Perl 5.10 program. Also,
some third-party modules available on CPAN have not yet
been updated to be compatible under Perl 5.10.

The Strawberry Perl download is about 32MB, and uses
about 135MB of disk space when installed. The actual
installation procedure is very simple. There are no options
to customize the installation directory or components.
Instead, Strawberry Perl produces three separate
download packages which customize where Strawberry
Perl is installed: a standard MSI package, a ddrive MSI
package, and a Zip file.
Both the standard and ddrive MSI packages will install
Strawberry Perl onto your Windows workstation or server;
however, the standard version will install Perl into the
directory C:\strawberry, and the ddrive into D:\
strawberry. The Zip file allows you to extract the
Strawberry Perl binaries into a directory path of your
choosing. You can download these alternative versions of
Strawberry Perl from the Strawberry Perl Releases page at
http://strawberryperl.com/releases.html.

Download Strawberry
Perl for Windows

04_556801-ch02.indd 3004_556801-ch02.indd 30 8/31/10 9:16 AM8/31/10 9:16 AM

31

Ch
apter 2: In

stallin
g Perl on

 W
in

dow
s

5
4

The Strawberry Perl download delivers an MSI package onto your workstation. You need to install this MSI onto
every Windows machine that will be servicing Perl CGI requests with Strawberry Perl.

Two other download packages are available from Strawberry Perl as alternatives to the standard MSI: a ddrive MSI
and a Zip file. Which one you use depends on the directory where you want Strawberry Perl to be installed.

The standard MSI installs into C:\strawberry\perl by default, the ddrive MSI uses D:\strawberry\perl,
and the Zip file allows you to manually extract the distribution binaries into a directory of your choosing.

If you do choose the Zip file download and installation method, you need to manually set up the system path to
reflect the custom install directory.

• The downloaded Strawberry
Perl installation package
appears in the folder you
saved the download into.

4 Right-click the Strawberry
Perl download.

5 Click Open Containing
Folder.

04_556801-ch02.indd 3104_556801-ch02.indd 31 8/31/10 9:16 AM8/31/10 9:16 AM

32

3

4

1

2

3 After reading the license,
click the option to accept
the License Agreement.

4 Click Install.

1 Open the folder containing
the downloaded Strawberry
Perl installation package.

2 Double-click the
Strawberry Perl installer.

Install Strawberry Perl for Windows

Y ou must install the Strawberry Perl binary
packages onto each Windows workstation or
server that you will be developing Perl CGI scripts

on, or servicing Perl CGI queries online. The supported
versions of Windows for Strawberry Perl 5.10.1.0 are
Windows XP, Windows Vista, Windows 7, Windows
Server 2003 and Windows Server 2008.
The installation of Strawberry Perl for Windows is
normally handled by a Windows Installer Package with
an .msi extension, but alternative installation methods
are available. The MSI installation process requires
administrative privileges on the system. As a result, the
user performing the installation must be a member of the
local Administrators security group.
The Strawberry Perl installation program does not provide
any options to customize the installation process. If you

downloaded the standard MSI package, the default folder
where Strawberry Perl is installed is C:\strawberry. If
you downloaded the ddrive MSI package, the default
folder will be D:\strawberry. If you want a custom
directory path, you may extract the Zip file archive into
any directory you choose.
If you use the MSI method, Strawberry Perl is available
automatically in the global system path. If you install
Strawberry Perl by extracting the Zip file, you need to
manually set up the system path to your custom
installation directory. You must make sure that the
following directories are added to your path:
C:\extractpath\c\bin
C:\extractpath\perl\bin

The size of a new Strawberry Perl installation is about
130MB, but as other programs are used, such as CPAN,
the overall footprint can grow to 250MB or more.

Install Strawberry
Perl for Windows

04_556801-ch02.indd 3204_556801-ch02.indd 32 8/31/10 9:16 AM8/31/10 9:16 AM

33

Ch
apter 2: In

stallin
g Perl on

 W
in

dow
s

5

To confirm that everything is installed correctly, open up a Command Prompt and attempt to run the Perl
interpreter’s version command.

 A window appears, stating
that the Setup Wizard is
complete.

5 Click Finish.

 The Installing Strawberry
Perl window appears,
showing the installation
process.

➔
TYPE THIS

perl -v

RESULTS

This is perl, v5.10.1 built for MSWin32-x86-multi-thread
Copyright 1987-2007, Larry Wall

It should not matter what directory you type the perl -v command in; it must be available globally in the system
path. If Windows reports that this command is invalid, log out of the Windows session and log back in again.

The installation’s default home directory path is C:\strawberry\perl. You can change this by installing the
ddrive MSI package, or extracting the Zip file. If you customize this path, your CGI scripts will need to reflect the
new path (see Chapter 10).

If you manually install the Zip file, remember to add Strawberry Perl into the global system path. Right-click My
Computer, click Advanced, click Environment Variables, and then edit the Path system variable.

04_556801-ch02.indd 3304_556801-ch02.indd 33 8/31/10 9:16 AM8/31/10 9:16 AM

34

3
2

4

1

Install Perl for
Debian/Ubuntu Linux

Install Perl for Debian/Ubuntu Linux

1 Open a Terminal window on
Debian or Ubuntu.

2 Type sudo apt-get install perl
perl-doc and press Enter.

Note: In Debian, the sudo
command may not work. Instead
type su –c ‘apt-get install perl
perl-doc’ to run the command
as root.

3 Type your password if
prompted.

4 Type Y and press Enter
to continue.

 The Perl interpreter and Perl
documentation are downloaded
and installed.

Note: This process also upgrades
Perl, if an upgrade is available on
the APT repository.

T he Perl interpreter and core modules are installed
by default on all Debian- and Ubuntu-based
Linux systems; however, the Perl documentation

package is usually not. You can download the Perl
documentation onto your Debian or Ubuntu Linux
system. If you do not require the Perl documentation
program, you can skip this section.
Debian and Ubuntu systems use the DEB packaging
format. You can use the program suite called Advanced
Package Tool, or APT, for downloading, installing,
upgrading, and removing DEB packages. APT is standard
on all Debian and Ubuntu systems, for more information
see www.debian.org/doc/user-manuals.

The APT repository that houses the Perl DEB packages
tends to only contain the latest stable Perl release milestone.
If you need an earlier release, such as Perl 5.8, you can
download and install it from the Perl project homepage.
You can also use the ActiveState 5.8 Linux DEB package.
The installation process requires that your computer be
connected to the Internet. The download, installation,
and setup procedure is handled by a single command,
apt-get, which you execute in a Terminal window.
The Perl download is about 8.6MB, and uses about 32MB
of disk space when installed. To open a Terminal window
in a Debian or Ubuntu system and launch an APT
command, click the Applications button, go to the
Accessories menu, and then click Terminal.

05_556801-ch03.indd 3405_556801-ch03.indd 34 8/31/10 9:16 AM8/31/10 9:16 AM

35

Ch
apter 3: In

stallin
g Perl on

 L
in

u
x

32

4

1

 The Perl RPM package is
downloaded and installed.

Note: This process also upgrades
Perl, if an upgrade is available on
the RPM repository.

1 Open a Terminal window on
Red Hat.

2 Type sudo yum install perl
and press Enter.

3 Type your password and
press Enter.

Note: If sudo is not available on
your system, type su -c ‘yum
install perl’ instead. Then type
root’s password.

4 Type Y and press Enter.

Install Perl for Red Hat Linux

Perl 5.8, you can download and install it from the Perl
project homepage.
The installation process requires that your computer be
connected to the Internet. The download, installation, and
setup procedure is handled by a single command, yum,
which you execute in a Terminal window.
On the command-line, alternatives to yum on Red Hat-
based Linux systems include running the urpmi command
and downloading the RPM file. If you are using a KDE
graphical interface, you can use the KPackage program,
or if you use a Gnome graphical interface, the GnoRPM
and Gnome Package Kit programs are available. The Perl
download is about 8.7MB, and uses about 30.4MB of
disk space when installed. To open a Terminal window in
a Red Hat system, click the Main Menu button, go to the
System Tools menu (System in KDE; Accessories in
Fedora), and click Terminal.

T he base Perl package is installed by default
on all Red Hat-based Linux systems. This
includes the Perl interpreter, documentation,

and core modules. If you run these commands on a
system that already has Perl installed, and the system
detects that a newer version is available online, Perl
is automatically upgraded. Linux machines that run
on Red Hat-based Linux, including Fedora Linux,
CentOS Linux, and Red Hat Enterprise Linux, all use
the Red Hat Package Manager (RPM) packaging
format. Red Hat has standardized on the Yellowdog
Updater, Modified (YUM) program for downloading,
installing, and removing RPMs.
The Red Hat repository that houses the Perl RPM
packages tends to only contain the latest Perl release
milestone. If you need an earlier release, such as

Install Perl for
Red Hat Linux

Ch
apter 3: In

stallin
g Perl on

 L
in

u
x

05_556801-ch03.indd 3505_556801-ch03.indd 35 8/31/10 9:16 AM8/31/10 9:16 AM

36
4

3

2
1

 ActiveState prompts you to
subscribe to the ActiveState
Newsletter.

4 If you are interested in the
newsletter, complete the form
fields and click Sign up for the
ActiveState Newsletter.

Note: The newsletter sign up is
optional, but is available if you are
interested in knowing more about
how to use ActivePerl.

1 Open a Web browser.

2 Type www.activestate.com/
activeperl/downloads/ and
press Enter.

 The ActiveState ActivePerl
Web site loads.

3 Click the Download
ActivePerl link.

Download ActivePerl for Linux or Unix

A ctivePerl is a Perl binary distribution that is made
available by ActiveState. To install it, you must
download an ActivePerl installation package,

which is available as a gzipped tarball, a Debian Package,
or in a Red Hat Package Manager file format. Each package
provides a Perl interpreter, documentation, and several
standard Perl modules that you can use on a Linux system.
This section is specific to the download of the gzipped
tarball, or tar.gz, installation package. If you are
running on a Debian/Ubuntu or Red Hat system, you
should download the appropriate Debian or Red Hat
package, respectively.
ActivePerl is available in two stable versions, ActivePerl 5.8
and ActivePerl 5.10, which are based upon Perl 5.8 and Perl
5.10, respectively. Perl 5.10 changed in a way that affected

backward-compatibility with some Perl functions, pre-
compiled binaries, and existing sample scripts. Some large-
scale programs that were written for Perl 5.8 and earlier
may require minor code adjustments to run as a Perl 5.10
program. Also, some third-party modules available on the
Comprehensive Perl Archive Network (CPAN) or the
ActivePerl Perl Package Manager (PPM) Network have not
yet been updated to be compatible under Perl 5.10.
The ActivePerl download is about 30MB, and uses about
115MB of disk space when installed. After the installation
of ActivePerl is complete, read the release notes for
known incompatibilities between ActivePerl 5.8 and 5.10.
Downgrading ActivePerl is as simple as uninstalling
version 5.10 and downloading and installing version 5.8.
You can download other versions of ActivePerl that are
older than version 5.8 from the ActiveState Downloads site
at http://downloads.activestate.com/ActivePerl/.

Download ActivePerl
for Linux or Unix

05_556801-ch03.indd 3605_556801-ch03.indd 36 8/31/10 9:16 AM8/31/10 9:16 AM

37

Ch
apter 3: In

stallin
g Perl on

 L
in

u
x

6

5

The process of downloading ActivePerl for Linux delivers a tar.gz file to your computer. If you are running a
Debian- or Red Hat-based system, you should download the ActivePerl DEB or RPM package format instead.

To download a DEB or RPM package, or to select an alternative Unix platform, select the binary package on
the ActiveState ActivePerl downloads Web page. It is also possible to download an older release of ActivePerl
on this page.

PLATFORM DOWNLOAD

Linux (x86) TGZ Archive, RPM, or Debian Package

Linux (64-bit, x64) TGZ Archive, RPM, or Debian Package

Solaris 8+ (SPARC) TGZ Archive, Solaris Package

Solaris 8+ (SPARC 64-bit) TGZ Archive, Solaris Package

Solaris 8+ (x86) TGZ Archive, Solaris Package

AIX 5 (PowerPC) TGZ Archive

• The ActivePerl Installation
Package appears in the
folder you saved the
download into.

5 After the download is
complete, right-click the
ActivePerl file.

6 Click Open Containing
Folder.

05_556801-ch03.indd 3705_556801-ch03.indd 37 8/31/10 9:16 AM8/31/10 9:16 AM

38

5

6
7

2

3

1

4

1 Open a Terminal window
in the directory where you
downloaded the ActivePerl
tar.gz file.

2 Type tar xfz ActivePerl*.
tar.gz to uncompress the
archive.

3 Type cd ActivePerl* and
press Enter.

4 Type su -c ./install.sh
and press Enter to begin
the installation as root.

5 Type the root account’s
password and press
Enter.

Note: If you do not know root’s
password, replace su -c with
sudo. If that fails, you can run
the installation as a normal
user, but you need to select a
different path in step 9.

6 Press Enter to confirm
that you have not yet read
the license file.

7 Press Enter to read the
license file.

Install ActivePerl for Linux or Unix

Y ou must install the ActiveState ActivePerl binary
package onto each Linux workstation or server,
that you will be developing Perl CGI scripts on, or

servicing Perl CGI queries online. Installing ActivePerl
onto your Linux workstation rather than the standard
Perl distribution gives you access to the ActiveState PPM
network and its commercial development programs.
An installer shell script handles the installation of
ActivePerl for Linux when you use a gzipped tarball, or
tar.gz, package archive. The installation process requires
root privileges on the system. Usually sudo or su can be
used by a regular user account to gain root privileges.
Once installed, the ActiveState Perl binary becomes
available in tandem with your system’s native Perl binary,
if one already exists. The default installation directory is
/opt/ActivePerl-5.10/, assuming you downloaded

the 5.10 version. It is a very good idea to set up a
symbolic link from the default Perl interpreter location,
/usr/bin/perl, to the ActiveState Perl interpreter binary.
This process is explained at the end of this section.
This section is only intended for the tar.gz download-
and-installation method of ActivePerl for Linux. You
should only use this method on Linux or Unix systems
that are not based on Red Hat or Debian. With these
systems, you only need to double-click the ActivePerl
DEB or RPM package to install the program.
In place of using the command-line, some graphical
window managers may allow you to double-click the
tar.gz file. That is sufficient to uncompress the
downloaded archive, and skip steps 1 to 3, but you
still need to execute the install.sh script with root
privileges.

Install ActivePerl
for Linux or Unix

05_556801-ch03.indd 3805_556801-ch03.indd 38 8/31/10 9:16 AM8/31/10 9:16 AM

39

Ch
apter 3: In

stallin
g Perl on

 L
in

u
x

8

9

0

!

Once the installation is complete, the installer asks you to modify your startup environment. You can usually
accomplish this globally by appending the following text to the file /etc/profile.

PATH=”/opt/ActivePerl-5.10/site/bin:/opt/ActivePerl-5.10/bin:$PATH”

MANPATH=”/opt/ActivePerl-5.10/site/man:/opt/ActivePerl-5.10/man:$MANPATH”

Be sure to check your system’s shell manual for specific instructions for manipulating PATH and MANPATH.

It is generally a good idea to set up /usr/bin/perl as a symbolic link to the ActiveState Perl interpreter. Be sure
to back up your original Perl binary if one already exists in this path.

mv /usr/bin/perl /usr/bin/perl.bak

ln -s /opt/ActivePerl-5.10/bin/perl /usr/bin/perl

ActiveState Perl is also available as a DEB and RPM package. This method is preferable over using the tar.gz format
on Debian- and Red Hat-based systems, as installation, upgrading, and removal is handled by existing infrastructure.
In most cases, you can install a DEB or RPM package simply by double-clicking the package file. Alternatively, you can
install the package using a Terminal window. On Debian, use the command sudo dpkg -i packagefile.deb; on
Red Hat systems, use sudo rpm -i package.rpm or su -c ‘rpm -i package.rpm’.

• ActivePerl is installing.

• ActivePerl is now installed.

 The ActivePerl License
Agreement appears. You may
press the spacebar to page
down the license text, or type
q to quit reading.

8 Type yes to agree to the
license and then press Enter.

9 Press Enter to select the
default top-level directory.

0 (Optional) Press Enter to
install HTML documentation.

! Press Enter to proceed with
the installation.

05_556801-ch03.indd 3905_556801-ch03.indd 39 8/31/10 9:16 AM8/31/10 9:16 AM

40

4

3

1
2

5

5

Download Apache
for Windows

Download Apache for Windows

1 Open a Web browser.

2 Type http://httpd.apache.org and press
Enter.

3 Click the Download from a mirror link.

4 Scroll down to the best available version.

5 Click the Win32 Binary download.

Note: Select the appropriate link to download
Apache with or without OpenSSL included.

6 Click the Save File button when prompted
by your Web browser’s pop-up.

 The file downloads to your computer.

T he Apache Web server is the program that listens
and responds to incoming HTTP requests. It is a
vital part of presenting dynamic CGI scripts on the

Internet. You can download the latest version of the
Apache program from the Apache Software Foundation’s
Web site at http://httpd.apache.org. When you
download Apache for Windows, the software is packaged
as a Window Installer (MSI) file.
Apache runs on all recent Windows operating systems,
including workstations running Windows 95, 98, 2000,
and XP. However, you should only install Apache onto one
of these versions for testing and development purposes.
When you are ready to deploy your work onto the Internet,
be sure to use Apache on a Windows Server 2003 or 2008
computer, or even a professionally managed Linux server.

Before you begin downloading Apache, you need to
decide which of the two binary packages you want to use.
One has the OpenSSL Cryptographic Library included, and
the other does not. You are presented with a choice in the
form of an offer to comply with strict laws regarding
importing, exporting, and possessing certain encryption
methods, depending on your jurisdiction. The Apache
Software Foundation strongly recommends that all
installers of Apache validate if encryption software is
permitted in their country; for this you can use the Web
site www.wassenaar.org.
If you know that you will not need Secure Socket Layer
(SSL) encryption support, you can download the binary
without OpenSSL support. If you later decide that you
need SSL, you can always download the binary that
includes OpenSSL and re-install Apache.

06_556801-ch04.indd 4006_556801-ch04.indd 40 8/31/10 9:17 AM8/31/10 9:17 AM

41

8
7

Apache provides a separate Windows download that supports SSL encryption through the OpenSSL library. You
can use this alternative download version if you require Apache Web server to handle SSL encryption on your Web
site.

The version of Apache for Windows that has OpenSSL encryption built in is subject to strict import and export laws,
depending on the country you live in. The U.S. Department of Commerce has classified Apache with OpenSSL
encryption as an Export Commodity Control, which restricts which countries can receive this type of software. Also,
some countries restrict the import of such software. The Apache Software Foundation strongly advises that you
check your country’s laws, regulations, and policies before using any type of encryption software.

If you are in doubt, download the version of Apache without built-in SSL encryption support.

If you do require SSL support, you also need to set up a private key and a signed certificate files, and configure your
Apache Web server to use them. This process is described in Chapter 22.

• The downloaded Apache Installation
Package appears in your Downloads
folder.

7 Right-click the Apache download.

8 Click Open Containing Folder.

Ch
apter 4: In

stallin
g A

pach
e on

 W
in

dow
s

06_556801-ch04.indd 4106_556801-ch04.indd 41 8/31/10 9:17 AM8/31/10 9:17 AM

42

1
2

3

4

5

 The Apache HTTP Server
Installation Wizard
appears.

3 Click Next.

 The Apache License
Agreement screen
appears.

4 Click to select the I
accept the terms in the
license agreement option
to accept the terms.

5 Click Next.

 The Apache Server
readme document opens.

6 Scroll down and read the
document, and then click
Next.

1 Open the folder
containing the Apache
download.

2 Double-click the Apache
Installer.

Install Apache for Windows

Y ou need to install Apache onto at least one
computer before you can start any Perl CGI
development. Even if your workstation is not

directly connected to the Internet, it is still an essential
component for creating any CGI content on your
computer.
You can always make HTTP requests to your local Web
server using the special hostname, localhost. This is
actually an alias to the IP address 127.0.0.1, which
always acts as the address to the computer you are
actively working on. Once you have installed Apache, you
can access all programs and files in a browser using the
local Web site http://localhost.
In a production deployment, you should install Apache
onto every server that will be receiving an HTTP request
from the Internet. Generally, it is best to hire a
professional management service that hosts and
maintains a shared bank of Apache servers, for your Web

site. Larger-scale deployments may require a dedicated
server, or a group of dedicated servers, each with Apache
installed. For more information on finding a hosting
provider that is compatible with Perl and Apache, see
Chapter 1.
The Windows installation wizard displays several screens,
which guide you through the installation process. These
include a screen to accept the Apache license, and another
screen that requests the server information for this
Apache server instance. You need to populate your
network domain name, your server’s fully qualified name,
an Administrator e-mail address, and select a HTTP port
number.
In a production environment, Apache uses this
information to identify itself when connected to the
Internet. If this is a private test server, the default values
on this screen are fine.

Install Apache
for Windows

06_556801-ch04.indd 4206_556801-ch04.indd 42 8/31/10 9:17 AM8/31/10 9:17 AM

43

Ch
apter 4: In

stallin
g A

pach
e on

 W
in

dow
s

7

9

8

0

@

$

#!

At installation time, you can safely ignore the options you populated on the wizard’s Server Installation screen. This
is useful if you do not know these values yet, as they will not have any impact on any test data or servers that are
not yet receiving any live traffic. For setting these values on an Apache install after the installation is completed, see
the section, “Configure Apache on Windows.”

To confirm that the installation is complete, open a Web browser on the Windows server where you performed the
installation. Using your browser, go to the address http://localhost. If you see the text, “It works!” in your
browser, then the installation was a success.

Apache for Windows also sets up a Windows Service for itself. This automatically starts the Apache Web server
each time you boot up your computer. When running as a service, you do not need to be logged in to a Windows
machine in order to accept Web traffic.

An Apache icon appears in the Taskbar notification area, indicating the current status of the server. You can also
use this icon to stop and restart the Apache Web service.

 The Server
Information screen
appears.

7 Type your network
domain name.

8 Type your server’s
name.

9 Type your e-mail
address.

0 Select the for All
Users option to
install for all users.

! Click Next.

 The Setup Type
screen appears.

@ Click to select the
Typical option.

Click Next.

 The wizard is ready
to begin the
installation.

$ Click Install.

 Apache for Windows
is installed.

06_556801-ch04.indd 4306_556801-ch04.indd 43 8/31/10 9:17 AM8/31/10 9:17 AM

44

1

2 3

4 5

 The httpd.conf file opens in a text
editor.

6 Press the Page-Down key.

• Hash characters indicate comments in
the configuration file.

• A command is always the first word in
a directive.

• Additional values are used as
arguments to the command directive.

1 Click Start.

2 Click All Programs.

3 Click Apache HTTP Server.

4 Click Configure Apache Server.

5 Click Edit the Apache httpd.conf
Configuration File.

Configure Apache on Windows

T he Apache configuration is handled by a central
configuration file, httpd.conf, which contains
hundreds of configuration directives that define

how the Apache Web server functions on your computer.
Within the configuration file, all comments begin with the
hash (#) character. All text following a hash character to
the end of the line is ignored. A configuration directive
always begins with a specific command (exactly one
word), followed by one or more values:
ServerAdmin admin@mydomain.org

The configuration file is divided into several different
Configuration Section Containers, which define how and
when a specific directive is applied. These containers
apply directives only when a particular directory or file is
read, when a particular external module is available, or
when a particular host or URL is requested.

A Configuration Section Container looks like an HTML
statement. It begins with a configuration directive within
angle brackets, and ends with the same directive name
preceded by a forward slash (/). In this example, the
directive DirectoryIndex is only valid if the dir_
module module is available.
<IfModule dir_module>
 DirectoryIndex index.html
</IfModule>

Remember, if you make any modifications to the Apache
configuration files in the Directory Index, you need to
restart the Apache service before the changes take effect.
The full list of available directives, along with the
reference manual, user guide, and several tutorials, are
available on the Apache Documentation Web site at
http://httpd.apache.org/docs/2.2.

Configure Apache
on Windows

06_556801-ch04.indd 4406_556801-ch04.indd 44 8/31/10 9:17 AM8/31/10 9:17 AM

45

Ch
apter 4: In

stallin
g A

pach
e on

 W
in

dow
s

9
0

Many Windows users may be intimidated by the depth of the configuration file, and the lack of a graphical interface
to configure Apache. This is due in part to its Unix heritage, and many fans of Apache view this as a strength, not a
weakness. If the Apache configuration were converted into a graphical user interface in Windows, it would be overly
cluttered and crowded, trying to present too many sliders and buttons to fully convey what Apache has to offer.

There are some third-party utilities on the Internet that you can use to configure the httpd.conf file. The most
popular is Apache-GUI, available from www.apache-gui.com.

Depending on the configuration directive you use, Apache allows for a command to be used within several context
levels. A command may be allowed in the top-level server configuration, the <virtualhost> container, the
<directory> container, or a special file called .htaccess. Directives applied at the .htaccess level perform
just like the <directory> container, except that the .htaccess file should be saved within the actual directory.
Also, .htaccess directives can overrule any preceding directives found in the other three contexts. For more
information about the contexts, overrides, and other terms used to describe directives, go to http://httpd.
apache.org/docs/2.2/mod/directive-dict.html.

8 Open a Web browser.

9 Type http://httpd.apache.org/
docs/2.2/mod/directives.html and
press Enter.

 The Directive Index appears in your
browser.

7 Press the Page-Down key.

• A configuration section container
begins.

• Directives within the container only
apply when the container is true.

• The container section ends.

06_556801-ch04.indd 4506_556801-ch04.indd 45 8/31/10 9:17 AM8/31/10 9:17 AM

46

3

2

1

 The Apache Service
Monitor runs.

• The service status for
Apache2.2 is green and
running.

3 Click Stop.

1 Right-click the Apache
Service Monitor icon
() in the system tray.

2 Click Open Apache
Monitor.

Start and Stop the Apache Service on Windows

B ecause Apache runs as a service on Windows
systems, it never appears as a traditional
Windows application. Instead, it runs in the

background, constantly listening for any incoming
requests on your Internet connection.
The Apache service constantly monitors its own internal
memory usage, and the number of active subprocesses, or
children, actively waiting to fulfill a request. You can
configure these settings in the Apache configuration file,
httpd.conf.
If you change the configuration file, you need to restart
the Apache service in order to apply the new
configuration directives. It is important to note that
restarting the server is only required with httpd.conf
changes. Configuration directives applied to a specific
directory, by way of an .htaccess file, are applied
automatically. Changes to this file make restarting the
service unnecessary.

Under normal conditions, the service promptly starts up
as Windows boots, and gracefully stops when you shut
down the system. You do not need to do this manually.
It is only when the configuration file is altered that the
service requires an Administrator to manually stop and
restart the Apache service.
Any modifications to the CGI code or static HTML files do
not require that you restart Apache.
When Apache is running on Windows, a tray icon does
appear in the Windows Taskbar notification area; this
allows an Administrator to quickly launch the Apache
Monitor program. From here, you can review, stop, and
restart the Apache service status. You can even use the
Apache Monitor to connect remotely to another computer
and monitor its Apache service status.

Start and Stop the Apache
Service on Windows

06_556801-ch04.indd 4606_556801-ch04.indd 46 8/31/10 9:17 AM8/31/10 9:17 AM

47

Ch
apter 4: In

stallin
g A

pach
e on

 W
in

dow
s

4

Various alternatives are available in Windows to control the Apache service. Along with the example shown here,
you can also use the Start Menu’s Apache HTTP Server 2.2 program directory, the Service Control Panel, or even
the command line.

To open the Service Control Panel, click Start ➔ Control Panel ➔ Administrative Tools ➔ Services. Find the service
named either “HTTP” or “HTTP SSL.” To control the service on the command line, open a DOS prompt and run
the commands, net stop http and net start http.

Before restarting the service, if an invalid configuration directive is written to the Apache configuration file, a
problem occurs and the server fails to start back up due to a syntax failure. The Apache Server Monitor may not
always display the error in its log window; however, you can validate the Apache configuration by running the Test
Configuration utility.

You can run the utility by clicking the Start Menu’s Apache HTTP Server 2.2 program directory, clicking Configure
Apache Server, and then clicking Test Configuration. A window appears, explaining the invalid directive and its line
number in httpd.conf. The invalid command also appears in the Apache error.log file. For more information
on Apache logging, see Chapter 10.

• The Service Status icon is green,
indicating that it is running.

• The log has been appended.

 The Apache Service Monitor icon in
the system tray changes to a green
arrow ().

• The Service Status icon turns red
and stops.

• A running log of the Apache2.2
service appears.

 The Apache Service Monitor icon in
the system tray changes to a red
square ().

4 Click Start.

06_556801-ch04.indd 4706_556801-ch04.indd 47 8/31/10 9:17 AM8/31/10 9:17 AM

48

1

4

2
3

D ebian and Ubuntu systems use the DEB
packaging format. You can use the suite
Advanced Package Tool, or APT, for downloading,

installing, and removing DEB packages. On Debian- and
Ubuntu-based Linux systems, the Apache Web server DEB
package and program name are often identified as apache2.
The installation process requires that your Linux
computer be connected to the Internet. The download,
installation, and setup process is handled by a single
command, apt-get, which you should execute in a
Terminal window.
It is beneficial to run a local copy of the Apache Web
server, even if a router or firewall separates your
connection to the Internet. You can use a local copy for
testing your own CGI code before putting it online.

Install Apache for Debian/Ubuntu Linux

1 Open a Terminal window
on Debian or Ubuntu.

2 Type sudo apt-get install
apache2 and press Enter.

3 Type your password if
prompted.

4 Type Y and press Enter
to continue.

 The Apache Server
downloads and installs.

Note: If Apache is already
installed, this process also
upgrades it, if an upgrade is
available online.

The program apt-get is not the only way to install a
package on a Debian- or Ubuntu-based system.
Alternatively, you can use aptitude with the
command sudo aptitude install package, or,
if you prefer a graphical interface, you can use the
Synaptic Package Manager.

One of the packages suggested by apt-get is
apache2-doc. This is the documentation package for
the Apache 2.2 server. While this information is
available online, having it local on the system can be
useful. Once you install it, you can access it from
http://localhost/manual/.

Install Apache for
Debian/Ubuntu Linux

07_556801-ch05.indd 4807_556801-ch05.indd 48 8/31/10 9:17 AM8/31/10 9:17 AM

49

1
2

4

333

Install Apache for
Red Hat Linux

O n most Linux servers, Apache should
already be installed as a standard
component. All Red Hat-based Linux

distributions distribute software packages using the
RPM packaging format. You can use the program
suite Yellowdog Updater, Modified (YUM) for
downloading, installing, and removing RPM
packages. On Red Hat-based Linux systems, the
Apache Web server RPM package and program name
are often identified simply as “httpd”.
YUM is not the only way to install a package on a Red
Hat-based system. Graphical workstations can use the
KPackage if you use the KDE window manager, or
GnoRPM if you use the Gnome window manager.
Check your particular Linux Distribution’s
documentation and help manual for information on

Install Apache for Red Hat Linux

1 Open a Terminal window on a Red
Hat system.

2 Type su -c 'yum install httpd' and
press Enter.

3 Type root’s password.

Note: If sudo is available on your
system, type sudo yum install httpd
instead. Then type your own password.

4 Type Y and pres Enter to continue.

• The Apache RPM package
downloads and installs.

Note: If Apache is already installed, this
process also upgrades it, if an upgrade is
available online.

how to use an alternative graphical program. Fortunately, all
Red Hat-based systems do support YUM on the command
line. The installation process requires that your computer be
connected to the Internet. The download, installation,
and setup process is handled by a single command, yum,
which you should execute in a Terminal window.
It is beneficial to run a local copy of the Apache Web
server, even if a router or firewall separates your
connection to the Internet. You can use a local copy for
testing your own CGI code before putting it online.
You can always make HTTP requests to your own server
using the special hostname, localhost. This is actually an
alias to the IP address 127.0.0.1, which always acts as
the address to the computer you are actively working on.
Once you install Apache, you can access all programs and
files in a browser using the alias http://localhost.

Ch
apter 5: In

stallin
g A

pach
e on

 L
in

u
x

07_556801-ch05.indd 4907_556801-ch05.indd 49 8/31/10 9:17 AM8/31/10 9:17 AM

50

1

2 3

1 Open a Terminal window.

2 Type cd /etc/apache2/
(use /etc/httpd/conf on
Red Hat).

3 Type ls -l to list the
directory contents.

4 Open the file apache2.
conf (open httpd2.
conf on Red Hat) in a
text editor.

Note: On Gnome systems, type
gedit apache2.conf to open an
editor.

 The apache2.conf file
opens in a text editor.

5 Press the Page Down key.

• Hash characters indicate
comments in the
configuration file.

• A command is always the
first word in a directive.

• Additional values are
used as arguments to the
command directive.

Configure Apache on Linux

T he Apache configuration is handled by a central
configuration directory, /etc/apache2 on Debian/
Ubuntu, or /etc/httpd on Red Hat. Within this

directory, the first file read is the global configuration file,
apache2.conf on Debian/Ubuntu, or conf/httpd.conf
on Red Hat. Next is the subdirectories, conf.d,
mods-enabled, and sites-enabled, if they exist.
Within each configuration file read, the same syntax
applies. All comments begin with the hash (#) character.
All text following a hash character to the end of the line
is ignored. A configuration directive always begins with a
specific command, followed by one or more values.
ServerAdmin admin@mydomain.org

The configuration file is divided into several different
Configuration Section Containers, which define how and

when a specific directive is applied. These containers
apply directives only when a particular directory or file is
read, when a particular external module is available, or
when a particular host or URL is requested.
A Configuration Section Container looks like an HTML
statement. It begins with a configuration directive within
angle brackets, and ends with the same directive name
preceded by a forward-slash (/). In this example, the
directive DirectoryIndex is only valid if the dir_
module module is available.
<IfModule dir_module>
 DirectoryIndex index.html
</IfModule>

If you make any modifications to the Apache configuration
files in the directory index, restart the Apache daemon.

Configure Apache
on Linux

07_556801-ch05.indd 5007_556801-ch05.indd 50 8/31/10 9:17 AM8/31/10 9:17 AM

51

Ch
apter 5: In

stallin
g A

pach
e on

 L
in

u
x

8
7

The Apache online documentation provides a complete listing and description of all available configuration
directives. You can access this information by going to http://httpd.apache.org/docs/2.2/mod/
directives.html in your Web browser.

Depending on the configuration directive used, Apache enables you to use a command within several context levels.
A command may be allowed in the top-level server configuration, the <virtualhost> container, the
<directory> container, or a special file called .htaccess. Directives applied at the .htaccess level perform
just like the <directory> container, except that you should save the .htaccess file within the actual directory.
Also, .htaccess directives can overrule any preceding directives found in the other three contexts.

For more information about the contexts, overrides, and other terms used to describe directives, go to http://
httpd.apache.org/docs/2.2/mod/directive-dict.html.

7 Open a Web browser.

8 Go to the address http://httpd.
apache.org/docs/2.2/mod/directives.
html.

• The directive index loads.

Note: The full list of available directives,
along with the reference manual, user
guide, and several tutorials, are available
on the Apache Documentation Web site at
http://httpd.apache.org/
docs/2.2.

6 Press the Page Down key.

• A configuration section container
begins.

• Directives within the container only
apply when the container is true.

• The container section ends.

07_556801-ch05.indd 5107_556801-ch05.indd 51 8/31/10 9:17 AM8/31/10 9:17 AM

52

1

2

2 Type ps fax | grep
apache2 and press Enter.

• Apache is running.

1 Type sudo apache2ctl
start (use apachectl on
Red Hat) and press Enter.

Note: If you do not find
apache2ctl, you may need
to provide its full directory
path, /usr/sbin/
apache2ctl.

Start and Stop Apache Service on Linux

B ecause Apache runs as a daemon on Linux
systems, it never appears as a traditional
application. Instead, it runs in the background,

constantly listening for any incoming requests on your
Internet connection.
The Apache service constantly monitors its own internal
memory usage, and the number of active subprocesses, or
children, actively waiting to fulfill a request. You can
configure these settings in the Apache configuration file,
httpd.conf.
If you change the configuration file, you need to restart
the Apache service in order to apply the new
configuration directives. It is important to note that you
only need to restart the server if any configuration files
change. Configuration directives applied to a specific
directory, by way of an .htaccess file, are applied
automatically. Changes to these files make restarting the
service unnecessary.

Under normal conditions, the service promptly starts up
as Linux boots, and gracefully stops when you shut down
the system. You do not need to do this manually. It is
only when a configuration file is altered that the service
requires an Administrator to manually stop and restart
the Apache service.
Any modifications to the CGI code or static HTML files do
not require you to restart Apache.
Some command-line programs exist for manipulating the
Apache server’s status; the most commonly used ones are
apache2ctl on Debian/Ubuntu, and apachectl on
Red Hat.
You need to be careful if you frequently restart a
production Web server that is serving live traffic. You can
affect downloads or Web-page requests if you restart the
server in mid-transfer. Instead, use the Apache graceful
restart command.

Start and Stop the
Apache Service on Linux

07_556801-ch05.indd 5207_556801-ch05.indd 52 8/31/10 9:17 AM8/31/10 9:17 AM

53

Ch
apter 5: In

stallin
g A

pach
e on

 L
in

u
x

4

3

To mitigate the effect on downloads or Web-page
requests when restarting the Apache Web server,
Apache provides the graceful command to
apache2ctl. A graceful restart waits for all
active requests to finish before the server is restarted.

4 Type sudo
apache2ctl restart.

• If Apache is not
running when
restart is called, a
message displays.

• Apache is running.

Note: The restart
command simply stops
and starts the Apache
service.

3 Type sudo
apache2ctl stop.

• The Apache process
list returns nothing.

If you restart Apache with a bad configuration, it does
not come back up until the configuration error has
been resolved. Apache does provide a test as the
configtest command to apache2ctl. This tests
the current configuration directives and validates
whether the server can be brought back online after
shutdown.TYPE THIS

sudo apache2ctl graceful

RESULTS

Apache is gracefully restarted after all data
requests have been processed.

TYPE THIS

sudo apache2ctl configtest

RESULTS

Syntax OK

Note that the graceful restart command
automatically runs configtest. If it fails, the
system does not shut down.

➔

➔

07_556801-ch05.indd 5307_556801-ch05.indd 53 8/31/10 9:17 AM8/31/10 9:17 AM

Understanding
Perl Syntax

P erl is very lenient when it comes to its own
formatting. If programmers have their own

personal style of formatting, Perl readily conforms to it,
provided they follow some basic syntax rules.

Capitalization

All Perl functions, variables, modules, and subroutines
are case-sensitive. All built-in functions and internal
modules use lowercase names. All user-defined
variables, modules, and subroutines may contain any
mix of upper- and lowercase characters. Only user-
defined modules should begin with an uppercase
character.

Line Spacing and Formatting

Perl is very relaxed when it comes to line spacing and
formatting, leaving it up to the programmer’s personal
preference. Multiple lines and spaces do not affect
execution, unless they are contained within single- or
double-quotes, in which case they are treated as literal
spacing. The Perl Style Guide contains a list of
recommended guidelines. You can access the guide in
the Perl Documentation program by using the command,
perldoc perlstyle.

Semicolons

preceding command each time it reads a semicolon. It is legal for
a command to span multiple lines and spacing, provided that it
ends in a semicolon. Similarly, it is possible to have multiple
commands (and semicolons) per line.

You use the semicolon (;) to indicate the end of a
command in Perl. Usually, there is one command per line
of code, making it look like every line needs a semicolon.
As the Perl interpreter reads the file, it executes the

Brackets

Parentheses

Parentheses (round brackets) are often preceded by functions
and commands to specify arguments. While not required, they
are a good code practice as they clearly separate commands
from arguments. For example, Perl interprets the following
two lines of code in the same way.

&MyCommand(1, 2, “abc”);

&MyCommand 1, 2, “abc”;

You can also use parentheses in mathematical operations.

print 5*2+5; # returns 15

print 5*(2+5); # returns 35

Square Brackets

You can use square brackets to retrieve individual values from
arrays.

@foo = (‘abc’, ‘def’, ‘ghi’);

print $foo[1]; # returns ‘def’

Curly Brackets

You can use curly brackets to retrieve individual values from
hashes.

%foo = (‘abc’ => 123,

 ‘def’ => 456,

 ‘ghi’ => 789);

print $foo{ ‘abc’ }; # returns ‘123’

You can also use curly brackets to define blocks of code that
are only executed if a conditional statement is true, or a
subroutine is executed.

if ($foo{ ‘abc’ } > 100) {

 print “Greater than 100!\n”;

}

Angle Brackets

You normally use angle brackets in relational operations, or in
binary shift operations. A third use of the angle bracket is as
the Arrow operator (represented as ->). Arrows are often used
as a dereference point for accessing variables and subroutines
supplied by an external module or referenced variable.

As with written language, you can use bracket pairs to group multiple objects together. Brackets also provide a form of hierarchical
context between objects that are included and excluded.

54

08_556801-ch06.indd 5408_556801-ch06.indd 54 8/31/10 9:17 AM8/31/10 9:17 AM

55

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

Comments

You use comments for writing text in a Perl script that
will be ignored by the Perl interpreter. As a result, you
can include additional documentation by code that may
otherwise appear questionable. You use the hash sign
(#) to prefix all comments. When it appears, the Perl
interpreter ignores all text following the hash sign until
the end of the line. It is legal for the hash sign to appear
as the first character in the line, in which case the Perl
interpreter ignores the entire line.

Relational Operations

You use relational operators for comparing two values
together within an if or elsif conditional statement.

CHARACTER(S) COMMAND DESCRIPTION

< lt Less-than

<= le Less-than or
equal-to

> gt Greater-than

>= ge Greater-than or
equal-to

== eq Equal-to

!= ne Not-equal-to

Logic Operations

Logic operations are normally found within if or elsif commands as a way to string multiple comparison operations.

CHARACTER(S) COMMAND DESCRIPTION

&& AND Both sides of the AND operation must be true for the equation to be true.

|| OR Either side of the OR operation may be true for the equation to be true.

! NOT This command reverses a true operation to be false, and a false operation to be true.

Special Characters

Carriage Return and Line Feed Characters

The “new line” characters are the carriage return
(represented as \r) and the line feed (represented as \n).
They have a particular meaning, depending on the context
and the operating system you are working on. When
reading text files into Perl, it is important to pay attention
to the format of the file when parsing each line.

OPERATING
SYSTEM

CHARACTER
NAME(S)

CHARACTER(S)

Windows CRLF \r\n

Unix LF \n

Mac OS CR \r

When printing content to the user (or writing content to a
file), regardless of the operating system, Perl correctly
identifies the “new line” character being written when the
developer simply uses a line feed (\n). For example, the

following code works correctly on all three operating
systems.

print “Hello, world\n”;

Tab Character

You can use the tab character (represented as \t) to align
printed text, just like a word-processor. Every tab character
shifts the curser eight spaces to the right. To use a
different tab stop, you can use the module Text::Wrap and
modify $Text::Wrap::tabstop.

Backslash Character

The literal backslash character (represented as \\) is
useful when you need a single backslash. You can also use
a backslash character to reference another variable
(represented as \variable) and this provides a pointer
to that variable, similar to C and C++.

Special characters in Perl are always preceded by a single backslash (\). You can reproduce ASCII characters using the
backslash followed by an octal or hexadecimal code. Octal ASCII codes are represented by a backslash and three numbers
(for example, \156), while hexadecimal ASCII codes contain a backslash, an ‘x’, and two hexadecimal digits (for example,
\x6E). (Both of these examples describe the letter n.)

08_556801-ch06.indd 5508_556801-ch06.indd 55 8/31/10 9:17 AM8/31/10 9:17 AM

56

Understanding Perl
Syntax (continued)

Variables

User-Defined Variables

You can create user-defined variables with the my command.
The enclosing block of code determines the variable’s scope.
The scope dictates where a variable can be used and will
retain its value. Locally-scoped variables only exist in the code
block where they are declared; globally-scoped variables can
be used anywhere as they are declared outside of any code
blocks. You can redefine an existing variable in a new sub-
block, but their original content is restored at the end of the
sub-block.

You declare user-defined variables with the my command.
Once you declare a variable, you can use it to store and
retrieve information from anywhere within the block of code
where the my command was called.

Predefined Variables

Some variable names are reserved by Perl and have a hidden
meaning, often following a special nomenclature in that they
appear to be defined out of nowhere. You can access a
complete list of predefined variables in the Perl Documentation
by using the command, perldoc perlvar.

There are three main types of variables in Perl: scalars, arrays, and hashes. You define a variable using a special character that
indicates its type ($, @, and %, respectively), followed by a name. A scalar is a variable that contain a single character, string, or
object. An array is a series of variables in a set order. A hash is a group of indexed variables. It is possible to nest hashes and
arrays to create complex data structures.

Quotes

Perl utilizes both types of quoting characters, the double-
quote (“) and the single-quote (‘), when setting variables
or printing content. Both are useful around literal strings;
however, a double-quote allows expansion of variables and
special characters in the string; a single quote does not.

The following examples look identical, but the first resolves
the scalar and new-line character. The second prints the
literal text.

print “Hello, $user\n”;

print ‘Hello, $user\n’;

The backquote (`) has a special meaning and should not
be confused with a left-handed single-quote. A backquoted
string actually launches a new command shell within your
Perl program, executes the string as a command in real-
time, and returns the output back to your program. For
example:

my $currentDate = `date`;

Numerical content does not require quotes.

my $timeout = 5;

Built-In Functions

You can access every built-in Perl function by using the
function name. Functions typically accept a series of
variable arguments and return either an error code (useful
for conditional logic) or a stand-alone scalar variable.

You can find a full list of available Perl functions in the
Perl Documentation by using the command perldoc
perlfunc. You can quickly reference a specific Perl
function in the Perl Documentation by using the command
perldoc -f function.

User-Defined Subroutines

User-defined subroutines act just like built-in functions in
Perl, except that they must be defined within the script or
supporting modules. You should create a subroutine when
you identify an opportunity to use common code in
multiple locations in the program.

Subroutines begin by accepting zero or more arguments
(retrieved as scalars through the special @_ array) and end
by returning zero or more results (delivered to the caller
with the return function). You can find more information
about subroutines in the Perl Documentation by using the
command perldoc perlsub.

08_556801-ch06.indd 5608_556801-ch06.indd 56 8/31/10 9:17 AM8/31/10 9:17 AM

57

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

Reference External Code

If your script requires any external modules or common
code, you must import it immediately after the header. You
can use the use, do, or require commands to import
that code into your script. Immediately after you have
imported a module, some modules require a global scalar
to act as a reference handle to the module’s code. These
handles may be defined anywhere after its module has
been loaded.

User-Defined Subroutines and Built-In Functions

The Perl interpreter typically provides built-in functions.
(User-defined subroutines and built-in functions are
collectively referred to as functions.) All functions accept a
single list of scalars as parameters, and return a similar list
of scalars as results. (Because an array is actually a series
of scalars, functions accept an anonymous array as input,
and another array as output.)

Parameters passed into a function are accessible in the
built-in array, @_. Once the function has completed its task,
you use a return statement to exit it, supplying one or
more scalars (or an array) back to the caller.

User-defined subroutines may exist anywhere in the code.
Unlike with C or C++, you do not need to predefine
subroutines. You can redefine subroutines at any time,
overruling (or overloading) a previous definition.

Header

The first line of all Perl scripts should be the path to the
Perl executable. The header you use must represent the
path specific to your operating system. If you are using a
Unix system, the header is almost always this:

#!/usr/bin/perl

Because Windows Perl scripts are associated through the
.pl extension file type, they do not require a header when
they are executed on the command-line. However, when
you are ready to executing Perl CGI scripts using Windows,
Apache still requires a correct path:

#!C:/Perl/bin/perl.exe

The header is also a useful place to insert some
introductory comments about the program, identifying the
author, purpose, version, and copyright.

Content

Perl code written after the header is treated as globally
accessible to your script. This includes all variables,
modules, and subroutines that you have not defined within
existing module and subroutine blocks. Content that you
write inside modules and subroutines is treated as locally
accessible only to that particular code block.

Script Content

T he basic anatomy of a Perl script is relatively
simple. An individual script file typically
houses the core of the program, which may in

turn import external third-party modules, or user-
defined common libraries.

Understanding the
Anatomy of a Perl Script

Script File

The Perl interpreter accepts code in one of two ways: in
a script file or on the command line. The command-line
interface is not used with CGI development, so you need
to save all of your code as files with the .pl extension.

Operating System-Specific Files

Before you can execute any code, you must associate
Windows Perl scripts to the Perl interpreter binary using
their .pl extension; Unix Perl scripts must have the
execute-bit set and reference the Perl binary through
their header.

Parameters

You can pass optional command-line parameters into any Perl script when you run them within a DOS Prompt or Terminal
window. Command-line arguments are delivered using the @ARGV built-in array, and are available globally in the script.

The Perl interpreter parses and executes the script in a linear fashion, from top to bottom. Modules allow for common code
to be referenced from external files.

08_556801-ch06.indd 5708_556801-ch06.indd 57 8/31/10 9:17 AM8/31/10 9:17 AM

58

3

1
2

4

1 Open your Terminal window.

Note: You can open the Windows
Terminal by clicking Start ➔ Run. Type
cmd.exe in the Run dialog box and
press Enter.

2 In the Terminal window, start
your preferred text editor with a
new script, ending with the .pl
extension.

Note: In Windows, if you do not have
an editor installed, type notepad.exe
“FILENAME.pl” and press Enter.

Note: Notepad asks for confirmation in
order to create a new file. Click Yes to
create it.

 A blank text editor window opens.

3 Type #!/usr/bin/perl as the Perl
header in the first line and press
Enter.

Note: This is largely beneficial for
Unix-only systems. On Windows, it
has no effect. The actual location of the
Perl binary may differ on your system.

4 Type # followed by your comment
text, and then press Enter.

Create a New Perl Script

Y ou need very few tools to create a new Perl script.
Specifically, you should have some experience
with both the Terminal window and text editors,

as well as be familiar with the location of the Perl binary,
when developing Perl in a new environment. You do not
need to use the Terminal to program Perl, but getting into
the habit now will be helpful later, especially when
validating script output and checking for errors. On most
Unix systems, the programs Xterm and Gnome Terminal
provide easy access to the command line.
The Terminal is also useful for quickly jumping between
editing and executing a program by leaving the two
windows open. By leaving your active program open in
an editor, you can simply save the file when you are
ready to test it, and then switch to the command line. By
leaving the Terminal window open in the directory where

your program is saved, you can quickly execute the
program with the command perl program. After
executing the command once, you can save some time by
pressing the up arrow to bring up the last command.
On most systems, you can find a text-editing program by
navigating through the list of installed programs. On
Windows, Notepad is available. On Unix, gedit or kwrite
are great starting points. You can launch these programs
from the command line with a filename as a parameter.
Locating the Perl binary is relatively easy. On Unix
systems, using the command which perl typically yields
/usr/bin/perl. On Windows, ActiveState Perl installs
its binary into C:\Perl\bin\perl.exe by default. You
need the location of the Perl binary for the header line of
the script. You prefix the header with #!, followed by the
path to the binary.

Create a New
Perl Script

08_556801-ch06.indd 5808_556801-ch06.indd 58 8/31/10 9:17 AM8/31/10 9:17 AM

59

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

5
6

9

Perl is very lenient and forgiving of the programmer’s code. Sometimes it is too forgiving and may allow bugs or
problems to develop as you create more complex programs. You can use the strict and warning modules to
stop the program if you create an unsafe construct, or to warn you with verbose diagnostics. You need the use
function to load a module, and you should write it immediately below the Perl header.

Example
#!C:\Perl\bin\perl.exe

use strict;

use warning;

Optionally, you can add the switch -w to the Perl header in lieu of use warning;.

As for the choice of editing program, Perl only requires a basic text editor to manipulate its code. However, after
becoming more familiar with Perl syntax, you may find that this basic text editor is too limiting, and not very
efficient at producing code. More complex editors can provide additional features to make editing Perl code easier
and more efficient. Features such as colored syntax highlighting, auto-indenting, and an integrated development
environment (IDE) are available if you are willing to invest more time in learning to use more complex text editors.

5 Type print “Hello, world\n”;
and press Enter.

6 Type print “The time is “ .
localtime(); and press Enter.

Note: If a print command does
not end in a carriage-return, you
can define it on the next line.

7 Save the file and exit the text
editor.

Note: In Notepad, click File ➔ Save
to save the file; click File ➔ Exit to
exit the text editor.

8 Press Alt+Tab to switch to the
Command Prompt.

9 In the Command Prompt,
type dir FILENAME.pl (ls
FILENAME.pl in Unix) to
list the file.

• The directory output confirms
that the file was created.

08_556801-ch06.indd 5908_556801-ch06.indd 59 8/31/10 9:17 AM8/31/10 9:17 AM

60

5

1

8 9 7

2 3 4

6

1 Open a Perl script in your text editor.

2 Type print “ to begin printing text.

3 Type some text, including a variable
that should be expanded.

Note: Perl predefines the hash %ENV with
the command line’s environment.

4 Type \n\n to produce two carriage
returns.

5 Type “; to end the print statement,
and press Enter.

6 Type print ‘ to begin a literal text
string.

7 Type ‘; to end the literal print
statement, and press Enter.

8 Type print $var to print a single
variable.

Note: For a complete list of predefined
Perl variables, run perldoc perlvar.

9 Type . “\n\n”; and press Enter to
concatenate the variable to two
carriage returns and to end the
print statement.

Note: The special character \n must be
expanded to a carriage return within a
double-quoted string.

Print Output to the Screen

P rinting output to the screen is useful to convey
information back to the user who is executing the
program. You can use printing output to display

relevant information about your program’s execution,
status, and results, based upon user-defined or module-
defined print statements. You can also use printing to
display debug information. You should remove or disable
this content when you have completed the program.
There are a few basic variants of the print function that
programmers commonly use to display content to the
screen. The output text enclosed in double-quotes (print
“text”;) instructs Perl to expand any variables and
special characters (such as \n for a new line) that may be
included between the double quotes. Any text enclosed in
single quotes (print ‘text’;) does not expand any
variables or special characters; text is printed verbatim.

Printing a number or a variable (print value;) does
not require any quotes.
Multiple lines can be printed using a marker (print
<<EOF), where Perl keeps reading until the marker (EOF)
is found again on its own line. You can use any string for
a marker, for example: EOL, STOP. This method also
expands any variables and special characters enclosed in
text. Because this allows for multiple lines of output, you
no longer need the special character \n for a new line.
Finally, you can join multiple print methods together into
a single print command using the concatenation operator
period (represented as .)
print “text” . ‘text’ . value;

When Perl sends content to CGI and HTTP to display in a
Web browser, it is actually printing that information to a
virtual screen.

Print Output
to the Screen

08_556801-ch06.indd 6008_556801-ch06.indd 60 8/31/10 9:17 AM8/31/10 9:17 AM

61

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

%

0
!

@

You can use the printf
function to display
formatted content to the
screen, just like the sprintf
function in C. For example,
you can rewrite steps 3 and
4 as follows:

Example
printf “We are running
Perl version %s\n”,
$^V;

For more information, see
perldoc -f printf.

$ Open the Command Prompt
in the same directory as the
Perl script.

% Type perl FILENAME.pl on
the command line and
press Enter to execute the
Perl script.

• The output of the Perl script
appears on the screen.

0 Type print <<EOF; and
press Enter.

! Add some multi-line text
and press Enter.

@ Type EOF and press Enter.

Note: Be sure to press Enter
after typing EOF. If you only type
the marker and save the file, you
will get an error message.

Save the Perl script and exit
the text editor.

Perl has a special auto-flush variable called $|. You can use this variable to
control the flow of content as it is printed out to the screen. By default, $| is
disabled (set to 0), which means the print statements only actually display
content when a new-line character is reached. If you enable $| (set it to 1),
then print statements return data in real time.

Example
$| = 1;

print “This is “;

sleep(2);

print “the output.\n”;

In this example, when you run your program, it literally prints “This is “, sleeps
two seconds, and then prints “the output.” If you do not define $|, two
seconds pass before the whole string displays at once. The enabling the auto-
flush variable is very useful in CGI scripting because it stops Perl from waiting
for a new-line character before sending anything to the browser. If you have a
complex Perl script with a noticeable processing delay when constructing
HTML output, you may not want to wait for the whole page to render before
displaying content to the browser.

08_556801-ch06.indd 6108_556801-ch06.indd 61 8/31/10 9:17 AM8/31/10 9:17 AM

62

2
1

3

3 Type C:\Perl\bin\perl.exe
FILENAME.pl (/usr/bin/perl
FILENAME.pl on Unix) and
press Enter to execute the Perl
script.

• The Perl script runs.

Note: The Perl binary is normally
installed in the system’s path. If so,
you can run the program simply as
perl FILENAME.pl.

1 Open a Command Prompt to a
directory with a Perl script.

2 Type dir *.pl (ls *.pl on Unix)
to identify the script.

• All Perl script files are in this
directory.

Note: For steps on creating a Perl
script, see the section, “Create a New
Perl Script.”

Execute a Perl Script

E very Perl script must be executed in order to
run. The execution process launches the Perl
interpreter component of the Perl binary, reads

your script, converts it to binary data in memory, and
performs the requested actions in the code. The whole
process is relatively automatic, depending on your
operating system.
If you are using ActiveState Perl on Windows, you do not
need to follow most of the steps required to prepare a
script for execution. The Perl header is largely cosmetic
(but still good etiquette), and the Perl binary has already
been mapped as a registered file type in Windows to the
.pl extension. The Perl header is actually treated like a
comment, as it still begins with a hash (#) symbol. As a
result, you can execute your program by double-clicking
a Perl script directly, using the command line and typing

perl FILENAME.pl, or even just typing the Perl script’s
name and running it like a stand-alone program.
If you are using Unix (or Cygwin Perl on Windows), you
have two options available. First, you can specify your
own Perl binary on the command line, followed by your
script name. Second, you can set the execute-bit on the
script using chmod and run the program like any binary.
It is this second method that utilizes the Perl header
directly. Your Unix shell opens the script and reads the
first line. The Perl header is the shell’s hint that this is a
Perl script; it tells the shell to run the specified binary and
to execute the remaining code. If you release a Perl script
that you created on the Internet, it is considered good
etiquette to use the default Unix path, regardless of the
operating system on which you produced the code.
#!/usr/bin/perl

Execute a
Perl Script

08_556801-ch06.indd 6208_556801-ch06.indd 62 8/31/10 9:17 AM8/31/10 9:17 AM

63

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

6

4
5

6

It is possible to actually embed the Perl binary and your script directly into a single file. You can do this using the
perlcc program. If it is installed, simply run perlcc scriptname to produce scriptname.exe. You can then
place this stand-alone executable onto any computer that supports the output binary type and run it, even if Perl is
not installed.

While perlcc does allow for the convenience of deploying custom-compiled code without deploying Perl (or the
original script) on foreign systems, do not think of this as being any more secure. If your original script contained
any sensitive data (such as hard-coded passwords), a skilled user can still retrieve that data, even if the average
person were to open the compiled binary into Notepad and see nothing but binary gibberish.

Also remember that the output produced by perlcc actually has the entire Perl interpreter embedded directly
within the binary. This could make a simple program that only prints one or two lines that appear to be larger
than10MB in size.

6 Type FILENAME.pl (./
FILENAME.pl on Unix) to
execute the Perl script.

Note: If a Perl script filename
contains spaces, wrap it in double-
quotes. This ensures that the shell
knows exactly which file you are
referring to.

• The Perl script runs.

Note: An error may occur on Unix
only if the execute-bit was not
properly set.

4 (Unix only) Type chmod +x
FILENAME.pl.

Note: You only need to run the
chmod command once before
executing a script for the first
time.

5 (Unix only) Type ls -l
FILENAME.pl.

• The execute-bit is set.

08_556801-ch06.indd 6308_556801-ch06.indd 63 8/31/10 9:17 AM8/31/10 9:17 AM

64

S calars are the most primitive variable type
available to Perl, representing a single value.
A scalar may contain a character, a string, an

integer, or a floating number. Scalars do not require
complex declaration rules to dictate their size or type, as
in C or C++, but it is a good practice to declare them with
the my command to set their scope.
A scalar’s value is free to change from undefined to text,
to integer, and back to undefined. If you need to know
what type of data a scalar holds, the Perl CPAN module
Data::Types provides a means of identifying and
converting a scalar’s type. Chapter 9 contains more
information about installing CPAN modules.

A scalar can also store a reference to another variable
type, such as another scalar, array, or hash — or, in other
words, a scalarref, arrayref, or hashref. This is
roughly the Perl equivalent to pointers in C or C++.
By nesting variable references together, you can construct
very complex data structures anchored by a single scalar
variable. That single scalar can be passed to functions,
modules, files — almost anywhere — and the entire
complex data structure comes along with it.
Modules actually use scalar references as a doorway into
their library of functions and methods. Depending on the
module, you may need to initialize the module into a
scalar variable, which can be used to reference any of the
code in that particular instance of the module.

Introducing
Perl Scalars

Declaring Scalars

You declare a scalar using the my command, regardless of the type of data it will hold. The location of the declaration restricts
the scope of the scalar, based upon the enclosing block. It is a good practice to declare all variables at the start of the block.

my $scalar;

When declaring a scalar, or any type of variable, it is possible to assign a value to it on the same line.

my $scalar = value;

Additionally, my supports declaring and assigning multiple variables all on one line by wrapping the declaration and assignment
portions with parenthesis.

my ($scalar1, $scalar2, ..., $scalarN) = (value1, value2, ..., valueN);

Keep in mind that when using parenthesis with my, the number of items on both sides of the equal sign should be the same. If
there are more variables declared than values assigned, additional variables will be declared but remain undefined. If there are
more values than variables, then additional values will be silently ignored.

Remember, re-declaring a variable within a sub-block does not affect its previous value, but re-assigning a previously declared
variable within a sub-block does.

Storing Data in Scalars

Scalars can hold any type of data, and you can assign them with an equal sign. Data on the right side of the equal sign is copied
and saved into the variable on the left side.

$scalar = value;

In this example, the data is copied from value into $scalar. If the source value is another scalar and its value changes,
then the original $scalar is unaffected. If you want to have access to the same value, then you need a reference.

08_556801-ch06.indd 6408_556801-ch06.indd 64 8/31/10 9:17 AM8/31/10 9:17 AM

65

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

Retrieving Data in Scalars

Accessing data in scalars is very simple. A scalar can
store anything you ask it to: a text string, an integer, a
floating number, or even a reference to more complex
data such an arrayref, a hashref, or even a
module.

Printing scalars, comparing scalars, or simply passing
their value to other functions implies retrieving their
data.

Storing Referenced Data in Scalars

The difference between assigning an actual value or a
referenced value to a scalar is that assigning an actual
value makes a copy of the value directly, while assigning
a referenced value makes a copy of the memory location
of the value. The memory location is useful because it
acts as a pointer to the original data. After a variable has
been declared, its memory location does not change,
even though its value might.

You can create references by preceding the target with
the backslash (\) character when assigning its value to
a scalar.

my $scalar = value;

my $ref = \$scalar;

If $scalar were to change, $ref (when retrieved
correctly) would provide access to $scalar’s new
value, provided that $ref and $scalar remain
correctly scoped.

Retrieving Referenced Data in Scalars

Accessing referenced data in scalars is a little different
from accessing normal data. Using the previous
example, if you simply call print $ref;, it displays
something like this:

SCALAR(0x8f2f0d8)

Remember, you stored into $ref a pointer to the data,
not the actual data. You literally see here the location of
your data by its memory address.

To properly dereference a variable and access its original
value, you need a second $. There are two ways to write
the code for this:

print $$ref;

print ${ $ref };

While both methods produce the same results, the
second method is technically more correct, and a better
habit to get into. This is simply an example of a one-
dimensional reference. When dealing with nested
references of three or four dimensions, the second long-
handed dereference technique makes it easier to access
deeply buried data.

Destroying Scalars

Perl does not expect the developer to explicitly free
scalars from the system memory, or any other type of
variable. When the block of code ends that originally
declared the variable, the memory is automatically freed.

However, sometimes you might want to proactively
undefine a value at a particular point in the code; in this
case, you can use $scalar = undef. This keeps the
scalar active in memory, but removes its contents.

To proactively forget that a scalar ever existed, you can
use the undef($scalar) command. Remember,
this happens anyway once the block that originally
declared the scalar ends.

08_556801-ch06.indd 6508_556801-ch06.indd 65 8/31/10 9:17 AM8/31/10 9:17 AM

66

4
5

6

1

2 3

4 Type my $scalar; to declare a
new scalar variable and end the
statement.

5 Type $scalar = VALUE; to
assign a value to an existing
variable.

6 Type my $scalar = “TEXT”; to
declare and assign a scalar with
text in one statement.

7 Save the Perl script.

1 Open a Perl script in your text
editor.

2 Type my $scalar to declare a
new scalar variable.

3 Type = VALUE; to assign a value
to the scalar on the same line
and end the statement.

Store Data into Scalars

When storing data into scalars, pay attention to the block
of code that housed the scalar’s declaration. Regardless
of where you assign its value, data is only available in the
original block that established the variable’s declaration.
Activating the strict module in a script will stop you if
you attempt to assign a value to an undeclared scalar. By
not using strict, you can avoid this error. Activating the
warning module in a script warns you if you accidentally
re-declare an existing variable. Re-declaring a scalar in the
same block of code with my only has the effect of
re-assigning its value. Re-assigning a scalar does not
require my, as long as the update exists at or below the
block that housed the declaration.

S calars are the most primitive variable type in Perl,
representing a single value. Scalars store any data
type, including an integer, floating number, text,

or even references to more complicated variables.
All scalars begin with a dollar sign ($), followed by one
or more alphanumeric characters. (User-defined scalars
must never begin with a number.)
You declare all variables with the my command. You can
pick a variable name and assign a value to it without
declaring it, but this is not a good coding practice. Note that
the strict module enforces declared variables with my.
You do not need to establish a scalar’s type when
declaring. It can dynamically switch between undefined,
number, text, and reference, just by re-assigning its value.

Store Data
into Scalars

08_556801-ch06.indd 6608_556801-ch06.indd 66 8/31/10 9:17 AM8/31/10 9:17 AM

67

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

6

1

2
3

5 Open a Command Prompt in
the same directory as the Perl
script.

6 Execute the Perl script.

• The output of the Perl script
appears.

1 Open a Perl script in your text
editor.

2 Type print “$scalar\n”; to
display a scalar’s value and a
new line.

3 Type print $scalar . “
$scalar\n”; to display the
value of two scalars,
concatenated together, and a
new line.

4 Save the Perl script.

Retrieve Data from Scalars

Y ou can access data from a scalar by simply
citing the scalar in the context of where it is
needed. Just like when storing data, you

always prefix scalar variables with the dollar sign
($) when reading data.
A scalar’s value may be defined or undefined. A
scalar is deemed defined if a value has been
assigned to it after it has been declared. A scalar is
undefined if no value has been assigned, or has
never been properly declared.
When retrieving data from a scalar, pay attention to
the block of code that housed the scalar’s declaration.
Regardless of where you access its value, the data is
only available in the original block that established
the variable’s declaration.

Retrieve Data
from Scalars

Using the concatenation operator (a single period)
instructs Perl to print the two parts as a single string:

print $x . “, “ . $y . “: “ . $str . “\n”;

Alternatively, you can avoid the use of the concatenation
character by accessing all variables in a single string:

print “$x, $y: $str\n”;

Because variables cannot contain a comma or a colon,
Perl interprets $x and $y correctly.

08_556801-ch06.indd 6708_556801-ch06.indd 67 8/31/10 9:17 AM8/31/10 9:17 AM

68

$array[index] = value;

If you do not know the current length of an array, or you want
to purposely add a value to an arbitrary location, then you can
do that. Any earlier values that were not used are now
declared, but undefined.

When using the manual method, if data already existed at a
particular index, then it is over-written without warning.

Manually Setting Array Data

If you are declaring an array, and you know its initial values,
then you can do this on one line.

@array = (value1, value2, ..., valueN);

If you have already declared the array, and you are privy to the
total size of the array, then you can manually specify the
element to update by its index.

Storing Data into Arrays

A n array variable in Perl is basically a list of
values that are saved in a specific order. Each
value in the array is can be accessed by its index

number, reflecting the order in which new data was
added. An actual array is not usually complicated; it
inherits its complexity from each value that is defined
within.
The simplest form of an array is one that only stores
basic scalar values, and keeps track of their order. A
more complex array might store other arrays, hashes,

scalarrefs, arrayrefs, or hashrefs as a value. By
layering arrays on top of each other, you can create a
multi-dimensional array.
The actual array structure is very malleable. Functions
exist that allow it to dynamically grow and shrink based
upon the developer’s requirements. You can remove
groups of one or more elements from the middle and
place them at the end. Individual values of an array are
manipulated just as easily. It is a very flexible way of
storing information in a linear format.

Introducing
Perl Arrays

You can store data into arrays in two ways: manually or with a helper function.

Declaring Arrays

You declare an array using the my command, regardless of
the type of data or the number of elements it will hold. The
location of the declaration restricts the scope of the array,
based upon the enclosing block. It is a good practice to
declare all variables at the start of a block.

my @array;

When declaring an array, or any type of variable, it is
possible to assign a value to it on the same line. Remember,
re-declaring a variable within a sub-block does not affect its
previous value, but re-assigning a previously declared
variable within a sub-block does.

Declaring a Referenced Array

A referenced array (arrayref) differs from a normal
array in that it provides only a pointer to the array data. As
a result, you need a scalar to hold the pointer.

my $arrayRef = [];

The primary benefit of using referenced arrays over normal
arrays occurs when passing data through functions. Because
functions accept only one anonymous array as input
parameters, passing one arrayref acts as a single scalar
from the function’s perspective. If you have multiple data lists
to send to a function, you must use references. If you use
regular arrays, the function will not be able to identify when
the first array ends and the second one begins!

08_556801-ch06.indd 6808_556801-ch06.indd 68 8/31/10 9:17 AM8/31/10 9:17 AM

69

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

Use unshift to insert data at the start of an array.

unshift(@array, value);

A way to simply parse the contents of a string into an array
is to use the split command.

my @array = split(delimiter, string);

Using a Function to Set Array Data

Perl provides various functions to inject data into an array
at the beginning, middle, or end of the list. Using a function
avoids accidentally losing existing data, especially at the
beginning or middle. You can use the push function to
append data to the end of an array.

push(@array, value);

Storing Data into Arrays (continued)

the following code block. The special variable $_ is
conveniently set to the currently active value.

foreach (@array) {

 print $_;

}

A minor variance of a foreach loop counts by index
value, rather than the actual value.

foreach (0..$#array) {

 print $array[$_];

}

Both examples print the exact same thing, the difference
being that the first sets $_ to each array element value, and
the second sets $_ to each array element index. A way to
simply merge the contents of an array into a string is to
use the join command.

print join(‘,’, @array);

Manually Accessing Array Data

Manually accessing data in an array is exactly like setting it;
you only need to know the element index.

print $array[index];

Arrays are zero-indexed, meaning that the first value is at
position 0, the second value is at position 1, and so on.
You can identify the last element of an array (or the array’s
length) using the special variable $#array. You can
access the total number of elements in an array using the
original array variable’s name but in a scalar context.

if (@array > $count) { ... }

Manually Using a Function to Access Array Data

The easiest way to process all data in an array is with the
foreach loop. Each element in the array gets one pass of

Retrieving Data from Arrays

As with storing, you can retrieve data from arrays in two ways: manually or with a helper function.

Manipulating Data in Arrays

You can manipulate data that is stored in arrays using
the functions pop, shift, and splice. In fact, pop
and shift are the exact opposites from push and
unshift, which were described earlier. The pop
function removes the last element from the end of an
array, while the shift removes it from the start of the
array. Both of these functions return as output the value
they removed; the array shrinks as necessary. The
splice function allows you to add or remove one or
more elements in an array, at any position in the array.

Destroying Arrays

You can remove individual elements of an array using
delete($array[$index]) . However,
deleting an element does not reorganize the array by
shuffling everything around the empty index. Instead, the
element at that index becomes undefined.

When completely emptying an array, delete is rather
inefficient. Instead, you should use @array = (). To
proactively forget that an array ever existed, you can use
the undef(@array) command. Remember, this
happens anyway once the block that originally declared
the array ends.

08_556801-ch06.indd 6908_556801-ch06.indd 69 8/31/10 9:17 AM8/31/10 9:17 AM

70

8

1

9 0

2 3 4 5

6 7
6 Type push(@array, to append a

new value into the array.

7 Add a new value into the array.

8 Type); to close off push()’s
arguments and the statement,
and then press Enter.

9 Type $array[2] = to re-assign
the value in the second index.

0 Assign a new value to replace
the second index’s value, and
then press Enter.

! Save the Perl script.

1 Open a Perl script in a text
editor.

2 Type my @array to declare a
new array.

3 Type = (to begin assigning
values to @array.

4 Assign comma-separated values
to the array.

5 Type); to close the array
assignment statement, and then
press Enter.

Store Data Into Arrays

A rrays are a series of zero-indexed values that
are available to Perl. Think of them as a set of
scalars, each assigned a number representing

the order in which they are added. You can append data
into an array using the push command. This can be
useful if you do not know exactly how big the array is, or
if you have large amounts of data to append.
When accessing individual elements in an array, you
must prefix the array variable name with a dollar sign
($), just like a scalar. When acting upon the array as a
whole (declaring, re-assigning, and so on), you must
prefix the variable name with an ampersand (@).

Store Data
into Arrays

Perl includes some functions for storing data in arrays.
You can use the functions push and unshift to insert
one or more values into the end and start of an array,
respectively. You can use the function splice to add,
replace, or remove a series of elements in an array.

These functions are helpful because manually setting a
value by its index is only recommended if you already
know exactly how many elements exist in the array.

08_556801-ch06.indd 7008_556801-ch06.indd 70 8/31/10 9:17 AM8/31/10 9:17 AM

71

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

8

5

3
2

4

1

7 Open a Command Prompt in the
same directory as the Perl script.

8 Execute the Perl script.

• The output of the Perl script
appears.

1 Open a Perl script in a text
editor.

2 Type foreach (@array) { to
create a new foreach loop
block over the array, and then
press Enter.

3 Print the element with $_.

4 Type } to close the foreach
loop block, and press Enter.

5 Type $array[0] to access the
first indexed element from the
array.

6 Save the Perl script.

Retrieve Data from Arrays

Normally, when $_ is populated within a foreach loop,
you only use it for reading the current array element.
However, you may assign a new value into it, which
updates the original array at the current array element.
It is possible to loop on by the array’s index directly.

foreach (0..$#pets) {

 print “Pet “ . $_ . “: “ . $pets[$_]
. “\n”;

}

This code instructs foreach to loop from 0 to the
number of pets, setting the current index as $_.

W hen retrieving individual elements out
of an array, you must prefix the array
variable name with a dollar sign ($),

just like a scalar. When acting upon the array as a
whole (updating, listing, and so on), you must
prefix the variable name with an ampersand (@).
You can easily access the entire contents of an array
using the foreach command. If you are interested
in an individual value, you can reference the array
directly by the value’s index position. The foreach
loop is a useful tool for retrieving data from an
array, especially if you do not know exactly how
many elements are in the array. To access the total
length of an array, you can prefix the variable name
with a dollar sign and a hash symbol ($#).

Retrieve Data
from Arrays

08_556801-ch06.indd 7108_556801-ch06.indd 71 8/31/10 9:17 AM8/31/10 9:17 AM

72

A hash variable in Perl is almost exactly like an
array, except that rather than storing values in a
series with a number, it uses an arbitrary key.

(Hashes are often referred to as a set of key/value pairs.)
Like an array, the simplest form of a hash is one that
stores only scalar keys and scalar values. A more
complex hash might store other arrays, hashes,
scalarrefs, arrayrefs, or hashrefs as a value, or
even a key!
For example, a simple hash can be represented as a
store’s inventory of car parts. Each part has a name,
which is stored as the key in the hash. The available
count of each part is stored as each key’s respective

value. A more complex hash of car parts may still use the
part’s name as a key, but the value could be another
hash representing the inventory, retail price, wholesale
price, contact information, orders, and so on.
Like arrays, the hash structure is very flexible and easily
influenced. Perl dynamically manages its memory usage
based upon its size. Hashes are easier to manually
manipulate than arrays, and as a result, they require
fewer built-in functions to control.
Hashes are a very powerful and efficient method of
storing and retrieving information in a non-linear format.
It is important to not confuse hashes with hash marks
(#), the later being used only for comments in your code.

Introducing
Perl Hashes

Declaring Hashes

You declare a hash using the my command, regardless of
the type of data or the number of keys it will hold. The
location of the declaration restricts the scope of the hash,
based upon the enclosing block. It is a good practice to
declare all variables at the start of a block.

my %hash;

When declaring a hash, or any type of variable, it is
possible to assign a value to it on the same line.
Remember, re-declaring a variable within a sub-block does
not affect its previous value, but re-assigning a previously
declared variable within a sub-block does.

Declaring a Referenced Hash

A referenced hash (hashref) differs from a normal hash
in that it provides only a pointer to the hash data. As a
result, you need a scalar to hold the pointer. You can
rewrite the previous example as:

my $hashRef = {};

Like arrays and arrayrefs, the primary benefit of using
referenced hashes over normal hashes arises when
passing data through functions. Because functions accept
only one anonymous array as input parameters, passing
one hashref acts as a single scalar from the function’s
perspective. If you have multiple data lists to send to a
function, then you must use references. If you use regular
hashes, then the function cannot identify when the first
hash ends and the second one begins!

Storing Data into Hashes

Storing data into a hash takes two forms. The first form allows the developer to replace an entire hash, and set multiple key/value
pairs in one command. The second form allows the developer to append a new key/pair onto an existing hash, without affecting
earlier assignments.

Multiple Key/Value Pair Assignments

You should only assign multiple key/value pairs in a single
statement when initially declaring a new hash variable. If you use
this method on an already-defined hash variable, then all content
will be replaced by the new key/value pair assignment group.

%hash = (

 key1 => value1,

 key2 => value2,

...,

 keyN => valueN,

);

08_556801-ch06.indd 7208_556801-ch06.indd 72 8/31/10 9:17 AM8/31/10 9:17 AM

73

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

Single Key = Value Assignment

Using a simple “key = value” statement allows you to
manipulate a single key in a hash without affecting any
other keys. If a particular key already exists, then its value
will be updated.

$hash{ key } = value;

Only one key can be updated per statement using this method.

Note that the last key/value pair may optionally end in
a comma. Perl allows this to make it easier for the
programmer to add content to the end of the last line (for
example, by copying and pasting the last line multiple
times). Also, if the last assignment is commented out, but
the previous assignment comma remains, then it should
not trigger an unnecessary error message.

Storing Data into Hashes (continued)

Again, you can use foreach to display all values in the
array.

Reviewing Complex Hashes

You can use the Data::Dumper module to review the
contents of a hash if it becomes too complex, or if a hash
contains data that you were not expecting to see.

use Data::Dumper;

CODE;

print Dumper(VAR);

In fact, you can use Dumper to reference any type of
variable, not just a hash. This will be especially useful later
when dealing with nested hash references, as described in
Chapter 8.

The PerlDoc program provides details on this powerful
module. Type the command perldoc Data::Dumper for
more information.

Reading a Value from a Known Key

Reading an exact value is just like assigning an exact value.
Only a single key/value pair can be read using this method.

print $hash{ key };

If key does not exist, then the data returned will be undefined.

Retrieving a List of Keys

If you do not know the keys, then you can retrieve a list of
all available keys into an array.

my @allKeys = keys %hash;

From here, @allKeys can be processed like any other
array through another function such as foreach.

Retrieving a List of Values

If you are only interested in the contents of the hash, then
it is possible to bypass the keys step entirely.

my @allValues = values %hash;

Retrieving Data from Hashes

If you know a particular key in the hash, then it is relatively easy to access data from it. If you do not know what keys exist,
then you need some sort of discovery process.

Destroying Hashes

You can remove individual elements of a hash using
delete($hash{ $key }).When completely
emptying a hash, delete is rather inefficient. Instead,
you should use %hash = ().

To proactively forget that a hash ever existed, you can use
the undef(%hash) command. Remember, this
happens anyway once the block that originally declared the
array ends.

08_556801-ch06.indd 7308_556801-ch06.indd 73 8/31/10 9:17 AM8/31/10 9:17 AM

74

8

4
3

2

1

5 6 7

5 Type $hash{ to begin to assign an
individual value.

6 Type the key that will be affected.

7 Type } = value and assign its new
value.

8 Type ; to close the assignment
statement, and press Enter.

9 Save the Perl script.

1 Open a Perl script in a text editor.

2 Type my %hash = (to declare a
new hash.

3 Type key => value, for each key/
value pair in the hash, and press
Enter after each pair.

Note: It is acceptable for the last key/
value pair in a hash assignment to end
with a comma, even though there is
nothing following it.

4 Type); to close the hash
assignment, and press Enter.

Store Data into Hashes

H ashes are similar to arrays, except that where
arrays use a numbered index to reference the
value, hashes use a key. Unlike arrays, there

are no additional functions required to build a hash.
When initially declaring a hash, you can assign multiple
key/value pairs in a single statement. After a hash has
been declared, you can only assign a single key/value
within a single statement. If you try to assign multiple
values to an already-declared array, then its previous
content will be lost.
When accessing individual elements in a hash, you must
prefix the hash variable name with a dollar sign ($), just
like a scalar. When acting upon the hash as a whole, you
must prefix the variable name with a percent sign (%).

Store Data
into Hashes

You can assign any type of data into a hash, including a
scalar, an array, or even another hash. Once you start
nesting variables together, it is possible to lose track of
how your hash is built, if you forget its structure.

A useful tool for reviewing the contents of a hash (or
any other type of variable) is the Data::Dumper
module. You can use its Dumper function to display its
contents, no matter how complex.

The PerlDoc program provides details on this module.
Type the command perldoc Data::Dumper for more
information.

08_556801-ch06.indd 7408_556801-ch06.indd 74 8/31/10 9:17 AM8/31/10 9:17 AM

75

Ch
apter 6: In

trodu
cin

g th
e Fu

n
dam

en
tals of Perl

8

4
2

3

1

5

1 Open a Perl script in a text
editor.

2 Type while (my ($key,
$value) = each %hash) { to
provide structure to the loop.

3 Print the key and value, using
the scalars $key and
$value.

4 Type } to close the while
loop block.

5 Use $hash{ key } to retrieve
an individual element from
%hash.

Note: Remember that an individual
element in a hash is represented as
a scalar; use a dollar sign.

6 Save the Perl script.

7 Open a Command Prompt in
the same directory as the Perl
script.

8 Execute the Perl script.

• The output of the Perl script
appears.

Retrieve Data from Hashes

Y ou can easily access the entire contents of a
hash through the while and each commands,
or through the foreach command. If you are

interested in an individual value, then you can access
the hash directly by referencing the value’s key.
When retrieving individual elements out of a hash,
you must prefix the hash variable name with a dollar
sign ($), just like a scalar. When acting upon the hash
as a whole (updating, listing, and so on), you must
prefix the variable name with a percent sign (%).
To access all keys in a hash, you use the keys
command. To access all values (ignoring the key
entirely and treating the hash like an array), you
can use the values command. For more information
on looping, see Chapter 7.

Retrieve Data
from Hashes

Data in a hash can be transliterated into different formats.
You can change the while loop to a foreach loop:

while (keys %books) {

 print $_ . “: “ . $books{ $_ } . “\n”;

}

You can create a book counter using the values function:

my $count = 0;

foreach (values %books) {

 $count += $_;

}

08_556801-ch06.indd 7508_556801-ch06.indd 75 8/31/10 9:17 AM8/31/10 9:17 AM

76

Introducing
Perl Conditions

Y ou use Perl conditions as tests to validate data as
it progresses through your Perl script. You will
most often find Perl conditions within parenthesis

immediately following statement modifiers: statements
that begin with commands like if, elsif, and unless
which introduce a sub-block of code to be executed only
if the condition is true.
Conditions are often split into three parts: a value, an
operator — a simple command that mathematically or
logically compares the two values — and another value.
A value may be a variable, a function, a subroutine, or a
hard-coded integer or string. For example, the conditional test,
if ($x > 5) is true if $x’s value is greater than five.

Sometimes, conditions may only have a single part: a
value. In this case, Perl is assuming that you want to
determine that this value is defined and not equal to zero.
For example, if ($x) is true if $x has been declared
and contains something other than the number zero.
If a condition is true, then a specific block of code is
executed. If the condition is false, then another block
of code is executed, or nothing at all. This method of
splitting the flow of the code based upon conditional
results is a fundamental component of all modern
programming languages.

About Statement Modifiers

conditional test expression fails, then code after else is
executed. An elsif acts just like else except that it provides
for a way to add another conditional test expression.

It is possible to specify multiple statement modifiers within a
compound statement; it must begin with if (EXPR), it may
have multiple elsif (EXPR) code blocks, and it may end
in exactly one else. In other words, elsif and else are
optional, but an elsif can never follow an else in the same
compound statement. A less common statement modifier is
unless. In essence, unless (EXPR) is exactly like if
(! EXPR).

You use a statement modifier to alter the flow of code
based upon the results of a conditional test expression. The
most common statement modifier is if (EXPR),
which is if followed by a conditional test expression in
parenthesis, followed by a code block. In other words, if
the conditional test expression is true, then Perl should
follow the code block when running your program.

It is possible to create a compound statement — multiple
statement modifiers and conditional tests — by appending
an else or elsif (EXPR) statement modifier after
the original if (EXPR) code block. If the original

Syntax of Conditional Tests

Test Condition, Execute Code

The most common conditional test syntax starts with the if
statement modifier, followed by one or more tests in brackets
as the expression, and then the code block to be executed
within curly brackets.

if ($x >= 0) {

 print “x is a positive number\n”;

}

Define Code, Test Condition, Execute

It is possible to reverse the syntax of the first example to
define the code first, and then provide the if statement
modifier and conditional test expression. This method uses
fewer lines of code, but does make the syntax slightly more
convoluted. If the conditional test is true, then the portion of
the line before the test is executed.

print “x is a positive number\n” if ($x >= 0);

Perl enables three different ways to issue a conditional test and subsequently execute code. The following three examples do the
exact same thing, but are just written differently.

09_556801-ch07.indd 7609_556801-ch07.indd 76 8/31/10 9:18 AM8/31/10 9:18 AM

77

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

Nesting Conditions

Nesting conditions allow the developer to test more than
one condition using logical-and (&&) and logical-or (||)
operators, all within a single if or elsif statement
modifier. The syntax is exactly the same as the “Execute
Code, Test Condition, Execute Code” example given earlier,
except it is now contained within the conditional test
expression itself.

if (($x >= 0) && ($y >= 0) && ($z >= 0)
) {

 print “x, y, and z are all positive
numbers\n”;

}

Note the additional set of parenthesis around the new
logical-and tests. This is a requirement by the parent if
command and establishes an order for Perl to digest the

expressions and execute the conditional test correctly.
Because all portions are true, it must execute the code
block.

To add on another layer of nested conditions within this
example, introduce another set of brackets around the tests
that should take precedence.

if ((($x >= 0) && ($y >= 0) && ($z >= 0
)) ||

 (($x < 0) && ($y < 0) && ($z < 0
))) {

 print “Either x, y, and z are all
positive numbers, or\n”;

 print “x, y, and z are all negative
numbers\n”;

}

Looping Conditions

Looping conditions allow you to execute code repeatedly
while a test condition is true. You can do this with either
the while (EXPR) or until (EXPR) statement
modifiers. Using this type of testing loop allows for
additional work in the following code block to persistently
adjust the original conditional test until it becomes false.

while ($x < 0) {

 print “x is negative, it must be a
positive number,\n”;

 print “now incrementing x’s value\n”;

 $x++;

}

If a looping condition never adjusts the original test
condition, or never causes the original test condition to
return false, then an infinite loop occurs. This results in
code that never exits a code block and actually appears to
the user to have frozen or crashed. It is important to avoid
looping conditions unless you are absolutely sure the
process flow can continue. Nesting looping conditions is
acceptable, just like in the if or elsif statement
modifiers.

Syntax of Conditional Tests (continued)

Execute Code, Test Condition, Execute Code

The final method does not use if at all, but the logical-and
(&&) or logical-or (||) operators. When a logical operator
is found between two statements, Perl executes the first

one as-is, and then, based upon the operation used and the
results, optionally executes the second statement.

($x >= 0) && print “x is a positive
number\n”;

09_556801-ch07.indd 7709_556801-ch07.indd 77 8/31/10 9:18 AM8/31/10 9:18 AM

78

Y ou use Perl operators to compare, manipulate,
control, and execute code on variables, values,
subroutines, and other operators. There are

multiple types of operators available in Perl, such as
mathematic operators (for adding, subtracting, and
multiplying), assignment operators (for setting variables),
and relational operators (for comparing test conditions).

Perl operators also have a specific precedence that
dictates the order in which they are applied, much like
the mathematical order-of-operations. The operators cited
here are only the common operators available to Perl. You
can find the complete list using the PerlDoc command,
perldoc perlop.

Introducing
Perl Operators

About Operator Precedence

Operator precedence is the built-in way for Perl to evaluate
some operators before others. You can alter Perl precedence
by wrapping a conditional test in brackets, forcing it to run
first. You can find the complete list of Perl operators and
precedence using the PerlDoc command, perldoc perlop.

Relational and Equality Operators

You use relational operators and equality operators in
conditional tests when comparing one value to another.
Relational operators compare two values to determine
whether they are greater-than or less-than one another.
Equality operators compare two values to determine
whether they are exactly equal to one another.

There are two types of relational and equality operators,
numeric and string. It is important not to confuse numeric
and string operators when writing conditional tests. Use
the numeric relational or equality operators when
comparing two numerical values or variables.

if (($x < $y) && ($y == 5)) {

 # x is less than y, y is exactly 5

}

Use the string relational or equality operators when
comparing two string values or variables.

if ($text eq “”) {

 # Text variable is an empty string

}

If you use a numeric operator to compare two strings, or
vice-versa, you probably will not get the results you expect
with the test.

Assignment Operators

You use assignment operators to store values into
variables in Perl. The simplest assignment operator is the
equal sign (=) where the value on the right side is stored in
the variable on left side. Perl supports more complex
assignment operators where a variable may be read and
updated in one statement.

$x = 2; # Store the number 2 in $x

$y += 5; # Add 5 to $y

$z **= 3; # Multiply $z to the power of 3
($z * $z * $z)

$message .= “ more text”; # Append text
to $message

You can combine any mathematic, string, or bitwise
operator with an assignment operator. Note that =~ may
appear to be an assignment operator, but it is actually a
regular-expression operator. See the section, “Regular-
Expression Operators,” for more information.

Mathematic Operators

You use mathematic operators to perform simple or complex calculations on numbers. Along with standard math characters,
Perl has some of its own definitions for other operations. More complex functions are provided by the Math::Complex module.

OPERATOR(S) DESCRIPTION EXAMPLE

+, -, *, / Add, subtract, multiply, divide operators $x = ($a + $b) * $c;

** Exponentiation operator $x = $num ** $power;

% Modulus operator $x = $c % 5;

++, -- Increment or decrement by one operators $x++; $x--;

09_556801-ch07.indd 7809_556801-ch07.indd 78 8/31/10 9:18 AM8/31/10 9:18 AM

79

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

String Operators

You use string operators to manipulate strings using
either concatenation or repetition. You will often use the
concatenation string operator when printing text, or
appending data to an existing string. Represented as a
single period, when it is placed between two values, Perl
concatenates them together into a single string.

print “Coordinates: “ . $x . “, “ . $y . “\n”;

You use the repetition string operator to copy and repeat
a string. Represented as the letter x, it is most often
used to format lines and spaces.

print “-” x 80; # print 80 dashes.

Bitwise Operators

You use bitwise operators to perform bitwise
comparisons on either numbers or strings. Perl treats
numerical bitwise operators exactly like other
programming languages; the operator compares each
number as a vector of bits, not as a whole number.

BITWISE OPERATOR DESCRIPTION

& Bitwise AND binary
comparison

| Bitwise OR binary
comparison

^ Bitwise XOR binary
comparison

Perl’s bitwise string operators are uniquely available in
Perl; they use the exact same characters as the numeric
operators but compare strings. Bitwise string calculation
with operations can be overly complex and are actually
fairly rare in most Perl code; if you need to do bitwise
operations on strings, use the vec function.

Logical Operators

You use logical operators to perform logical
comparisons between each side of the operator. The
most common use of these operators is within multiple
comparison tests, but you may also use them when
assigning variables, or executing normal code.

LOGICAL OPERATOR DESCRIPTION

&& If left side is true, evaluate
right side.

|| If left side is false, evaluate
right side.

// If left side is not defined,
evaluate right side.

The last two logical operators are especially useful when
ensuring that a value is properly assigned.

$timeout = $config{ ‘timeout’ } || 5;

In this example, the local scalar $timeout is set to the
hash $config{ ‘timeout’ } value. However, if
$config{ ‘timeout’ } is not defined or equal to
zero, you assign the value 5 to the scalar. Alternatively, if
you want to allow for zero as a possible timeout value,
you only need to ensure that $config{ ‘timeout’
} is defined. If the hash key is not defined, you set the
scalar’s value to 5.

$timeout = $config{ ‘timeout’ } // 5;

Regular-Expression Operators

Regular-expression operators appear to be a form of
combined assigned operator, except that you use them
to launch a regular-expression pattern
match on the left-side variable, using the pattern on the
right. There are two types of regular-expression
operators. The most common is =~, followed by its
negated counterpart, !~. Regular-expression operators
may be provided in conditional tests to validate string
matches based upon supplied patterns.

if ($results =~ /error/) {

 # Somewhere in the $results, the word
“error” was found.

}

Alternatively, to check if the word “error” was not found
anywhere in $results, use the secondary regular-
expression operator !~ in place of =~ to negate the test.

09_556801-ch07.indd 7909_556801-ch07.indd 79 8/31/10 9:18 AM8/31/10 9:18 AM

80

8

5
6

7

2

3
4

1

5 Type elsif (EXPR) { to begin
another if block and press Enter.

 This block is only executed if all
previous if blocks are false.

6 Type } to close the second if
block and press Enter.

7 Type else { to create a final else
block and press Enter.

 This block is only executed if all
previous if and elsif blocks are
false.

8 Type } to close the final else
block and press Enter.

1 Open a Perl script in a text editor.

2 Declare some starting variables
that will be tested against.

Note: Type perldoc -f localtime for
details on the localtime function.

3 Type if (EXPR) { to begin a new
if block and press Enter.

4 Type } to close the if block and
press Enter.

Control Program Flow with if, elsif, else

C ontrolling a program’s execution flow is a way
to produce an interactive program. In Perl, a
script is read from top to bottom, and each line

is systematically executed one after another. Often it is
beneficial to allow the script to deviate from the top-to-
bottom linear flow and introduce alternative paths enabling
the program to become more reactive.
You control the program flow through conditional tests
that validate anticipated data and results. If a conditional
test returns true, then an alternative block of code is
executed. When the alternative block is finished, the
earlier linear program flow returns. Perl uses the if
statement to begin a conditional test, as well as the
alternative block of code. You can use multiple elsif
statements after the original if’s block, providing
supplemental conditional tests and blocks. After all tests

have completed, you may use an else statement as a
contingency block if all earlier tests have failed.
if (EXPR1) {
 # EXPR1 is true
}
elsif (EXPR2) {
 # EXPR1 was false, but EXPR2 is true
}
elsif (EXPRn) {
 # EXPR1..EXPRn-1 were all false, but EXPRn
is true

}
else {
 # EXPR1..EXPRn were all false
}

As Perl progresses through the various tests, as soon as
it encounters one that is true, it skips all subsequent
elsif and else tests.

Control Program Flow
with if, elsif, else

09_556801-ch07.indd 8009_556801-ch07.indd 80 8/31/10 9:18 AM8/31/10 9:18 AM

81

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

0

9

!

$

As you write code, you should be asking yourself, “What happens if this function returns zero results?” or “What if
the user enters bad data?” You need to be planning for the worst: give your program the capability to recover from
a situation if it finds itself handling invalid results or poor data. Error correction is a technique that you must use to
anticipate these problems and working around them.

Deciding what to do if problem data occurs takes some forethought. If an earlier function failed, is there an
alternative that can be run instead? Could the function also return an error message and display it to the user?

It is important to note that if the programmer fails to anticipate these types of problems, and provide a solution,
then unexpected program results may occur.

Sometimes a solution is to just display a vague error message and stop the program gracefully. This may seem like a
lazy way to correct errors, but sometimes it is the only way. It is better for the end-user to receive an error code and
report it back, than it is to have the screen suddenly turn black.

9 Create a new if block nested
within the first if block.

Note: Nested if blocks are only
processed if their parent’s if block
expression is true.

0 Declare new variables to store
the minutes and seconds.

! Print to the screen the current
time to validate the results.

Note: Use the perldoc -f
printf command for details on
how the printf function works.

@ Save the Perl script and exit
the text editor.

Open the Command Prompt in
the directory where you saved
the Perl script.

$ Execute the script.

• The Perl script’s output is
displayed, evaluating the
conditional tests.

09_556801-ch07.indd 8109_556801-ch07.indd 81 8/31/10 9:18 AM8/31/10 9:18 AM

82

P erl allows for looping code to give the developer
the opportunity to address code that may occur
multiple times in a row. Each pass of the loop may

mean that the data being acted upon changes, but the code
that reacts to each pass of data stays exactly the same.
You can use loops to read data from a file, load rows of
data from a database, or even to repeatedly prompt the
user to enter a correctly formatted phone number.
Identifying an exit may happen by using a conditional
test on each pass; if the test fails, it exits the loop. This
may also happen inherently through the looping data
itself; once there is no more data to process, it exits the

loop. Perl provides two primary commands for handling
conditional loops: foreach and while.
You use the foreach command to loop over arrays.
Because an array inherently has a finite number of
elements when it reaches a foreach loop, Perl does not
require an explicit break statement. However, you may
use break to prematurely exit a foreach loop.
You can use the while command to loop data that has
an unknown number of entries. Often this is data that is
known only outside of the Perl script, such as lines in a
file, rows of a database table, or even data that the user
provides.

Introducing
Perl Loops

The foreach Loop

Syntax

For every element found in LIST, the variable VAR is set and
CODE is executed.

foreach VAR (LIST) {

 CODE;

}

Alternatively, the code may precede the foreach statement.

CODE foreach VAR (LIST);

If VAR is declared with my in the foreach loop directly, then
when the loop is complete, VAR is no longer accessible. If
VAR is declared before foreach, then its last value (the last
value of LIST) is stored in VAR after foreach is done.

Loop an Array by Element

The simplest way to use foreach is to supply it with a pre-
defined array.

my @vowels = (‘a’, ‘e’, ‘i’, ‘o’, ‘u’);

foreach my $letter (@vowels) {

 print “$letter\n”;

}

The @vowels array has five elements; each iteration of the loop
prints $letter, which is updated with the actual character.

Within the foreach block of code, it is possible to update
$letter’s value. This in turn updates the original @vowels
array.

The Loop Variable

For every pass foreach makes on the list, a variable is
updated. This variable represents the specific element of the
array the loop is currently working on. If no variable is
provided, the special variable $_ is implied.

Be careful, as updating $_ is only possible when accessing
the array by each element. If you are looping by the index,
specify the array’s scalar by index (for example, $array[
$_] = newvalue).

Loop an Array by Index

It is possible to use the range operator (..) to create an
anonymous array of 0 to the number of elements in the @
vowels array. You access the length of @vowels using $#
instead of @.

foreach my $i (0..$#vowels) {

 print “$vowels[$i]\n”;

}

This method of looping an array is useful if you need to access
$i’s information separately from accessing the array itself.

 print “$i: $vowels[$i]\n”;

It is not possible to update $i directly. The range is provided
as an anonymous array to foreach, $i is literally set to the
numbers 0 to 4. Instead, you have to update the array element
in the same way you access the array’s individual scalar value.

You use the foreach loop to access a list of elements. A list could be a declared array variable, an anonymous
array from a function (for example, keys from a hash), or a number range.

09_556801-ch07.indd 8209_556801-ch07.indd 82 8/31/10 9:18 AM8/31/10 9:18 AM

83

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

The while Loop

Test the Condition; Execute the Code

The standard while command first tests an EXPR
condition; if true, it makes the first execution of CODE.

while (EXPR) {

 CODE;

}

The while command is useful when you already have data
to test, but the results of that test may mean that the
looping code may not be necessary.

Execute the Code; Test the Condition

You can use the do command to reverse while’s order.
Instead of testing the condition first, do executes the first
pass of code, then tests a condition and decides whether to
continue.

do {

 CODE;

} while (EXPR);

The do command is useful when reading files, or
prompting the user with a question, or in any other
scenario when you know there will be at least one iteration
of code.

Stopping the Loop

The primary method to stop a while loop is for the EXPR
test to fail. It is possible to control a loop’s execution
outside of EXPR by using the next or last function.

Support Functions for Loops

Force the Next Loop Pass

You use the next command to stop processing the code
block and immediately jump to the next iteration of the
loop. An example of using next is as follows: when
reading lines from a text file, if the line is a comment, skip
the rest of the code in the loop with next and move on to
the following line.

Force the Last Loop Pass

You use the last command to stop processing the code
block and exit the loop. This has the same effect as EXPR
failing in while, or when the last element of a list is
reached in foreach.

Split a Loop into Multiple Blocks

You can use the continue command to split a while
statement into multiple blocks. You can even instruct Perl
to jump down or up one block using the next or redo
commands, respectively.

The goto Command

When you tie the goto command to a LABEL, you can use
it to provide functionality that is similar to while and
foreach, but with slightly less obvious blocks of code. If
a goto command is dozens or hundreds of lines away
from its LABEL, then it may not be obvious to someone
new to the code that this is even a loop. Avoid using goto
unless you are already familiar with its use in other
languages.

You use the while loop to repeat code and run a conditional test on each pass. Typically code being repeated
usually references an external source, making an unknown number of loops.

There are various functions that you may use to fine-tune the execution of loops in Perl.

09_556801-ch07.indd 8309_556801-ch07.indd 83 8/31/10 9:18 AM8/31/10 9:18 AM

84

6
5

7
8

9

3
4

1

2

1 Start a new Perl script in a text
editor.

2 Type foreach (LIST) { to begin a
foreach loop block and press
Enter.

Note: In this example, the list is
represented as a range of numbers
to loop by.

3 The unique value within each loop
is $_; this represents your index.

4 Type } to close the foreach loop
block and press Enter.

5 Type while (EXPR) { to create a
while loop around the foreach
loop and press Enter.

6 Declare a variable outside the
while loop that will maintain the
integrity of EXPR for the duration
of the loop.

7 Set the variable with the raw input
from STDIN.

8 Remove the trailing carriage-
return from the variable.

9 Type } to close the while loop
block and press Enter.

Loop Program Flow with foreach, while

L ooping a program’s execution flow allows the
programmer to anticipate and act upon a repetitive
task that may have a finite or an unknown

number of iterations.
Based upon the requirements of a particular loop, two
types of looping functions are available: foreach and
while.
You use the foreach command to process a list of
elements, and to execute a block of code on each element.
The list may be an array variable, an anonymous array,
or a range. Each element in the list is available as a scalar
variable within the code itself.
foreach VAR (LIST) {
 CODE;
}

You use the while command to process repeating code
that is usually referencing an external list, outside of the
Perl interpreter. For every iteration of the loop, an
expression is evaluated which allows Perl to determine
whether to continue with the loop or exit.
while (EXPR) {
 CODE;
}

The expression that while is testing may change with every
pass. It may be coming from an internal program validating
a hash (with each), or from an external source such as a
user who types something different with each pass.
Once the LIST ends, or EXPR returns false, the block is
finished and normal program flow continues. In order for
the loop to be useful, it should affect something declared
prior to the code itself, and then act upon that event after
the loop has finished.

Loop Program Flow
with foreach, while

09_556801-ch07.indd 8409_556801-ch07.indd 84 8/31/10 9:18 AM8/31/10 9:18 AM

85

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

$

^

*

%

&

(

0

!

Several alternative commands exist which you could use to rewrite the above looping code. For example, you can
use for instead of foreach. However, doing so means you must replace $_ with a real variable.

for (my $i = 0; $i < $#fields; $i++) {

 CODE

}

Also, you can use do instead of while. This moves the conditional test to the end of the code, guaranteeing at least
one code-block pass.

do {

 CODE

} while ($input ne “q”);

Finally, the example using STDIN as a method to collect data from the user is rather crude. A better module to use
is Term::ReadLine.

Open a Command Prompt in the
directory where you saved the
Perl script.

$ Execute the script.

 Initial output of the program is
displayed, and the loop begins.

% Type 0 ↵.

^ Fill in the prompt for the first
name.

 The program loops, printing the
results for the collected fields.

& Type 1 ↵.

* Fill in the prompt for the last
name.

 The program loops again.

(Type q and press End to quit the
program.

0 Create an if block to process
the input data.

Note: The regular expression $input
=~ /^\d$/ validates that the user
entered in exactly one digit.

! Prompt the user for the answer
using the same input method.

@ Save the Perl script and exit the
text editor.

09_556801-ch07.indd 8509_556801-ch07.indd 85 8/31/10 9:18 AM8/31/10 9:18 AM

86

Define a Subroutine

You can define subroutines anywhere within a Perl script. This
means they may occur anywhere before or after where they
are actually called. The syntax for a subroutine always begins
with sub, followed by the subroutine’s name, followed by a
code block.

sub subroutine { CODE }

A subroutine’s name is case-sensitive.

Execute a Subroutine

Once you declare the subroutine, you can call it using the
syntax

&subroutine(PARAMS);

If no parameters are required, leave the brackets in place
when calling the subroutine

&subroutine();

Perl allows you to execute a subroutine without an ampersand
or parenthesis, but this results in implicitly passing
parameters from one subroutine to another. Generally, you
should avoid this unless you know what you are doing and
how the subroutine should act. You can find more information
in the perlsub manual.

P erl subroutines allow for the programmer to
externalize code into a separate block, identify
the block with a name, and execute the block at

any time inside of the main program or any other
subroutine.
Subroutines are also useful for reducing the amount of
repeating code within a main program, and instead house
that code within a common subroutine that is called when
it is needed.

One or more subroutines may exist internally within a
single Perl script, externally within in a shared file, or
within a third-party module.
Beyond what is described here, Perl supports additional
subroutine features including attributes, prototypes, and
persistent local variables. For more information on these
advanced features, use the perldoc perlsub command.

Introducing
Perl Subroutines

Syntax of Subroutines

Pass Parameters to a Subroutine

Parameters need to be received using the special array, @_. A
subroutine can receive its parameters in two ways, all at once,

sub subroutine {

 my (VAR1, VAR2, ..., VARn) = @_;

 CODE

}

or one parameter at a time using shift. Note that the shift
function normally accepts an array as a parameter. If an array
is not supplied, @_ is implicitly used.

sub subroutine {

 my VAR1 = shift;

 my VAR2 = shift;

 ...;

 my VARn = shift;

 CODE

}

It is important to note that passing a parameter into a
subroutine is the equivalent of assigning a value to a new
variable. Any modifications to the new variable within the
subroutine have no effect on the original parameter value
outside the scope of the new subroutine.

If the purpose of a subroutine is to modify the parameter
being passed, and to maintain that modification for the scope
of the calling code block, then you need to use a reference
variable. For more information on references, see Chapter 8.

Utilizing a subroutine within Perl is relatively simple; however, you need to pay special attention when passing parameters to it and
accepting return values from it, and you need to understand that the code block within a subroutine is a stand-alone block when
compared to the rest of the program.

09_556801-ch07.indd 8609_556801-ch07.indd 86 8/31/10 9:18 AM8/31/10 9:18 AM

87

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script
Syntax of Subroutines (continued)

Return Results from a Subroutine

It is good practice for a subroutine to return results at the
end of its code block. This provides an easy way to
communicate information back to the code block that
called the subroutine without using references.

VAR = &subroutine();

sub subroutine {

 CODE

 return VALUE;

}

The return function immediately stops the subroutine’s
execution and sends VALUE to VAR. Any code below it is
ignored. It is legal for return to exist within a conditional
block, resulting in controlled execution of a subroutine’s
components based upon conditional tests.

If a subroutine is going to return multiple return values,
then you pass an array through return.

(VAR1, VAR2, ..., VARn) = &subroutine();

sub subroutine {

 CODE

 return (VALUE1, VALUE2, ..., VALUEn);

}

Try to avoid this method of passing multiple values back to
the calling code block. It is very easy to lose track of how
many values are being returned, and where they are within
the array. Also, if five VALUEs are returned and assigned
into six VARs, only the first five receive a value. The sixth is
undefined.

Because return natively handles arrays, passing a single
array from a subroutine to a parent code block is perfectly
acceptable.

ARRAY = &subroutine();

sub subroutine {

 CODE

 return LIST;

}

Using a Shared Subroutines File

Create a Shared Subroutine File

To create a shared subroutine file, create a new file and
start defining only subroutines. The filename should have
the extension .pl, just like a regular Perl script; however,
the file must return a true value on its last line. This is
necessary for the require function to import the file
correctly. For example, a shared subroutine file,
SHAREDFILE.pl, may simply end with 1;.

sub subroutine1 { CODE }

sub subroutine2 { CODE }

...

sub subroutineN { CODE }

1;

Import a Shared Subroutine File

Importing a shared subroutine file is handled by the
require function. You should insert this function fairly
close to the beginning of all Perl scripts that need it.

#!/usr/bin/perl

require “SHAREDFILE.pl”;

&subroutine1();

&subroutine2();

...

Using Perl Modules

You use Perl modules for generalizing complex Perl code
into a simple interface. You can define and execute a set of
common subroutines through a Perl module, thus
simplifying the code complexity of the main program. You
can find more information about Perl modules, including
creating, downloading, and installing them, in Chapters 8
and 9.

It is possible to externalize a subroutine into a separate file, and include this file at run-time in a main script. This has the
benefit of simplifying a larger main program, and of sharing subroutines among multiple main programs. However, this
method is viewed as being ad hoc and should not be used for large, long-term program development; create a Perl
module instead.

09_556801-ch07.indd 8709_556801-ch07.indd 87 8/31/10 9:18 AM8/31/10 9:18 AM

88

5

4

1

2

3
3

3 Insert comments that introduce the
subroutine’s name and parameters.

4 Type a description for the
subroutine.

5 Summarize the subroutine’s
expected input, output, and return
values.

Note: Input does not always refer to
input parameters. It could also be global
variables, an external file, a user typing
at the keyboard, or even another
subroutine’s results.

1 Open a Perl script in a text editor.

2 Type &subroutine(TEXT); to call
the subroutine with the text as a
parameter, and press Enter.

Organize Program Code with Subroutines

I ntelligently organizing program code in subroutines
allows a programmer the flexibility to simplify the
code, which makes debugging, building, and

maintaining long-term code development easier. You can
use subroutines to initialize global variables, reset states,
load and save data, display controlled messages —
literally anything.
Identifying whether to use a subroutine is a creative
judgment call of the developer. Ask yourself, “Who will
be viewing my code? Is its function and purpose obvious?
What happens if a problem occurs in a subroutine? Can I
recover the situation?”
It is a good idea to use a subroutine to provide access to
code that handles complex calculations, even if you only
use it once. A function with an appropriate name, such as
CalculateUserScore, is very straightforward.

Sometimes, when reviewing code that you wrote months
or even years ago, an appropriate naming convention for
subroutines can be enough to jog your memory on how
your own program works!
You should use comments with subroutines, not only
within the contained code block, but also to introduce the
subroutine itself. Provide details such as the summary of
the subroutine, and explain what it does and the intended
end result. Summarize the subroutine’s input variables,
and return values and any global variables it may modify,
as well as its raw output, if applicable.
Remember that subroutines are infinitely flexible. A
single subroutine can reference other subroutines, even
itself, in its own code. A subroutine may contain
conditional tests, looping code, or simply a group of
statements that displays static data to the screen.

Organize Program Code
with Subroutines

09_556801-ch07.indd 8809_556801-ch07.indd 88 8/31/10 9:18 AM8/31/10 9:18 AM

89

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

@

9

9

6
7

8

Perl makes some assumptions about how certain functions work, especially if it appears as though incorrect or
incomplete data was supplied. The use of the shift function in subroutines is an example of this assumption. The
syntax for shift is VAR = shift(ARRAY). Because you are using shift without an ARRAY, it will default to
the subroutine’s special array of input parameters, @_. If you are passing multiple parameters, you can use multiple
calls to shift, one per line, and load the retrieved parameter data into variables.

my VAR1 = shift;

my VAR2 = shift;

...

my VARn = shift;

If you are passing a lot of parameters, that can take up a lot of space. Instead, you can access @_ directly with the
syntax: my (VAR1, VAR2, ..., VARn) = @_;. Even if there is only one variable being loaded, this format
works. To put it in the context of the lesson, step 7 could be rewritten as: my ($msg) = @_;. Remember, when
reading data from an array as an array, there must still be brackets around the variables being populated, even if
there is only one variable.

! Open a Command Prompt in the
directory where you saved the Perl
script.

@ Execute the Perl script.

• Output of the Perl script is displayed
using subroutines.

6 Type sub subroutine { to begin the
subroutine block and press Enter.

7 Type my VAR = shift; to read the first
parameter as a newly declared variable.

8 Type } to complete the subroutine code
block.

9 Add more &subroutine() functions.

0 Save the Perl script and exit the text
editor.

09_556801-ch07.indd 8909_556801-ch07.indd 89 8/31/10 9:18 AM8/31/10 9:18 AM

90

8

2

3

5

4

1

7 Open a Command Prompt in the
directory where you saved the Perl
script.

8 Execute the script.

• The globally-scoped variable is
modified.

• The locally-scoped variable is not
modified.

1 Open a Perl script in a text editor.

2 Declare a globally-scoped variable.

3 Declare a locally-scoped variable inside
a subroutine.

Note: See Chapter 6 “User-Defined
Variables” for more information about
globally- and locally-scoped variables.

4 Manipulate both variables within
another subroutine.

5 Print both variables to review the
results.

6 Save the Perl script.

Manipulate Variables in Subroutines

M anipulating the state of a program in mid-
execution can make the program respond to
the user, react to its surroundings, and

perform a specific function that may not occur in normal
program execution is very important. You use variables to
keep track of various states throughout a program’s
lifetime. You have seen that updating a variable in the
main program is rather easy; if the variable is global to
the script, then an update within a subroutine is exactly
the same.
However, if a local variable crosses into a subroutine, and
that subroutine is tasked with updating its value, then
you need to make special considerations.
Simply supplying a variable as an input parameter into a
subroutine will make its value available in the new code

block, but if that variable is going to change, and the
original caller needs the new value, then the variable
should be changed into a reference.
An alternative to using a reference is to use a global
variable. A global variable does not need to be passed as
an input parameter into a subroutine; it can even be read
and updated just like in the main program. However,
global variables can become difficult to maintain and
keep track of as a program becomes larger.
Ideally, you should only make a variable global if you
legitimately need it to be available to every subroutine in
a program. If that is not the case, and you still require a
subroutine to update a variable, use its reference.

Manipulate Variables
in Subroutines

09_556801-ch07.indd 9009_556801-ch07.indd 90 8/31/10 9:18 AM8/31/10 9:18 AM

91

Ch
apter 7: B

u
ildin

g an
 In

teractive Perl Script

$

9

0

!

When using references in subroutines, think of them like pointers in C and C++. A reference variable does not
contain the actual data, but the memory address of the data. When passing data to a subroutine, and the data is to
be updated, a reference is always preferred.

The naming convention here is extremely important. To keep track of everything, if you receive a scalar reference as
input, give it a name to imply that it is a reference: $localVarRef. By ending it in “Ref”, you now know that
attempts to access that original data must be preceded by two dollar-signs, not one.

The concept of references does become simpler in the context of arrays and hashes compared to this example and
scalar references. This is because you must treat complex nested variables as references, in order to keep track of
data in each nested dimension. For more information, see Chapter 8.

9 Press Alt+TAB to switch back to
the text editor.

0 Type \$scalar to supply a
reference of the local variable to
the subroutine.

! Add a new parameter to the
subroutine to accept a
referenced local variable.

@ Type $$scalarref to access the
dereferenced variable value.

Note: This example demonstrates
referencing and dereferencing a
scalar. See Chapter 8 for examples
using arrays and hashes.

Save the file and exit the text
editor.

$ Press Alt+Tab to switch to the
Command Prompt.

% Execute the script.

• The globally-scoped variable is
modified.

• The locally-scoped variable is
modified.

09_556801-ch07.indd 9109_556801-ch07.indd 91 8/31/10 9:18 AM8/31/10 9:18 AM

92

P erl references act as pointers to information that
is stored somewhere else. The idea is based upon
C or C++ pointers, except that Perl maintains the

structure of the referenced data in its original form.
You normally use a scalar variable to store the lowest
level of a reference in the Perl code that originally
initialized the reference. In fact, when a Perl module is
initialized, its handle is made available as a scalar. From

that scalar reference, all of the module’s variables,
libraries, and methods are made available to the original
Perl script.
For subroutines, using a reference as a parameter makes
it easier to update the data within the subroutine itself.
References are actually the precursor to Object-Oriented
programming in Perl. For more information on references,
run the PerlDoc command perldoc perlref.

The Scalar Reference

Creating a Scalar Reference

You can create a scalar reference using a simple backslash in
front of a predeclared scalar variable.

$scalarref = \$scalar;

Now, $scalarref may be passed as a parameter into a
subroutine.

Dereferencing a Scalar Reference

You can dereference a scalar reference to access its original
data. Since a reference is just like a pointer in C and C++,
dereferencing a variable in Perl is just like following the
pointer to the actual data, except in the context of a Perl
scalar.

In the context of a subroutine that has accepted a scalar
reference as a parameter, the original value can be
dereferenced, read, and updated using two dollar-signs.

$scalar = $$scalarref;

In the context of a subroutine that has accepted a scalar
reference as a parameter, the new value is automatically
applied to the original scalar variable that you created with the
backslash.

print $$scalarref;

$$scalarref = VAR;

Introducing
References

A scalar reference has two basic functions in Perl. First, you can use it to provide a reference to a scalar. Second, a scalar reference
is actually just a normal scalar holding a reference to a more complex data structure, such as an array, hash, or subroutine directly,
as described in this section.

The Array Reference

Creating an Array Reference

You can create an array reference using a simple backslash in
front of a predeclared array variable.

$arrayref = \@array;

You can create an anonymous array reference can be created
using square brackets around a list of variables. An

anonymous array reference is just like array reference, but it is
built without using a regular array variable to house the values.

$arrayref = [VAR1, VAR2, ..., VARn];

In both cases, the actual variable that houses the referenced
data is a scalar. Now $arrayref can be passed throughout
a program and its contents remain accessible in memory.

An array reference is a pointer to an array that is stored within a scalar. The individual scalar can then be
passed from one program component to another, and the original array’s contents remain accessible.

10_556801-ch08.indd 9210_556801-ch08.indd 92 8/31/10 9:19 AM8/31/10 9:19 AM

93

The Array Reference (continued)
Ch

apter 8: U
sin

g Perl R
eferen

ces an
d M

odu
les

Following an Array Reference

In order to access the contents of the array reference, use
two dollar-signs and treat it like a normal array.
Alternatively, use an arrow, ->, between the reference and
the square brackets and index. In effect, accessing and
updating an array reference is exactly the same as with a
normal array, except for the arrow or dollar sign.

Dereferencing an Array Reference

You would dereference an array reference to access the
original data in the context of an array. When used with an
assignment operator, the contents of a dereferenced array
reference are copied into a new array variable.

To identify the length of a dereferenced array reference,
replace @$ with $#$. Again, this is just like a normal array
except for the extra dollar sign.

The Hash Reference

Creating a Hash Reference

You can create a hash reference using a simple backslash
in front of a predeclared hash variable.

$hashref = \%hash;

You can create an anonymous hash reference using curly
brackets around a group of key/value pairs. An anonymous
hash reference is just like hash reference, but it is built
without using a regular hash variable.

$hashref = {

 KEY1 => VAR1,

 KEY2 => VAR2,

 ...,

 KEYn => VARn

};

In both cases, the actual variable that houses the
referenced data is a scalar.

Following a Hash Reference

In order to access the contents of the hash reference, use
two dollar-signs and treat it like a normal hash.
Alternatively, use an arrow, ->, between the reference and
the curly brackets and key. In effect, accessing and updating
a hash reference is exactly the same as with a normal hash,
except for the arrow.

Dereferencing a Hash Reference

You would dereference a hash reference to access the
original data in the context of a hash. When used with an
assignment operator, the contents of a dereferenced hash
reference are copied into a new hash variable. You will
need to dereference hash references when dealing with
built-in Perl functions that interact with hashes, but not
hash references.

A hash reference is a pointer to a hash that is stored within a scalar. The individual scalar can then be
passed from one program component to another, and the original hash’s contents remain accessible.

The Code Reference

Creating a Code Reference

You can create a code reference using a simple backslash
in front of an existing subroutine.

$coderef = \&subroutine;

You can create an anonymous code reference using the
keyword sub, followed by curly brackets representing a
new code block. An anonymous code reference is just like
code reference, but it is built without using defining a
regular subroutine.

$coderef = sub {

 CODE

};

Executing a Code Reference

Code references are not exactly dereferenced; they are
simply executed, just like a regular subroutine.

&$coderef(PARAM1, PARAM2, ..., PARAMn);

A code reference is a pointer to a subroutine that is stored within a scalar. The individual scalar can be passed from one
program component to another, making original subroutine’s code accessible everywhere the scalar is in scope.

10_556801-ch08.indd 9310_556801-ch08.indd 93 8/31/10 9:19 AM8/31/10 9:19 AM

94

C ompound data structures within Perl references
allow for complex data schemas that contain a
mix of scalars, arrays, and hashes. Any scalar

variable can hold a reference to another object, such as
another scalar, an array, or a hash. Because arrays hold
lists of scalars, and hashes hold tables of scalars, it is
now possible to build complex structures such as arrays
of arrays, arrays of hashes, hashes of arrays, or hashes
of hashes, up to an infinite depth.

It is also possible to induce a recursive loop with
compound data structures. This means that a value stored
deep within the compound data structure actually
references any other reference, including its own parent,
grandparent, or even the lowest-level scalar that
references the entire object!
The concept of compound data structures will become
very important later when dealing with Perl modules,
especially with the HTML::Template module. For more
information, see Chapter 13.

Understanding Compound
Data Structures

Nesting References

Nesting references together is a technique designed to
build complex data structures as multiple dimensions of
data. In other words, an individual array or a hash contains
one dimension of data. When one of those data values
contains another array or hash, you now have two
dimensions of data. The process can repeat itself
endlessly.

If that array or hash is converted into an array or hash
reference, along with all subsequent dimensions, the steps
required to keep track of the data are simplified to the point
that all you need is the parent reference. In other words, if
you pass the parent reference to a subroutine, or to
Data::Dumper, or anything, then all other dimensions
remain easily accessible.

The Data::Dumper Module

The Data::Dumper module is extremely useful. It allows
you to examine the contents of any type of variable, up to
an infinite depth. Because references may contain any
number of scalars, arrays, hashes, or other references, it is
possible to lose track of what data exists where.
Data::Dumper allows you to review the contents of any
type of data object at any point in a Perl script. To use the
module, first initialize it at the top of a Perl script.

use Data::Dumper;

Then, anywhere you need to review the contents of a
variable, call the Dumper function with the variable you
want to examine.

print Dumper(VAR);

For more information on how to use this module, run the
Perl Documentation command, perldoc Data::Dumper.

Synonyms in Syntax Variation

When writing code that handles references, data housed in references, or functions that use data housed in references, Perl allows
for a few syntax synonyms. As described in the earlier sections, “Following an Array Reference” and “Following a Hash Reference,”
it is possible to interchange a double dollar-sign or an arrow, but things become complicated when dealing with multi-dimensional
methods. Each method describes the same thing, but they are written in a slightly different way.

10_556801-ch08.indd 9410_556801-ch08.indd 94 8/31/10 9:19 AM8/31/10 9:19 AM

95

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

Synonyms in Syntax Variation (continued)

Following a Multi-Dimensional Reference

Following a reference allows you to gain access to a value
at a specific location. When dealing with a multi-
dimensional reference, all methods work, but it is important
to keep everything concise and clear.

Method #1 (Weak)

Dereferencing the reference with a double dollar-sign may
seem like a good idea; for example, it works for individual
scalarrefs,

print $$ref{ KEY }{ KEY }{ KEY };

However, this method falls apart when dealing with the
multiple dimensions of keys. If you want to stop
processing the reference at a specific location, say at the
second dimension, and then continue using another format,
the syntax becomes unnecessarily complex.

Method #2 (Good)

Following the C and C++ syntax for dereferencing a pointer,
the arrow (->) acts as a visual queue to follow the
reference to its memory location.

print $ref->{ KEY }{ KEY }{ KEY };

The only problem with this method is that the subsequent
keys may or may not be references. Perl makes an attempt
to guess, but if it guesses wrong, your expected data will
not be accessible.

Method #3 (Best)

Placing arrows across each reference hop is the best way
to instruct Perl (and anyone else reading your code) that
this hash reference has multiple dimensions of hash
references.

print $ref->{ KEY }->{ KEY }->{ KEY };

This method is best because it is clear that you are following
a reference from start to finish, or from parent scalar
reference to key to reference to key to reference to key.

Dereferencing a Multi-Dimensional Reference

Dereferencing a reference allows you to gain access to the
original constructor, which is a scalar, an array, or a hash,
at a specific point in a multi-dimensional reference. When
dealing with a multi-dimensional reference, not all methods
work as expected.

Method #1 (Weak)

%hash = %$ref;

%hash = %$ref{ KEY };

%hash = %$ref{ KEY }{ KEY };

Only when dereferencing the top-level hash reference, as
shown on the first line, does this method work. The next
two examples fail with a syntax error because Perl is
confused about which hash you are referring to.

Method #2 (Good)

%hash = %{ $ref };

%hash = %{ $ref->{ KEY } };

%hash = %{ $ref->{ KEY }{ KEY } };

By wrapping the entire reference within curly brackets
before dereferencing, and then prefixing the block with a
percent sign, you clearly instruct Perl on what you are
trying to do. This method works regardless of the depth.

Method #3 (Best)

It is also acceptable, but not required, to put arrows across
each additional reference.

%hash = %{ $ref };

%hash = %{ $ref->{ KEY } };

%hash = %{ $ref->{ KEY }->{ KEY } };

This method is best because it is clear that you are
dereferencing a hash by jumping from scalar to reference
to key to reference to key.

10_556801-ch08.indd 9510_556801-ch08.indd 95 8/31/10 9:19 AM8/31/10 9:19 AM

96

4

5

2
3

1

4 Type my %hash = (KEY
=> VAL, ...); to create a
normal hash variable.

5 Type my $hashRef = {
%hash }; to convert the
normal hash into a hash
reference.

Note: Instead of using curly
brackets, it is possible to use a
backslash. For example: my
$hashRef = \%hash;.

1 Open a Perl script in your
editor.

2 Type my @array = (LIST
); to create a normal
array.

3 Type my $arrayRef =
[@array]; to convert the
normal array into an array
reference.

Note: Instead of using square
brackets, it is legal to use a
backslash. For example: my
$arrayRef = \@array;.

Build an Array or Hash Reference

B uilding an array or hash reference allows you to
construct a standard array or hash but use a
single scalar to store and reference its data. This

gives you the benefit of only needing to refer the top-
level scalar in your code, when you intend to access the
entire array or hash.
It is best to think of an array or hash reference as a
pointer to an array or hash structure in memory. If you
were to examine a referenced variable and print it like a
regular scalar, you would see that it holds what appears to
be a memory address, like “ARRAY(0x892f880)”. If you
see this when you expect to see normal data, or vice
versa, you are accessing an referenced variable incorrectly.
The Data::Dumper module is a great way to examine a
reference’s data structure, incase you are unsure about
what information a particular reference actually holds.

Building an array or hash reference is relatively simple;
they can be from an existing array or hash variable, or
from an anonymous array or hash. The difference
between the two methods is that the latter does not
require a separate array or hash variable. A list of
multiple key/value pairs is converted into a reference
using square brackets and curly brackets, respectively.
Both methods are demonstrated in this section.
You can manipulate data in an array or hash reference
using the same tools that you use to manipulate an array
or hash, but only after the variable has been
dereferenced. By mastering the idea behind an array or
hash reference, you pave the way for nesting complex
variable types, which gives you the ability to construct
complex data structures.

Build an Array or
Hash Reference

10_556801-ch08.indd 9610_556801-ch08.indd 96 8/31/10 9:19 AM8/31/10 9:19 AM

97

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

@

7

9

8

6

To temporarily dereference the array reference first, use @{ $arrayref }. Now use it like a normal array.

push(@{ $arrayref }, LIST); # Append data to the array reference

$value = pop(@{ $arrayref }); # Retrieve and remove the last value

When using various built-in functions that require a normal hash, such as keys or each, you still need to
temporarily dereference the hash reference first, using %{ $hashref }, and treat it like a normal hash.

@allkeys = keys(%{ $hashref });

@allvalues = values(%{ $hashref });

Retrieving and updating data in an array or hash reference is just like an array or hash, except you use a slightly
different syntax with the arrow (->) to follow the reference to the actual data location in memory.

$arrayref->[INDEX] = VALUE; # Update the arrayref’s value at INDEX

$hashref->{ KEY } = VALUE; # Update the hashref’s KEY with VALUE

! Open a Command Prompt
in the same directory where
you saved the Perl script.

@ Execute the Perl script.

 Several array and hash
references are constructed,
then displayed on-screen.

• $VAR1 and $VAR2
represent the first two
variables sent to the
Dumper function.

• $VAR3 and $VAR4
represent the last two
variables sent to the
Dumper function.

6 Type my $anonArrayRef = [
LIST]; to create an
anonymous array reference.

7 Type my $anonHashRef = {
KEY => VAL }; to create an
anonymous hash reference.

8 Type use Data::Dumper; to
import the Data::Dumper
module into the script.

9 Type print Dumper(LIST);
to display the contents of all
array and hash references.

0 Save the Perl script.

10_556801-ch08.indd 9710_556801-ch08.indd 97 8/31/10 9:19 AM8/31/10 9:19 AM

98

1

2

5 6

3 4

3 Type my @produce = to create a
new array.

4 Type keys %{ $produceColors };
to deconstruct the hash reference
and return an array of its keys.

5 Type my @colors = to create
another new array.

6 Type values %{ $produceColors
}; to deconstruct the hash
reference and return an array of
its values.

Note: The keys and values functions
convert a hash into an array of its keys
and values, respectively.

1 Open a Perl script in your editor.

2 Type my $produceList = { KEY =>
VAL, ... }; to anonymously create
a new hash reference of produce.

Deconstruct a Reference

I t is sometimes necessary to deconstruct an array or
hash reference in order to gain access to the data
within when functions or subroutines are expecting a

normal array or hash variable. It is possible to temporarily
deconstruct the reference by converting it into its primitive
form within the context of a function’s parameter. This
provides the benefit of allowing the function access to
update the referenced data without actually needing an
intermediary array or hash variable.
It is also possible to permanently deconstruct the reference
by converting it into its primitive form as a new array or
hash variable. This method is not always recommended,
as any updates to the new array or hash will not update
the original array or hash reference. By permanently
deconstructing a reference, you are effectively copying the
referenced data into a new variable.

Deciding which method to use to deconstruct a reference
depends on how you are going to use it. Are you
planning on changing something that affects the original
data reference? Or, are you looking at extracting the data
in the reference and using it in a new form or idea, but
keeping the original reference data intact?
When dealing with referenced data within subroutines, do
not feel obliged to deconstruct a referenced variable just
to gain access to its data within the context of a
subroutine. Remember, the whole point behind references
is to pass a pointer to the data, not the actual data.
You only need deconstruct a reference immediately prior
to calling a subroutine that has no concept on how to
handle references. This is usually true for built-in Perl
functions that are designed to handle arrays or hashes
directly.

Deconstruct
a Reference

10_556801-ch08.indd 9810_556801-ch08.indd 98 8/31/10 9:19 AM8/31/10 9:19 AM

99

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

!

8

7

You can deconstruct a reference only when passing data to a Perl function that expects an array or hash, not an
array or hash reference. To create a subroutine that accepts a referenced variable, treat its parameter as a normal
scalar variable. This subroutine applies uppercase formatting to a hash reference’s value by accepting two scalars as
parameters, the reference and key.

0 Open a Command Prompt in
the same directory where
you saved the Perl script.

! Execute the Perl script.

• Output of the program.

 The hash reference is
deconstructed into new array
variables, which are printed
as a string.

Note: This example permanently
deconstructs the original
reference, making a copy of the
data. By sorting its output, apple
and orange are the first elements
in their respective arrays, but this
has no effect on an apple being
red as described in
$produceColors.

7 Type sort before keys and
values.

Note: The sort function sorts
arrays alphabetically.

8 To print the output of each
array, type join(‘, ‘, ARRAY
) to convert the array into a
string.

9 Save the Perl script.

TYPE THIS

sub UpperCaseHashRefByKey {
 my ($ref, $key) = @_;
 $ref->{ $key } = uc $ref->{ $key };
}
&UpperCaseHashRefByKey($produceColors,
“banana”);

There is no return statement in this
subroutine; it is updating the referenced hash
directly with the output of the uc function.

➔

RESULTS

If you were to call this subroutine before you
deconstructed the hash reference, the output of the
program would be:

Sorted list of all produce: apple, banana, carrot

Sorted list of all colors: YELLOW, orange, red

The function sort also responds differently.
Alphabetically, it interprets capital letters before
lowercase letters. If you were to call this subroutine
after you deconstructed the hash reference, there would
be no uppercase color displayed, but the original hash
reference, $produceColors, would still be updated.

10_556801-ch08.indd 9910_556801-ch08.indd 99 8/31/10 9:19 AM8/31/10 9:19 AM

100

7

6

8
9

0

5
4

3
2

11 Create a new Perl script in your
editor.

2 Type use Data::Dumper; to
import the Data::Dumper module.

3 Type my $hashref = {}; to create a
new hash reference.

4 Type $hashref->{ KEY } = {}; to
begin a new hash reference under
a key.

5 Assign new keys and values into
the new hash reference.

6 Type $hashref->{ key }->{ key } =
[]; to create a new array reference
under a hash reference.

7 Assign new values into the new
array reference.

8 Type $hashref->{ key } = { to
begin a new hash reference. Do
not close it yet!

9 Type key => [LIST], to create a
new array reference called ‘color’,
with assigned values.

0 Type key => VALUE, to create a
simple scalar reference, with an
assigned value.

Nest Variable Types with References

B ecause all arrays and hashes store their values
as scalars, and all array or hash references are
themselves stored as scalars, you can nest arrays

and hashes together to create multi-dimensional references.
A nested reference begins like an array or hash reference,
depending on what the top-level variable type is. When
building a new multi-dimensional reference, it is best to
start with a blank slate. A hash-only multi-dimensional
reference is the easiest to construct.
my $hashref = {}; # Create a blank hash
reference

From here you can start adding data arbitrarily.
$hashref->{ ‘key1’ } = [LIST];
$hashref->{ ‘key1’ }->[index] = { KEY =>
VALUE, ...};

$hashref->{ ‘key2’ } = { KEY => VALUE, ...};

When nesting references, it is important to pay close
attention to what exists where. In this example, key1
holds a second-dimensional array reference, and key2
holds a second-dimensional hash reference. It is fairly easy
to construct ad hoc data such as this in Perl, but you need
to be careful when deconstructing and reading it back.
It is also possible to share references anywhere within a
nested reference. by creating an alias to another reference
point. An alias makes the same data is accessible from
multiple points in the nested reference.
$hashref->{ ‘key2’ }->{ ‘array’ } =
$hashref->{ ‘key1’ };

This is where the Data::Dumper module can be extremely
useful. If at any point you are confused about what data
type exists where, you can use the Dumper function to
examine the entire nested reference.

Nest Variable Types
with References

10_556801-ch08.indd 10010_556801-ch08.indd 100 8/31/10 9:19 AM8/31/10 9:19 AM

101

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

!
@

%

*

#
$

Appending or updating entries to an established nested reference is not necessarily complex. If you are updating an
array or hash value, the format used in the ‘apple’ example will work for ‘watermelon’ as a separate statement.
However, if you are appending to an array, then you need to push the data into a dereferenced array reference.

If you want to add a variety to the watermelon ‘varieties’ array, then you must identify the correct location in the
nested reference to dereference. Using the output of the Dumper function, you can see that $produce->{
‘watermelon’ }->{ ‘varieties’ } needs to be temporarily dereferenced with @{ $arrayref }.

! Type key => [to begin a new
array reference. Again, do not
close it yet!

@ Assign new values into the new
array reference.

Type], to close the array
reference.

$ Type }; to close the parent hash
reference and the statement.

% Type print Dumper($hashref
); to display the full reference
content.

^ Save the Perl script.

& Open a Command Prompt in
the directory where you saved
the Perl script.

* Execute the Perl script.

 A multi-dimensional array with
nested data types is built, and
then displayed with
Data::Dumper.

• The output of the first simple
hash reference.

• The output of the second
complex hash reference.

TYPE THIS

push(@{ $produce->{ ‘watermelon’ }->{
‘varieties’ } },

 “Cream of Saskatchewan”);

RESULTS

Data::Dumper’s output now shows that there are
five varieties of watermelon, instead of the four
that were originally declared.

➔

10_556801-ch08.indd 10110_556801-ch08.indd 101 8/31/10 9:19 AM8/31/10 9:19 AM

102

If a module file is found in a subdirectory, directory paths are
separated with two colons (::). For example, a directory
named Common could contain module file MyModule.pm;
this would be imported as

use Common::MyModule;

Parts of a Module File

The Perl module file always contains the same four basic
parts: a package statement, a new subroutine, a series of
subroutines exported as methods, and a return code.

Naming a New Module File

The new module’s filename and directory path affect how it is
imported and referenced in a Perl script. All module files
should end with a .pm extension, and may exist in the same
directory as the actual Perl scripts, or in a series of subfolders.

For example, a module named MyModule.pm would be
imported into a Perl script as

use MyModule;

Creating LOCAL Modules

Y ou use Perl modules to add specific or complex
code, often written by a third party, to a
specialized script, written by you. These modules

often provide a generic interface so that you can use them
to simplify complex tasks. Perl ships with several
modules that are standardized on all Perl distributions.

Perl developers often identify a complex requirement,
create a Perl module to simplify the execution, and
release the module to the public through the
Comprehensive Perl Archive Network (CPAN). For more
information on using CPAN, see Chapter 9.

Introducing
Perl Modules

When developing multiple Perl scripts for a project, the observant developer may recognize that the same basic code exists in
several files. It makes sense to generalize that code into a common library and reference that library within each individual script.
Most modules that are provided by upstream providers, such as CPAN, are installed globally on a system. However, locally
developed modules may exist in the same base directory path as the script and be referenced in the same use syntax.

The @INC Array

When importing modules in Perl, a special built-in array
called @INC contains a list of all the directories that will be
searched. The default content of @INC varies, depending
on the operating system, Perl distribution, and Perl
version. Normally, you do not need to worry about the
contents of @INC on a specific system. When a third-party
module is installed, it automatically places itself within the
context of @INC.

Identify All Perl Modules on a System

Perl ships with several modules that are installed along with
the main Perl interpreter. This program examines all files
found under @INC, and converts the path and filename into
the suitable module name. Each outputted line is a valid
module that you can reference with the use function in any
Perl script on the system.

use File::Find;

foreach my $dir (@INC) {

 find(sub {

 return if ($dir eq ‘.’);

 return unless (s/\.pm$//);

 $_ = $File::Find::dir . $_;

 s/^$dir\///;

 s/\//::/g;

 print “$_\n”;

 }, $dir);

}

10_556801-ch08.indd 10210_556801-ch08.indd 102 8/31/10 9:19 AM8/31/10 9:19 AM

103

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

The Exported Methods

An exported method is just like any regular subroutine, but
with one key difference: the first parameter is always the
$self hash reference.

sub MyFunction {

 my $self = shift;

 [...]

}

The $self variable is actually a conduit for all data that
can be shared within the instance of the module and your
Perl script. Any exported method can modify any other
variable within its own $self reference; that information
is persistently kept alive for as long as the module is active
in a Perl script.

End the Module

The last line in every module should be a return code. You
use this to signify to the parent Perl script that the module file
is good and no errors were found when importing. Simply
put, most modules literally include this as their last line: 1;.
The actual function name, return, is implied.

Declare the Module Name

The first line of every module should be a package
statement. Typically this matches the use statement, and
is relative to where the module file will be saved.

package Common::MyModule;

You can immediately follow the package statement with
more use functions (if any dependency modules are
required) as well as any global variables.

Create the Module Constructor Subroutine

You must create a special subroutine called new which will
be used to initialize your module within a Perl script. The
script executes this subroutine through the new
constructor. The constructor is required to generate an
instance of the module and store it as a scalar handle.

sub new {

 my $class = shift;

 my $self = {};

 bless($self, $class);

 return $self;

}

Creating LOCAL Modules (continued)

Importing Modules

Reading a Module’s Documentation

Most third-party modules that are installed globally are
shipped with documentation that describes how they run.
You can access that documentation using a command such
as perldoc MODULE.

Importing a Module

The first line is always the use function, regardless of
whether the module is global or local.

use MODULE;

Initializing a Module

Some modules automatically export new functions
whenever they are imported (for example, Data::Dumper),
but most require you to assign a scalar as a handle to the
module. The handle acts as conduit to all functionality
contained within the module.

The handle is often created using the module’s new
constructor function. A module may require arguments when
it is initialized, these are passed as parameters to new.

my $h = MODULE->new(ARGS);

Sometimes you will find that modules initialize themselves
by using new as an actual function. Both examples have
the same meaning, and are interchangeable.

my $h = new MODULE(ARGS);

From here, all methods provided by the module are
available as functions through the handle. Depending on
the method, additional parameters may be supplied
through the handle interface, just like any other subroutine
or built-in function.

$h->method(PARAMS);

Always refer to a module’s documentation for the correct
way to use the module’s methods.

Some modules automatically export functions when imported into your Perl script, others require you to create a module
handle and use that to access its methods in an object-orientated fashion. Be aware of how the module works by reading its
documentation.

10_556801-ch08.indd 10310_556801-ch08.indd 103 8/31/10 9:19 AM8/31/10 9:19 AM

104

1
2

3
4
5

3 Type sub new { to begin
the module initialization
subroutine block.

4 Type } to close the block.

Note: Every module should
have exactly one new
subroutine.

5 Type 1; as the last line in
the module.

1 Open a new file in a text
editor.

2 Type package Module; to
introduce the module
package.

Note: Remember that the
module’s package name
should match its filename, with
the only difference being that
the filename should end with
the .pm extension.

Create a New Module

I t is useful to create a new module in Perl if an
opportunity exists to re-use the same basic code in
multiple scripts in your project, or even in multiple

projects. This helps you to generalize common
functionality and logic, and centralize it, making the same
code accessible from multiple Perl scripts.
Every module must begin with a package declaration as
its first line, this is used in place of the standard shebang
(#!/usr/bin/perl) header. The filename itself should
match the package declaration, ending with a .pm
extension. All modules must have at least one subroutine
called new. This acts as the starting-point for the module
initialization process. When you assign a module a
handle, new is executed, which generates the handle
constructor for the recipient scalar. The important $self
variable is established within the new subroutine. This

allows all other subroutines contained within the module to
act as a series of methods, each sharing data with each
other through $self. All other subroutines in your module
need to accept the $self variable as the first parameter.
This allows for all modules to share data back and forth
related to an initialized instance of the module itself.
Finally, all modules must end with a “true statement” as
the last line in the file. Usually this is accomplished
simply by typing 1; as the last line. It is possible for
modules to allow you to create functions and variables
that are automatically exported whenever the module is
imported. Sometimes, a module may require specific code
that must be executed when the module is imported, or
when the program is finished. This can happen through
the special BEGIN and END subroutines. For more
information on these advanced module features, run the
PerlDoc command, perldoc perlmod.

Create a
New Module

10_556801-ch08.indd 10410_556801-ch08.indd 104 8/31/10 9:19 AM8/31/10 9:19 AM

105

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

0
!

@

6
7

8
9

Perl modules can be hierarchal in structure, allowing you to define a parent class prior to your module. If you do
this, make sure that the module’s parent directory name matches the class name. For example, a module named
TestModule must be stored as TestModule.pm, and Net::TestModule must be stored under a Net directory as
TestModule.pm. The location of the module file, and class directory, must be somewhere under the @INC array.
It is this array which Perl uses to search for modules imported by your code.

The $self hash reference is persistently available throughout the entire life of a Perl module. It is possible to store
static data within it, and retrieve it later. The easiest way to do this is to initialize $self with content at the
module’s new subroutine with data that could be used later with a module’s subroutines.

my $self = { @_ };

This allows the new subroutine to transfer all parameters sent to it into the $self hash reference. Now, when the
module is initialized, as demonstrated in the next section, any parameters that are passed to new are implicitly
available in $self and all of the module’s functions.

0 Type sub Function { to start
a new code block for a
shared method.

! Type my $self = shift; to
import the shared self
module.

@ Type } to close the method’s
code block.

Save the Perl module as
Module.pm so it matches
its package name.

 The new module and its
code can now be imported
into regular Perl scripts.

6 Type my $class = shift; to
include the module’s class
name within a variable.

7 Type my $self = {}; to create
a blank hash reference.

8 Type bless($self, $class);
to bind the blank hash
reference to the class.

9 Type return $self; to return
the blessed hash reference
to the parent Perl script.

10_556801-ch08.indd 10510_556801-ch08.indd 105 8/31/10 9:19 AM8/31/10 9:19 AM

106

4
5

1

3

4 Type my $handle = Module-
>new(); to declare a new
scalar, initialize the module,
and store the module
reference.

5 Type $handle->Function(); to
execute one of the exported
functions in the module.

Note: Even though Function is a
subroutine, it is not correct to
precede it with an ampersand.

1 Open a new Perl script in a
text editor.

2 Identify a Perl module that
you want to load.

3 Type use Module;.

Call a Module’s Subroutines as Methods

B efore a Perl script can take advantage of the
subroutines contained within a module, a module
reference needs to be established. Just like an

array or hash reference, a module reference is a scalar
that points to a particular instance of a module. That
scalar then acts as a handle to the module’s contents,
including its variables, methods, and shared $self hash
reference.
Naturally, a single script may have many module
instances running in tandem, even multiple instances of
the same module, if required. It is the individual scalar
that holds the module reference that keeps everything
organized.
It is that same scalar that is used to access the module’s
subroutines as methods. This happens through an arrow

(->), similar to what you saw earlier in this chapter when
dereferencing a reference.
use Module;
my $h = Module->new();
$h->method();

You can even use the handle to access the same $self
variable used within the actual module. In the exact same
way that subroutines are executed as modules, variables
can be manipulated using the handle.
$h->{ KEY } = VALUE;

Regardless of whether your module utilizes KEY anywhere,
the script can use it to store additional data, just like any
type of complex hash reference. When the program ends,
all active module references are automatically released
from memory. It is possible to manually destroy a module
by calling undef on the module reference.

Call a Module’s
Subroutines as Methods

10_556801-ch08.indd 10610_556801-ch08.indd 106 8/31/10 9:19 AM8/31/10 9:19 AM

107

Ch
apter 8: U

sin
g Perl R

eferen
ces an

d M
odu

les

6

7

0

It is possible to pass additional variables to the module’s functions, just like any other subroutine. The only
difference is that the $self variable is the first parameter in the @_ array. If your function allows for other
parameters, then you can write them as

sub Function {

 my ($self, $param1, $param2) = @_;

 [...]

}

When Function is executed within the context of a Perl script, the $self parameter is implicitly passed to the method.

$test->Function($param1, $param2);

However, if two methods within a module need to execute each other, they should be treated like regular
subroutines, not methods. For example, if Function has to call the method Calculate, then it must specify
$self explicitly.

sub Function {

 my $self = shift;

 &Calculate($self, ...);

}

0 Execute the Perl
script.

 The module is
imported, and its
subroutine is
executed as a method
in your Perl script.

• Output of the Perl
module function.

• Output of the
Dumper, showing
the contents of the
module handle.

6 Type use
Data::Dumper;.

7 Type print Dumper
($handle); to
examine the
contents of the
module handle.

8 Save the Perl script.

9 Open a Command
Prompt in the same
directory with your
Perl script.

10_556801-ch08.indd 10710_556801-ch08.indd 107 8/31/10 9:19 AM8/31/10 9:19 AM

108

Introducing
CPAN

T he Comprehensive Perl Archive Network (CPAN)
is the largest repository of third-party Perl
modules, scripts, and documentation that are

freely distributed on the Internet. The CPAN repository is
also available as a Web site that you can access to search
for modules, download source code archives, and review
documentation. On your computer, the CPAN repository is
also accessible as a command-line program, simply called
cpan, that you can use to download and install modules
with a single command.

All Perl distributions have the capability to access CPAN,
but CPAN may not be appropriate for all distributions. For
example, if you are running ActiveState Perl on Windows,
you use the ActivePerl Packager program, ppm. For Debian-
or Ubuntu-based Linux distributions, you use apt-get.
For Red Hat- or Fedora-based Linux, you use yum. Each of
these methods is discussed later in this chapter.
If the module you are looking for does not exist in a
format that is usable by your respective packaging
program, or your packaging program’s version of the
module is out of date, then you can use CPAN as a
fallback to ensure that it is installed.CPAN Web Site

For a direct link to the CPAN search engine, go to http://
search.cpan.org and search by category, author, name,
or description. Once you find a module, you can view its
documentation and read third-party user reviews and comments
about the module.

You can find the primary CPAN Web site at www.cpan.
org. Not only does it contain a searchable database of all
available Perl modules, but it is also an excellent resource
for example Perl code, documentation, mailing lists, and
other useful Web sites.

Running CPAN

The CPAN Program

You use the CPAN program as an interactive text-based
interface to the CPAN repository online. You can start the
CPAN program by opening a terminal and typing

cpan

Once you launch the CPAN program, you can type help to
bring up a list of available commands, and type quit to close
the program. Run perldoc CPAN for a complete list of
available CPAN commands and documentation.

The CPAN Command-Line

It is possible to bypass the interactive CPAN program and use
the command-line interface directly to install modules in one
command. This is especially useful if you already know the
module’s name:

cpan MODULE

Run perldoc cpan for a complete list of CPAN command-
line arguments.

Because the CPAN program requires Internet access to query the CPAN repository, you need to configure it the first time you run it
on a system. The configuration is relatively automatic, but CPAN may ask you a question if it identifies an anomaly on your system.
Note CPAN attempts to install modules globally on a system. It usually requires root access on Unix or Linux.

Using CPAN

Searching for Modules

If you do not know the exact module name, the CPAN program
is not the easiest place to browse for modules. Conduct a search
at the CPAN Web site, http://search.cpan.org, instead.

If you do already know the module name, you can use various
commands to access information about the module in the
CPAN program. If you do not know the module name, you can
perform a simple search query by regular expression.

Most interaction with CPAN happens using the program interface. Here you can search, download, compile, test, and install
modules using basic commands.

11_556801-ch09.indd 10811_556801-ch09.indd 108 8/31/10 9:19 AM8/31/10 9:19 AM

109

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

If it is not possible to install these libraries, then you need
to resort to another package manager that provides pre-
built binaries for your system, such as ppm, apt-get, or
yum, as described later in this chapter.

Testing Modules

Each CPAN module has a built-in test script that is designed
to validate the module to ensure that it is working correctly.
The tests are largely automatic but may catch or identify
bugs related to a module that the author never anticipated.

If a test fails, it is possible to force a module installation
using the command, notest install MODULE.
However, this may install a module on your system that
does not work as documented.

Upgrading Modules

One of the original goals of CPAN was to provide an upgrade
path for Perl modules installed on systems that lacked a
native packaging front-end such as ppm, apt, or yum.

COMMAND DESCRIPTION

r MODULE Checks if an update is available
on the CPAN repository

upgrade MODULE Upgrades the module

If you do not supply a module name to either of these
commands, CPAN checks for all modules that are
upgradeable, and then performs the upgrade.

Uninstalling Modules

Unfortunately, CPAN does not contain a standard way to
actually uninstall a module. Generally speaking, searching
for the module’s source code in the path’s referred by the
@INC array and deleting it does work, but this is not
exactly ideal.

Instead, an upgraded CPAN program is available to provide
this functionality, CPANPLUS. You can execute this
program from the terminal, just like the CPAN program,
but with the command

cpanp

The CPANPLUS program provides the same functionality
as the CPAN program, with the added benefit of the
uninstall command, u MODULE.

You can find more information about CPANPLUS, and the
complete list of available functionality, by using the PerlDoc
command, perldoc cpanp.

COMMAND DESCRIPTION

m /query/ Search for all modules with query in
their name.

m MODULE Download and display the module’s
author, version, and date.

readme MODULE Download and display the
module’s readme document.

perldoc MODULE Download and display the module’s
primary documentation.

Because the query method is a regular expression search,
it is possible to narrow down the search criteria to match
the query. For example, use m /^Date::/ to list all
modules in the Date class.

Installing Modules

Once you have identified a module, you can install the
module with the CPAN program using a single command,
install MODULE.

The installation process implies other commands to
download, compile, and validate a module before it is
placed globally on a system.

COMMAND DESCRIPTION

get MODULE Downloads the module from CPAN

make MODULE Compiles the module (implies get)

test MODULE Validates that the module is
working (implies make)

install MODULE Installs the module globally
(implies test)

Because each command is chained, simply running
install MODULE launches the entire process.

Downloading Modules

The module download process automatically identifies
the latest module version available on CPAN and any
dependency modules that you may also require. You
download modules from the closest CPAN mirror based
upon the configuration process.

Compiling Modules

Some Perl modules contain source code written in another
language, most often C, in order to provide certain
functionality, as determined by the module’s author. You
need to compile this source code into a binary form that is
compatible with your system.

CPAN will display a warning message if it cannot find
appropriate build or compile commands and libraries; you
must install any missing libraries in order to continue.

Using CPAN (continued)
Ch

apter 9: In
stallin

g T
h

ird-Party Perl M
odu

les

11_556801-ch09.indd 10911_556801-ch09.indd 109 8/31/10 9:19 AM8/31/10 9:19 AM

110

1

2

3

 CPAN automatically
configures itself.

3 Type exit to quit the
CPAN program.

1 Type cpan to launch the
CPAN program.

Note: The CPAN program
command is standard across
Windows and Linux platforms.

2 Press Enter to configure
CPAN automatically.

Configure CPAN

B y default, when you first execute a CPAN
program, it attempts to configure itself for the
local system. This process is largely automatic; it

identifies an appropriate CPAN mirror, any available
support programs, and other options.
Most CPAN configuration defaults are acceptable to most
users, but if it makes a mistake, or if you want to select
an alternative option, it is useful to configure CPAN to act
accordingly. Because the CPAN program requires Internet
access, it is important to select the correct options dealing
with protocol, network proxy, and access rights.
The automated CPAN configuration process should be
sufficient for most users, but may not provide the
intended results on some systems. You may need to
perform some supplemental configuration beyond the
automatic configuration program.

Configure
CPAN

Type o conf to open a full list of available configuration
options, or type o conf help for a basic help message.
You can run the command o conf init urllist to
select a CPAN mirror. Linux-based systems require root
access in order to install Perl modules globally. You need
to instruct CPAN to use root if you run the program as a
non-privileged user. To do this, in the CPAN program
run the command, o conf init make_install_
make_command. If you know the system’s root
password, set this option to su root -c make;
otherwise, use sudo make. Finally, if you manually
changed any configuration options, run o conf
commit to save the changes for future CPAN sessions.

11_556801-ch09.indd 11011_556801-ch09.indd 110 8/31/10 9:19 AM8/31/10 9:19 AM

111

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

1

2

44

3 Identify a module to install.

4 Type m module to view the module’s
summary.

• CPAN outputs the identified module.

1 Open the CPAN program.

2 Type m /query/ to search for a module’s
name.

Note: The example query /^Date::/ will
search for all modules that are members of the
Date class, or, the modules whose names begin
with “Date::”.

 The CPAN command runs.

Note: If CPAN has not been configured yet, it
asks you a series of questions the first time you
use it.

Search for Perl Modules with CPAN

a module exists, or its proper name, or even just to
randomly browse for what is available.I t is possible to search for Perl modules with the

CPAN program. Searching for a module is certainly
easier if you happen to know at least part of its

name. For example, all date-related modules have
“date” in their name. So, the command m /^Date::/
is a good starting point to list available modules in the
“Date” class.
Once you have identified a module’s complete name,
you can view the module’s manual page with
perldoc MODULE, or view the module’s readme
document with readme MODULE, all without actually
installing the module.
Along with using the CPAN program to find
modules, the CPAN Web site, http://search.
cpan.org, is a great resource if you do not know if

Search for Perl
Modules with CPAN

Because the CPAN program is an interface to the CPAN
repository, you require Internet access for most
commands. If you have not used the CPAN program in a
while, or are using it for the first time, CPAN downloads
the repository’s master index during the first search
attempt. This download should happen automatically,
but you can force it to refresh with the command
reload index.

11_556801-ch09.indd 11111_556801-ch09.indd 111 8/31/10 9:19 AM8/31/10 9:19 AM

112

1

2

3

 The module install
process begins.

1 Run the CPAN program.

2 Identify a module to
install by searching for it.

Note: For more information,
see the section, “Search for
Perl Modules with CPAN.”

3 Type install module.

Install Perl Modules with CPAN

Y ou can use CPAN to install Perl modules, making
it possible to download and install them with a
single command. Sometimes, a Perl module may

require a specific build and install process. CPAN
simplifies this process by combining any preparation
steps into one command, install MODULE.
When you use the install command, the CPAN program
automatically executes other commands, prior to installing
a package. This includes get to download the package,
make to build it, and test to run the module’s test suite.
As a result, the install command implies test, which
implies make, which implies get, so all you need to
remember is install.
You can run the install command either within the CPAN
program, or directly from the command-line. However, you do
not need the actual install keyword; just run cpan MODULE in

a DOS Prompt or Terminal window. The install process may
require elevated privileges if you are going to install the
modules globally on the system, which is the default
functionality. This is usually the case on Unix systems.
Using CPAN on Windows does not usually require special
privileges.
Remember, if you are using a Debian-, Ubuntu-, or Red
Hat-based system, use the module installation method
designed for your particular situation. You should only
install through CPAN if a DEB or RPM package does not
exist, or is out of date, or if you are running on a system
that does not support these types of packages.
If you choose to install a CPAN package on an ActiveState
Perl installation, then ActivePerl Package Manager
properly recognizes CPAN-installed modules so that they
do not conflict with PPM-installed modules. However,
PPM-installed modules usually have priority.

Install Perl Modules
with CPAN

11_556801-ch09.indd 11211_556801-ch09.indd 112 8/31/10 9:19 AM8/31/10 9:19 AM

113

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

5

Installing modules globally requires elevated privileges, but what if you are a guest on a server and do not have root
or administrator access? It is possible to install CPAN modules into a subdirectory local to your user home
directory, but you need to follow some additional steps.

If using a Windows system, you can configure CPAN to install Perl modules under your profile directory, for
example, C:\Documents and Settings\userid\perl.

If using a Unix or Linux system, use something under your home directory, such as /home/userid/perl.

Run the following commands in the CPAN program:

o conf makepl_arg PREFIX=~/perl,LIB=~/perl/lib

o conf mbuild_arg --install_base ~/perl

o conf commit

When loading locally installed modules into your Perl script, way to use the lib module. This instructs Perl to add
a new folder to its module search path.

#!/usr/bin/perl

use lib “$ENV{‘HOME’}/perl/lib”;

use MODULE;

• CPAN installs the module as
well as any dependencies.

Note: If CPAN requires any
dependency modules, it asks for
confirmation before adding them
to the install queue.

4 Press Enter to download any
dependency modules.

11_556801-ch09.indd 11311_556801-ch09.indd 113 8/31/10 9:19 AM8/31/10 9:19 AM

114

Graphical User Interface

You can access the graphical interface for PPM either through
the ActivePerl program group under the Start Menu on
Windows, or by running ppm without any command-line
arguments.

Command-Line Interface

You can access the command-line interface for PPM by
opening a Terminal window or DOS Prompt and typing in the
PPM binary with a command:

ppm command

You can find the full list of available commands by running

ppm help

Running Perl Package Manager

A ctivePerl Perl Package Manager, or PPM, is a
utility produced by ActiveState to download,
install, upgrade, and remove Perl modules, just

like CPAN. The primary difference between it and the
CPAN repository is that PPM accesses a separate
ActiveState repository of pre-built modules as binary
packages. The CPAN program attempts to compile
packages directly on your computer during the package
download-and-install process. However, the ActiveState
repository is sourced from the CPAN repository, so the
same basic catalog should be available on both.
The main disadvantage of the CPAN program on a
Windows system is that you require a C compiler and

libraries to build complex Perl modules from source code.
This is not always available, or practical, in a Windows
environment, which is why pre-built module packages are
preferred.
To PPM’s credit, it readily installs the dmake program
and the MinGW C compiler, as well as support libraries,
onto a Windows system if a user ever runs cpan on the
command-line. This enables you to use CPAN functionality
on an ActivePerl system. If CPAN were to contain a more
recent version of a module than PPM’s version, the option
is now available to the user to use CPAN for the upgrade;
PPM honors the more recent CPAN version.

Introducing ActivePerl
Perl Package Manager

You can access PPM in two ways: from the command-line or as a Windows program. The choice is a matter of preference, but
sometimes you may be on a system where a graphical interface is not available.

Documentation

Command-Line Interface Manual

The manual to the PPM CLI (Command-Line Interface)
program is available from the PerlDoc program:

perldoc ppm

This brings up the complete list of available command-line
arguments to instantly install, upgrade, or remove packages.

Graphical User Interface Manual

You can access the manual to the PPM GUI (Graphical User
Interface) program by clicking Help ➔ Contents, or by
pressing F1. This opens a Web browser to a local HTML page
describing the PPM program, usage, and additional
repositories.

You can access the PPM documentation in two forms, man-page and HTML.

11_556801-ch09.indd 11411_556801-ch09.indd 114 8/31/10 9:19 AM8/31/10 9:19 AM

115

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

It is possible add custom areas into ActivePerl. This allows
a user who does not have full rights to the C:\Perl\
site\lib or C:\Perl\lib paths the opportunity to
install a package through PPM. The difference is that the
new area is not a standard location, as in perl or site, but
rather a path under the user’s home directory.

Upgrading Packages

PPM automatically identifies any packages that can potentially
be upgraded by comparing all installed and available version
numbers. PPM can list all available package upgrades on the
command-line when you run the command

ppm upgrade

Using the graphical interface, click View ➔ Upgradeable
Packages.

Applying the Queue

Applying the queue is a process that only happens in the
graphical interface. Once initiated, PPM processes all
requested changes one after another. It downloads all
packages that you are installing or upgrading, and deletes
all packages that you are removing.

Downloading Binary Packages

You download all binary packages from a repository at
the ActiveState servers. The repository is based upon the
contents of CPAN, along with their own custom packages,
and other non-Perl binary programs.

This is convenient because PPM should not be restricted
to only Perl modules. You can use PPM to deliver useful
utilities that are not normally available for a particular
environment. For example, PPM can deliver and install
gcc, The GNU C Compiler, and allow you to make
executable binaries for Windows.

Searching for Modules

You actually search for Perl modules by searching for the
respective PPM package. Perl modules already have a
specific naming style, but the PPM package-naming
convention needs a unique model to represent the
packaged binary form of a module.

In essence, when you search in PPM you are actually
filtering by a query. PPM tests the query against each
package in the repository by comparing it to the package
name, abstract, or author.

Adding Repositories

It is possible to add additional repositories into PPM
beyond the default ActiveState repository. Once you add in
a repository, any packages that the repository has available
will appear on the main list.

Installing and Removing Packages

In the graphical interface, PPM has a running queue of
requested packages to install, upgrade, or remove. PPM
flags packages in the interface; then, once you are happy
with the request, it applies the list of changes all at once.

PPM is smart enough to not allow an impossible situation
by honoring package dependencies. If you request to
remove a package that another package depends on, you
should remove either both or none at all.

Package Areas

When you install a package, it is placed in a specific area.
On a fresh installation there are two areas, perl and site.
The perl area indicates a package that shipped with Perl.
The site area indicates that the package was installed
specifically at this site, or on this computer.

Using Perl Package Manager

The process of installing modules is slightly different, depending on the interface method that you use. When using the
graphical interface, you first search for a package, then queue it for installation, upgrade, or removal, and finally process
the queue.

When using the command-line interface, there is no queue. PPM immediately processes requests to install, upgrade, or
remove packages.

11_556801-ch09.indd 11511_556801-ch09.indd 115 8/31/10 9:19 AM8/31/10 9:19 AM

116

2

3

5

4

1

 The PPM Preferences dialog box
appears, displaying the Areas tab.

4 Click the Repositories tab.

 The PPM Preferences,
Repositories tab appears.

5 Click OK.

1 Open Perl Package Manager.

Note: You can open PPM on
Windows by clicking Start ➔
Programs ➔ ActivePerl ➔ Perl
Package Manager.

2 Click Edit.

3 Click Preferences.

Configure ActivePerl PPM

I t is possible to configure ActivePerl PPM to support
additional functionality and to customize your view
of the packages installed on your system. You can

also customize the location where you install packages,
and what repository servers you use.
The easiest change you can apply to ActivePerl PPM is to
modify the view of the packages on the repository and
your computer. This allows you to compare which
packages are installed, which packages you can upgrade,
and which packages are available on the repository.
ActivePerl PPM also supports a concept called install
areas. By default, there are two install areas configured,
“site” and “perl”. Modules that ship with the core Perl
distribution are pre-installed into the “perl” area. Modules
that you install through a third-party program, such as
CPAN or ActivePerl PPM, use the “site” area.

You can configure alternative repositories in PPM to allow
it to search for packages outside of the ActiveState
servers. This can be useful if you know of a third-party
source of modules, outside of CPAN and ActiveState, that
maintains modules, releases frequent upgrades, and
provides a PPM server.
To create a new install area or your own PPM package, or
to find general information on how to use ActivePerl
PPM, see the FAQ file, C:\Perl\html\faq\
ActivePerl-faq2.html.
If you create your own PPM repository, it can involve
setting up a SOAP (Simple Object Access Server)
installation. This process is relatively complex and not
necessary for a simple repository online. You can find an
alternative set of instructions at http://jenda.
krynicky.cz/perl/PPM.html#repository.

Configure
ActivePerl PPM

11_556801-ch09.indd 11611_556801-ch09.indd 116 8/31/10 9:19 AM8/31/10 9:19 AM

117

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

6

7 8

It is also possible to configure which columns PPM displays in the package list by clicking View ➔ View Columns.
Available columns include Area configured, Installed version, Repository, Available version, Abstract description,
and Author name.

When adding a new repository, PPM offers a suggested list of potential third-party repositories to use. Adding one
of them in is a matter of selecting a “Suggested” repository in the Repositories tab of the PPM Preferences. Once
enabled, you can view the packages from that repository by enabling the Repository view column, and then sort the
list by clicking the column name.

PPM offers various shortcuts for performing the same configuration tasks.

PPM SHORTCUT EFFECT

Ctrl+1 View all packages

Ctrl+2 View installed packages

Ctrl+3 View upgradeable packages

Ctrl+P Open Preferences

6 Click Showallpackages () to show all
packages.

 PPM displays all available packages.

• Available packages.

Note: Installed packages have an “Installed”
version number.

7 Click Showinstalledpackages () to show
installed packages.

 PPM displays all installed packages.

• Installed versions of packages.

Note: Packages with a blank “Available” version
have no version on the repository.

8 Click Showupgradablepackages () to
show upgradable packages.

 PPM displays all upgradeable packages.

• Upgradeable versions of packages.

11_556801-ch09.indd 11711_556801-ch09.indd 117 8/31/10 9:19 AM8/31/10 9:19 AM

118

3 4

1
2

 PPM displays all packages.

3 Click the text area beside
Searchby ().

4 Type a term to filter by and
press Enter.

 PPM applies the search filter
query.

• The filtered list of packages.

1 Open Perl Package Manager.

2 Click to show all available
packages.

Search for Perl Modules with ActivePerl PPM

I t is possible to search for Perl modules in ActivePerl
PPM by filtering on the package’s name or a keyword
in the abstract. You can use this feature to quickly

locate a package if you only know part of its name or
description.
If you want to selectively search by name, abstract, or
author, click Searchby. By default, the program searches by
the module’s name and abstract text. Changing your search
terms allows you to narrow down your search.
When Perl modules are packaged up in PPM, their
package names follow a standardized naming convention
that differs from the original module name. For example,
a Perl module normally identified as Class::Package
would be packaged in PPM as Class-Package. In other
words, all Perl module packages are described on PPM by
replacing “::” with “-”.

Search for Perl Modules
with ActivePerl PPM

When using the filter text area, the default search
method is by the package’s name or a keyword in the
abstract. Click Searchby () to selectively search only
by package name, abstract, or author.

It is possible to sort the package list by clicking the
column header.

You can use various shortcuts in PPM to perform the
same search tasks. Press Ctrl+F to highlight the search
window. Press F5 to force PPM to synchronize its
database with the installed Perl modules.

11_556801-ch09.indd 11811_556801-ch09.indd 118 8/31/10 9:19 AM8/31/10 9:19 AM

119

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

2

5

3

4

4 Click Execute ().

 A dialog box appears, asking
you to confirm the installation.

5 Click OK.

 PPM installs the new package.

1 Identify a package to install
or upgrade in PPM.

2 Right-click the package.

3 Click Install Package version.

Install Perl Modules with ActivePerl PPM

Removing packages through PPM uses the exact same
method, except that you must explicitly mark the package
for removal.I n order to install Perl modules through

ActivePerl PPM, you must first locate the
module’s package, mark it for install, and then

instruct PPM to install it. You can use this technique
to actually install or upgrade a Perl module using
ActivePerl PPM.
Once you have queued your packages and selected
“run marked action,” the system prompts you for
confirmation and then processes your request. The
installation process involves downloading the PPM
package, as well as any dependencies, on to your
computer. You need to be connected to the Internet
for this to happen.
Once complete, all new modules are available to
every Perl script. Simply import the module you
want using its standard name.

Install Perl Modules
with ActivePerl PPM

Installing a package with PPM requires a connection to
the Internet to download the index of available packages,
and the actual package. If you select a package that
requires dependencies, PPM automatically adds all
related packages to the install queue. You can use
various shortcuts in PPM to perform the same installation
tasks. When highlighting an individual package, press +
or - to queue the package for installation or removal,
respectively. Press Ctrl+Enter to process the queue.

11_556801-ch09.indd 11911_556801-ch09.indd 119 8/31/10 9:19 AM8/31/10 9:19 AM

120

1

2
2 Type apt-cache show

package.

• The module's package
name.

• The module's version.

• The module's description.

1 Type apt-cache search
^lib perl$.

Note: Append | less to the
command to page through the
list.

 APT displays the list of
available Perl modules.

Search for Perl Modules in Debian/Ubuntu Linux

Y ou can search for Perl modules in the Debian- and
Ubuntu-based systems by using the APT program
to find the module’s DEB package. You can use

this technique to quickly locate a package if you only
know part of its name or description. When Perl modules
are converted into a DEB package, their package names
follow a standardized naming convention that differs from
the original module name. For example, a Perl module
normally identified as Class::Package would be
packaged in Debian as libclass-package-perl. In
other words, all Perl module packages on Debian/Ubuntu
are in lowercase, begin with “lib”, end in “-perl”, and
replace “::” with “-”. This section demonstrates the apt-
cache program as an example, but any APT-compatible
search program will do. The module’s naming convention
remains the same, but the search syntax may be different.

Search for Perl Modules
in Debian/Ubuntu Linux

The apt-cache search command is regular-expression
aware. If you add in another keyword without a caret or
dollar sign, it is included with your search as “contains the
word xyz”, which narrows down your search.

TYPE THIS

apt-cache search ^lib date perl$

RESULTS

APT displays all Perl module packages related to
calendar dates.

➔

11_556801-ch09.indd 12011_556801-ch09.indd 120 8/31/10 9:19 AM8/31/10 9:19 AM

121

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

1

2

• APT downloads the Perl module package.

• APT installs the Perl module package.

1 Type sudo apt-get install package.

2 Press y to confirm the download and
installation, if asked.

Install Perl Modules in Debian/Ubuntu Linux

If after installing a module you are not sure how to use
it in a Perl script, you can use the perldoc program to
open the module’s manual. However, perldoc is not
aware of DEB package names, only the names of Perl
modules.

I t may seem redundant to search and install Perl
modules as a Debian package rather than
through CPAN; however, this pre-packaged

method is preferred. The Debian maintainers strive
to ensure every program works as designed on a
Debian system as they do anywhere else. If there is
a quirk on Debian that warrants a source-code
change in the module, but the change only applies
to Debian-based systems, the DEB package will have
the change but CPAN will not.
You can also easily upgrade and remove Debian
packages. Debian packages also have inherent
dependency checking. If a module depends on
another third-party module or program, the DEB
module installation process properly downloads and
installs any dependencies.

Install Perl Modules in
Debian/Ubuntu Linux

TYPE THIS

perldoc Date::Manip

RESULTS

The Date::Manip module’s documentation displays.

➔

11_556801-ch09.indd 12111_556801-ch09.indd 121 8/31/10 9:19 AM8/31/10 9:19 AM

122

1

2

2 Type yum info package.

• The module's package
name.

• The module's version.

• The module's summary.

• The module's description.

1 Type yum list all | grep
^perl.

Note: Append | less to the
command to page through the
list.

 YUM displays a list of
available Perl modules.

Search for Perl Modules in Red Hat Linux

When searching, list all available packages as yum list
all, and then pass the output through grep and find
entries that begin with perl- as | grep ^perl.

I t is possible to search for Perl modules in Red Hat-
based systems by using the YUM program to find the
module’s RPM package. You can use this method to

quickly locate a package if you only know part of its
name or description.
When Perl modules are converted into an RPM package,
their package names follow a standardized naming
convention that differs from the original module name.
For example, a Perl module normally identified as
Class::Package would be packaged in Red Hat as
perl-ClassPackage or perl-Class-Package. In other
words, all Perl module packages on Red Hat begin with
“perl-” and either omit the “::” or replace it with “-”.
This section demonstrates the yum program, but any
RPM-compatible search program will do.

Search for Perl Modules
in Red Hat Linux

TYPE THIS

yum list all | grep ^perl | grep -i date

RESULTS

YUM displays all Perl module packages. The grep
parameter -i makes the search case-insensitive.

➔

11_556801-ch09.indd 12211_556801-ch09.indd 122 8/31/10 9:19 AM8/31/10 9:19 AM

123

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

1

2

• YUM downloads the Perl module
package.

• YUM installs the Perl module package.

1 Type sudo yum install package.

2 Press y to confirm the download and
installation, if asked.

Install Perl Modules in Red Hat Linux

If after installing a module you are not sure how to use it in
a Perl script, you can use the perldoc program to open
the module’s manual. However, perldoc is not aware of
DEB package names, only the names of Perl modules.

I t may seem redundant to search and install Perl
modules as a Red Hat package rather than
through CPAN; however, this pre-packaged

method is preferred. The Red Hat maintainers strive
to ensure all programs work as designed on a Red
Hat system as they do anywhere else. If there is a
quirk on Red Hat that warrants a source-code
change in the module, but the change only applies
to Red Hat-based systems, the RPM package will
have the change but CPAN will not.
You can also easily upgrade and remove Red Hat
packages. Red Hat packages also have inherent
dependency checking. If a module depends on
another third-party module or program, then the
RPM module installation process properly downloads
and installs any dependencies.

Install Perl Modules
in Red Hat Linux

TYPE THIS

perldoc Date::Manip

RESULTS

The Date::Manip module’s documentation displays.

➔

11_556801-ch09.indd 12311_556801-ch09.indd 123 8/31/10 9:19 AM8/31/10 9:19 AM

124

2

1

5

3 4

 The CPAN search results page appears.

5 Click the name of the module you want to
know about.

1 Type http://search.cpan.org/ in your browser.

2 Type in a search term.

3 Select modules.

4 Click CPAN Search.

Search For and Download Perl Modules Manually

Y ou can manually search and download a Perl
module if your preferred installation package
system does not have that module available, or

if you want to see the module’s source code. The Search
CPAN Web site, located at http://search.cpan.org,
has all of its modules from its database available.
Sometimes, a manual download may be your only option
if the module’s DEB, RPM, or PPM package cannot be
found or is out of date, and you cannot install the module
using the CPAN program directly. Also, if you want to
make any changes to a Perl module, and examine how it
works, you need to manually download its original
archive package to access its complete source code. Even
though Perl modules are already in “source code” format
on your system, there are additional components that are
included in the source archive that are not actually

installed when you install the module. This process gives
you a more “hands-on” approach to the Perl module
building and installing process.
Be aware that manually downloading a module does not
download its dependencies; if there are any, then you
also need to manually download them. There is a
dependency link on the module summary screen that
allows you to review other required modules. Most times,
the dependencies listed here are core modules, which ship
with every distribution of Perl, and it is not necessary to
download them again.
If you forget to download a dependency module, you can
always search for and download it later. The build
process, as described in the section, “Build and Install
Perl Modules Manually,” provides a list of everything that
is missing on your system.

Search for and Download
Perl Modules Manually

11_556801-ch09.indd 12411_556801-ch09.indd 124 8/31/10 9:20 AM8/31/10 9:20 AM

125

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

67

Once the download is complete, uncompress the tar.gz archive. If you are downloading the module’s source on
Windows, you may need additional software to uncompress the tar.gz archive. The free programs 7-Zip, available
from www.7-zip.org, and PeaZip, available from http://peazip.sourceforge.net, can handle this type of
archive on Windows.

If you are downloading the source on Unix or Linux, use the following command in a terminal:

tar xfvz archive.tar.gz

This uncompresses the tar.gz contents under a new directory, usually with the same name as the archive itself
plus its version number. The module is now ready to be built and installed.

The source code to the module consists of several other components. Each component is standardized according to
the Perl documentation manual, perldoc perlmodlib.

If you are interested in creating a completely new module of your own, a useful learning technique is to examine the
contents of an existing Perl module source. You can find the module’s source code in a subdirectory called lib. You
can find any test scripts in a subdirectory called t.

 The module’s version summary screen
appears.

Note: You can also access the module’s known
bugs, license, install instructions, end-user
reviews, and other documentation on this
screen.

 The module’s manual appears.

6 Click the download link to download the
module’s tar.gz file.

7 Click the module’s source summary link.

11_556801-ch09.indd 12511_556801-ch09.indd 125 8/31/10 9:20 AM8/31/10 9:20 AM

126

1

3

2

2 Type perl Makefile.PL and press Enter.

3 Type make (dmake on Windows) and
press Enter.

 The module build process begins.

Note: Remember, on Windows ActivePerl and
Strawberry Perl, use dmake instead of make
for all remaining commands.

1 Go to the directory with the downloaded
Perl module source code.

 Uncompress the tar.gz archive if you
have not done this already.

Build and Install Perl Modules Manually

Y ou can manually build and install a Perl module if
you are interested in knowing how it is actually
built, compiled, and installed, or if you want to

customize a module with your own code. This can be
useful if a problem originates in an upstream module and
you want to diagnose the bug, or if you want to add a
new feature to that module.
You handle the actual build-and-install process using a
few standard core utilities and programs that are
available on all Linux distributions, and on Strawberry
Perl on Windows. The ActiveState ActivePerl PPM
provides these core programs as separate packages.
Again, it is important to stress that if you are using
ActivePerl, Debian/Ubuntu, or Red Hat, you need to use
the PPM, DEB, or RPM install methods.

The build-and-install process always uses the same four
commands: perl Makefile.PL, make, make test,
sudo make install.
The only variations are that Windows ActiveState and
Strawberry Perl use dmake, not make, and Windows users
do not require sudo.
After running the last command, the Perl module is
installed in a location on your hard drive specific to
locally installed modules. In Strawberry Perl, this is C:\
strawberry\perl\site\lib, and in Linux, this is /
usr/local/share/perl/version; however, your
particular installation may vary. To force installation into
a specific directory, add a PREFIX parameter to the first
command:
perl Makefile.PL PREFIX=DIRECTORY

The final installation directory uses that directory path.

Build and Install
Perl Modules Manually

11_556801-ch09.indd 12611_556801-ch09.indd 126 8/31/10 9:20 AM8/31/10 9:20 AM

127

Ch
apter 9: In

stallin
g T

h
ird-Party Perl M

odu
les

5

If something goes wrong, an error is printed in make’s output. Usually this is as simple as a missing or out-of-date
module. Although rare, if it is a syntax issue, try to locate a more recent version of the module, and try upgrading
your local copy of Perl.

When installing an upgraded version of a Perl module, you use the exact same steps. The make install step is
usually smart enough to identify if a module already exists and will install a new copy over the old copy.

Uninstalling modules, just like with CPAN, is not exactly possible. You could use the CPANPLUS program as
described earlier in this chapter, but if that is not available, you have to search for the module files directly. Usually,
modules named Class::Package are found in the Class directory, as a file called Package.pm. So, in this
example, Date::Manip is stored as Date/Manip.pm somewhere on your hard drive.

Actually, somewhere is overly vague; the module is installed in one of your @INC directories. Type the command perl
-V to see a list of the Perl @INC directories, relevant to your Perl distribution.

 The test suite process is a
success.

5 Type sudo make install (dmake
install on Windows) and press
Enter.

 The module is now installed.

 A message appears, letting you
know that the build process was
successful.

4 Type make test and press Enter.

 The module's test suite begins.

• All module tests pass.

11_556801-ch09.indd 12711_556801-ch09.indd 127 8/31/10 9:20 AM8/31/10 9:20 AM

128

T he Apache Common Gateway Interface (or CGI)
handler is the core component in Apache that
links incoming HTTP requests from users to the

CGI Perl scripts you have developed.
There are several implementations of CGI in Apache, and
you can dynamically install each one into an Apache
server using a shared-object file. The simplest interface,
mod_cgi, provides the most rudimentary conduit for
launching an instance of Perl for each CGI request.

More complex interfaces, such as mod_perl, actually
embed the Perl interpreter directly into Apache, this
increases the speed of Apache and Perl when serving CGI
requests. For more information about mod_perl, see
Chapter 23.
The core of this chapter will concern enabling the simpler
CGI handler module, mod_cgi.

Introducing the Apache
CGI Handler

Apache Configuration

Enable the CGI Module

Apache ships with a module, mod_cgi.so, that provides
CGI functionality. It must be enabled before any Perl CGI
scripts will work. On most installations of Apache, the CGI
module is enabled by default.

LoadModule cgi_module modules/mod_cgi.so

This directive is an example; the exact path to mod_cgi.
so may be different on your system, but as long as the
LoadModule directive exists somewhere, the CGI module
should be activated.

Enable the CGI Handler

You require a special configuration command in the
Apache httpd.conf file. This instructs Apache to
execute Perl scripts as CGI scripts.

AddHandler cgi-script .pl

You can technically place this command anywhere inside
of httpd.conf, or in any of its support files.

Restart Apache

If either the CGI module or the CGI handler was not
previously enabled, and you have to manually add these
directives in, then you must restart the Apache Web server.

For more information on restarting the Apache Web server
on Windows, see Chapter 4. For more information about
Linux, see Chapter 5.

Using the CGI Handler

Using the Handler on a Global URI

The ScriptAlias directive instructs Apache to assign a
site-wide URI directory, typically /cgi-bin/, to a specific
directory on the Web server. All files found within this
directory are passed through the CGI handler and executed
as CGI scripts.

ScriptAlias /cgi-bin/ /var/www/cgi-bin/

This means that the same CGI scripts are available on all
virtual domains at the URI /cgi-bin/.

You must assign the ScriptAlias directive in the Apache
core configuration file. All Web sites and domains hosted by
the server will honor the single directory and path.

Using the Handler on a Particular Directory

You may grant an individual directory access to the CGI
handler through the Options directive. This is useful if
you want to enable the CGI handler for an individual user
or virtual domain, but not globally at a specific URI.

The Options directive may exist within a <directory>,
<location>, <files>, or <proxy> configuration
section to limit exposure to the CGI handler.

<directory /var/www/testsite/cgi-bin/>

 Options +ExecCGI

</directory>

You must assign the Options directive that has one
configuration section in the Apache core configuration file.

Before you can enable CGI, you need to make some global
configurations on the Apache server.

You must activate the CGI handler onto a particular Web
server directory or Web site URI. This establishes a
particular directory where all files contained within it will be
considered CGI scripts.

12_556801-ch10.indd 12812_556801-ch10.indd 128 8/31/10 9:20 AM8/31/10 9:20 AM

129

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl

This is useful if you want to grant users access to create
their own custom cgi-bin directory, without granting
them access to the core Apache configuration file.

For this to work, you must create an AllowOverride
directive within a <directory> configuration section in
the configuration file.

Using the Handler in an .htaccess File

The Options directive is also legal within an .htaccess
file saved within a particular directory. The configuration
section becomes redundant, as all requests going to that
directory now honor the directive.

Using the CGI Handler (continued)

Using Perl for Apache CGI

Perl Files

You must cleanly execute the Perl files themselves from
the command-line. If the command perl myscript.pl
produces an error on the command-line, it generates a
similar error in the Apache logs.

Also, on Unix systems only, you must set the Perl file’s
execution bit. This ensures that Apache understands this
file is a dynamic script that it must execute, not a static file
that it should simply read.

Perl Interpreter Path Header

The first line of the Perl script must be the path to the Perl
binary. As you learned in Chapter 6, the header must be the
correct path.

It may be acceptable for a command-line-only Perl script in
Windows to have a faulty header; Windows internally
associates the .pl extension to a particular executable file.
However, this type of association has no bearing on
Apache and must be properly defined.

PERL DISTRIBUTION DEFAULT HEADER PATH

Any Linux Perl #!/usr/bin/perl

Windows ActiveState Perl #!C:\Perl\bin\perl.exe

Windows Strawberry Perl #!C:\strawberry\
perl\bin\perl.exe

Perl Output
All content printed by Perl on standard output, or STDOUT,
goes back to Apache, which relays the text to the user’s
browser. Any content printed on standard error, or
STDERR, is relayed to the Apache error log.

According to the HTTP protocol standard, the Web server
must send all page requests to the browser in two parts:
the HTTP header, which introduces the content, followed
by the actual content. The header consists of multiple lines,
each with one HTTP header field and definition. The last
HTTP header signals that the content is coming next by
adding a blank line after its own.

Apache sends some HTTP headers automatically, but it
leaves the door open for the CGI script to provide more.
This allows the Perl script to send cookies, manipulate the
HTTP session state, or provide other advanced headers
according to the HTTP/1.1 specs.

At a minimum, Perl must provide at least one new header,
content-type, prior to any actual content. The content-type
supplies the MIME type, which describes the actual
content. Often this is represented as

print “Content-type: text/html\n\n”;

Note the two carriage-returns (\n\n); the browser now
treats all printed data as HTML code.

The content that Perl is printing does not have to be HTML
code. It could be raw image data, such as a JPEG. The only
requirement is that the content be prefixed by the correct
MIME type in the content-type header — in this case,
Content-type: image/jpeg.

You need to prepare your Perl scripts before they can work with the Apache CGI handler.

12_556801-ch10.indd 12912_556801-ch10.indd 129 8/31/10 9:20 AM8/31/10 9:20 AM

130

1

2

3

2 Search for the text mod_userdir.so.

Note: In Notepad, click Edit ➔ Find. Type mod_
userdir.so and click Find Next.

3 Remove the hash symbol (#) to
uncomment the LoadModule directive.

Note: If you cannot find the LoadModule
directive that imports mod_userdir.so, then
you need to manually type it in.

1 Open the Apache configuration file
in a text editor.

Note: For information on opening the
Apache configuration file, see Chapter 4.

Create a User Directory for Apache in Windows

C reating a user directory for Apache is a quick way
to create a development environment for your first
Web pages. Even if your system only has one

user, following this method means you can easily create a
unique URL that is specific to your own project. Once you
set it up, you can only place static HTML files and images
in this folder, but later you will be able to save Perl scripts
in a subdirectory and execute them through a Web
browser. This process involves editing the core Apache
configuration file, typically named httpd.conf, and
enabling the mod_userdir.so module. You must also
enable an additional configuration file, httpd-userdir.
conf, which is unique to Apache on Windows. Once you
have completed this, you must restart the Web server.
The default location for user home directories in Apache
in Windows is C:\Documents and Settings\userid\

My Documents\My Webpage\. You need to create this
path manually for each user on your system that requires
a user Web directory in Apache. It is possible to
customize this directory by editing the UserDir directive
and directory section in httpd-userdir.conf.
Once you have configured and restarted Apache, and the
directory exists, you can access all files created on this
directory from a browser at the address http://
localhost/~userid/. The user’s directory name,
~userid, is a throwback to the Unix heritage of Apache
and is not a technical requirement on Windows.
If you do not like this format, you can always manually
create a directory on the server from the root of the
default domain. IYou can access files that you store in
this directory under the server’s default root URL as
http://localhost/userdir/.

Create a User Directory
for Apache in Windows

12_556801-ch10.indd 13012_556801-ch10.indd 130 8/31/10 9:20 AM8/31/10 9:20 AM

131

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl

4

7

5

8
9

The Apache user directory configuration is stored in the file C:\Program Files\Apache Software
Foundation\Apache2.2\conf\extra\httpd-userdir.conf. This is the file that is included in the main
httpd.conf file in step 4. Editing this file allows you to customize the default subdirectory name under each user’s
home directory, My Website, as well as the default directory permissions that are applied when you access this
path from a Web browser.

Create a new HTML file called index.html in the My Website directory, and insert some dummy text. When a
browser requests a URL, and no filename is specifically requested, Apache defaults to index.html; this is a good
way to make sure that everything is working.

Once you create the file, open your Web browser to the address http://localhost/~userid/. You should see
the text you saved in the static HTML file.

If you receive a “403 Forbidden” error message in your browser, it may mean that the My Website directory does
not exist, or it does not contains any files.

If you still cannot access your user Web directory, try monitoring the Apache error log. For information on how to
do this, see the section, “Read the Apache Logs.”

7 Open your My Documents folder.

8 Click Make a new folder.

9 Type My Website and press Enter.

0 Restart Apache on Windows.

Note: For more information, about
starting and stopping Apache, see
Chapter 4.

4 Search for the text httpd-
userdir.conf.

5 Remove the hash symbol (#) to
uncomment the Include
directive.

6 Save the Apache configuration file.

12_556801-ch10.indd 13112_556801-ch10.indd 131 8/31/10 9:20 AM8/31/10 9:20 AM

132

3
2

1

2 (Debian/Ubuntu Linux
only) Type sudo a2enmod
userdir and press Enter.

 (Mandriva Linux only) As
root, type gurpmi apache-
mod_userdir and press
Enter.

3 If prompted, type in your
password and press Enter.

Note: If you used the Debian,
Ubuntu, or Mandriva steps, skip
to step 9.

1 Open a Terminal window
in Linux.

Create a User Directory for Apache in Linux

C reating a user directory for Apache is a quick way
to create a development environment for your
Web pages. By default, you can only place static

HTML and images in this folder, but later you will be able
to save Perl scripts in this directory and execute them
through a Web browser.
Depending on the version of Linux you are using, there is
a slight difference in how you enable the userdir module.
If you are using Linux based upon Debian or Ubuntu, the
userdir module and configuration is available through
the mods-available infrastructure, and you must
specifically enable it through the program a2enmod. If you
are using a Red Hat-based version of Linux, you may
need to manually edit the httpd.conf configuration file,
or, in the case of Mandriva Linux, install the package
apache-mod_userdir. The default location for user

home directories in Apache in Linux is /home/userid/
public_html/. You need to create this path manually for
each user on your system that requires a user Web
directory in Apache.
Once you have configured and restarted Apache, and the
directory exists, you can access all files created on this
directory from a browser at the address http://
localhost/~userid/. If you do not like the tilde-userid
format, you can always manually create a directory on the
server from the root of the default domain. Instead of
enabling the userdir module as described in this section,
just create a new directory under the root URL. In Debian or
Ubuntu, create a new directory under /var/www/userdir.
In Red Hat, use /var/lib/htdocs/userdir. You can
access files that you store in this directory under the
server’s default root URL at http://localhost/userdir/.
You need to set ownerships of this subdirectory to the user.

Create a User Directory
for Apache in Linux

12_556801-ch10.indd 13212_556801-ch10.indd 132 8/31/10 9:20 AM8/31/10 9:20 AM

133

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl

5

9
0

7

4

6

Create a new HTML file called index.html in the public_html directory, and insert some dummy text. When a
browser requests a URL, and no filename is specifically requested, Apache defaults to index.html; this is a good
way to make sure that everything is working.

Once you create the file, open your Web browser to the address http://localhost/~userid/. You should see
the text you saved in the static HTML file.

If you receive a “403 Forbidden” error message in your browser, it may mean the permissions are not set up
correctly on the user’s home directory or the public_html directory, or that no actual files exist. If this is the case,
at a minimum, you must make the user’s home directory world-readable and the Web directory world-readable and
world-executable.

chmod 0711 ~userid

chmod 0755 ~userid/public_html

If you still cannot access your user Web directory, try monitoring the Apache error log. For information on how to
do this, see the section, “Read the Apache Logs.”

9 Type mkdir ~/public_html and
press Enter.

0 Restart Apache on Linux.

Note: For more information about
starting and stopping Apache, see
Chapter 5.

4 (Red Hat Linux only) Open the
Apache configuration file in a text
editor.

Note: For information on opening the
Apache configuration file, see Chapter 5.

5 Comment out the line UserDir
disabled.

6 Uncomment the line UserDir
public_html.

7 Uncomment the block that
“controls access to UserDir
directories.”

8 Save the httpd.conf file.

12_556801-ch10.indd 13312_556801-ch10.indd 133 8/31/10 9:20 AM8/31/10 9:20 AM

134

1

2

5
4

3

Note: Steps 4 and 5 are for Debian/Ubuntu
Linux only.

4 Open a Terminal window.

5 Type sudo a2enmod cgi and press Enter.

Note: It is okay if Apache selects the cgid
module instead of cgi, if it is supported by
your system.

1 Open the Apache configuration file
containing the CGI module and handler in
a text editor.

Note: If you are using Debian or Ubuntu Linux,
skip to step 4.

2 Search the file for the directive
LoadModule cgi_module.

3 Remove the hash (#) to uncomment the
directive, if it is commented out.

Enable the Apache CGI Module and Handler

E nabling the CGI module and handler in Apache is
one of the steps required in order to execute Perl
scripts in a Web browser and create a dynamic

Web page. After enabling the module and handler, you
must configure a directory to use the handler, and then
Apache can execute all Perl scripts placed in this directory.
You enable the module and the handler in the Apache
configuration file. The exact configuration file depends on
your operating system. If you are using Windows, edit
the file Apache Install Dir\conf\httpd.conf. If you
are on Debian or Ubuntu Linux, edit /etc/apache2/
mods-enabled/mime.conf. For Red Hat-based Linux,
edit /etc/httpd/conf/httpd.conf.
Because this is a two-step process, some operating
systems require two changes in one file; others require

that you run a command and make one change in a file.
On Windows- and Red Hat-based systems (including
Mandriva and Fedora), edit the httpd.conf configuration
file previously identified. If you are using Debian or
Ubuntu Linux, you can enable the CGI module with a
command, a2enmod, and then configure the CGI handler
in the mime.conf file.
Once the CGI module and handler are online, you need to
grant some sort of directory-level access to the handler.
You can do this globally by using the ScriptAlias
directive, which binds a global URI path for the entire
server to the CGI handler. If you want to grant CGI access
to a specific user or Web domain, see the next section.
Apache ships with a pre-configured ScriptAlias
directory, http://localhost/cgi-bin/, which points
to a cgi-bin folder on the server.

Enable the Apache CGI
Module and Handler

12_556801-ch10.indd 13412_556801-ch10.indd 134 8/31/10 9:20 AM8/31/10 9:20 AM

135

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl

8

0

0

67

Apache ships with a sample Perl script in its global CGI directory called printenv.pl. This script can be extremely
useful as you use it to report back the Apache server’s environment variables. You can also use it to validate that the
CGI module and handler are enabled correctly. Once you have restarted Apache, go to the following URL in a Web
browser.

http://localhost/cgi-bin/printenv.pl

You should see a listing of environment variables and their values. Depending on your Perl installation, you may
need to manually edit the printenv.pl file. Change the first line to specify the path to the Perl interpreter. For
example, if you are using the Strawberry Perl distribution, use the following header:

#!C:\Strawberry\Perl\bin\perl.exe

The output of printenv.pl is actually very close to the output of the set command on Windows and Linux. In
fact, it is the exact same idea. The only difference is that this is the environment from the perspective of the Apache
server and the user’s Web browser. In Perl, all environment variables are pre-populated into the hash variable %ENV.
This can be very useful to pull information about the user’s session into your Perl CGI scripts:

print “Hello, $ENV{ ‘REMOTE_ADDR’ }.<p>”;

print “You’re using the browser: $ENV{ ‘HTTP_USER_AGENT’ }.”;

0 Restart the Apache service.

Note: On Windows, the net stop and
net start commands are a shortcut to
restarting Apache on the command-line.

6 Search the file for the directive
AddHandler cgi-script.

7 Remove the hash (#) to uncomment
the directive.

8 Type .pl at the end of the directive.

9 Save the configuration file.

12_556801-ch10.indd 13512_556801-ch10.indd 135 8/31/10 9:20 AM8/31/10 9:20 AM

136

3

1

6
7

8

2

9

6 In a terminal, go to the My
Website directory (public_
html in Linux).

7 Type mkdir cgi-bin and press
Enter.

8 Type cd cgi-bin and press Enter.

9 Type echo Options +ExecCGI >
.htaccess and press Enter.

Note: Directives saved as .htaccess
files do not require you to restart
Apache.

1 Open the Apache UserDir
configuration file in a text editor.

2 Locate the <Directory>
configuration section for UserDir
directories.

3 Type Options as a new value in the
AllowOverride directive.

4 Save the UserDir configuration
file and exit the editor.

5 Restart Apache.

Configure a Directory to Use the CGI Handler

O nce the user’s personal Web directory is active,
and you have enabled both the CGI module and
handler, the final step is to configure a directory

to use the CGI handler. This is usually a subdirectory
called cgi-bin, but you can customize its name. Apache
executes Perl scripts that are placed in this new directory
through the CGI handler, allowing you to produce dynamic
Web pages for users. After you create the folder, you need
to configure Apache to use the folder. You need to open
the Apache configuration file and edit the <Directory>
configuration section; you must append its
AllowOverride directive with the value Options. Then,
within the new cgi-bin directory, you must create a
special file called .htaccess. It only contains one line,
Options +ExecCGI. The location of the Apache
configuration file depends on your operating system. If

you are using Windows, edit Apache Install Dir\
conf\httpd.conf. If you are on Debian- or Ubuntu-
based Linux, edit /etc/apache2/mods-enabled/
userdir.conf. For Mandriva Linux, edit /etc/httpd/
modules.d/67_mod_userdir.conf. For all other Red
Hat-based Linux distributions, edit /etc/httpd/conf/
httpd.conf.
Apache comes with a pre-configured global CGI directory,
as defined by the ScriptAlias directive, at the URL
http://localhost/cgi-bin/. On a Windows system,
this points to the directory Apache Install Dir\
cgi-bin\. On Linux, it is either /var/www/cgi-bin/
or /usr/lib/cgi-bin/. Files placed in this directory are
automatically granted access to the Apache CGI handler. It
is far better to create a new directory under your personal
Web site URL, and grant it access to the CGI handler so
that your CGI scripts run as unprivileged, regular users.

Configure a Directory
to Use the CGI Handler

12_556801-ch10.indd 13612_556801-ch10.indd 136 8/31/10 9:20 AM8/31/10 9:20 AM

137

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl
!

@

%

The first line of the Perl CGI script is paramount. It must be the path to the Perl interpreter on your server.

PERL DISTRIBUTION PERL BINARY PATH HEADER

Any Linux Perl #!/usr/bin/perl

Windows ActiveState Perl #!C:\Perl\bin\perl.exe

Windows Strawberry Perl #!C:\strawberry\perl\bin\perl.exe

If you are on Linux, remember to set the script’s executable-bit, as described in Chapter 6. You must do this once
for every Perl script in your cgi-bin directory.

It is technically possible to make your entire personal Web directory executable, and not create a specific directory
for CGI scripts at all. Just create the .htaccess file directly inside of the directory My Websites (public_html
on Linux), as previously described.

In fact, you could eliminate the need for an .htaccess file entirely by appending ExecCGI to the Options
directive in the UserDir <Directory> configuration section. However, do not do this unless you explicitly trust
every user who has access to your system. Appending ExecCGI directly in the configuration file in this fashion
grants every user’s Web directory full access to the CGI handler by default.

% In a browser, go to the Perl CGI
script’s URL.

• The browser displays the output of the
Perl CGI.

0 Create a new Perl CGI script called
hello_world.pl.

! Insert the Perl interpreter path header.

@ Insert some static CGI text.

Save the script.

$ (Unix-only) On a command-line, type
chmod +x hello_world.pl and press
Enter.

12_556801-ch10.indd 13712_556801-ch10.indd 137 8/31/10 9:20 AM8/31/10 9:20 AM

138

The Log Directory

The log directory into which Apache stores its logs
differs, depending on your operating system.

Accessing the Apache Logs

A ll Web activity that Apache handles is stored in
log files on the server. The standard access log
stores information about every HTTP request,

requester, the time, and the results. The standard error

log stores information about every unexpected failure,
warning, and anomaly that happens on the server; this
includes any errors induced by Perl CGI scripts.

Understanding
the Apache Logs

You can read the Apache logs by opening the log file directly in a text editor. While this accesses the file, you need to close and
re-open the file in order to see new content. On Linux, you can use the command tail -f logfile to stream activity in a
terminal in real-time.

Auto-Rotating the Apache Logs

Some versions of Linux auto-rotate the Apache log files on a
daily basis. This means that the entries stored in /var/log/
apache/access.log and /var/log/apache/error.
log may only describe today’s activity. If this is the case,
yesterday’s activity is available in access.log.1 and
error.log.1, activity from the day before is in access.
log.2 and error.log.2, and so on. Most of the time, this

type of log rotation has a built-in upper limit, usually seven
days. After the seventh day, the log file is deleted.

Log deletion is usually a good idea, as it prevents the log
directory from taking up too much space on the Web server’s
hard drive. Often you can configure this by editing the file /
etc/logrotate.d/apache2 on Debian or Ubuntu, or
/etc/logrotate.d/httpd on Red Hat.

OPERATING SYSTEM APACHE LOG DIRECTORY

Windows Apache Install Dir\logs

Debian/Ubuntu Linux /var/log/apache2/

Red Hat Linux /var/log/httpd/

The Activity Log

The activity log is saved in the log directory as access.log
(or access_log). It describes all Web-based transactions
the Apache server has responded to.

remote_host - - [timestamp] “GET URL HTTP/1.1”
result bytes

In this format, an activity line describes the remote host’s IP
address or hostname, the remote log name (as a dash if not
available), the remote username (as a dash if not available),
the timestamp of the request, the actual HTTP request, the
status results code of the request, and the number of bytes
transferred. This represents the Apache common log format.
Apache also provides a combined log format which extends the
common format by adding the referring URL and user-agent
environment values. The status result code follows RFC 2616.
Typically, 200 means success, 403 is a “permission denied”
error, 404 is a “file not found” error, and 500 is a server error.
You can find the full list of status codes online at www.
w3.org/Protocols/rfc2616/rfc2616-sec10.html.

The Error Log

The error log is saved in the log directory as error.log (or
error_log). It describes any error messages triggered by
any failed Web-based transactions the Apache server could
not respond to.

[timestamp] [type] [client remote_host] Error
message text

In this format, an error line describes the timestamp of the
request, the type of failure (error, warning, or info), the
remote host’s IP address or hostname, and the raw error text
describing the failure.

The actual text contained in the error log is free form,
meaning that there is no set formatting standard that is
followed. The error message text is usually generated by the
program being executed. Typically, if a Perl CGI script failed
with a syntax error, you would see the error description in
this log, exactly as it would be described if the script were
run from the command-line.

12_556801-ch10.indd 13812_556801-ch10.indd 138 8/31/10 9:20 AM8/31/10 9:20 AM

139

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl

5

4

1

3

3

2

From a single server, Apache can simultaneously provide Web
page hosting for multiple domains using the <VirtualHost>
configuration section. Within each domain, it is possible to
redefine the CustomLog and ErrorLog directives.
You define the log format template through a set of
macros. Each macro expands to a usable value relevant to
the request being logged. You can find the list of
available macros in the Apache documentation at
http://httpd.apache.org/docs/2.2/mod/mod_log_
config.html#formats. The default LogFormat
template, called common, contains information such as
the remote user’s host name, a timestamp, the requested
URI, data transferred, and a status code result. Another
template, called combined, appends the common template
with a referrer URL. The referrer describes what address
the user just came from, which is very useful to identify
how users are getting to your Web site.

3 Locate the CustomLog directive.

4 Type # to comment out the
common log format.

5 Uncomment the combined log
format.

6 Save the Apache configuration file
and restart the Apache server.

1 Open the Apache configuration file
in a text editor.

2 Locate the LogFormat directives.

• The log format fields.

• The log format name.

Configure the Apache Logs

T he log files produced by an Apache server
describe all Web activity that has been
requested. Two log files are generated:

access.log (or access_log) contains a summary
of all HTTP requests received, and error.log (or
error_log) contains all specific error messages if a
problem occurs. You can configure these log files to
customize their format, directory, and filename.
You can save the format of the access log file as a
template using the LogFormat directive. You can
then apply the template, directory, and filename
using the CustomLog directive. You cannot
customize the format of the error log file, but you
can change its directory and filename using the
ErrorLog directive.

Configure the
Apache Logs

12_556801-ch10.indd 13912_556801-ch10.indd 139 8/31/10 9:20 AM8/31/10 9:20 AM

140

1

3
2

 The terminal displays the
most recent log activity.

1 Open a command-line
prompt.

2 Navigate to the log file
directory.

3 Type tail -vf access.log
(or access_log) and
press Enter.

Note: You may need elevated
privileges to view the log file.
Use sudo or su.

Read the Apache Logs

Tail can accept multiple files on the command line,
making it possible to monitor both the access.log
and error.log files at the same time. Tail on
Windows is only a standard component on Windows
Server 2003 and 2008 installations. Unfortunately, it is
not standard on Windows desktop installations, such
as XP, Vista, and 7.

A graphical version of Tail is available for Windows
desktops at http://tailforwin32.sourceforge.
net. Once downloaded, simply double-click the
enclosed tail.exe file and open the access.log file.

Y ou can access the Apache log files using any
program that can open text files. On Windows
this could be Notepad, or even using the type

command at the DOS prompt. Opening the log file as a
text file is okay for a server with very little activity, but
it is not practical to view real-time data.
The tail utility is very useful for examining the access
and error log files for real-time activity. It is available by
default on Unix systems but you may need to manually
install it on Windows. The log directory Apache stores its
logs into differs, depending on your operating system. On
Windows, this is Apache Install Dir\logs, on Debian
and Ubuntu this is /var/log/apache2/, and on Red Hat
this is /var/log/httpd/.

Read the
Apache Logs

12_556801-ch10.indd 14012_556801-ch10.indd 140 8/31/10 9:20 AM8/31/10 9:20 AM

141

Ch
apter 10: Con

figu
rin

g A
pach

e to E
xecu

te Perl

1

5

2
2

66

4 Access the Perl CGI script in a
Web browser.

5 Open the Apache error log file.

6 Scroll down to the bottom.

• The Perl script’s log entry.

1 Open a Perl CGI script in a text
editor.

2 Type print STDERR TEXT; and
press Enter.

3 Save the Perl script.

Forward Perl Activity into the Apache Error Log

Try replacing print STDERR with the warn or die
functions. Along with printing to standard-error, warn
and die also append the script’s name and line number
into the error log, but only if the message does not end
in a carriage-return (\n). The function die differs from
warn in that it stops the execution of the script after
relaying the message text. Alternatively, the Apache
error messages can be forwarded back to CGI and the
browser. For more information, see Chapter 12.

see what the user sees. When you print important data to
the user’s Web browser, print it again to standard-error.P erl automatically forwards any error

messages, such as syntax or interpreter
errors, into the Apache error log. You can

also define custom log messages in your Perl script
that are relayed to this log file. These may include
warning messages, debug statements, or any type of
information that is manually coded. You can use this
feature to monitor your Perl CGI scripts’ activity and
performance.
You can use the file handle called standard-error, or
STDERR, for this purpose. Apache automatically
picks up any text printed to this file handle and
stores it into the error log.
This can be especially useful if you are debugging a
problem on a live Web site, but you cannot actually

Forward Perl Activity
into the Apache Logs

12_556801-ch10.indd 14112_556801-ch10.indd 141 8/31/10 9:20 AM8/31/10 9:20 AM

142

1

2

3

4

5

6
7

Create an
HTML Form

Create an HTML Form

1 Open a static HTML script in a text
editor.

2 Type <form> to start the HTML form.

3 Type </form> to close the HTML form.

4 Type <input type=text name=field> to
create a text box.

5 Type <input type=checkbox name=field
value=value>text to create a new check
box and its text value.

6 Type <input type=radio name=field
value=value>text to create a new radio
button and its text value.

7 Duplicate the radio input fields, changing
only the value and text.

Note: You can use radio buttons for multiple-
choice questions, where the user can only
select one choice at a time.

A n HTML form collects information from a user by
way of his browser, and relays that information
to a Web server. Along with standard HTML

formatting, an HTML form’s syntax defines the input
fields that can be populated, any predefined values, the
buttons to submit the form, and the URL of the script
accepting the form’s data. To make this form useful, you
need a CGI component at the other end of that URL which
accepts the submitted data, interprets the data, reports
any errors, and moves the user onto the next page
according to the site’s workflow.
An HTML form always begins with a form tag. This
instructs the browser that an HTML form is beginning,
and tells it the method type, and the URL that will receive
the data when it is submitted.
<form method=TYPE action=URL>

The input fields within the form can include text boxes,
pull-down lists, multi-select lists, check boxes, and radio
buttons. You assign each of these input fields a name,
which is an optional value within the input HTML tag. If
you provide a value, it appears as the default value when
the form is rendered; if you do not provide a value, the
input field appears blank.
<input type=TYPE name=NAME value=VALUE>

The Submit button normally appears at the bottom of the
form. It does not require a name or a value, but these
fields are submitted to the CGI if you define them within
the HTML form.
<input type=submit name=NAME value=VALUE>

Finally, you complete the HTML form by closing the form
tag.
</form>

13_556801-ch11.indd 14213_556801-ch11.indd 142 8/31/10 9:20 AM8/31/10 9:20 AM

143

8

An HTML form can be a static HTML file stored on a Web server, or it can be generated dynamically by another
server-side CGI script.

To validate the fields submitted by the user, they should be error corrected by the accepting CGI script. This refers to
the portion of the code that validates that an “e-mail address is an e-mail address” and a “phone number is a
phone number.” Finally, if any errors are discovered, you need to communicate this back to the user.

A good practice is to re-display the same form, pre-populated with the user’s known-good values, and displaying a
red background beside the fields where an error is discovered. This way, the user only needs to correct the missing
fields and press the Submit button again.

It is also possible to use JavaScript to validate the user’s data as a client-side control. This can be used prior to the
form’s actual submission as a convenience to the user. However, if used, client-side validation should only
complement server-side validation, and you should not use it as the primary means of error correction. Clever users
can bypass JavaScript validation controls; users cannot bypass Perl’s validation controls when you write them
correctly.

 Open the HTML form in a
browser.

• The input text field.

• The check box field.

• The radio button fields.

• The Submit button.

8 Type <input type=submit> to
create a Submit button.

Note: If a Submit button contains a
name or value field, this information is
relayed to the CGI script as a standard
key/value pair. As a result, you can
define multiple buttons, each with a
unique name and value. This helps the
CGI script identify what the user
clicked.

Ch
apter 11: In

trodu
cin

g D
o-It-Y

ou
rself Perl/CG

I In
teraction

13_556801-ch11.indd 14313_556801-ch11.indd 143 8/31/10 9:20 AM8/31/10 9:20 AM

144

9

1

2

3

3

3

3

4

7
8

9

5

6 Open a new Perl CGI script.

7 Create a new ReadParams subroutine.

8 Type my $input = $ENV{ 'QUERY_STRING' }; to
declare a new scalar, and store the QUERY_
STRING environment value.

9 Type my $data = {}; to declare a new hash
reference.

1 Open a static HTML script in a text editor.

2 Type <form method=get action=”cgi-bin/script.
pl”> to start the form.

3 Insert a series of Input fields.

4 Type <input type=submit value="Submit">.

Note: A submit input field uses the “value” attribute
as the literal button text.

5 Type </form> to close the form.

 Save the file as form.html.

Read HTTP GET/POST Parameters

W hen a user fills in an HTML form and submits
it, a CGI script needs to receive the data, parse
it, decode it, and act upon it. For example, the

raw form data is delivered to the CGI script in this format:
firstname=John&lastname=Smith&email=jsmith%40
domain.com

The parsing process involves splitting the string at each
ampersand (&) to get each field, and then splitting each
field at each equal sign (=) to get each key/value pair.
The decoding process converts the non-alphanumeric
characters from a percent-hexadecimal-ASCII
representation, “%40”, into the original character, “@”.
HTML forms are submitted using a method, either GET or
POST. The GET method provides the form data within the
query string in the script’s URL. The POST method does

the same thing as GET, except the data is sent as a part of
the HTTP request. The Perl script interprets this data as
being a part of standard input, or STDIN. Regardless of
whether you use GET or POST, the CGI Perl script must
convert the raw data into a hash reference.
$param->{ ‘firstname’ }
$param->{ ‘lastname’ }
$param->{ ‘email’ }

It is up to you to decide which method to use in your Web
site. Generally speaking, GET forms are easier to test and
debug new code on, as the data being submitted is visible
right in the URL. POST forms are cleaner, but more difficult
to validate visually without adding some additional Perl
debug code. You should limit the total length of a URL to
256 characters; however, some browsers support more. Do
not use GET if you are expecting a lot of data from the
HTML form.

Read HTTP GET/POST
Parameters

13_556801-ch11.indd 14413_556801-ch11.indd 144 8/31/10 9:20 AM8/31/10 9:20 AM

145

Ch
apter 11: In

trodu
cin

g D
o-It-Y

ou
rself Perl/CG

I In
teraction

!

$

%

@

#

0

^

To handle the POST method, you need to make two changes. First, the static HTML form needs to specify the POST
method: <form method=post action=”cgi-bin/process_form.pl”>. Second, the script itself needs to
retrieve data from standard input, or STDIN.

Insert this code prior to the first foreach loop on line 19.

Example:
if ($ENV{ ‘REQUEST_METHOD’ } eq ‘GET’) {

 $input = $ENV{ ‘QUERY_STRING’ };

}

else {

 while (<STDIN>) {

 $input .= $_;

 }

}

Once implemented, the difference between GET and POST to the end user is no data string in the URL after
submitting the form. This is one example of parsing data through GET and POST methods. For a more robust
solution, see Chapter 12.

$ Store each key and value into the hash
reference.

% Open the static HTML in a browser.

^ Type data into the fields.

& Click Submit.

 The CGI script executes.

• The submitted form data appears in the URL,
encoded.

• The parsed form data returned by
Data::Dumper.

0 Type return $data; to return it.

! Start a new foreach loop; split the input by
the “&” character.

@ Split each element by the “=” character into
key and value scalars.

Type $val =~ s/%(..)/chr(hex($1)) /ge; to
decode any encoded characters in $val.

13_556801-ch11.indd 14513_556801-ch11.indd 145 8/31/10 9:20 AM8/31/10 9:20 AM

146

W eb sites use cookies to store information on a
user’s browser. Each cookie contains a key/
value pair, an expiry date, and a domain

name, signifying who originally assigned the cookie.
Browsers handle cookies using a security concept called
the same origin policy. This means that data established
by one site cannot be accessed by another site.
One common use for cookies is to track the user’s
session. When the user’s browser opens a Web site for

the first time, the site assigns a uniquely identifying
string to the browser (for example,
sessionid=74081257708423). Each time the user opens
another page on the Web site, the browser sends the
same session cookie back to the server, as a form of
identification.
CGI scripts in Perl need to assign and retrieve cookie data
programmatically, so that the script can handle new and
repeat users, and react to the user’s particular session.

Introducing
Cookies

Using Cookies

Writing Cookies

Cookies are “written” to the user’s browser by appending
additional data into the HTTP response header, delivered prior
to the HTML transfer. The browser parses the data and stores
it within its internal configuration.

Reading Cookies

For each subsequent click on the Web site, all established
cookies are sent back to the server in the HTTP request
header. The CGI script then “reads” this information.

Expiring Cookies

Cookies may have a built-in expiry date configured by the
Web site. Once a cookie expires, the browser no longer sends
it back to the server in the HTTP request header.

Tracking Users with Cookies

Securing Cookie Data

You can use cookies to store any type of data: personal
information, personal preferences, or Web site history. The
user’s Web browser, not the Web server, stores and manages
all cookie data. According to the cookie specifications, browsers
are only allowed to relay cookie data back to the Internet
domain that originally stored it. As a result, cookies stored by
abc.com cannot be retrieved by xyz.com, and vice versa.

Unfortunately, an unauthorized Web site can employ an attack
known as cross-site scripting to trick a browser into supplying
it with data such as cookies. You can minimize this type of
risk to your users by not storing sensitive data in the cookie,
such as personal data, and by binding a cookie session key to
a particular IP address.

Storing User-Specific Data

When developing cookies for your Web site, it is a good idea
to gauge the impact on the user if the cookie were to be
compromised. For example, storing a user’s site preferences
in a cookie is relatively safe. This may include a preferred
language, time zone, and CSS layout. Storing this information
is a convenience to the user; if it is lost, it can easily be reset.

You should store all other sensitive user data in databases
hosted by your Web site, including name, address, and phone
number, and you should not expose it to cookies directly.

Instead, a user-specific session key should be established on
the browser when the user authenticates. This key can then be
used to link to data in the database by the CGI.

Cookies travel within HTTP headers as an environment variable. The user’s browser needs to have cookies enabled, and the CGI
code needs to handle cookies.

You can track users with a unique session identifier that is assigned to their browser in the form of a cookie. The identifier does not
store any personal information directly; instead, that data is cross-linked from a database on the server.

13_556801-ch11.indd 14613_556801-ch11.indd 146 8/31/10 9:20 AM8/31/10 9:20 AM

147

Ch
apter 11: In

trodu
cin

g D
o-It-Y

ou
rself Perl/CG

I In
teraction

Logging-Off the User

The user may click a Log-Out button which executes CGI
code that deletes the database link from the user’s session
cookie to her user profile. The user may also close her
browser, thus killing the temporary session cookies.

If the user opens her browser again, she is forced to
re-authenticate, which makes it look like she had properly
“logged-off” earlier.

Expiring the Session

The user’s session should only be allowed a small amount
of inactivity time before the server automatically logs-off
the user. Each click by the user within the context of a
validated session should reset the internal database
timestamp for the user, indicating the last time the user
was active.

You can easily write an automatic program in Perl that
constantly scans the user profile database. Users with an
exceeded timestamp will have their session key deleted. If
the user leaves his browser open for an extended period,
no one can casually start clicking around later.

Deciding on the timeout threshold depends on the
sensitivity of the data being stored. Some financial Web
sites only allow five minutes of inactivity, while online
forums allow for days of inactivity.

Authenticating the User

You should authenticate the user into your Web site
through username and password validation over SSL. Once
your Web site is satisfied with the user’s response, a Perl
CGI script can update your internal database and link the
user’s session cookie with her user profile.

It is up to you to decide if a user may authenticate from
multiple browsers simultaneously. To do this, the user’s
profile in the database must be allowed to store multiple
session cookies at the same time. Try to avoid this practice
if you can. Forcing the user to re-validate on a new browser
ensures that any earlier sessions, whether known by the
user or not, are properly invalidated.

Tracking the User in the Session

For every click the user makes on your Web site, the
browser provides the same session cookie back to the CGI.
Your site needs to retrieve this session key and, based
upon the user’s activity, update the database with that key
to process the activity.

For example, if the user adds an item to a shopping cart
and purchases it, at least three unique CGI scripts are
required. The first script lists the item with an “Add to Cart”
link, the second script is the shopping cart summary, and
the third script is the checkout process. Each CGI script
needs to be aware of the user’s session through the whole
process. This includes not finding the item in the database,
tracking multiple items in the cart, or a failed checkout
process.

Several Perl modules exist that allow for tracking user
sessions with a cookie. One popular option is the module
CGI::Session, which is discussed in Chapter 12.

Authorizing Users with Cookies

When a user accesses your Web site for the first time, a unique temporary session cookie should be assigned to the user’s
browser. This should happen prior to any authentication attempts by the user. Temporary cookies automatically expire when
the user’s browser is closed.

13_556801-ch11.indd 14713_556801-ch11.indd 147 8/31/10 9:20 AM8/31/10 9:20 AM

148

5

1

3

2

4

6

4 Open the CGI Perl script
in a browser.

• The browser displays the
cookie’s value.

5 Right-click the Web page.

6 Click View Page Info.

1 Open a new Perl CGI
script.

2 Type print "Set-Cookie:
key=value\n"; before the
Content-Type header.

3 Display the cookie’s value
in the CGI output to verify
its value.

 Save the CGI script.

Store HTTP Cookies

Y ou can use cookies to store information related to
a particular user, browser, or session. When used
to store an authentication token, a cookie can

allow a user to “wander” throughout a Web site and
maintain her session, regardless of page clicks, reloads,
or sometimes even bookmarks.
A cookie is data stored as one or more key/value pairs,
much like a Perl hash variable. Additional information for
each pair can also be defined, such as an expiry date, a
valid path, the domain name, and whether the cookie is
intended only for SSL-encrypted connections.
When establishing a cookie, a CGI script sends the
command Set-Cookie to the user’s browser through the
HTTP response headers. The browser reads this data as it
receives the Web page, and stores the cookie in its internal

database. The browser then sends the same data back to
the Web server on each subsequent page load through the
HTTP request headers. This allows the Web site to
“remember” the user from one page click to the next.
Normally, users should never need to worry about cookies,
or even that they exist. Cookies are merely a tool to help
Web sites provide a more dynamic experience to the user.
Responsible Web sites should only create a cookie when
they need it, and set an appropriate expiry timeout.
Because cookies can store sensitive information, some
Web browsers provide a way for the user to manually
erase cookies from the computer. Firefox also provides a
feature called Private Browsing. If the user enables
Private Browsing, then all data collected by the browser is
deleted when he disables Private Browsing. This includes
all browsing history, cache, and cookies.

Store HTTP
Cookies

13_556801-ch11.indd 14813_556801-ch11.indd 148 8/31/10 9:20 AM8/31/10 9:20 AM

149

Ch
apter 11: In

trodu
cin

g D
o-It-Y

ou
rself Perl/CG

I In
teraction

7

9

8

The value stored with cookies must be escaped so it doesn’t conflict with the “=” or “; “ characters in the cookie
formatted cookie string. This means changing individual characters into a multi-character value so that the original
literal character cannot be misinterpreted. The easiest way to do this is to use regular expressions to replace all non-
alphanumeric characters with their encoded values.

For an example of encoding and decoding non-alphanumeric cookies using regular expressions, see the section,
“Retrieve HTTP Cookies.”

Cookies without an expiry date are automatically considered temporary; they are deleted when the user closes her
browser. Cookies with an expiry date are killed after the time elapses, even within the same browser session.
Technically, if you leave a browser window running for several days, a temporary cookie could outlast a time-based
cookie.

Cookies can also be written using other languages on the Web site, and then retrieved later within the Perl CGI, and
vice versa. For example, if your site uses JavaScript, data can be written to the browser’s cookie database using a
JavaScript method, and retrieved using a Perl CGI script.

 The page’s cookie summary window
opens.

9 Select the cookie by its name.

• The cookie’s contents.

Note: Currently you are assigning the
cookie a new value every time the page is
loaded. You should not do this if you
already have a value. For more
information, see the section, “Retrieve
HTTP Cookies.”

 The Page Info dialog box appears,
displaying the Security tab.

7 Click Security.

8 Click View Cookies.

13_556801-ch11.indd 14913_556801-ch11.indd 149 8/31/10 9:20 AM8/31/10 9:20 AM

150

4

2

1

3

4

5
6

7

55

1 Open a CGI Perl script in
a text editor.

2 Create a new
ReadCookies
subroutine.

3 Declare a new scalar
variable, and store the
HTTP_COOKIE
environment variable.

4 Declare a new hash
reference variable called
$data, and return it.

5 Start a new foreach
loop; split the input by
the '; ' characters.

6 Split each element by the
"=" character into key and
value scalars.

7 Store each key and value
into the hash reference.

Retrieve HTTP Cookies

T he ability to retrieve HTTP cookies back into a
CGI script is as fundamental as writing them. By
reading the data back in, your code receives the

information it needs in order to fulfill your Web site’s
task online.
When a cookie is set, additional attributes such as the
path, domain, and expiry date can be set. Unfortunately,
the browser does not provide these extra attributes back
to your script on follow-up page requests. You only
receive the cookie keys and values as determined by the
browser.
If a cookie you are expecting is not present, there could
be multiple causes: the browser may have cookies
disabled, the user could have deleted the cookie, or the
cookie could have expired on its own. It is up to you to

decide how best to proceed. Naturally, testing the user’s
browser to ensure that cookies are enabled, and printing
a very large warning message if they are not, is one of
the best ways to forewarn users that your site uses
cookies.
You can access the raw cookie data in Perl CGI through
the $ENV{ ‘HTTP_COOKIE’ } variable. This environment
variable follows a similar, but slightly modified structure,
compared to the GET and POST submitted form strings:
key1=value1; key2=value2; ...; keyN=valueN

This data needs to be split apart and decoded into a hash
reference, typically called $cookies. The process to do so
is very close to reading HTTP GET and POST parameters
that were described earlier in this chapter. From here, you
can access the cookie value using $cookies->{ KEY }.

Retrieve HTTP
Cookies

13_556801-ch11.indd 15013_556801-ch11.indd 150 8/31/10 9:20 AM8/31/10 9:20 AM

151

Ch
apter 11: In

trodu
cin

g D
o-It-Y

ou
rself Perl/CG

I In
teraction

8

#

9
0

!

Restart your Web browser and try the CGI script again. You should now see a new timestamp, and subsequent
reloads should keep that time. Remember, closing your browser deletes the temporary cookie, and so the Web site
will think you are a new user when you later visit the Web site.

The data being stored and retrieved in the cookie is not yet encoded properly. If the key or value contained the
characters “=” or “;” it would conflict with HTTP_COOKIE’s syntax. All non-alphanumeric text in a cookie’s value
should be encoded into its percent-hexadecimal-ASCII value. You could apply this encoding statement just before
line 11:

Example:
$time =~ s/(\W)/sprintf(“%%%x”, ord $1)/ge;

You also need the decoding counterpart statement. This time, before line 26, add the following line:

Example:
$val =~ s/%(\w\w)/chr(hex($1))/ge;

These two statements may seem confusing, especially if you are new to regular expressions. While they do convert
non-alphanumeric strings to their hexadecimal counterpart and back, it is important to understand why you need
them. Chapter 12 introduces the Perl CGI Library, which makes reading and writing cookies easier in Perl.

Open the CGI Perl script in a
browser.

• The browser displays the cookie’s
value.

$ Click to reload the Web page.

 The displayed value does not
change.

8 Type my $cookies =
ReadCookies();.

9 Start a new conditional block. Test
if $cookies->{ key } exists.

0 Type $value = $cookies->{ key }; to
retrieve its value if it does exist.

! Set the cookie if it does not exist.

@ Save the CGI script.

13_556801-ch11.indd 15113_556801-ch11.indd 151 8/31/10 9:20 AM8/31/10 9:20 AM

152

2

3

4
5

6

1

3 Open a Perl script in a text editor.

4 Type use Email::Sender::Simple
qw(sendmail); to import the
Email::Sender::Simple module.

5 Type use Email::Simple; to import the
Email::Simple module.

6 Type my $email = Email::Simple->create(
); to initialize the module.

1 Open a Terminal window.

2 Type cpan Email::Sender and press Enter.

 The Email::Sender module installs.

Send an E-Mail Message

S ending an e-mail message from a CGI script is a
very useful feature to add to your Web site. You
can use it to validate an e-mail address entered by

a new user, notify a user when his product has been
shipped, or alert an administrator if an unexpected
problem occurs. Perl does not have a built-in e-mail
function, but it does have several support modules that
can communicate to a variety of mail servers. One popular
module available on CPAN is called Email::Sender.
To send an e-mail message, you need access to a Mail
Transport Agent, or MTA. The MTA is a computer
program or service that understands how e-mail
messages are routed out to the Internet. On most Unix
systems, you can use the sendmail program as a local
MTA; otherwise, you need to use an Internet Service
Provider’s SMTP server as a remote MTA.

The function sendmail is automatically exported by
Email::Sender::Simple. It triggers the actual process of
sending the e-mail message, and automatically attempts
to identify your MTA.
Normally, if sendmail fails to send the message, the
script is killed and an error message is printed to the
screen. When a CGI script dies prematurely, the entire
output to the Web browser changes to reflect a generic
server-side error. Therefore, you need to trap the
exception of sendmail with eval, display an appropriate
error message, and let the program continue.
When sending e-mail messages, make sure the “from”
address is valid! Some MTAs check this before accepting
an outgoing message. Also, if you are using SMTP, verify
if your provider requires SSL encryption.

Send an
E-Mail Message

13_556801-ch11.indd 15213_556801-ch11.indd 152 8/31/10 9:20 AM8/31/10 9:20 AM

153

Ch
apter 11: In

trodu
cin

g D
o-It-Y

ou
rself Perl/CG

I In
teraction

7

7

$
@

8

#
!

9

0

By default, the module tries to identify the most appropriate local MTA, and a default SMTP server. If both
attempts fail, your code may need to specify an SMTP server for transport. At the top of the script, import the
SMTP transport module:

use Email::Sender::Transport::SMTP;

Next, define the transport handle:

my $smtp = { Email::Sender::Transport::SMTP->new({
 host => ‘smtp.myisp.com’
});

Finally, add the SMTP transport to the sendmail command:

sendmail($email, { transport => $smtp });

The SMTP transport module supports SSL authentication, a custom port number, and other attributes. For more
information, see the module’s documentation:

perldoc Email::Sender::Transport::SMTP

If you simply want to see the message printed to the screen, use Email::Sender::Transport::Print instead. To entirely
disable sending e-mail, but still have the program return success, use Email::Sender::Transport::DevNull.

0 Type eval { to start a new
evaluation code block.

! Type sendmail($email);

@ Type } or do { to catch the failure.

Print a failure message, using
$@->message.

$ Type } to close the catch block.

 Save the script and run the
program.

7 Type header => [], to start a new
array reference.

8 Insert the to, from, and
subject fields and their values.

Note: Use single-quotes with the e-mail
addresses! Double-quotes will expand
the @, which Perl will interpret as a
literal array. If you must use double-
quotes, escape the at-sign: \@.

9 Type body => MESSAGE for the
e-mail message body.

13_556801-ch11.indd 15313_556801-ch11.indd 153 8/31/10 9:20 AM8/31/10 9:20 AM

154

Introducing the
Built-In CGI Library

P erl has a built-in CGI library that has been a
standard part of the Perl distribution since 1998.
Countless Perl CGI developers have used it to

quickly develop CGI scripts to handle mundane tasks such
as parsing parameters, reading and writing cookies, and
generating HTML tags and forms.
Even though the module is still under active development,
many developers consider the CGI library to be outdated
in the way it handles some tasks. While there are now
better modules available that you can use to generate

static HTML tags and forms, the real strength of the CGI
library is in its ability to translate raw incoming CGI data
into Perl variables and functions.
The CGI library has shipped with every Perl distribution
since version 5.0, but there may be a more recent version
available on CPAN. You can upgrade to the latest release
on the command-line with cpan CGI.
All of the CGI library documentation is available under
the Perl Documentation program. You can access it on the
command-line with perldoc CGI.

Use the CGI Library

Create CGI Objects to Access Methods

As described in Chapter 8, you can access the CGI library
through a module reference scalar. Through this reference,
you can access the module’s subroutines as methods.

The following syntax is recommended for larger sites, and
when you specifically need an object-orientated interface to
handle the CGI library.

use CGI;

my $cgi = new CGI;

$cgi->method;

Import Methods as Functions

An alternative to using a reference scalar is to import the
methods directly as functions:

use CGI methods;

function;

The methods that are imported depend on what you specify
on the first line. You can cite the literal function names, or a
predefined function category. For example, if you are only
interested in the CGI-handling methods, type use CGI ‘:cgi’; to
gain access to functions such as param, cookie, header,
and so on.

For more information, see “Using the Function-Oriented
Interface” in the PerlDoc CGI documentation.

The CGI library exports several functions to Perl. You can access these functions as methods through a CGI object handle, or you
can export them as standard routines.

Available Methods

CGI Routines

The three most useful CGI-related methods available in the
CGI library are the header, param, and cookie routines.
These provide an easy interface to accessing the most
common functionality required by any CGI Perl Script.

Other available CGI routines include shortcuts for accessing
the various HTTP environment variables, accepting uploaded
files, and identifying authenticated user sessions.

One advantage of the CGI library’s built-in CGI routines is that
they strive to be handler-independent. This means that they
work regardless of whether you use the standard Apache CGI
handler, mod_perl, or FastCGI. If you try to code this
functionality manually, you may require a separate procedure
for each handler type.

Regardless of what syntax you use to access the CGI library, the functionality is the same. There are over two hundred methods
available, but the majority are simple shortcuts for writing raw HTML. There are methods that handle complex CGI tasks by auto-
adjusting themselves according to your Web browser and server software.

14_556801-ch12.indd 15414_556801-ch12.indd 154 8/31/10 9:21 AM8/31/10 9:21 AM

155

Ch
apter 12: U

sin
g Perl’s B

u
ilt-In

 CG
I L

ibrary
Available Methods (continued)

HTML Routines

Most HTML routines provided by the CGI library are rather
antiquated. You can use them for quickly developing
technically correct HTML syntax, but they do not necessarily
save any effort. If you are already familiar with HTML syntax,
use the HTML::Template module described in Chapter 13.
You are not saving yourself any effort by using the CGI
library’s HTML routines. They are more tedious than useful.

These routines are automatically available as methods
when creating a CGI module reference, but you must
specify :html as a module argument if you want to
import the methods as functions.

Text Formatting

You can simply format text by using the HTML tag name as
a method, the arguments of which are treated as the tag’s
content:

print h1(“Hello!”);

This is exactly the same as printing “<h1>Hello!</h1>”.
Therefore, you can represent any <tag>text</tag> as
tag(text).

Tables

Tables follow a “tag-to-method” structure that is similar to
text tags, but when the tags are nested, you can build the
entire table in a single Perl statement:

print table(

 tr(th([undef, “Col1”, “Col2”, “Col3”]
)),

 tr(td([“Row1”, “1:1”, “1:2”, “1:3”])
),

 tr(td([“Row2”, “2:1”, “2:2”, “2:3”])
));

While it is great that this is possible, you are not really
saving much effort.

Forms and Input Fields

Forms generation also follows the same “tag-to-method”
structure, but there are some new routines that provide
some automation. Routines such as textfield,
checkbox, radio_group, and popup_menu handle
multiple HTML tags related to input, and accept parameters
to populate their attributes.

Generating Dynamic Content

Headers

The header routine provides a shortcut to printing
“Content-type: text/html”. It can take a series of arguments
in different formats. When you use it with no arguments, it
sends the default MIME type, “text/html”:

print header();

If you use exactly one argument, it is interpreted as the
MIME type:

print header(“text/html”);

You can use parameters to define multiple headers, giving
your Perl CGI script full control over the HTTP response:

print header(-type => “text/html”, -expires =>
“+1m”,

 -cookie => $cookie);

Parameters

You use the param routine to retrieve HTML form fields that
have been submitted to your CGI script. The function takes
one argument, the field name, and returns its value if defined.

Cookies

You use the cookie routine to set and retrieve cookies
from the browser. When you use it to set a cookie, it
accepts an anonymous hash that defines the cookie’s
name, value, domain, path, and expiry date. The results of
this function should be forwarded to header so that the
cookie is included in the outgoing HTTP response header:

my $cookie = cookie(-name => “lang”, -value =>
“en_US”,

 -expires => “+7d”);

print header(-cookie => $cookie);

When reading cookies, cookie accepts one argument: the
cookie name. It returns the value of the cookie, if it is
defined:

unless ($lang = cookie(“lang”) {

 $lang = “en_US”; # Set language to en_US
if no cookie found. }

Producing a dynamic experience for the user is the whole point behind CGI. The CGI library provides three routines that
simplify CGI functionality in Perl.

14_556801-ch12.indd 15514_556801-ch12.indd 155 8/31/10 9:21 AM8/31/10 9:21 AM

156

1

2

3
4

Y ou can access the CGI library’s routines by
initializing a module object reference after you
import the CGI module. You can use this to follow

a more object-oriented syntax when interacting with the
CGI library, and to handle multiple copies of the CGI library
that are loaded into memory. This process happens in
three steps. First you import the CGI library module, then
initialize the module into a new object reference variable,
and finally use that variable to access the method:
use CGI;
my $cgi = new CGI;
$cgi->method();

When importing the module, you can provide additional
arguments, pragmas, to change how the CGI library loads:
use CGI qw(ARGS...);

The most useful pragma is -debug. This allows you to
simulate submitted form data on the command-line by
manually typing the key/value pairs as arguments. The
syntax of the pragma argument is fairly open. Many Perl
developers prefer the qw function to provide arguments to
modules in this fashion. Because the arguments are
effectively arrays, qw converts a series of words into a list.
To add in multiple arguments, just amend them within qw,
like use CGI qw(-debug :cgi :html); — this
appears cleaner than use CGI ‘-debug’, ‘:cgi’,
‘:html’; though either method is equally valid.
The CGI library may instill some overhead latency as it is
imported into your program. If this latency becomes a
problem for your project, you can mitigate this by enabling
the FastCGI or mod_perl enhancements. The complete list
of pragmas, along with all routines, syntax, and examples,
is available in the CGI library’s documentation.

3 Type my $cgi = new CGI; to
create an object reference.

4 Type $cgi->method (); to use
the method through the
object reference.

Note: Only the methods that
need to send data directly to the
browser require you to include
the code, print.

1 Open a Perl CGI script in a text
editor.

2 Type use CGI; and press Enter.

Import the CGI Library as an Object

Import the CGI
Library as an Object

14_556801-ch12.indd 15614_556801-ch12.indd 156 8/31/10 9:21 AM8/31/10 9:21 AM

157

Ch
apter 12: U

sin
g Perl’s B

u
ilt-In

 CG
I L

ibrary

2

1

6

4
555

33 Type the function group’s
name.

4 Type the function’s name.

5 Type function () to use a
method exported from the
group.

6 Type function () to use a
method explicitly
exported.

Note: Only the methods that
need to send data directly to
the browser require you to
include the code, print.

1 Open a Perl CGI script in a
text editor.

2 Type use CGI qw(); and
press Enter.

Note: The qw function converts
words into an array list.

Import the CGI Library’s Routines as Functions

all CGI-related routines such as header, cookie, and
param. The group :html imports HTML-related routines
such as h1, b, p, and table. The group :standard imports
the CGI, HTML, and routines specific to generating forms.
The group :all imports every routine defined by the CGI
library as a function.
You must also define additional pragma arguments as the
literal function names. For example, if you only require
the header and param functions but want to bypass
everything else provided by the group :cgi, you can use:
use CGI qw(header param);
my $var = param(key);
print header();

The CGI library may instill some overhead latency when
running your code. If this latency becomes a problem, you
can mitigate this by enabling the FastCGI or mod_perl
enhancements.

Y ou can export the CGI library’s routines as
functions by providing one or more literal or
group names as arguments when importing

the library. You can use this technique to avoid typing
the module reference every time you need a routine,
resulting in cleaner code. This process happens in two
steps. First, import the CGI library module with a
series of arguments, specifying the literal routines or
groups of routines. Second, wherever required, access
these routines as normal functions.
use CGI qw(ARGUMENTS...);
function();

There are some predefined group names that
automatically import common CGI library routines as
functions for your program. The group :cgi imports

Import the CGI Library’s
Routines as Functions

14_556801-ch12.indd 15714_556801-ch12.indd 157 8/31/10 9:21 AM8/31/10 9:21 AM

158

1

2 3

4
5

4 Use param() without
arguments to test for any
parameters.

5 Use param(name) to
retrieve a parameter’s value
by its name.

Note: This example is storing the
submitted data into the $input
hashref. The unless code block
will run only if param($field)
is empty.

6 Save the Perl CGI script.

1 Open a Perl CGI script in a text
editor.

2 Type use CGI qw (); to import
the CGI library module.

3 Type :cgi to import the ‘CGI’
group of functions.

Note: You can also use the
alternative object-oriented method
described in the section, “Import the
CGI Library as an Object.”

Read HTTP GET/POST Parameters with the CGI Library

The CGI library has a built-in routine called param
that you can use to access fields submitted from
HTML forms, using either the GET or POST method.

This saves you from having to manually parse $ENV{
‘QUERY_STRING’ } or standard-input in your Perl script.
To read form data in, import the CGI library, and then call
the param routine with the field name as an argument.
Store the results into a scalar variable. If you want to use
the routine as a function, specify the :cgi function group
when loading the CGI library:
VAR = param(field);

When retrieving submitted HTML form data, it is possible
for some input fields to have multiple values, as is usually
the case with multiple-option check boxes. If this happens,

you must store your HTML parameter into an array
variable, not a scalar.
If you use param without any arguments, it returns true if
any parameters were submitted at all, and false if none were
submitted. This can be used by conditional statements to
validate if a form has been submitted yet or not. This routine
is very robust in that it properly handles GET and POST
submissions interchangeably. There is no need to change
your code if you want to switch the form’s method from
one type to another. It even correctly parses forms using
either application/x-www-form-urlencoded or
multipart/form-data encoding.
If you are using any other non-standard encoding in your
form, param does not automatically parse the incoming data
feed. Instead, the only parameter name that it accepts is
POSTDATA. This contains the raw, unprocessed data stream
that is most often used for AJAX and XML processing.

Read HTTP GET/POST
Parameters with the CGI Library

14_556801-ch12.indd 15814_556801-ch12.indd 158 8/31/10 9:21 AM8/31/10 9:21 AM

159

Ch
apter 12: U

sin
g Perl’s B

u
ilt-In

 CG
I L

ibrary
7

8

9

0

!

It is possible to combine the HTML form and the parameter analysis into a single CGI script. You can do this
by splitting your CGI code into two components: analysis and display. Before doing this, you must divide your
program’s workflow into at least three stages that the user will progress through: no data submitted, partial data
submitted, and all data submitted.

To support these three stages, you need to organize the code logically using the two components. If the analysis
component identifies that nothing has been submitted, the script displays a blank form. If the analysis identifies
that partial data has been submitted, the script displays a message and the original form again. Finally, if the
analysis is completely satisfied with the data, the script displays something entirely different.

If the user supplies only partial data, it is a good idea to reload the page and display the form again but pre-
populate the correctly populated fields with the user’s previous values. This helps save the user from having to
re-type everything, which is especially beneficial if this is a large form with many fields. Naturally, some fields,
such as password prompts and credit-card numbers, should never be pre-populated in forms.

 The CGI script reloads.

• The script warns about the missing
data.

• The supplied field is pre-populated.

0 Populate all remaining fields.

! Click Submit Query.

7 Load the Perl CGI script in a Web
browser.

 The first param() test runs and returns
false. The form you created appears, but
with no additional text.

8 Populate the first input field only.

9 Click Submit Query.

 The CGI script reloads.

• A message appears, telling you that the
script has received all of the data.

14_556801-ch12.indd 15914_556801-ch12.indd 159 8/31/10 9:21 AM8/31/10 9:21 AM

160

6

1

2

5

7

3

5 Open the CGI script in a
browser.

6 Right-click the Web page.

7 Click View Page Info.

1 Open a Perl CGI script in a text
editor that uses the CGI library.

2 Type my $var = cookie(name,
value); to store a new cookie
into $var.

3 Type -cookie => $var as an
argument into header.

4 Save the CGI script.

Store HTTP Cookies with the CGI Library

Y ou can use cookies to store information related to
a particular user, browser, or session. You can
use the CGI library to automatically provide the

Set-Cookie syntax in the HTTP response header. This is
conveyed by the cookie routine.
To store a cookie, import the CGI library, then call the
cookie routine with the cookie’s name and value as
arguments. This returns an object handle that contains
the cookie’s definition. If you want to use the routine as a
function, specify the :cgi function group when loading
the CGI library:
VAR = cookie(name, value);

If you need to set additional cookie attributes, a second
syntax format is supported by the routine. This allows
you to define the cookie by the attributes using only the

keys that are required. You must prefix the attributes
with a dash: -name, -value, -expires, -domain, -path,
and -secure:
VAR = cookie(-attr => value, ...);

Once all cookie variables have been assigned, the header
routine accepts the cookie objects and relays them to the
Web browser. After the header routine runs, no more
cookies can be set.
You can set a cookie’s value with almost any type of
variable, including a scalar, an array, or a hash. This
allows you to store a list of values within a single cookie.
Applying either the domain or path attributes means that
only scripts running under that domain and path can
retrieve that cookie’s value. You can update a cookie’s
value by resubmitting another cookie object by the same
name. You can delete one by setting its value blank, or
to an expiry date in the past.

Store HTTP Cookies
with the CGI Library

14_556801-ch12.indd 16014_556801-ch12.indd 160 8/31/10 9:21 AM8/31/10 9:21 AM

161

Ch
apter 12: U

sin
g Perl’s B

u
ilt-In

 CG
I L

ibrary

9

8

0

You can assign cookies on every page load, but only before you run the header function. If the CGI is reloaded, an
established cookie does not need to be resubmitted if its value has not changed. When setting an expiry date, you
can use an absolute value for the date, or use a relative value with a plus sign, the date value, and “h”, “d”, “M”,
and “y” for hours, days, months, and years.

 The page’s cookie summary
window opens.

0 Select the cookie by its name.

• The cookie’s content.

Note: In this example, you are assigning
the cookie a value every time the page is
loaded. You should not do this if the
cookie already exists. For more
information, see the section, “Retrieve
HTTP Cookies with the CGI Library.”

 The Page Info dialog box opens.

8 Click Security.

9 Click View Cookies.

TYPE THIS

my $cookie = cookie(-name => “data”,
-value => \%data,

 -expires => “+3M”);
print header(-cookie => $cookie);

RESULTS

The %data hash is serialized and stored as the
cookie “data” on the user’s browser, and will expire
in three months. See the section, “Retrieve HTTP
Cookies with the CGI Library,” for an example of
reconstructing the hash and accessing its contents.

➔

14_556801-ch12.indd 16114_556801-ch12.indd 161 8/31/10 9:21 AM8/31/10 9:21 AM

162

1

2

3
4

3 Start a new conditional test
block.

4 Use the cookie’s variable name as
the test expression to verify that
the cookie exists.

1 Open a CGI Perl script in a text
editor.

2 Type my $var = cookie(name);
to retrieve a cookie and store it in
a variable.

Retrieve HTTP Cookies with the CGI Library

T he ability to retrieve an HTTP cookie allows your
code to remember users as they progress from
one Web page to another. You can use the CGI

library instead of manually parsing the $ENV{ ‘HTTP_
COOKIE’ } environment variable. This is now handled
by the cookie routine.
To read a cookie, import the CGI library, and then call the
cookie routine with the cookie’s name as an argument.
Store the results into a scalar variable. If you want to use
the routine as a function, specify the :cgi function group
when loading the CGI library:
VAR = cookie(name);

Because the cookie routine can handle both reading and
writing cookies, if you do not supply a second argument
as a value, it automatically assumes that you want to

read cookie data. Also, reading a cookie’s value can
happen at any point in the script. This is unlike writing a
cookie’s value, which must happen prior to using the
header function.
Because it is possible to write a cookie using an array or
hash variable as its value, you need to be careful when
reading it back so that you use the correct receiving
variable type. The param routine does not warn you if
you try to read an array-cookie’s value into a scalar.
Running cookie without any parameters returns a list
of all available cookie names.
If a cookie has any other attributes, such as an expiry date,
domain, or path, that information will not be available
when reading the cookie’s value. In other words, if the
expiry date has elapsed, the domain does not match, or the
path is different, then the cookie will simply not exist.

Retrieve HTTP Cookies
with the CGI Library

14_556801-ch12.indd 16214_556801-ch12.indd 162 8/31/10 9:21 AM8/31/10 9:21 AM

163

Ch
apter 12: U

sin
g Perl’s B

u
ilt-In

 CG
I L

ibrary

5

89

6

The only cookie data accessible by your CGI script is the cookies you initially stored. It is impossible for your CGI
script to access cookies from other Web sites, and vice versa. When using the CGI library, the cookie routine does
all of the reading and writing work for you, but your script still needs to interpret the returned data.

8 Open the CGI script in a
browser.

• The cookie’s value displays.

9 Click to reload the Web
page.

 The displayed value does not
change because the cookie’s
value does not change.

5 If the cookie does exist,
update the main data variable
with the cookie’s value.

6 If the cookie does not exist,
use the main data variable’s
autogenerated value to set it.

7 Save the CGI script.

TYPE THIS

warn “Cookie names: “ .
join(‘, ‘, cookies());

RESULTS

When you use cookie with no arguments, it returns all available
cookie names as an array. The array is joined into a comma-
separated text string and recorded into the Apache log file through
the function warn.

➔

TYPE THIS

my %data = cookie(“data”);
warn “Cookie data value:
$data{ KEY }”;

RESULTS

The cookie “data” has its value loaded into a hash called %data.
The key/value pairs within the hash are accessible, just like any other
variable. The cookie’s value is recorded into the Apache log file.

➔

14_556801-ch12.indd 16314_556801-ch12.indd 163 8/31/10 9:21 AM8/31/10 9:21 AM

164

1

2

3

4

6
6 Load the CGI script in a browser.

• A generic error message displays.

Note: If die is called after header, the
user only sees a blank Web browser
screen.

1 Open a Perl CGI script in a text
editor.

2 Type use CGI::Carp;.

3 Type warn "Text "; to write to the
Apache log.

4 Type die "Text "; to write to the
Apache log and force-quit the
program.

Note: Even if you do not use die, a Perl
syntax error has the same effect with
CGI::Carp.

5 Save the Perl CGI script.

Return Useful Error Messages with CGI::Carp

Y ou can manually place log messages in a Perl CGI
script to visually examine the activity on the
Apache Web server; however, no timestamp or

filename is recorded in the Apache logs. Also, if
something in the script goes legitimately wrong, only a
vague “500 Internal Server Error” displays in the
browser. You can use the CGI::Carp module to solve both
of these problems.
CGI::Carp is a stand-alone module that is not considered
part of the standard CGI library; instead, it is a subclass
of it. This means that its functionality complements the
CGI library’s functionality to the point that both are very
useful tools for CGI scripting in Perl. You can import the
CGI::Carp module into your script just like any other
module, except there are no objects to initialize, and no
additional functions to use:

use CGI::Carp;

This extends the built-in warn and die functions so they
provide a timestamp, filename, and line number,
alongside the actual message.
To enable the HTML-formatted error log messages to be
shown to the browser in the event of a failure, use the
fatalsToBrowser argument when importing the module:
use CGI::Carp qw(fatalsToBrowser);

When you use die now, or when Perl has a syntax or
internal error, a useful message is sent to the browser
citing a “Software error,” followed by the Perl error
message, filename, and line number.
CGI::Carp provides other functions, including the amusingly
named carp, croak, confess, and cluck. For the full
documentation, run the PerlDoc command, perldoc
CGI::Carp.

Return Useful Error
Messages with CGI::Carp

14_556801-ch12.indd 16414_556801-ch12.indd 164 8/31/10 9:21 AM8/31/10 9:21 AM

165

Ch
apter 12: U

sin
g Perl’s B

u
ilt-In

 CG
I L

ibrary

8

0

7

You can customize the CGI::Carp module’s fatalsToBrowser HTML error message. For example, you can tailor
it to look just like your Web site’s layout, and even change the wording of the error message text. This can be useful
if you want to provide the user with instructions on how to report the error back to you.

The argument warningsToBrowser is similar to fatalsToBrowser, except when warn is called, its text appears
as an HTML comment; you can only read it by opening up the Web page’s source code in the browser.

Regarding the other available functions, carp, croak, confess, and cluck, carp performs exactly the same as
warn, and croak, confess, and cluck are the same as die. The difference is that each function interprets who is
at fault differently. For more information on how they work, see the Carp module’s documentation.

The cluck function has one additional benefit: it appends a stacktrace dump whenever you use it. The Apache error
log summary lists all subroutines that were running, right up to cluck. To use this feature, you must add the
cluck option into CGI::Carp’s arguments.

 Go back to the Perl CGI script in
the text editor.

8 Type qw(fatalsToBrowser) as a
module argument.

9 Save the Perl CGI script.

7 Open the Apache error log file.

• The warn message is logged.

• The die message is logged.

Note: If you do not use CGI::Carp, these
functions still produce log entries, but
the timestamp, filename, and line
number will be gone.

0 Refresh the CGI script in the
browser.

• The die message displays in the
Web browser.

Note: The same warning and error
messages still show up in the Apache
error log.

14_556801-ch12.indd 16514_556801-ch12.indd 165 8/31/10 9:21 AM8/31/10 9:21 AM

166

Understanding the Benefits
of Separating HTML from Perl

B y separating HTML from Perl, you can create
HTML-only templates solely for displaying syntax,
and leave Perl to handle the Web site logic. If

you continue to embed HTML in Perl for complex HTML
code, such as a table, understanding how that table is
constructed could become very difficult. This is especially

true if your table is generated from an external source, if
the table has a syntax error, or if someone new is looking
at the code. Suddenly, if the table needs to be changed,
more effort is spent to understand how the table is built
than it takes to apply the change. You can avoid this extra
work if you separate the HTML layout from the Perl logic.

Design Goals

Code Simplification

The ordering of the Perl code should not affect the output on
the Web browser. This means your code should generate the
content using whatever method is most efficient. You should
not have to worry about layout ordering, especially when your
output requires nested HTML tags such as tables.

Separate HTML and Perl Files

The Perl script should be in charge of collecting the data, and
the HTML template file in charge of displaying it. Problems
with the HTML layout should not affect the Perl logic that
wants to display it, and vice-versa. If the HTML is in a
different file, you do not need to change the Perl code to
address an HTML-specific problem.

Easier to Create Web Content

When creating a Web page in a graphical HTML composition
program, you have to convert its HTML output into Perl code
line-by-line. This can be a time-consuming process. Instead,
you can simply save the HTML output as a template file, and
instruct Perl to use it. You will still need to change the HTML
code that will hold dynamically generated content (code that
Perl variables will provide) into special HTML-like tags that
Perl understands.

Understanding the Big Picture

If someone new works on your Web site, they must read
the Perl script and mentally reconstruct the output layout
controlled by the printed HTML, display logic, and
functionality, all in a single file. When you move the HTML
into a separate file, they can read the layout from top to
bottom as correct HTML syntax. There will not be large,
distracting chunks of Perl code in between the HTML.

The purpose of this design method is to make the overall development effort easier. You can save time creating, debugging,
updating, and deploying dynamic Web sites.

Benefits

Convert Mockups into Usable Web Sites

Creating an HTML mockup version of your Web site can help
you visualize its layout from a creative perspective. Converting
the mockup HTML into a Web site can be easier if you save
the mockup as a template. Within the template, you must still
identify which portions of the page need to be generated
dynamically with Perl, usually done with some sort of
template-specific syntax, but the majority of HTML code in
your template should be static.

Generate Common HTML from One Template

HTML code that appears on multiple pages should all be
sourced from the same template. This can be very useful for
toolbars, headers, and footers, or other portions of the Web
page that need to be consistent across the entire site. This
would mean instructing a single HTML template to reference
other templates. If your toolbar ever changes, you simply
update the code in the toolbar template once and save it; the
entire site reflects the change immediately.

Once you implement the template infrastructure in Perl, several tasks become easier, such as the development, maintenance, and
manageability of the Web site in general.

15_556801-ch13.indd 16615_556801-ch13.indd 166 8/31/10 9:21 AM8/31/10 9:21 AM

167

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

Extending to Other Languages

Including raw native-language text in the Perl code may be
convenient now, but it will become very difficult to find,
extract, and replace later if you want to support multiple
languages. Instead, in your HTML template, replace all of
your English sentences and standalone words with unique
keywords. Create a new lookup file specific to each
language that contains the keyword and original language
text. From here, the same template infrastructure Perl is
using to generate HTML can be used to generate English
text, and your HTML template becomes
language-independent.

Support Non-HTML Formats

You can use the template model on any file format where
dynamic content needs to be generated into a new file. This
can include formats such as XML, LaTeX, CSS, and even
Perl or C source code.

Better Support for Client-Side Languages

Just because your separate file is designated as an HTML
template does not mean that it only stores HTML. You can
write other client-side languages, such as JavaScript, into
your HTML template. You can even allow portions of the
JavaScript code to support template-generated parameters,
using the exact same parameter syntax that your HTML code
uses. This more advanced technique allows Perl to control
the JavaScript directly, through the HTML template file.

Create Multiple Page-Layout Styles

A single template should define a single layout style:
toolbar on the left, text in the middle, logo in the top right,
and so on. However, if your users want the toolbar and
logo on the right and the text on the left, simply create a
new template that rearranges the elements from the
original. You need an infrastructure to allow users to select
which site template they want to use; the template
preference could be stored as a cookie. Both templates
must use the same parameter fields, and so the Perl code
does not require any change.

Benefits (continued)

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

Implementations

CGI Library

The CGI library contains built-in functions that generate
raw HTML code within Perl scripts. Unfortunately, these
CGI functions still need to be used in the same logical
order as the original HTML.

Template Library

The Perl Template library is an interface to the Template
Toolkit, a Unix-based, command-line-driven program that
replaces keywords within a file with generated data.
Although the Template library does address all of the
design goals mentioned, it follows its own unique syntax,
which can be confusing.

HTML::Template

The Perl module HTML::Template follows an HTML-like
tagging syntax. You can open the raw template files
directly in a browser. The new tags, such as <tmpl_if>
and <tmpl_var>, are simply ignored until your Perl CGI
script processes the template and its fields are populated.
HTML::Template has been in development since 2000, and
is available on CPAN or as a Debian, Red Hat, and
ActivePerl PPM package.

There are multiple implementations available to Perl that follow this HTML template ideology. Choosing which one is right for
you is a matter of personal preference.

15_556801-ch13.indd 16715_556801-ch13.indd 167 8/31/10 9:21 AM8/31/10 9:21 AM

168

T he HTML::Template module is a third-party library
that is designed to separate HTML code from Perl
code. You can use it to simplify complex Perl

scripts, to re-use common HTML code, and to handle
conditional tests and loops in the actual HTML.

HTML::Template does require background knowledge
of HTML syntax and usage. Although it is possible to
generate an HTML template using a graphical WYSIWYG
editor, you must manually edit its code output to add in
the specific commands that make dynamic content appear.

Introducing the Perl
HTML::Template Module

Installing HTML::Template

You can install the HTML::Template module directly over
CPAN, or using a specific package depending on your Perl
distribution system.

PERL SYSTEM PACKAGE NAME

Debian/Ubuntu lib-html-template-perl

Red Hat perl-HTML-Template

ActivePerl PPM HTML-Template

For instructions on how to use each system format, see
Chapter 9. To simply install the module over CPAN, run
cpan HTML::Template at the command prompt.

Using HTML::Template

To import the HTML::Template module into your Perl
script, simply reference the module name at the start of
your program:

use HTML::Template;

After the module has been imported, there are three
components where your script interacts with the module:
your script must load the template file into an object
reference, populate it with parameters, and print the
results.

Perl CGI and Template Files

CGI Code Changes

You should remove all of the original HTML code and print
statements from the CGI script. The only time you will need to
use print is at the very end of the script, when printing the
CGI header, and parsed HTML::Template output. Naturally,
this restriction applies only to data going to Apache and the
Web browser via standard-output (STDOUT). Printing to other
file handles, such as standard-error (STDERR), is still okay.

Template Files

The template files contain the actual HTML code, along with
special tags that are specific to HTML::Template. You should

save all template files in their own directory, outside of the
CGI directory. The directory may not be Web-accessible, but
it should be a unique path for each domain or Web site.

The naming convention of the template file should match the
Perl CGI script using it, except for the .tmpl extension. If a
CGI script has multiple distinctively different HTML screens,
use multiple templates. You should suffix its files with an
identifier. For templates that you use on multiple pages,
choose a unique site-wide prefix, such as site-header.
tmpl and site-navbar.tmpl. Note that you can nest
template files to include other templates. This becomes useful
when creating shared HTML code across the entire site.

To utilize HTML::Template, you must remove each CGI script and create new template files.

Speed Enhancements

improvements in speed and functionality. These modules are
separate projects from the original HTML::Template module, and
you must install them manually using CPAN, DEB, RPM, or PPM
methods.

While HTML::Template is a mature and well-tested
module, users have noted that its internal code is not
very efficient. Other Perl developers have re-implemented
HTML::Template’s syntax as new modules to obtain

15_556801-ch13.indd 16815_556801-ch13.indd 168 8/31/10 9:21 AM8/31/10 9:21 AM

169

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

Perl Syntax

Load the Template

When the module is initialized with the new function, the
template file is provided as an argument. You should
reference the template file using its full path, or a path
relative to the CGI script:

my $tmpl = new HTML::Template(filename =>
TEMPLATE, ...);

You may use optional arguments when creating a new
template object. This includes additional features such as
syntax checking, caching, debugging, and a pre-processing
filter.

Populate Template Parameters

The template contains special HTML-like tags that
HTML::Template replaces with data supplied by the Perl
script. This data is provided with the param method:

$tmpl->param(KEY => VALUE);

This replaces all instances of <tmpl_var name=KEY>
with VALUE in the template file when the browser displays
the file.

For the full list of template parameters, see the section,
“Understanding the Structure of an HTML::Template File.”

Display the HTML

After the template’s parameters have all been populated,
and all supporting Perl logic has been called, the last thing
the CGI script should do is print the CGI header and
generated template’s output:

print header();

print $tmpl->output;

There should not be anything else that your script is doing
after this point, except for final memory-cleanup tasks.

The HTML::Template follows an object-oriented interface. This means the module is initialized into an object reference
variable, which is used to access the module’s internal routines as methods.

Extra HTML::Template Features

Error Detection

Enabling the various error-detection options instructs
HTML::Template to be either more or less strict on the
template syntax as it runs. This can be useful when
developing a new template if some parameters are not
showing up where you expect. The die_on_bad_params
option ensures that all parameters used in the Perl CGI go
to valid keys in the template file; otherwise, the program
quits. Using this feature forces you to generate a template
that utilizes all parameters being sent to it. Disabling die_
on_bad_params is recommended if you routinely assign
parameters using shared code that, depending on the
template file, may or may not be used. The strict option
ensures that all tags in the template file that resemble valid
HTML::Template tags are correctly formatted.

Caching Templates

Several options exist to enable caching of template files in
HTML::Template. Depending on the implementation and
environment, this can yield speed improvements of 50 to
90 percent, according to the module’s author. The
shared_cache and file_cache options are useful if
mod_perl is not enabled. The shared_cache option
uses the IPC::SharedCache module, which allows multiple
instances of the CGI script to use the same region in
memory; this is very useful for high-load Web servers, as it
requires less RAM. The file_cache option uses the
Storable module, which serializes the template into a file
on the server. Both options reload the template if the file
has changed, but are not as efficient as the cache option
with mod_perl.

After you have implemented an HTML::Template Web site, you can enable additional features such as error detection and
caching. For the full list of extra features, see the module’s documentation.

Documentation and Support

You can access the HTML::Template’s manual using the
PerlDoc program on the command-line:

perldoc HTML::Template

This provides you with a detailed explanation of the
module’s purpose, intention, background, and all the
advanced features it supports. An online tutorial is available
at http://html-template.sourceforge.net/
article.html.

15_556801-ch13.indd 16915_556801-ch13.indd 169 8/31/10 9:21 AM8/31/10 9:21 AM

170

T he template files that are parsed by
HTML::Template must follow a specific tagging
format. These tags are replaced with dynamic

content sourced by the Perl script to form the actual
HTML output. The completed HTML content is then sent
to the user’s Web browser.
The template elements used by HTML::Template are
formatted like HTML elements; they begin with a start tag
and finish with an end tag. Some elements use optional

attributes in the start tag, and others do not require an
end tag at all. All tag names begin with tmpl_ followed
by the template tag type:
<tmpl_TYPE [ATTR=VALUE, ...]> ... </tmpl_TYPE>

HTML::Template supports nesting template elements
together. This is useful when looping the same HTML
content multiple times for an array (just like the foreach
block in Perl) and for creating simple conditional tests
within the actual HTML (just like an if block).

Understanding the Structure
of an HTML::Template File

Template Syntax

<TMPL_VAR>

This is the simplest and most common template element. You
can use TMPL_VAR to supply data provided by the param
function in the Perl CGI into the final HTML output:

$tmpl->param(KEY => VALUE, ...);

The TMPL_VAR element uses an attribute called name that
references KEY. When the template is output, any instances
where TMPL_VAR’s name matches KEY are replaced by
VALUE. If VALUE is blank, or not defined, the template
element is simply omitted from output:

<tmpl_var name=KEY>

You can use the optional attribute escape=MODE to escape
VALUE’s text for use within HTML form values, JavaScript
code values, or URL population. This depends on whether you
set MODE to HTML, JS, or URL, respectively.

The optional attribute default=VALUE allows you to set a
default value to the element if KEY is undefined.

The TMPL_VAR element does not require an end tag.

<TMPL_IF> ... </TMPL_IF>

The TMPL_IF element allows you to establish HTML code
that should only be used if a Boolean test is true. It also uses
the param function, but it only displays its content in the
HTML output if the data is true:

$tmpl->param(KEY => VALUE, ...);

The TMPL_IF element uses an attribute called NAME that
references KEY. When the template is output, if KEY has a
defined value, and it is not a literal zero, then CONTENT
appears:

<tmpl_if name=KEY>

 CONTENT

</tmpl_if>

The TMPL_IF element requires an end tag to signify the end
of the TMPL_IF block.

<TMPL_ELSE>

TMPL_ELSE is an optional element that you can use
anywhere within TMPL_IF’s content block. It separates and
controls HTML code which only appears when TMPL_IF is
true, and data HTML code which only appears when TMPL_IF
is false.

This element takes no arguments, and does not use an
end tag.

<TMPL_UNLESS> ... </TMPL_UNLESS>

TMPL_UNLESS is exactly like TMPL_IF, except that it
reverses the Boolean test expression. In other words, KEY
must be undefined, or a literal zero, in order for CONTENT
to appear.

This takes the same arguments as TMPL_IF, and requires a
matching end tag. TMPL_ELSE is also valid within a TMPL_
UNLESS block.

The template element syntax is case-insensitive, and you can use it anywhere inside a template file. Each element performs a
function that is specific to the template and the controlling Perl CGI script.

15_556801-ch13.indd 17015_556801-ch13.indd 170 8/31/10 9:21 AM8/31/10 9:21 AM

171

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

Template Syntax (continued)

The data for SUBKEY is first VALUE1, and then VALUE2,
depending on which pass of the loop is being shown:

<tmpl_loop name=KEY>

 CONTENT <tmpl_var name=SUBKEY>

</tmpl_loop>

If KEY is not defined, then CONTENT is never shown, just
like TMPL_IF.

This element requires an end tag to signify the end of the
TMPL_LOOP block.

<TMPL_INCLUDE>

The TMPL_INCLUDE element allows you to import
external template files into the current file. All elements
within the new file are acted upon with the same
parameters provided when the original was called from
Perl. The only argument it takes is the external filename:

<tmpl_include name=FILENAME>

If a newly included template includes more templates,
then they are also imported. This element does not use
an end tag.

<TMPL_LOOP> ... </TMPL_LOOP>

TMPL_LOOP is by far the most complex and powerful tag.
It allows you to repeat HTML content multiple times, and
provides a new set of TMPL_VAR variables on each pass,
just like a foreach or while loop in Perl.

From the perspective of your Perl script, when these
commands are passed into param, their value must be
represented as a two-dimensional array reference and hash
reference. The array reference implies the number of passes
the loop makes; the hash reference contains the specific set
of data available to each pass’s group of TMPL_VARs:

$tmpl->param(KEY => [

 { SUBKEY => VALUE1, ... },

 { SUBKEY => VALUE2, ... },

 ...,

]);

Note the opening square bracket after KEY. This is the
beginning of an anonymous array reference. Each entry
in the array indicates a set of subkeys and values that are
only valid to that particular entry in the series. When the
template is output, the CONTENT within the TMPL_LOOP
element displays once for every hash reference in the array.

Caveats

Missing End Tags

If you happen to forget a </TMPL_IF> somewhere in the
middle of a template, your CGI script reports a syntax error
when you run it. A good way to minimize this risk is to get
into the habit of indenting code whose content requires an
end tag. This includes existing HTML tags:

<table>

 <tmpl_loop name=rowList>

 <tr>

 <td><tmpl_var name=rowNumber></td>

 <tmpl_if name=rowValue>

 <td><tmpl_var name=rowValue></td>

 </tmpl_if>

 </tr>

 </tmpl_loop>

</table>

From this simple example you can see content following
<tmpl_loop>, and <tmpl_if> is indented on the next
line. Once the content is done, you remove the indent when
you use the end tag. This looks exactly the same as
opening and closing curly brackets in Perl.

Missing Parameters

If your Perl script specifies a KEY parameter that your
template is not using, HTML::Template induces a failure.
This situation typically arises when the Perl script and
template are at different levels of development. You can
silently ignore this by disabling the option die_on_bad_
params when creating a new HTML::Template object
reference.

Strict Tag Names

If your template misspells an element’s tag, such as
<tmpl_varrr name=KEY>, HTML::Template induces a
failure. You can ignore these checks by disabling the option
strict when creating a new HTML::Template object
reference.

All element tags that begin with tmpl_ are checked for
validity when you enable strict.

When creating templates, there are some common pitfalls that are very easy to avoid if you are aware of them.

15_556801-ch13.indd 17115_556801-ch13.indd 171 8/31/10 9:21 AM8/31/10 9:21 AM

172

1

2

3

5

4

5 Open the HTML file in a
browser.

• The sample message.

• The sample data.

• The sample table with data.

1 Create a static HTML Web page
in a text editor.

2 Add a sample text message.

3 Add sample data.

4 Add a sample table with data.

Note: The sample data text is not
important, but its intention and
location in the HTML mockup are
important.

Create a New Template File

When creating a new template file for the
HTML::Template module, you must lay out your
HTML intelligently so that it can take advantage

of the module’s search-and-replace functionality — replacing
template-specific tags with dynamically generated content
by Perl — when the Web page displays in a browser. The
template creation process involves identifying which parts
of the page should be replaced by dynamically generated
content, and which parts should remain static. Often, the
dynamic content is being sourced from something external,
such as a database backend accessed through Perl. The
static content is usually the original HTML code that
controls the page’s layout, fonts, colors, and common text.
The dynamic content needs to be replaced by new
template elements. Some template elements can also

control blocks of static HTML. For example, you may want
to loop some HTML when generating tables or lists, and
omit entire blocks of HTML if a conditional test in Perl
returns false. The looping aspect allows your template to
dynamically grow and shrink, depending on how much
data needs to be displayed on the page.
The best way to begin is to manually create a static
HTML file, but populate it with mockup data. Use this
time to test your mockup in different browsers and
operating systems, and to develop any additional client-
side code, such as JavaScript. When content with how the
mockup looks and works, convert it into a template file
and create the Perl CGI script for it. The conversion
process happens in two parts: first you replace mockup
data with template elements specific to HTML::Template,
and then you identify any portions of the HTML code that
need to be logically controlled or repeated by Perl.

Create a New
Template File

15_556801-ch13.indd 17215_556801-ch13.indd 172 8/31/10 9:21 AM8/31/10 9:21 AM

173

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

7
8

6

0

0

9

!

88

8

@

You have converted your mockup data into template elements: a message that may appear only sometimes, the
data that will be populated, and a table that could have multiple rows of information. A corresponding Perl CGI
script will control all of this later.

You should save the actual template filename with a .tmpl extension, and, if possible, the filename should also match
the Perl script name. For example, the index page of the Web site is generated by the Perl script index.pl, which in
turn uses index.tmpl to generate its output. While this naming convention is not mandatory, it is recommended,
especially when your site grows to dozens of pages, each with unique Perl CGI scripts and template files.

Eventually, if you want to support multiple languages on your Web site, you should even convert the raw text in
your template into a template variable. This would mean replacing every individual paragraph, sentence, and word
as <tmpl_var> with a unique key, and then moving the original text and all available translations into language-
specific template files.

9 Type <tmpl_loop name=loopkey>
at the start of the repeating
portion of the table.

0 Truncate the table to only include
one row in the loop.

! Replace the table cells with more
TMPL_VAR elements.

@ Type </tmpl_loop> at the end of
the repeating row.

Save the file with a .tmpl
extension.

6 Type <tmpl_if name=key> prior
to the sample message.

7 Type </tmpl_if> at the end of
the sample message.

Note: The sample message may or
may not appear, but the text within
stays the same. Perl is able to control
this.

8 Type <tmpl_var name=key> to
replace the sample data.

15_556801-ch13.indd 17315_556801-ch13.indd 173 8/31/10 9:21 AM8/31/10 9:21 AM

174

3

2

2

2

1

4

5
6

8 7

4 Type use HTML::Template;.

5 Type my $tmpl = HTML::Template->new(
to create a new template object.

6 Type filename => “template.tmpl”,.

Note: If the template file does not exist in the
same directory as the CGI script, you need to
provide an absolute or relative path to it.

7 Type die_on_bad_params => 0,.

8 Type); to close the new constructor
function.

1 Open a Perl CGI script in a text editor.

2 Cut all HTML print statements, and paste
them into a TMPL file.

Note: For more information about changing all
scalars into TMPL_VARs, see the section,
“Create a New Template File.”

3 Delete the print $cgi->header()
statement. It will be restored after the
template is loaded.

Import the HTML::Template Module

T he HTML::Template module must be imported
into any Perl scripts that will be generating HTML
content from a template. You can then use the

HTML::Template module to process the template file and
produce a dynamic Web page.
The HTML::Template module provides its methods in an
object-oriented fashion. You must manually install it on
each server and workstation that will run Perl scripts that
use the module. You may install the module using CPAN,
or by a distribution-specific package, after which it must
be imported into your Perl CGI scripts and initialized into
an object reference variable, usually called $tmpl.
It is a good practice to strip all HTML code from the Perl
script at this stage and place it all into a separate template

file. Your Perl script should not be printing anything as
output, except for CGI’s header and HTML::Template’s
output methods. Printing these two methods should be
the very last thing your Perl script does before it quits.
It is a good idea to deactivate the die_on_bad_params
option when initializing HTML::Template. Leaving this
option on, which is the default behavior, causes your CGI
script to fail if you specify a template parameter whose
key is not populated by Perl. This can be frustrating if you
are not yet finished writing the Perl script or template, but
you want to execute the CGI script and template to ensure
the correct development path. Once everything is complete,
and your Perl CGI script is using its template correctly, you
may re-enable die_on_bad_params if you want to be
absolutely sure that all template parameters going in have
a matching template variable going out.

Import the
HTML::Template Module

15_556801-ch13.indd 17415_556801-ch13.indd 174 8/31/10 9:21 AM8/31/10 9:21 AM

175

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

0

@

9

When initializing the HTML::Template object reference, you demonstrated using the options filename and die_
on_bad_params. You can supply other optional attributes here that further affect how HTML::Template works.
Here are some of the more popular options available; you can find the full list in the module’s documentation.

OPTION ATTRIBUTE PURPOSE

associate => $cgi Automatically import $cgi’s HTML form input as template parameters.

debug => 1 Write HTML::Template debug information to the Apache error log.

global_vars => 1 Allow vars declared outside of loops to be available inside.

path => [DIRS] Specify directory paths to search for the template file.

You can actually call HTML::Template’s param method at any point in the code after $tmpl is declared, but before
output is used. This means that you can use the Perl logic to start generating data to display it to the user at any
time between these two points. In this example, the table data parameter is hard-coded through a nested array and
hash reference. Realistically, you are not going to generate tables this way.

@ Open the CGI script in a
browser.

• The text fields are blank,
awaiting real data.

• The table is blank.

9 Restore the CGI header print
statement at the bottom of
the file.

0 Type print $tmpl->output();
on the last line.

! Save the CGI script.

15_556801-ch13.indd 17515_556801-ch13.indd 175 8/31/10 9:21 AM8/31/10 9:21 AM

176

1

3

2

5

4

4 Type <tmpl_var name=key2>.

5 Type <tmpl_var name=key2
escape=html> within an HTML
input field.

6 Save the template file with the
.tmpl extension.

1 Open a template file in a text
editor.

2 Type <tmpl_var name=key1>.

3 Type <tmpl_var name=key1
escape=html>.

Note: You can reuse the same key in
multiple TMPL_VAR tags.

Note: You do not need to worry about
nesting the double-quotes here; when
the template is processed, the browser
only sees the input field’s quotes, not
HTML::Template’s quotes.

Display Data with TMPL_VAR

Y ou can display actual data in the template using
the TMPL_VAR element. To define text that should
be displayed in the template, a unique key needs

to be assigned to each piece of data that TMPL_VAR will
represent. In the Perl CGI script, you use the param
method to define each key’s value:
$tmpl->param(KEY => VALUE);

To display the text in the template, the TMPL_VAR tag
element must contain at least one attribute called name.
In the TMPL file, the name attribute’s KEY is the same
key, which was used with param:
<tmpl_var name=KEY>

This is all that is required when generating normal text
intended for the final Web page output. Normal text is
content the user cannot modify when it appears in their

Web browser. Text the user can modify usually appears
inside of HTML form input fields. Displaying this data as
a field’s default value requires a special escape attribute:
<input type=text name=KEY value=”<tmpl_var
name=KEY escape=html>”>

Using escape=html slightly alters the data being sent by
Perl. The characters “, <, >, and & are replaced with a
format that is safe for form input values. This ensures
that any data entered by the user cannot affect the HTML
around it. Similarly, you can use escape=js when pre-
populating JavaScript variables with data from Perl. You
can use the attribute default to set the default text for
an element. This is useful if the template’s KEY is never
defined in Perl. TEXT is displayed, rather than nothing:
<tmpl_var name=KEY default=TEXT>

Display Data
with TMPL_VAR

15_556801-ch13.indd 17615_556801-ch13.indd 176 8/31/10 9:21 AM8/31/10 9:21 AM

177

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

8

#

@

7

0

9

You can relay the %ENV hash to supply the template with environment information relevant to the user’s CGI
session. Text from the environment can now be displayed to the user through the template. This will be especially
useful later with HTML forms that are displayed and processed with the same Perl CGI script and template.

@ Open the Perl CGI script in a
browser.

Press Ctrl+U to view the page’s
source code.

• Key1’s value appears as HTML.

• Key1’s value appears as literal text.

• Key2’s value appears incorrectly
within the form input.

• Key2’s value appears correctly.

7 Open a Perl script that uses the
HTML::Template module in a text
editor.

8 Use the correct .tmpl file as the
template.

9 Type $tmpl->param(key1 =>
“HTML”); to populate key1’s value.

0 Type $tmpl->param(key2 =>
“HTML”); to populate key2’s value.

! Save the Perl CGI script.

TYPE THIS INTO PERL

while (my ($key, $val
) = each %ENV) {

 $tmpl->param($key
=> $val);

);

TYPE THIS INTO THE TEMPLATE

Your IP address is <tmpl_var
name=REMOTE_ADDR>.

RESULTS

All environment
variables are
available to the
template. The IP
address of the user
appears in the
template output.

Remember to set die_on_bad_params => 0. Otherwise, your CGI script will fail unless your template actually
uses every environment variable in its output!

➔ ➔

15_556801-ch13.indd 17715_556801-ch13.indd 177 8/31/10 9:21 AM8/31/10 9:21 AM

178

1

3

6
5

222

4

5 Type <tmpl_else>.

6 Define the content that should
only appear if key is not
defined.

7 Save the template file.

1 Open a template file in a text
editor.

2 Type <tmpl_if name=key>.

3 Define the content that will only
display if key is defined.

4 Type </tmpl_if>.

Control Template Content with TMPL_IF, TMPL_ELSE

I t is possible to control HTML content within the
template by introducing a conditional test around one
or more HTML tags or text. You can use this to

control what displays to the user only if a test returns
true, and what displays if it returns false. Before you can
define a conditional test in the HTML template, you need
something to test it against. You can use all data that is
usable as a <tmpl_var> variable as a conditional test,
performing a basic Boolean test only. In other words, true
if the variable is defined with content, false if defined but
with no content or not defined at all:
<tmpl_if name=KEY>CONTENT</tmpl_if>

The content in between the TMPL_IF tags can be
anything, including HTML, text, TMPL_VARs, or even
more TMPL_IF blocks. Optionally, you can use a single

TMPL_ELSE tag to bisect a TMPL_IF block. This allows
you to set up content specific to KEY returning true, and
content for KEY returning false:
<tmpl_if name=KEY>TRUE CONTENT<tmpl_else>FALSE
CONTENT</tmpl_if>

Remember that you can still use the variable tested using
TMPL_IF within the actual content. This can be extremely
useful when a variable is optional, and you need
additional static text around the variable to provide
content. This is true in the case of error messages:
<tmpl_if name=errorMsg>We’re sorry, the
following error occurred: <tmpl_var
name=errorMsg>. Please resubmit your
request and try again.</tmpl_if>

Naturally, there is no point in displaying the We’re sorry
text if no actual error occurred and errorMsg is undefined.

Control Template Content
with TMPL_IF, TMPL_ELSE

15_556801-ch13.indd 17815_556801-ch13.indd 178 8/31/10 9:21 AM8/31/10 9:21 AM

179

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

9

!

8

The TMPL_IF conditional test focuses on passing if its test parameter is true. If you want to test for false
parameters, there is no such syntax as <tmpl_var not name=VAR>; instead, use TMPL_UNLESS.

! Open the Perl CGI script in
a browser.

• The browser displays the
alternate text.

8 Open a Perl CGI script in a
text editor that uses the
HTML::Template module.

9 Ensure key is not defined
as a template parameter.

0 Save the Perl CGI script.

TYPE THIS INTO THE TEMPLATE

<tmpl_unless name=key1>
 key1 not defined!
</tmpl_unless>

RESULTS

The text appears if you do not define the key1 parameter.➔

There is no TMPL_ELSIF tag. This is the only real feature lacking in the HTML::Template, but you can use the same
logic by creating a new TMPL_IF block immediately following a TMPL_ELSE tag. Unfortunately, this can get really
messy and confusing if you require more than two instances of else if logic in a row.

15_556801-ch13.indd 17915_556801-ch13.indd 179 8/31/10 9:21 AM8/31/10 9:21 AM

180

8

1

2

3

4

5

7
6

5 Type <tmpl_if name=list> to
check if the table exists.

6 Type <tmpl_else> to specify
alternate text.

Note: You use TMPL_ELSE if the
loop is either not defined, or is
defined but its array has no elements.

7 Type content to be displayed if
the list is empty.

8 Type </tmpl_if> to close the
conditional block.

1 Open a template file in a text
editor.

2 Type <tmpl_loop name=list>
to begin the template loop.

3 Type <tmpl_var name=key>
to access a parameter within
the loop.

4 Type </tmpl_loop> to end
the loop.

Repeat Template Content with TMPL_LOOP

Y ou can control and repeat template content based
upon a list of variables provided by Perl with the
TMPL_LOOP tag. You can use this to minimize the

amount of unique HTML that you write in the template
by working under the condition that each item in the loop
appears with the exact same HTML code. This tag is most
often used for tables where each table row appears to the
user in a similar style:
<table>
 <tmpl_loop name=LIST>
 <tr><td><tmpl_var name=KEY></td></tr>
 </tmpl_loop>
</table>

Perl uses an array reference to populate TMPL_LOOP where
each array entry represents one row of data. Within each

entry is another hash reference that is used to populate
the keys within that row. This makes each TMPL_VAR
nested within TMPL_LOOP actually have a value.
You can use the TMPL_IF tag outside of the TMPL_LOOP
tags to validate whether the loop has been defined, and
actually has content in its list. This is extremely useful to
control the leading and tailing HTML code that is related to
the loop display code, as this code is not within the actual
loop. If your table includes a single top header row, you
place that HTML just before the opening <tmpl_loop> tag.
Naturally, if the loop’s array is empty, the entire table,
including the table column header row, is omitted.
Be careful about displaying too much data inside of TMPL_
LOOP. Limit the size of the array forwarded to the template,
introducing some sort of paging or searching functionality.

Repeat Template Content
with TMPL_LOOP

15_556801-ch13.indd 18015_556801-ch13.indd 180 8/31/10 9:21 AM8/31/10 9:21 AM

181

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

@

@

0

!

#

%

9

When creating table rows dynamically, it is possible to declare a new array reference, and then use the push
function to inject anonymous hash references into it as many times as necessary. Once you do this, send the array
reference into the param function for the template to process and display.

% Open the Perl CGI script in a
browser.

• The non-looping HTML text
appears.

• The looping HTML content is
displayed.

 Each loop displays unique content
from the array ref in Perl.

9 Open a Perl CGI script in a text
editor that uses the
HTML::Template module.

0 Type $tmpl->param(list => [to
begin a new list as an array
reference.

! Type]); to end the array reference
and the param statement.

@ Type { and }, to define a hash ref
as a single loop of the array ref.

Type key => “value”, for each
parameter in the loop.

$ Save the Perl CGI script.

TYPE THIS INTO PERL

my $contacts = [];
push(@{ $contacts }, {
 name => “Robert Clark”,
 address => “123 Fake Street”,
 phone => “403-555-1212”,
});
$tmpl->param(contactList => $contacts);

RESULTS

One row of the table produced by the
template is populated. Repeat the push
function, with unique content, for as
many table rows as necessary.

➔

See Chapter 21 for an example of importing dynamic content from an external source into TMPL_LOOP using the
push function.

15_556801-ch13.indd 18115_556801-ch13.indd 181 8/31/10 9:21 AM8/31/10 9:21 AM

182

1

2

4

5

4 Create a new template file in a text
editor.

5 Add some HTML or TMPL content.

6 Save the file as sharedfile.
tmpl.

1 Open a template file in a text editor.

2 Type <tmpl_include
name=”sharedfile.tmpl”>.

3 Save the parent template file.

Nest Templates with TMPL_INCLUDE

Y ou can simplify maintenance of your Web site by
splitting up common template HTML into multiple
template files. You can then reference multiple

template files when using TMPL_INCLUDE on a single
Web page.
This technique is most commonly used for Web site
headers, toolbars, footers, or any content that is designed
to appear on more than one page. In the future, if one of
these shared templates needs a change, such as updating
a Web site logo or copyright information, you will only
need to update a single template file. This will be reflected
on every Web page that uses that shared template.
To nest templates with TMPL_INCLUDE, you need to use a
simple element tag with a name attribute:
<tmpl_include name=FILENAME>

The referenced file can be an absolute path; otherwise, it
should be in the same directory as the parent template, or
be represented as a relative path. If HTML::Template still
cannot find the nested template, it consults the server’s
environment variable HTML_TEMPLATE_ROOT, if it is
defined. Finally, it checks in the path option, which you
can set in the Perl CGI when initializing the
HTML::Template object reference.
my $tmpl = HTML::Template->new(... ,
 path => [DIR, ...]);

All parameters defined by the Perl CGI are applied
recursively to all included child templates. This allows
you to control the content of the included templates using
the same template element tags.

Nest Templates with
TMPL_INCLUDE

15_556801-ch13.indd 18215_556801-ch13.indd 182 8/31/10 9:21 AM8/31/10 9:21 AM

183

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

7

8

0

The TMPL_INCLUDE tag is very useful. It is a great way to offload shared content into a single file, and then share
that file across multiple templates. However, you do need to be careful if an included template makes another call
to TMPL_INCLUDE.

HTML::Template has a built-in limit to the number of nested templates it will honor. This prevents recursive loops
in case the child template re-includes the parent. The default maximum depth is ten levels, but you can adjust this if
necessary with the max_includes option.

HTML::Template also makes an effort to cache all template files that are referenced by the Perl CGI script and
TMPL_INCLUDE. It provides an option to enable one of several algorithms that range in complexity, given the
memory available on the Web server.

The simplest method of caching provided will keep each template file active in memory by comparing the original
file’s modification timestamp on each request. More complex instances involve sharing the cache across multiple
Apache threads, or a combination of each technique.

To make caching beneficial, you need to enable mod_perl in Apache. See Chapter 23 for more information.

0 Open the Perl CGI script in a Web
browser.

• The browser displays the template
parentfile.tmpl.

• The browser displays the template
sharedfile.tmpl where you
originally used TMPL_INCLUDE.

7 Open a Perl CGI script in a
text editor that uses the
HTML::Template module.

8 Use the parent template file
as the input template name.

9 Save the Perl CGI script.

15_556801-ch13.indd 18315_556801-ch13.indd 183 8/31/10 9:21 AM8/31/10 9:21 AM

184

1

2

3

4

3

6

7

8
999

1 Create the header template file in
a text editor.

2 Insert the introductory HTML,
script, style, and body tags to
begin each Web page.

3 Begin the page-wide global table.

4 Include any text or images that
should be at the top of every Web
page.

Note: You may need to place this
content strategically within the global
table. You need to pre-plan how this
will look best on the site.

5 Save the file as header.tmpl
and close it.

6 Create the footer template file in a
text editor.

7 Close the page-wide global table.

8 Include any text that should be at
the bottom of every Web page.

9 Type the closing body and HTML
tags to finish the Web page.

0 Save the file as footer.tmpl
and close it.

Create an HTML::Template Header and Footer

Y ou can create a persistent header and footer within
HTML::Template files by using the TMPL_INCLUDE
tag, and reference simple TMPL header and footer

files. This allows you to standardize static content across
an entire Web site out of a pair of TMPL files.
The header and footer HTML code refers not only to visible
content that is presented at the top and bottom of every
Web page, but also to any HTML code that must come
before and after the dynamic body content.
The header template file must introduce the very top of
every Web page. This includes the beginning <html>,
<title>, <style>, and <body> tags. It is also
responsible for starting the page’s global table, including
all printable content that appears at the top of every page.

The footer template file must close off the very bottom of
every Web page. Therefore, in this order, it is responsible
for ending the page’s global table, and displaying any of
the site’s fine print, such as a copyright claim and a
privacy policy link. Finally, you complete the page with
the ending </body> and </html> tags.
The global table is very important. The header starts it,
and the footer finishes it. Everything in between will be
handled by a Perl CGI script. Constructing the header and
footer in this way allows the individual, page-specific Perl
CGI scripts and HTML::Template files not to have to deal
with the header or footer HTML content at all.
The only real point that requires special consideration is
the <title> tag in the header. Naturally, every Web page
should have its own unique title, which means that the
<title> tag cannot be persistent.

Create an HTML::Template
Header and Footer

15_556801-ch13.indd 18415_556801-ch13.indd 184 8/31/10 9:21 AM8/31/10 9:21 AM

185

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

5

1

4

7

2

6

4 Open a new template file in a text
editor. This will represent the toolbar
template.

5 Write the toolbar HTML with all top-
level pages available described as
links.

1 Open the template file header.
tmpl in a text editor.

2 Type <tmpl_include name="toolbar.
tmpl"> where the new toolbar should
be imported.

3 Save the file as header.tmpl and
close it.

Create an HTML::Template Toolbar

The Perl script needs to establish a specific template
parameter that the toolbar template will use to indicate
which page is actually selected.
Advanced toolbars may grow and shrink dynamically
based upon the page that is highlighted. So, if your
product catalog has a series of subcategories, then you
want them to be displayed in the toolbar while on the
catalog page, but hidden while on any other page.
The actual toolbar does not need to be complicated. It can
be as simple as a ... list, or as complicated
as a complete <table>...</table>. The whole point is
that it has the appropriate TMPL_IF statements that alter
the display to clearly identify which page the user is on.

Y ou can create a toolbar template for use in
HTML::Template by using TMPL_INCLUDE
within your header template. This imports

the toolbar template everywhere you use the header.
This allows you to standardize content across an
entire Web site out of a single header.tmpl file.
Generally speaking, in the case of a toolbar, the goal
is to have some sort of logic to identify where it is
on the site, and display a visual cue to the user that
you are here. For example, on a site that has five
pages — welcome, about, catalog, support, and
contact — if the user is browsing the catalog page,
then you want the catalog icon on the toolbar to be
highlighted.

Create an
HTML::Template Toolbar

6 Type <tmpl_if name=pagekey>
class=selected</tmpl_if> within each
page link.

Note: The class statement is an example.
The point is that you change the appearance
of the page link when pagekey is true.

7 Apply similar changes for all page
links; assign a different pagekey for
each link.

8 Save the file as toolbar.tmpl.

15_556801-ch13.indd 18515_556801-ch13.indd 185 8/31/10 9:21 AM8/31/10 9:21 AM

186

2

3

7

6

8

4

11 Create the page1 template file in a text
editor.

2 Type <tmpl_include name="header.
tmpl"> to include the header template.

Note: Remember, the header.tmpl file
includes toolbar.tmpl.

3 Type some unique content, specific to
this page.

4 Type <tmpl_include name="footer.
tmpl"> to include the footer template.

5 Save the template file as page1.
tmpl.

6 Create the page1 Perl script in a text
editor.

7 Make sure it uses the page1.tmpl
template.

8 Type $tmpl->param(pagekey1 =>
"active"); to activate the toolbar’s
highlight for pagekey1.

9 Save the Perl script as page1.pl.

0 Repeat steps 1 to 9 for page2.
tmpl and page2.pl, and use the
pagekey2 toolbar for the highlight
key.

Link the Header, Toolbar, and Footer with Dynamic Perl Content

Y ou can link the newly created header, toolbar, and
footer templates to form completed Web pages,
using a unique Perl CGI script and template file

for each Web page. The Perl and template files provide
the Web page’s unique content, but the header, toolbar,
and footer are shared by every page. In essence, Perl
becomes responsible for delivering the auxiliary templates
using a page-specific template that is processed using the
HTML::Template module.
In other words, the user opens the Perl script directly in
their browser’s URL — for example, catalog.pl. The
catalog Perl script initializes the HTML::Template module.
The module loads the template file catalog.tmpl. The
template file uses HTML_INCLUDE to bring in header.
tmpl, then displays the content specific to the CGI page,
and finally includes footer.tmpl.

For each Web page, you still need to do two things. First,
you must create a template file that imports the header
and footer templates and contains any content unique to
that particular Web page. Second, you must create a Perl
script that loads that new master Web page template.
The primary benefit of this technique is that the Perl
script does not need to worry about shared HTML in the
header, toolbar, or footer; or even the unique HTML its
template file. The Perl script is dedicated to the logic in
the Web page, and loading the correct master template.
Once you have implemented this method across multiple
pages and CGI scripts, you can make a change to any one
of the header, toolbar, or footer templates and the change
will be automatically updated on every Perl CGI page —
very convenient!

Link the Header, Toolbar, and
Footer with Dynamic Perl Content

15_556801-ch13.indd 18615_556801-ch13.indd 186 8/31/10 9:21 AM8/31/10 9:21 AM

187

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

!

@

All template files that
you use to generate
the page honor the
template parameters
defined by Perl. This
may mean that there
are other individual
elements within the
header or footer
templates that you
want to customize.
The most common
example of this is the
Web page’s title.

 The browser loads the
page2 Web page.

• The browser displays the
same header, toolbar, and
footer.

• The browser displays the
content specific to page2.

• The toolbar has the page2
link highlighted.

! Open page1.pl in a Web
browser.

• The browser displays the
header, toolbar, and
footer.

• The browser displays the
content specific to page1.

• The toolbar has the page1
link highlighted.

@ Click the page2 link.

TYPE THIS INTO THE HEADER TEMPLATE FILE

<title><tmpl_var name=title
default=”Nomenclature Logistics, Inc.”>
</title>

TYPE THIS INTO EACH PERL CGI SCRIPT

$tmpl->param(title => “NML: Page1 Title”);

RESULTS

The Web page title is customized for each page
whose CGI defines a specific title; otherwise, a
generic title is used.

➔
➔

The technique described
here is specific to Web
pages that have a
dedicated Perl CGI script
that provides content.
You may find that means
every page does not
necessarily need a
dedicated CGI script. If
you have a static HTML
page that you want to
want to wrap in the
header, toolbar, and
footer, see Chapter 14
for more information.

15_556801-ch13.indd 18715_556801-ch13.indd 187 8/31/10 9:21 AM8/31/10 9:21 AM

188

1

4

6

2

4 Open a Perl script that uses the HTML::Template
module.

5 Import the data source, or insert the raw data
that will be used for each loop in the template.

Note: Here you define your e-mail data by creating
the completed hash ref manually. Normally, this
information would be populated from an external
source, such as a database.

6 Use email.tmpl as the input template
filename.

1 Create a new template file in a text editor.

2 Format the template like an e-mail message.

 You can use TMPL_VAR, TMPL_LOOP, and any
other HTML::Template tags.

3 Save the file as email.tmpl.

Extend HTML::Template to Non-HTML Formats

Y ou can extend an HTML::Template Perl script and
template file to produce non-HTML formatted
files. The actual use of this technique is rather

limited when using Perl as a CGI program, as the CGI’s
output is typically HTML; however, you can still use Perl
and HTML::Template on the command-line to produce
text files that output any type of text-based format.
The obvious non-HTML candidate formats would be those
that are already very close to HTML with respect to output,
such as XML and XHTML. However, theoretically any
ASCII-based format will work. You could even configure
HTML::Template to output more Perl source code.
All of this is assuming that you can transliterate the
targeted format’s output into something that is
communicable as a TMPL file. You still follow all the rules

stated in this chapter, which include the same template
tags such as <tmpl_var>, <tmpl_if>, <tmpl_loop>,
and <tmpl_include> — all are still valid. The only
difference is where you would put HTML; you use
whatever text-based formatting is required.
However, remember that in a Perl CGI script, the compiled
HTML::Template output is simply printed onto standard-
output. If you use Perl on the command-line, it is a good
idea to write an actual file, with the correct extension.
Hacking HTML::Template to produce a binary-specific file
format is not recommended. For example, if you want to
produce a Word or Excel document using this template
system, do not even attempt to produce a DOCX or XLSX
file. Instead, create a simpler TXT or CSV file and then
import that into Word or Excel.

Extend HTML::Template
to Non-HTML Formats

15_556801-ch13.indd 18815_556801-ch13.indd 188 8/31/10 9:21 AM8/31/10 9:21 AM

189

Ch
apter 13: Separatin

g H
T

M
L

 Code from
 Perl Code

7

0

8

Your raw text file may look a little odd, in part, because everything between <tmpl_loop>...</tmpl_loop> is
duplicated, including any new lines. One way to address this problem is to use the opening and closing TMPL_LOOP
tags on one line.

0 Execute the Perl script on the
command-line.

• The command-line displays the
completed e-mail message.

Note: At this stage you can write the
output to disk, or actually send it as an
e-mail message. See Chapter 12 for an
example.

7 Type $tmpl->param(HASHREF);
to populate each field in the e-mail
message directly from the data
hashref variable.

Note: This technique of plugging a
single variable into param is only viable
because all of $emailData’s keys
already match the template’s keys.

8 Type print $tmpl->output(); to
print the e-mail message.

9 Save the Perl script.

TYPE THIS INTO THE TEMPLATE

Your order summary:
<tmpl_loop name=orderSummary> * <tmpl_var name=item> (qty: <tmpl_var name=qty>)
</tmpl_loop>

RESULTS

For every loop of orderSummary, an asterisk and the item’s text is written, followed by a new line. This is
because the TMPL_LOOP ends on the next line, thus including the new line character at the end of the TMPL_
VAR text within each loop.

Your order summary:
* widget (qty: 1)
* sprocket (qty: 4)
* cogs (qty: 4)

➔

15_556801-ch13.indd 18915_556801-ch13.indd 189 8/31/10 9:21 AM8/31/10 9:21 AM

190

Y ou can use Server-Side Includes, or SSI, to import
dynamic content directly into an HTML file and to
run basic conditional tests on the CGI

environment. Apache understands SSI-specific elements
and applies the changes to the HTML content prior to
delivering the page to the Web browser.
SSI uses a new set of directives that look like HTML
comments. These directives, when found in HTML,

convert into dynamic output, depending on the command
used. You can use these directives to supply variables,
include other HTML files, or even execute programs such
as CGI scripts.
You can mix the SSI and CGI technologies, but only in a
specific order. Apache cannot parse CGI output for SSI
tags, but it can parse HTML files for SSI directives that
reference CGI scripts.

Enabling SSI

Enable the SSI Module

Apache ships with a module, mod_include.so, which
provides the SSI functionality. You must activate it before any
SSI parsing will work. To do this, you need to add the
following directive into the Apache configuration file:

LoadModule include_module modules/mod_include.so

The exact path to mod_include.so may be different on
your system.

Define an SSI-Enabled Server Directory

You must enable the actual SSI capabilities in Apache by
applying a new argument to the Options directive:
Includes. You can apply the Options directive to an
Apache server in multiple ways. You can set it in a specific
<directory> or <virtualhost> configuration section in
the Apache configuration file, or within a special file called
.htaccess in the HTML directory. In fact, you can apply
Includes in the same place where you enabled the CGI
handler with the ExecCGI argument. For an example, see
Chapter 10.

Define an SSI-Enabled HTML File

There are two ways to instruct Apache to parse HTML files for
SSI directives. You can use either method, but you only need
one.

The first method involves renaming the HTML file with the
extension .shtml; you then add two new Apache
configuration directives:

AddType text/html .shtml

AddOutputFilter INCLUDES .shtml

However, renaming an existing .html file is not always
practical, as you also need to update all links to that page.

The second method is to enable the XBitHack in Apache.
This allows you to simply set the execute-bit on an HTML file,
just like you would in a Perl CGI script, and Apache processes
its output for SSI code:

XBitHack on

Unfortunately, the XBitHack is only available on Unix
installations of Apache. Windows has no concept of an
execute-bit, so you must use the file rename method.

Introducing
Server-Side Includes

There are two steps required to enable SSI in Apache. The first step configures a specific directory or virtual domain
in Apache, which should support SSI. The second step tells Apache which files in that directory should be parsed.

16_556801-ch14.indd 19016_556801-ch14.indd 190 8/31/10 9:23 AM8/31/10 9:23 AM

191

Using SSI

SSI Elements

You format all SSI elements in HTML using the following
syntax:

<!--#element attribute=”value” ... -->

Spacing is very specific here. There must be a space
between the element and attribute keywords, a space
between each attribute=”value” pair, and finally a
space preceding the closing --> tag.

The individual elements available are described in the
section, “Understanding SSI Elements.”

Layering SSI, Perl CGI, and HTML::Template

Choosing to layer SSI, Perl CGI, and HTML::Template on
top of one another involves some discipline in your code,
and an understanding of what each layer does, but the
advantage of doing so is that you produce a very powerful
Web site.

Layering involves starting with a static HTML file that
contains the source content for a page. This could be an
About or Contact Us page that contains a few paragraphs
that rarely change. This HTML file is the Web page URL.

Even though the actual page does not change, it may
reference dynamic content that does. This could include
other features on the Web site that are more dynamic, such
as the site header or a navigational toolbar. So, the About
HTML page file contains SSI elements that include separate
Perl CGI scripts.

The included header or toolbar CGI may also react
dynamically to the user. For example, the header may
contain a summary of the user’s current shopping cart, or
the navigation toolbar may list the other products or pages
the user has recently visited. These CGI scripts would then
outsource their layout to HTML::Template.

Dangers of SSI

You can use the #exec element to execute a program on
the server and forward its output to the browser. For
example, on Unix you can use the uptime program to
display the last time the server was rebooted. If you want
to provide this feature on your Web site somewhere, use
this element:

<!--#exec cmd=”uptime” -->

The danger with enabling this particular feature becomes
evident if you allow users to enter data in a form, which in
turn is displayed as HTML back to the browser. Imagine
what would happen if the user entered in a raw SSI
command in a form such as <!--#exec cmd=”cat /
etc/passwd” --> and then viewed it as HTML? The
user could execute any command on the server from their
Web browser!

To disable the #exec SSI element, activate SSI with the
IncludesNoExec argument, not Includes, within the
Options directive.

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

Whether you use SSI depends on your personal preference and experience. If you already have
static HTML files that need to be extended to support dynamic content, SSI is the best option.
If you do not have any static HTML files, and everything is handled by the Perl CGI interface,
then you do not need SSI. However, you can layer SSI and CGI to enable both technologies.

Page-specific SHTML file

Footer HTML file

Header SHTML file

Page-specific Perl CGI script

Toolbar
Perl CGI
script

All static HTML code for this particular Web page can be
defined directly in the page-specific SHTML file.

16_556801-ch14.indd 19116_556801-ch14.indd 191 8/31/10 9:23 AM8/31/10 9:23 AM

192

2

3

1

4

5

4 Open a Terminal window.

5 (Debian and Ubuntu Linux only)
Type sudo a2enmod include
and press Enter.

 (Mandriva Linux only) Type
gurpmi apache-mod_include
and press Enter.

6 Type your password if
prompted and press Enter.

1 Open the Apache configuration
file containing the SSI module
directives in a text editor.

Note: If you are using Debian,
Ubuntu, or Mandriva Linux, go to
step 4.

2 Search the file for the directive
LoadModule
include_module.

3 Remove the hash (#) to
uncomment the directive, if it is
commented out.

Enable the Apache SSI Module and Output Filter

E nabling an SSI Handler in Apache allows you to
parse HTML output for SSI elements in a browser.
To do this, two things need to happen: first you

must enable the SSI module, and then you must enable
the output filter.
You do this by enabling two new Apache directives. The
first directive instructs Apache to deliver files with the
.shtml extension as the text/html MIME-type; the
second forwards all .shtml files through the SSI
output-filter:
AddType text/html .shtml
AddOutputFilter INCLUDES .shtml

You enable the module and the output filter in the
Apache configuration file. The exact configuration file
depends on your operating system. If you are using

Windows, edit Apache Install Dir\conf\httpd.
conf. If you are on Debian- or Ubuntu-based Linux, edit
/etc/apache2/mods-enabled/mime.conf. For Red
Hat-based Linux, edit /etc/httpd/conf/httpd.conf.
Because this is a two-step process, on Windows and Red
Hat-based systems (including Mandriva and Fedora), you
only need to change one configuration file. If you are
using Debian or Ubuntu Linux, you can enable the SSI
module using the command, a2enmod, and then configure
the SSI handler in the mime.conf file.
Once the SSI module and output filter are online, you
need to assign a directory to the module. For more
information, see the section, “Configure a Directory to
Use SSI.” The final step is to rename all SSI-aware files
from filename.html to filename.shtml.

Enable the Apache SSI
Module and Output Filter

16_556801-ch14.indd 19216_556801-ch14.indd 192 8/31/10 9:23 AM8/31/10 9:23 AM

193

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

7

!

0

7

8

Normally, after SSI is fully configured, files with the extension .shtml are parsed for SSI elements. However, this is
not the only way to activate SSI in Apache. When using Apache on Unix, you can enable a directive called an
XBitHack to simplify this setup process. Once active, you only need to set the execute-bit on an individual HTML
file for it to be parsed for SSI elements, regardless of the file extension used. Open the Apache configuration file and
add the following directive:

XBitHack on

Once restarted, set all HTML files you want parsed for SSI elements with this command:

chmod +x filename.html

Alternatively, you can instruct Apache to parse all HTML files for SSI elements, eliminating the need to rename the
file to filename.shtml, or to use the XBitHack directive. However, if you employ this method, Apache parses
every HTML file for SSI elements that it serves. This may affect the performance of your Web server. To do this, use
the following directive in the Apache configuration file:

AddOutputFilter INCLUDES .html

0 Type net stop apache2.2 to stop
the Apache service.

! Type net start apache2.2 to
restart the Apache service.

Note: The net stop and net
start commands are specific to
Windows as a shortcut to the
Services control panel. To start and
stop the Apache Service on Linux,
see Chapter 5.

7 Search the file for the directives
that enable SSI for .shtml files.

8 Remove the hash (#) to
uncomment both directives, if
they are commented out.

9 Save the Apache configuration
file.

16_556801-ch14.indd 19316_556801-ch14.indd 193 8/31/10 9:23 AM8/31/10 9:23 AM

194

2

2

6
7

1

3

6 Go to the My Website directory
(public_html in Linux) and
open the file .htaccess.

Note: Create the .htacess file if it
does not yet exist.

7 Type Options +Includes to enable
SSI in this directory.

8 Save the .htaccess file.

Note: Directives written to .htaccess
files do not require Apache to be
restarted to implement their
functionality.

1 Open the Apache UserDir
configuration file in a text editor.

2 Locate the <Directory>
configuration section for UserDir
directories.

3 Type Options as a new value in the
AllowOverride directive.

4 Save the UserDir configuration
file and exit the editor.

5 Restart Apache.

Configure a Directory to use SSI

O nce you have enabled the SSI module, the final
step is to configure a directory to be parsed for
SSI tags. Unlike when you enabled the CGI

module under a special cgi-bin directory, you do not
require a dedicated directory. This allows you to create
Web page files that will be parsed by Apache for SSI
elements when requested by a Web browser.
You need to open the Apache configuration file and edit
the <Directory> configuration section; locate its
AllowOverride directive, and append the value
Options. The location of the Apache configuration file
depends on your operating system. If you are using
Windows, edit Apache Install Dir\conf\httpd.
conf. If you are on Debian- or Ubuntu-based Linux, edit
/etc/apache2/mods-enabled/userdir.conf. For

Mandriva Linux, edit /etc/httpd/modules.d/67_mod_
userdir.conf. For all other Red Hat-based Linux
distributions, edit /etc/httpd/conf/httpd.conf. Within
the directory that will house SSI-friendly HTML files, create
a special file called .htaccess with exactly one line:
Options +Includes

This grants full SSI rights, including program-execution
capabilities, to the HTML files in this directory. Execution
permissions can be a security risk, especially if you use a
shared Web server. To mitigate this risk, enable SSI
without execution rights using this command instead:
Options +IncludesNoExec

After setting the AllowOverride directive and creating the
.htaccess file, simply rename your HTML files to have an
.shtml extension. Alternatively, if you used the XBitHack
method on Unix, you do not have to alter the extension, but
you need to enable the execute-bit on the actual HTML file.

Configure a
Directory to Use SSI

16_556801-ch14.indd 19416_556801-ch14.indd 194 8/31/10 9:23 AM8/31/10 9:23 AM

195

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)
0

#

9

!

After you complete this step, you are ready to start applying some SSI elements to your HTML code. When testing,
you may find that SSI does not appear to be working correctly; one of the steps required may be incomplete or
incorrect. Remember, you need to enable the Apache module, activate the Apache output filter, assign a directory
that Apache will watch for SSI content, and finally activate the SSI parser on individual HTML files.

This may seem like a lot of steps, but you only need to complete the first three when enabling SSI in Apache. You
only need to complete the final step, activating the SSI parser on an individual file, when you create a new SSI-
compliant file.

If you do not properly enable each SSI component, Apache will silently ignore the SSI-specific functionality. In fact,
if you view your Web page’s source code, you will notice raw SSI tags showing up as literal HTML comments.

Be sure to consult with the Apache error logs. They should be able to provide you with a hint as to where the
problem is.

In a browser, go to the SHTML file’s URL.

• The browser displays the static HTML in
the SHTML file.

• The browser displays the SSI-parsed
output of the SHTML file.

9 Create a new SHTML file.

0 Type some regular HTML code.

! Type <!--#printenv --> to print all
environment variables from SSI.

@ Save the SHTML file as filename.
shtml.

 (Unix-only) If you used the XBitHack
method, type the command chmod +x
filename.shtml to activate SSI.

16_556801-ch14.indd 19516_556801-ch14.indd 195 8/31/10 9:23 AM8/31/10 9:23 AM

196

Executing CGI Scripts

CGI scripts may be executed using the include element, but
some important CGI data is not forwarded to the script.
Instead, use the exec element with the cgi attribute:

<!--#exec cgi=”script_file” -->

Like include virtual, the actual script file is located
relative to the domain root.

Executing Programs

SSI can execute a compiled binary whenever you use the
exec element with the cmd attribute. The data the executable
prints on standard-output is then relayed to the Web browser.

<!--#exec cmd=”program” -->

Naturally, only command-line programs work with this feature.
Programs with a graphical user interface, or GUI, do not
function correctly as SSI reads only the data printed to
standard-output.

Importing Content

The most common use of SSI is to import content from external
files or programs, and superimpose that content within normal
HTML output. The SSI elements include and exec provide
this functionality. If either element cannot find the referenced file,
a generic error message appears in the HTML output.

External Files

Static text files, such as HTML, can be imported with SSI
using the include element with either the file or
virtual attributes:

<!--#include file=”file” -->

<!--#include virtual=”file” -->

The difference is that file looks for the file relative to the
Web server’s hard drive, and virtual looks for the file
relative to the Web site’s domain URL.

Basic SSI Elements

Y ou can use SSI elements stored within your
SHTML files to access environment variables,
include external files, and test for basic

conditional expressions. The SSI tag uses the same
structure as an HTML comment: they both begin and end
with <!-- and -->. Like an HTML comment, the text
within is not visible when viewing your Web page in a
browser, but it is visible if a user views your page’s
source code. The SSI tag is a specific syntax that
references the SSI element and any required attributes:
<!--#element attribute=”value” ... -->

When Apache serves your Web page to the Internet, the
SSI module parses the SHTML file looking for the
characters beginning with <!--# and ending with -->.
(A space must precede the closing tag boundary.) If this
format is recognized, the SSI parsing mechanism is
activated and the SSI element is processed. The SSI
element used may require one or more
attribute=”value” pairs. You may wrap the attribute’s
value in double-quotes.

Understanding
SSI Elements

Basic SSI elements are individual SSI tags that perform a single, read-only function. This is usually as
simple as retrieving and displaying server-based information within the Web site’s original HTML output.

16_556801-ch14.indd 19616_556801-ch14.indd 196 8/31/10 9:23 AM8/31/10 9:23 AM

197

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

Display File Statistics

You can use SSI to display information about additional
files on the Web server, such as a file’s last-modified
timestamp or its overall size on disk. This can describe to
the user when a specific file was last changed by the Web
site administrator, or it can display the total size of a file
that can be downloaded.

The fsize and flastmod elements provide this
functionality. Either element takes exactly one attribute,
either file or virtual. This allows you to specify the
file path on the Web server, or a virtual path from the root
of the domain being served.

Display Environment Variables

SSI variables are stored within the Apache session
environment, which is mostly populated with CGI-specific
variables. To display a complete list of all environment
variables and their values, use the printenv element:

<!--#printenv -->

To display specific variable data in the HTML output, use
the echo element:

<!--#echo var=”name” -->

Basic SSI Elements (continued)

Advanced SSI Elements

Setting Variables

You can use the set element to set a new variable or
change an existing one. Once you assign a new value, you
can use it for testing with the if or elif elements, and
display it with the echo element:

<!--#set var=”name” value=”value” -->

The variable name you are setting does not need to be pre-
defined, but be careful about setting existing CGI
environment variables. Doing so overrides the original
value provided by Apache or the user’s Web browser,
which may adversely affect normal CGI operations.

Conditional Tests on Variables

Conditional SSI elements allow you to test SSI variables for
specific data, and to control the output of portions of HTML
based upon those results. There are four SSI elements that
provide this functionality: if, elif, else, and endif.
When you use them together, they form a complete
conditional test block.

The block begins with an if element. This establishes an
initial test expression, defined by the expr attribute.

Optionally, you can use elif and else to provide
additional logic if the preceding expr returns false.
Because elif is a shortcut for else and if, it also requires
an expr attribute.

The block ends with the endif element:

<!--#if expr=”TEST1” --> TEST1 is true!

<!--#elif expr=”TEST2” --> TEST2 is true!

<!--#else --> TEST1 and TEST2 are false!

<!--#endif -->

The content that is written in between the elements defines
what the browser will display as HTML output, but only if
the preceding logic allows it.

The syntax for the expr attribute is fairly robust. SSI
variables are referenced just like Perl scalars: $var. Hard-
coded strings should be single-quoted so that they do not
interfere with the expr statement’s double-quotes:

<!--#if expr=”$HTTPS != ‘on’” -->Warning: SSL
is not active!<!--#endif -->

SSI can test using simple equality operators, and even
supports nesting multiple test conditions using brackets.

Error Messages

If an SSI element uses incorrect syntax, or has any problem performing the requested command, an error message
appears: [an error occurred while processing this directive]. You can customize this error message with config errmsg.

Advanced SSI elements alter the flow of the original HTML. This means that you can use them to display or omit a portion of
the HTML code, in accordance with conditional testing on CGI environment variables.

16_556801-ch14.indd 19716_556801-ch14.indd 197 8/31/10 9:23 AM8/31/10 9:23 AM

198

1

2

5

3

5 In a browser, go to the
SHTML file’s URL.

• The browser displays the
regular file.

• The browser displays the
imported file.

1 Create a new SHTML file.

2 Type some regular HTML
code.

3 Type <!--#include
virtual="filename " --> to
import this file.

4 Save the SHTML file.

Import Files with SSI

Y ou can import external files into your HTML
output with SSI. Typical applications of this
feature are to re-use common code, such as a

header or footer, across multiple SHTML pages, or to
import data generated by another program by way that
program’s standard-output (STDOUT) display data.
You can use the SSI element include, with either the
file or virtual attributes:
<!--#include file=”file” -->
<!--#include virtual=”file” -->

Either attribute method works. The difference is that
file searches for the file relative to the Web server’s file-
system, while virtual searches relative to the Web site’s
domain. Note that the system-user account that runs the
Apache service requires read-permissions on files.

Deciding which attribute method to use may be
confusing, but it all depends on where the source file
exists. If it exists outside of the Apache “visible”
directory path, or in other words, is not accessible by any
URL, then you can use the file attribute. If your source
file exists within the same domain URL, you can use the
virtual attribute.
If the Apache SSI parser cannot find the file, a generic
error message is displayed:
[an error occurred while processing this
directive]

It is possible to execute CGI scripts with include;
however, the CGI environment may not be forwarded to
the CGI script properly, depending on your version of
Apache. Instead, use exec cgi as described in the
section, “Execute Programs with SSI.”

Import Files
with SSI

16_556801-ch14.indd 19816_556801-ch14.indd 198 8/31/10 9:23 AM8/31/10 9:23 AM

199

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

1

2

5

3

5 In a browser, go to the SHTML
file’s URL.

• The browser displays the regular
file.

• The browser displays the CGI
program’s output.

1 Create a new SHTML file.

2 Type some regular HTML code.

3 Type <!--#exec cgi="script " --> to
execute this CGI script.

4 Save the SHTML file.

Execute Programs with SSI

through SSI. The impact could range from viewing files
outside of the Apache htdocs directory, to deleting files,
depending on the Apache user’s effective privileges on
your server.
To remove this risk, you can configure Apache to provide
SSI functionality without execution privileges by applying
the IncludesNoExec option into .htaccess, or the
Apache master configuration file. If IncludesNoExec is
set, you cannot use exec at all. It is still possible to
execute CGI scripts with the include element, but the CGI
environment may not be set up correctly depending on
your version of Apache. Specifically, the QUERY_STRING
field may be absent from the CGI script’s environment.
If you require HTML forms to both work through SSI and
call an underlying CGI script, test both include virtual
and exec cgi methods.

Y ou can use the exec SSI element to import
the run-time output of an external program
into your SHTML file. Execution happens in

real-time, meaning that every time a user visits a
Web page with this element enabled, the program
executes immediately and its output displays.
You can use either the cmd or cgi attributes to
reference a binary command-line program, or a CGI
script, respectively:
<!--#exec cmd=”program_file” -->
<!--#exec cgi=”script_file” -->

Note that there are security concerns with enabling
the exec option. This can be very dangerous if
untrusted users have the opportunity to upload
HTML code to your Web site that will be processed

Execute Programs
with SSI

16_556801-ch14.indd 19916_556801-ch14.indd 199 8/31/10 9:23 AM8/31/10 9:23 AM

200

2

5

1

3

Y ou can set variables within SSI to be read by
other SSI elements, or by a Perl CGI script. In
other words, you can assign unique data early in

the SHTML Web page, and do something with it later in
the SSI workflow:
<!--#set var=”name” value=”value” -->

Once a variable is set, its value can be retrieved using the
echo element, or tested against with if and elif in SSI,
or in an included Perl CGI script using the %ENV hash. By
default, all of SSI’s variables are inherited from the CGI
environment. Be careful about setting a variable using a
pre-defined CGI keyword; no warning message displays if
you do this.
When the variable is assigned, or re-assigned, the value
is only temporary. The change is only applicable after set
is called, and lost when Apache finishes serving the Web

Set Variables
within SSI

Set Variables within SSI

1 Open an SHTML file.

2 Type <!--#set
var="name "
value="value " --> to set
an SSI variable.

3 Use ${name} when
referring to an SSI
variable that is assigned
into another SSI variable.

4 Save the SHTML file.

5 In a browser, go to the
SHTML file’s URL.

• The browser displays the
regular file.

 The browser does not
display additional SSI
content confirming any
new variables or values.

Note: SSI variables are stored
within the Apache session.
Nothing appears in the
browser when setting them,
even if you view the page’s
source code.

page request. In other words, their values are not
persistent across multiple Web pages.
The set functionality is most typically used when
building a Web site that imports a common HTML file,
such as a toolbar, within multiple individual HTML files,
such as an Index or Contact Us page. For example, you
could set a new variable in index.shtml that assigns
“page=index”, and in contact.shtml that assigns
“page=contact”. Because both pages include toolbar.
shtml, the toolbar’s logic tests for “page” to identify
where the user is on the Web site and highlights the
toolbar accordingly. Subsequently, when toolbar.shtml
executes toolbar.pl, the Perl CGI can identify the user’s
location using $ENV{ ‘page’ }.
A complete description and implementation of this
scenario is described in the section, “Link the Header,
Toolbar, and Footer with Static HTML Content.”

16_556801-ch14.indd 20016_556801-ch14.indd 200 8/31/10 9:23 AM8/31/10 9:23 AM

201

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

1

3

5

2

Retrieve Variables
with SSI

Y ou can access SSI variables with the echo
element. You can then display a variable’s
data in the HTML output stream being sent

to the user’s Web browser. Along with built-in SSI
variables, you can also access all CGI environment
and user-defined variables:
<!--#echo var=”name” -->

To see a complete list of all variables and their
values, use the printenv element:
<!--#printenv -->

With some clever planning, you could even use echo
to pre-populate and manipulate content outside of
visible HTML. For example, you can easily populate
a JavaScript variable or hidden HTML input field
with a default value assigned through SSI:

Retrieve Variables with SSI

1 Open an SHTML file.

2 Type <!--#echo var="name " --> to
get an SSI variable’s value.

Note: SSI variable names are
case-sensitive.

3 Type <pre><!--#printenv --></pre>
to display the environment.

Note: The printenv SSI tag includes
carriage returns, but no
 tags;
<pre> ensures that it displays correctly.

4 Save the SHTML file.

5 In a browser, go to the SHTML
file’s URL.

• The browser displays the individual
variables.

• The browser displays the complete
list of variables and values.

Note: If you scroll to the bottom of
printenv’s output, you will also find
your newly created SSI variables here.

<script type=”text/javascript”>
var userIP = “<!--#echo var=”REMOTE_ADDR”
-->”;

</script>
<input type=hidden name=userIP
 value=”<!--#echo var=”REMOTE_ADDR” -->”>

Notice the double-quotes appear incorrectly nested. It is
true you should never have a pair of double-quotes that
do not define a single contextual statement; however,
there are two different technologies doing the parsing
here. Because SSI parses the content before the Web
browser, it starts at <!--# and stops at -->, so it only
sees the double-quoted var value. By the time the
browser receives the data, the SSI tag has already been
converted into the user’s public IP address. The JavaScript
and HTML form input parsers will read their double-
quoted IP address assignments correctly.

16_556801-ch14.indd 20116_556801-ch14.indd 201 8/31/10 9:23 AM8/31/10 9:23 AM

202

2

5

6

3

1

4

1 Open an SHTML file.

2 Type <!--#if expr="$VAR =
'value '" --> to begin a
conditional expression block.

3 Type some content that you
want to display if the
conditional statement is true.

4 Type <!--#endif --> to
complete the block.

Note: At this stage, the simplest
conditional expression block is
complete. You have the option to
include the elsif and else
statements within the block to
customize your display logic.

5 Type <!--#else --> after the
true content, but before
<!--#endif -->.

6 Type some content that you
want to display if the
previous conditional
statement is false.

Note: You can stop here, or you
can continue to fine-tune the
display logic.

Use Conditional Expressions with SSI

S SI allows you to use conditional expressions to
control what the browser displays to the user,
depending on the results of a conditional

expression test. You can place additional content, such as
unique HTML or SSI tags, in between each conditional
expression tag to be displayed when a test permits it. If a
test returns true, the Web browser displays the enclosed
content, but no other content from any other test:
<!--#if expr=”condition1” -->
 ...
<!--#elif expr=”condition2” -->
 ...
<!--#else -->
 ...
<!--#endif -->

A conditional expression block must always begin with
an if element and an expr attribute to define the test
logic. If the first test fails, you can add an optional elif
element with a new expr test. An optional else element
may follow, whose content only displays if the previous
expr logic returns false. Finally, you must use the endif
element to complete the conditional expression block.
The formatting of expr’s syntax is fairly intuitive:
standard equality operators such as = and != are
common. Do not use <, >, <=, or >= as SSI is only capable
of comparing strings by their ASCII character values, not
by their number values. You can nest tests together with
brackets, and you can compare them as a group with the
binary operators && and ||. You can use any SSI variable
within a conditional expression test; precede the variable
name with a dollar-sign, just like a Perl scalar.

Use Conditional
Expressions with SSI

16_556801-ch14.indd 20216_556801-ch14.indd 202 8/31/10 9:23 AM8/31/10 9:23 AM

203

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

7
8

0

You can nest multiple conditional blocks within each other, just as long as there is the same number of if and
endif elements to correctly open and close them all.

When using strings as test logic, you should enclose the hard-coded text in quotes in a way that does not interfere
with the expr attribute’s parent-quotes. This may involve switching to single-quotes, or by escaping double-quotes
with a back-slash (\”).

Alternatively, you can use forward-slashes instead of quotes around the string text to treat it like a regular
expression. SSI actually uses the same regular expression syntax as Perl.

Because the Web server parses SSI, all content within the conditional expression whose test returned false is
completely hidden from the end-user. Even if you view the Web site’s source code, you cannot access the original
source code to the entire conditional expression block. However, if SSI is disabled on the server, the browser renders
the SHTML file verbatim, just like a normal HTML file, and all text within the entire conditional expression block is
visible!

0 In a browser, go to the
SHTML file’s URL.

• The browser displays
specific content based
upon the various
conditional tests.

Note: If you view the source
code to this page in your
browser, you will see that only
the “true” display section of the
conditional block is sent to the
browser.

7 Type <!--#elsif
expr="condition " -->
before the <!--# else
--> statement.

8 Type some content that
you want to display if the
previous conditional
statement is false.

Note: You can specify multiple
elsifs after the first if and
before else or endif.

9 Save the SHTML file.

16_556801-ch14.indd 20316_556801-ch14.indd 203 8/31/10 9:23 AM8/31/10 9:23 AM

204

1

3

2

4

4 Type <!--#echo
var="LAST_MODIFIED"
--> to display the date
this page was last
modified.

Note: This is a shortcut to
using the full flastmod
command on this SHTML file.

1 Open an SHTML file.

2 Type <!--#fsize
virtual="file " --> to
display a file’s size in
bytes.

Note: Apache may default to
either “bytes” or “abbrev”
formatting if config
sizefmt is not yet specified.

3 Type <!--#flastmod
virtual="file " --> to
display a file’s last-
modified timestamp.

Display File Statistics with SSI

Y ou can use SSI to access some local file statistics.
This feature is limited to displaying only a file’s
size, or its last-modified timestamp. You can access

this feature using the fsize and flastmod SSI elements.
You can identify the file by either the file or virtual
attributes. The attribute file references the location on
the Web server’s file-system, while virtual references
the location on the Web site’s domain:
<!--#fsize virtual=”file” -->
<!--#flastmod virtual=”file” -->
<!--#fsize file=”file” -->
<!--#flastmod file=”file” -->

To change the file size units, use the config sizefmt
argument. It accepts two possible values, “abbrev” and
“bytes”:
<!--#config sizefmt=”abbrev” -->

When using “abbrev”, the file size is abbreviated by the
largest unit value, and then a unit suffix is appended.
When using “bytes”, just the exact number of bytes on
disk displays, with no suffix.
The flastmod element uses the default format,
“Weekday, dd-Mmm-yyyy hh:mm:ss tz”. Use the
config element and timefmt attribute to customize the
time format:
<!--#config timefmt=”%Y-%m-%d %H:%M:%S” -->

Note that the system-user account that runs the Apache
service requires read-permissions on any referenced files.
Alternatively, if you want to display the last-modified
date of the user’s current Web page, just display the
LAST_MODIFIED attribute:
This page was last modified on <!--#echo
var=”LAST_MODIFIED” -->

Display File
Statistics with SSI

16_556801-ch14.indd 20416_556801-ch14.indd 204 8/31/10 9:23 AM8/31/10 9:23 AM

205

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)

5
6

7

9

When customizing the timestamp, you can use the following macros to specify which time-based value and unit you
want to display.

MACRO DESCRIPTION MACRO DESCRIPTION

%a The abbreviated weekday name %p “AM” or “PM”

%A The full weekday name %P “am” or “pm”

%b The abbreviated month name %r “a.m.” or “p.m.”

%B The full month name %S The second (00-59)

%d The day of the month (01-31) %T Same as “%H:%M:%S”

%F Same as “%Y-%m-%d” %y The 2-digit year, without the century

%H The hour in a 24-hour clock (00-23) %Y The 4-digit year, including the century

%I The hour in a 12-hour clock (01-12) %z The time-zone offset from GMT

%m The month as a number (01-12) %Z The time-zone name

%M The minute (00-59)

9 In a browser, go to the SHTML
file’s URL.

• The file’s size and modification
date, before using config.

• The file’s size and modification
date, after using config.

• The timestamp of this SHTML
file, using the last configured
time format.

Note: All times are relative to the Web
server’s configured time-zone.

5 Type <!--#config
sizefmt="bytes" --> to change
the size that displays to total
bytes.

6 Type <!--#config timefmt="%Y-
%m-%d %H:%M:%S" --> to
change the time format.

7 Copy the fsize and flastmod
tags from steps 2 and 3 to a
point after these config tags.

8 Save the SHTML file.

16_556801-ch14.indd 20516_556801-ch14.indd 205 8/31/10 9:23 AM8/31/10 9:23 AM

206

6

1

5

3

2

7

1 Create a new file for the
toolbar.

2 Type <!--#if expr="$page
= 'page1'
-->class=selected<!--
#endif --> within the
page1 link.

3 Repeat step 2 for the
other pages, using unique
page names.

4 Save the toolbar as a
SHTML file named
toolbar.shtml.

5 Create a new file for the
header.

6 Type the header’s static
HTML code.

7 Type <!--#include
virtual="toolbar.shtml"
--> to import a toolbar
SHTML file.

8 Save the header as a
SHTML file named
header.shtml.

Link the Header, Toolbar, and Footer with Static HTML Content

L inking the header, toolbar, and footer templates
with a parent SHTML file provides the foundation
for a consistent layout throughout the entire Web

site. The static HTML defines the unique content to each
specific Web page. This is similar to linking the header,
toolbar, and footer with dynamic Perl content in that you
want to re-use your header, toolbar, and footer
throughout the entire site; however, in this case, you
have no Perl script providing the main body of content,
just static text.
Here you have the freedom to decide whether the
template files are generated with Perl and
HTML::Template, as described in Chapter 13, or simple
SHTML files. Your parent content is still static HTML
here, but the template layout can still be dynamically
generated.

Ideally, it is best to standardize across the entire Web site
how pages are generated. Using SHTML as the top-level
file format ensures that you can include other SHTML
files or CGI files very easily. The top-level file format
refers to the actual filename that appears for each unique
page in the browser’s location field. In other words, you
want the user to see filenames such as index.shtml,
catalog.shtml, and contact.shtml.
Because the header and footer templates could be either
SHTML or CGI, depending on their design requirements,
the top-level SHTML file would import them using the
include virtual or the exec cgi SSI element.
You insert the unique content on each top-level page in
the middle, in between the header and footer SSI
statements. If this content is static, it is the literal HTML
code. If it is a dynamic Perl CGI script, you use exec cgi
to import it.

Link the Header, Toolbar, and
Footer with Static HTML Content

16_556801-ch14.indd 20616_556801-ch14.indd 206 8/31/10 9:24 AM8/31/10 9:24 AM

207

Ch
apter 14: A

ddin
g D

yn
am

ic Con
ten

t w
ith

 Server-Side In
clu

des (SSI)
0

@

(

#
$

%
^
&

9

There are three main benefits of following this model of layering SHTML and CGI technologies. First, the final Web
site will have a consistent master layout that you can change site-wide by updating a single file. The consistent
master layout may react dynamically, depending on what page the user is actually on. For example, the toolbar may
highlight Catalog when on the catalog.shtml page, but the underlying code remains the same site-wide.

Second, you can create new top-level pages very easily, by literally copying the beginning and end of an existing Web
page source, and changing the middle. In fact, you may find that a dynamically generated Web page can have only
four lines in its top-level file:

<!--#set var=”page” value=”catalog” -->

<!--#include virtual=”header.shtml” -->

<!--#exec cgi=”cgi/catalog.pl” -->

<!--#include virtual=”footer.shtml” -->

Finally, you actually obfuscate to the end-user exactly which CGI technology you are using on the site. This can
make it more difficult for attackers to target your site; by hiding everything under the guise of an HTML file, and
instructing SSI to parse HTML files, you establish the illusion that the entire site is 100-percent static HTML!

9 Create a new file for the footer.

0 Type the footer’s static HTML code.

! Save the footer as a SHTML file named
footer.shtml.

@ Create a new file for the actual Web page.

Type <!--#set var="page" value="pagename "
--> to assign the page name for the toolbar.

$ Type <!--#include virtual="header.shtml" -->
to import the header SHTML file.

% Type some static HTML specific to this page.

^ Type <!--#exec cgi="script.pl" --> to import a
Perl CGI script.

& Type <!--#include virtual="footer.shtml" -->
to import the footer SHTML file.

* Save the file as a SHTML file named
pagename.shtml.

(In a browser, open up pagename.shtml.

• The browser displays the header, toolbar, and
footer SHTML file content.

• The correct toolbar link is highlighted.

• The static HTML.

• The dynamic Perl script.

16_556801-ch14.indd 20716_556801-ch14.indd 207 8/31/10 9:24 AM8/31/10 9:24 AM

208

Understanding Apache
User Authentication

B y adding support for user authentication to your
Web site, you can secure specific Web pages and
directories so they are not available publicly on

the Internet. Users must input their personal credentials,
which are validated using a chosen authentication model.
Depending on the model you use, either Apache or a CGI
script will consult with an authorization back-end
database to confirm whether those credentials are valid.
Before you can begin, you may want to identify which
pages you should restrict, and what level of authorization

a user requires to view them. The easiest way to do this
is to follow the browser-based authentication model and
create a special subdirectory, such as http://mydomain.
com/private/. All HTML files, CGI scripts, and images
that you place in this directory will be secured by the
special access restriction rules as defined in the Apache
configuration. Alternatively, you can develop your own
Web-based authentication model that is enforced within
restricted CGI scripts.

Authentication Workflow

You can authenticate users with Apache and CGI using
different authentication models; however, when validating a
user, each model follows the same basic workflow. Before
you can begin, you need to decide which URLs you want to
restrict access to. It may be one or two HTML files, a couple
of directories, or the entire domain. Depending on the
authentication model you choose, either Apache or CGI needs
to be aware of which URLs are restricted.

When a user attempts to access a restricted URL, the Web
page should display an Authentication is required message
and prompt for the user’s credentials. If the user’s credentials

fail authentication, an appropriate error message should
display. Good security design states that you should not be
too specific about what failed: for example, if the username is
not found or the password is incorrect, you should display a
generic message such as Invalid username or password.
Please try again.

Some more advanced workflow features include a maximum
authentication retry timeout, online account registration, and
e-mail password recovery. Keep in mind that the browser-based
authentication model does not support these features, so you
will need to build your own implementation in your CGI scripts.

Browser-Based Authentication

Authentication Types

The authentication type tells the browser how to communicate
the user’s authentication input to the Web server. Apache
supports two main types: basic and digest. Deciding on an
authentication type depends on the level of security you want
to offer, and the Web browser your users are likely to have.

Basic Authentication Type

Basic authentication means that the user’s username and
password are sent unencrypted back to the Web server. It is
considered the most robust method and is supported by
virtually all Web browsers. For local development and testing
purposes, it is safe to use basic authentication without an
additional security layer. However, it is strongly recommended
that you add SSL encryption if you plan on deploying basic
authentication onto the public Internet.

Digest Authentication Type

Digest authentication performs just like basic authentication,
except that the password is encrypted when it is sent back to
the Web server. However, not all Web browsers support
digest authentication as an option. Once enabled, an
automatic challenge-response communication happens
between the browser and the Web server. First, the server
sends a random token to the Web browser. The Web browser
responds not with the literal password, but with an MD5 hash
that combines the username, password, session request, and
the original token.

All modern Web browsers support authenticating users with a generic dialog box. First, you must configure Apache to apply a
restricted access control to a specific directory. That directory leverages an authentication provider to validate the supplied
username and password credentials. If the credentials are accepted, an authorization method is used to check if the user actually
has access rights to the directory.

17_556801-ch15.indd 20817_556801-ch15.indd 208 8/31/10 9:24 AM8/31/10 9:24 AM

209

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

Authorization Method

The authorization method determines if a user has specific
rights to a secure area, regardless of whether their
credentials have passed authentication. This allows you to
set up multiple secure directories that allow different
combinations of user access.

Allow Specific Users

You can define specific users in the Apache config file or
.htaccess file as being allowed access to a secure URL.
Apache checks for authorization after their credentials have
passed the authentication stage.

Allow Specific User-Groups

You can bundle individual users together into logical
groups and authorize them based upon group membership.
The Apache config file or .htaccess file must
reference the authorized group name. Apache checks for
group authorization after their credentials have passed the
authentication stage.

Authentication Provider

The authentication provider tells Apache how the valid user
credentials are stored on the Web server. You must specify
exactly one authentication provider per secured URL
directory in Apache. Sourcing from multiple authentication
providers within the same restricted URL directory is not
possible.

Static Password File

The Web site administrator creates and maintains a static
password file, which you can use as an authentication
provider. It contains all of the authorized users and
passwords to a particular secure area of the site. This file
cannot be accessed directly by URL, but instead by Apache
using the active authentication type. The administrator uses
the program htpasswd or htdigest, depending on the
authentication type; they can use the program to add,
update, and remove credentials from the file.

Static Database File

Using a static database file as your authentication provider
is very similar to the static password file method, except
that the database is much more efficient at managing a
large number of credentials in a single file. The
administrator uses the program htdbm to add, update, and
remove DBM-formatted credentials from the database file.

SQL Database

You can use a custom SQL database as an authentication
provider. This is especially useful if you already have a list
of usernames and passwords in a database, and you want
to instruct the Apache basic or digest authentication types
to support it. You can configure a custom SQL statement
specific to your user’s table that Apache will execute to
access the password.

Local Users

You can use the local user accounts on the Web server as
an authentication provider with the help of the pluggable
authentication modules framework called PAM. This
method is only available on Unix systems where users
already have a need for a local account, such as an SSH or
FTP access requirement, and you want to allow them to
use their local user credentials to authenticate on to your
Web site.

Browser-based Authentication (continued)

17_556801-ch15.indd 20917_556801-ch15.indd 209 8/31/10 9:24 AM8/31/10 9:24 AM

210

3

1

2

6

4 544

4 Type AuthType Basic.

5 Type AuthName name.

Note: The AuthName value is
merely a label to the secure area. It
will be displayed to the user in the
login popup message.

6 Type AuthBasicProvider file.

1 Open the Apache configuration
file.

2 Type <Directory path> to
include the full directory that
you want to restrict access to.

3 Type </Directory> to close off
the directive.

Secure a Directory Path with Apache

Y ou can configure Apache to secure a directory
from public access. Doing so will cause the user’s
Web browser to display a generic dialog box,

prompting them for a username and password. You have
a choice of how to instruct Apache about which directory
is to be restricted. You do this by applying special
authentication directives within either a directory context
or an .htaccess context.
The directory context implies editing the Apache httpd.
conf configuration file and creating a <directory
path> configuration group. All files and subdirectories
within the specified directory are treated as restricted and
will require authorization.
The .htaccess context means you can create a special
file called .htaccess directly within the directory you
want to restrict. You can write the authentication

directives to this file. All files and subdirectories stored
under the .htaccess directory are treated as restricted
and will require authorization. You need to restart Apache
to apply directory context changes, but not .htaccess
changes. To activate the .htaccess file, you must enable
the AllowOverride directive’s AuthConfig option. You
need to apply this onto a specific directory context, which
is why you must restart Apache.
You use the authentication directives to specify which
authentication type, authentication provider, and
authorization method you want to apply. The easiest
authentication type and provider to use is the Basic file:
AuthType Basic
AuthName name
AuthBasicProvider file

After you do this, the next step is to create the password
file that contains the users’ credentials.

Secure a Directory
Path with Apache

17_556801-ch15.indd 21017_556801-ch15.indd 210 8/31/10 9:24 AM8/31/10 9:24 AM

211

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

8
9

@ #

!

$

7

Digest authentication allows for a new field for authentication, the realm, which the end-user must type along with
their username and password. Allowed usernames, passwords, and realms are specified in the digest authentication
password file:

AuthType Digest

AuthName name

AuthDigestProvider file

AuthDigestDomain URL

The directory context in the Apache configuration file allows for some alternative ways to specify a directory path
that you want to secure. Instead of using <directory path>, you can use <location path> to specify a
directory from root of the domain, and <files filename> to restrict by a specific filename or wildcard expression:

<location /private>

 AuthType type

 AuthName name

 ...

</location>

For example, to restrict a specific file-naming convention, you can use <files “*-private.html”>...</
files>. Unlike <directory> and <location>, you can also use <files> within the .htaccess context. This
allows you to specify matching files within the specific directory to which the .htaccess file is written.

! Create a new file called .htaccess in the
directory path you specified in step 7.

@ Type AuthType Basic.

Type AuthName name.

$ Type AuthBasicProvider file.

% Save the .htaccess file.

7 Type <Directory path>, inserting a different
restricted directory path.

8 Type AllowOverride AuthConfig.

Note: Configuring AllowOverride allows you
to secure a directory with a special .htaccess
file. This is an alternative to editing the master
configuration file and restarting the Apache server
to apply the change.

9 Type </Directory> to close off the directive
group.

0 Save the Apache configuration file and restart
Apache.

17_556801-ch15.indd 21117_556801-ch15.indd 211 8/31/10 9:24 AM8/31/10 9:24 AM

212

4
5

1

6

3

2

44
3

3 Type htpasswd -c passwordfile
username and press Enter. (In
Windows, use the full path to the
htpasswd.exe file.)

Note: If you used digest authentication,
use htdigest -c passwordfile
realm username instead.

Note: If the program is not in your path,
you need to specify the location of the
binary.

4 Type in the new user’s password.

5 Type the password in again to
confirm it.

6 Display the password file’s
contents.

• The user’s credentials have been
written to the password file.

1 Open a Terminal window.

2 Go to a directory to hold the
password file outside any visible
Web site directory.

Note: In Unix, the path /etc/
apache2/passwords is acceptable.

Use an Authentication Password File

Y ou can configure Apache to handle basic or digest
authentication using a password file as your
authentication provider. This file stores all end-

user credentials that can be used for authentication. If
you are using basic authentication, you need to use the
htpasswd command. This accepts the password file and
the username as arguments, and then prompts you for a
password:
htpasswd passwordfile username

If you are using digest authentication, you must use the
htdigest command. This is just like the first command,
except it requires a realm argument:
htdigest passwordfile realm username

If the passwordfile does not yet exist, you must use a
-c argument to create it. However, do not use -c on an
existing password file, as the entire file will be truncated!

Because Apache has either a Basic file or a Digest file
configured as the authentication type and provider, you
need to add a new configuration directive called
AuthUserFile to tell Apache where to find the password
file on the Web server:
AuthUserFile passwordfile

These password management programs are part of a
standard Apache installation on most Windows and Unix
installations, but they may not be in your system path.
On Windows, you should find them under the default
directory, C:\Program Files\Apache Software
Foundation\Apache2.2\bin. If you use Debian or
Ubuntu Linux, you may need to install the “apache2-
utils” package, which provides these programs. After
you establish the password file, the final step is to
configure the authorization method.

Use an Authentication
Password File

17_556801-ch15.indd 21217_556801-ch15.indd 212 8/31/10 9:24 AM8/31/10 9:24 AM

213

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

7
8

9

0

!

@

You can update an existing user’s password by simply running the same htpasswd or htdigest command you
used when you created the account. Do not include the -c parameter! Enter in the user’s new password when
prompted:

htpasswd passwordfile username

htdigest passwordfile realm username

You can delete a user’s account by running the same htpasswd command, but adding the -D parameter:

htpasswd -D passwordfile username

Unfortunately, there is no command to delete a user if you used the digest authentication type. Instead, you just
open the file in a text editor and remove the line pertaining to the user. In fact, you can edit the password file and
remove the user regardless of the authentication type.

7 Repeat the htpasswd
command, but for a different
user.

Note: Do not use -c! You only use
this parameter when creating a new
file. If you use it and the password
file already exists, all existing users
will be deleted!

8 Type in the new user’s
password.

9 Type the password in again
to confirm it.

0 Display the password file’s
contents.

• The second user’s credentials
have been added to the
password file.

! Open the Apache
configuration file, or
.htaccess file, depending
on which method you are
using.

@ Type AuthUserFile
passwordfile.

Save the configuration file.

Note: Remember, you can secure
a directory using either the
configuration file or .htaccess
file method. You do not need to
implement both.

17_556801-ch15.indd 21317_556801-ch15.indd 213 8/31/10 9:24 AM8/31/10 9:24 AM

214

2

4

5

1

6

4 Open a Web browser to the
secure URL.

• The login prompt appears.

5 Type in a user’s credentials that
you saved in the password file.

6 Click OK (or Log In, depending
on your Web browser).

1 Open the Apache configuration
file, or the secure directory’s
.htaccess file, in a text
editor.

2 Type Require valid-user.

3 Save the file.

Note: If you modified the Apache
configuration file, you need to
restart the Web server.

Require only Authorized Users

A fter you configure Apache for restricted access
control by securing a directory path, and you
have enabled an authentication provider like a

password file, the last step is to apply an authorization
method. If your Web site has only one password-
protected directory and one password file, you may
simply want to configure Apache to treat all users who
successfully authenticate as authorized users. To do this,
you add the Require valid-user directive into the
Apache directory or .htaccess context configuration.
However, if your Web site has several password-protected
directories using a single users’ passwords file, and a mix
of which users are allowed into each directory, then you
need to use Require to assign authorized users: Require
user userid1 userid2 userid3 [...].

It may not be practical to explicitly include each user for
every secured directory they have access to. To simplify
things, you can assign each user into a logical group, and
then assign one or more groups as having authorized access:
AuthGroupFile groupfile
Require group groupname1 groupname2 groupname3
[...]

The group file follows a very simple format, and you can
create it manually:
groupid1: userid1 userid2 userid3 [...]
groupid2: userid1 userid2 userid3 [...]
[...]

All three uses of the Require directive can be mixed and
matched in a single directory; however, the valid-user
option makes the other two moot. At a minimum, you need
to configure at least one Require directive to complete the
authentication and authorization configuration process.

Require Only
Authorized Users

17_556801-ch15.indd 21417_556801-ch15.indd 214 8/31/10 9:24 AM8/31/10 9:24 AM

215

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

7

9

If you have a fairly large user or group list, you can construct either file using the DBM format. This will make
searching more efficient for Apache when enforcing credentials. You must use the dbmmanage program to manage
DBMs. This program is more complex than htpasswd and htdigest, and its syntax is as follows:

dbmmanage dbmfile command username password groupname1,groupname2,...

Basic command options are add, delete, or update. The password argument accepts either a period (.) to
prompt for a new password, or a dash (-) to keep the previous password. The groupname arguments should be in
a comma-separated list. For example, you can create the user jsmith, prompt for his password, and assign him
into the group’s users and developers with the following code:

dbmmanage dbmfile add jsmith . users,developers

You can remove developers, add managers, and keep the previous password with the following code:

dbmmanage dbmfile update jsmith - users,managers

You must instruct Apache where to find your DBM file:

AuthDBMUserFile dbmfile

AuthDBMGroupFile dbmfile

7 Type Require user username.

8 Save the file and restart Apache if
necessary.

9 Click to reload the Web page.

• An authorization error appears. Although
the user has authenticated, they are no
longer authorized.

• The correct Web page appears in the
browser.

17_556801-ch15.indd 21517_556801-ch15.indd 215 8/31/10 9:24 AM8/31/10 9:24 AM

216

parent CGI script, allowing the script to execute if authorized,
or exiting prematurely if not.

You can develop some more advanced workflow features,
such as a maximum authentication retry timeout, on-line
account registration, and e-mail password recovery, at any
time. They act as supplementary features that complement the
Authentication module.

Authenticating users with a Perl CGI module requires
managing the authentication process. The same module will
be loaded multiple times; you need to be aware of the user’s
current state every time a restricted Perl CGI page is loaded.

This module is responsible for tracking the user, displaying a
login prompt, processing the user’s credentials, and
authorizing the user. When finished, it returns control to the

Authentication Workflow

I f you are not satisfied with the Web browser’s
generic login prompt, you have the option to develop
your own authentication logic and HTML prompt

design. You do this by creating a new Perl Authentication
module, which in turn is leveraged within any CGI script
that requires restricted access.
You will control all identification, authorization, and
validation functionality. This method is recommended for

larger, more complex Web sites as the user ID and
password prompts are free-form HTML. You can embed
them in the site’s layout, creating a more professional
look than a generic Web browser popup prompt.
Developing your own Perl Authentication module means
that only Perl CGI code can be secured. You cannot
directly limit access to a group of static HTML pages, or
an entire directory or domain.

Understanding User
Authentication in Perl

Perl-Based Authentication

Secure Perl CGI Scripts

When securing an individual Perl CGI script, you want the
script to execute, but without the normal script functionality.
One way to implement this is to import a special
Authentication module into the Perl CGI script.

This module provides the logic that validates the user’s
session, and displays a login prompt by way of a special
startup method. The CGI calls this method early in its
execution, and watches for the return value. If it returns a
failure code, it means that the user has not been authenticated
to view the page; the CGI script detects the failure and exits its
normal process flow early.

If the validation method returns a success code, the CGI script
recognizes that the module has authenticated the user, so it is
allowed to continue on and execute its designed functionality.

Perl Authentication Module

When used within any Perl CGI script, the Perl Authentication
module restricts access to that script. The module is
responsible for the following authentication requirements:
tracking the user’s session identifier, authorizing their session,
prompting for credentials, and validating the credentials
against a database.

Every time that CGI script is loaded, the all four authentication
requirements are processed. If the session still has authorized
access, there is no need to prompt the user again for their
credentials; the Authentication module is completely
transparent, allowing active sessions to execute the CGI script.

You can use Perl to secure any Perl-based dynamic CGI page on your Web site through a custom Authentication
module. This module would be in charge of displaying a login prompt, accepting the user’s input, validating the user’s
credentials, identifying when the user’s session is active, and allowing a secured CGI script to display normally.

17_556801-ch15.indd 21617_556801-ch15.indd 216 8/31/10 9:24 AM8/31/10 9:24 AM

217

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

HTML Login Prompt

Whenever authorization fails, an HTML form appears that
prompts the user for a username and password. The
Authentication module must present this HTML form
instead of the regular CGI script’s output, because access
to the script is restricted and you need to validate the
user’s credentials.

The actual CGI also must accept the HTML form’s input.
This is usually done by submitting the username and
password in the form. The Authentication module,
recognizing that the session is still invalid, identifies that
credentials were passed as form input. It takes that input
and compares the username and password against a user
database. Because the module recognizes that the session
is not authorized, it exits with a failure code. This inhibits
the parent CGI script from continuing its normal execution.

Validating a User’s Credentials

The validation process needs to compare the supplied
username and password against the database. If it finds a
match, it authorizes the session. If not, it displays the login
prompt again, with an appropriate error message.

The password should be encrypted or hashed in some
form during this validation process. There is never a good
reason to store the user’s password in clear text in the
database; it is bad enough to receive the password in clear
text over HTTP. At least SSL mitigates this problem.

Authorizing a New Session

If the module identifies the supplied credentials match the
database, then the current session identifier is written
into the user’s record. This now acts as the lookup value
that the module uses for authorizing an existing session.
The module exits with a success return code, and the
parent CGI script continues with its normal functionality.

Session ID Cookie

A session identifier is a unique token that is stored as a
cookie by the user’s Web browser. If the session is
undefined, the module assigns a new cookie, which may
expire when the browser is closed, effectively logging out
the user’s session, or after a set timeout. The session
identifier format should not be a simple incrementing
number, but should have some element of randomness to
it. It should also be a value that no user would be able to
guess simply by changing one or two numbers.

Authorizing an Existing Session

If the Authentication module receives a session cookie back
from a visiting browser, it means that the user has been
here before. The user may have an already existing session,
in which case you do not need to re-authenticate their
credentials. The module searches for the session identifier
in its user database. If it finds one that matches, it knows
who this user is and allows the normal CGI script to
execute.

Optionally, the user database may implement some sort of
timestamp indicating the last time the authorized user
visited the page. Your Web site may implement a form of
inactivity-timeout by checking against this timestamp and
validating that the user has not been away from the site for
too long.

Naturally, if the current time is close enough to the
session’s timestamp, the user is still valid. You need to
update the timestamp to the current time and reset their
time-out clock. If authorized, the module exits with a
success return code, and the normal CGI script is executed.

Perl-based Authentication (continued)

17_556801-ch15.indd 21717_556801-ch15.indd 217 8/31/10 9:24 AM8/31/10 9:24 AM

218

2

1

2

5

6

7

8

9

4

3

4

5 Create a new subroutine called validate.

6 Call a subroutine that checks the session
identifier for pre-existing authorization in the
database.

7 If authorized, type return 0; to stop the
validate subroutine with a success code.

8 Call a subroutine that displays an HTML login
prompt.

9 Type return 1; to stop the validate
subroutine with a failure code.

Note: The parent CGI script will act upon these
return values later.

1 Create a new Perl module called Auth.pm.

2 Import the CGI module and initialize a handle
to it when the Authentication module is loaded.

3 Load the session cookie into a session
identifier variable when the module is loaded.

4 If absent, assign the variable a new session
value, and print the cookie HTTP header.

Create a Perl Authentication Module

Y ou can create your own Perl Authentication
module to have direct control over the
authentication, authorization, and validation of

users on your Web site. This is useful because you can
create your own custom HTML form that appears within
the Web site. This produces a more professional-looking
Web site than a generic browser popup window. Once it
is completed, you can add the module to any CGI script,
effectively restricting access to the script’s logic, and
forcing the user to authenticate. When a user accesses a
restricted CGI script, the module initializes, and its
validation logic begins.
First, the module must track each user by a session
identifier cookie. A new session cookie is assigned for
new users. Returning users keep the same cookie, until
the cookie expires when they close the Web browser.

Second, the session cookie is checked against a persistent
database. If a user record is found that matches the
identifier, the session is authorized and the module exits.
The original CGI script is allowed to continue normally.
If no user record is found, the user is not currently
authorized and must be authenticated. This process
happens in four steps within the module’s validate
subroutine: the module checks for session authorization,
displays a login prompt, validates the user’s credentials,
and finally authorizes the user’s session.
Each time the user loads the restricted CGI script, the
same four-step procedure is followed. This ensures that
the user always has a valid session while accessing a
secure area of your Web site. These four steps are
demonstrated in this chapter.

Create a Perl
Authentication Module

17_556801-ch15.indd 21817_556801-ch15.indd 218 8/31/10 9:24 AM8/31/10 9:24 AM

219

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

#

0
!

$

%

^

@

While you are working on your Perl module, you can validate the code that is being produced by running it as a
normal Perl script on the command-line:

perl Auth.pm

There is no output, but at least you can quickly validate if there are any syntax errors. After you link the module with
an actual Perl CGI script, any errors in the module actually appear as a blank Web page in your browser. The
Apache error logs will contain any error messages, but to make accessing that information available in the Web
browser, you can add the CGI::Carp module directly into this module:

use CGI::Carp qw(fatalsToBrowser);

For more information on CGI::Carp, see Chapter 12.

 Scroll to the bottom of the Auth.pm file.

% For each of the four calls made during
validate, create new placeholder
subroutines.

Note: These subroutines will be populated in
sections “Check for Session Authorization”,
“Display a Login Prompt”, “Validate a User’s
Credentials”, and “Authorize a User’s Session”
in this chapter.

^ Type 1; on the very last line of the file.

& Save the Perl module.

0 If not authorized, check for any
submitted HTML form data.

! If there is data, call a function to validate
the submitted credentials against the
database.

@ If validated, call a subroutine that
authorizes the user’s session identifier.

Type return 0; to stop the subroutine
with a success code.

$ If no HTML form data is found, or if
validation fails, continue on to the HTML
login prompt and failure return code.

17_556801-ch15.indd 21917_556801-ch15.indd 219 8/31/10 9:24 AM8/31/10 9:24 AM

220

1

3 4

2

3 Type -e USERDB_FILE to test if the file
actually exists on disk.

4 Type $self->{ 'db' } = lock_retrieve(
USERDB_FILE); to load the user
database into memory.

Note: If you try to load a file that does not
exist, lock_retrieve will error out and
kill the module.

1 Type use Storable qw(lock_store
lock_retrieve); to import the Storable
module’s subroutines as functions.

2 Type use constant { USERDB_FILE =>
"filename " }; to link the constant
USERDB_FILE to the full path to the
user database file.

Access a User’s Database

T he Authentication module requires access to a
persistent database on the Web server.
The users’ database stores usernames, password

hashes, active session identifiers, and timestamps. The
Authentication module will use this information later to
process who is currently authorized, who can be
authenticated, and whose session has expired due to
inactivity.
In this example, you use the Storable module’s lock_
store and lock_retrieve methods. The Storable
module allows you to easily convert complex Perl
variables into binary data on disk, and retrieve that data
again. In this case, you will be creating a special hash
reference within the actual module to keep track of your
database while loaded in memory.

You create the database hash reference in your new
subroutine. Its first job is to use lock_retrieve and
load the file-system’s copy of the file into memory, or to
create it with lock_store if it does not yet exist. Within
the module, the database is accessible through the $self
hash ref. $self refers to the current state of the module’s
instance, from the module’s perspective:
$self->{‘db’} = database;

User passwords are hashed, and will be stored under a
“users”➔username key:
$self->{‘db’}->{‘users’}->{username} =
password_hash;

Session-specific information is stored under a
“sessions”➔session-ID key:
$self->{‘db’}->{‘sessions’}->{session_ID} = {
 user => user_reference,
 lastseen => timestamp };

Access a User’s
Database

17_556801-ch15.indd 22017_556801-ch15.indd 220 8/31/10 9:24 AM8/31/10 9:24 AM

221

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

5

7

6

The Storable module is not the only way to create a database. However, it is one of the simpler ways, as it easily
converts between any type of Perl variable and binary data. This means that you only need to construct a so-called
database with nested hash and array references to have an instantly indexing table.

This method is good enough for demonstrating an overlying concept, such as this Authentication module, but if you
implement an Authentication module on an actual Web site, then a proper relational database is strongly
recommended.

One popular database program, MySQL, is discussed in Chapter 21. If you were to apply its Perl API into your
Authentication module, the majority of the logic code discussed in this chapter would actually stay the same.

Implementing is rather easy. First, when the module is initializing, you need to call the connect API to create a link to
the database back-end. Second, each of the support functions that need database access, such as check_
authorization, check_credentials, and add_authorization, will have to query and update the database
with a special language called SQL.

You will find that a relational database results in better overall performance and CPU efficiency, especially when
dealing with large amounts of data and traffic.

7 Scroll to the bottom of the file.

• All support functions accept $self,
so they will all have access to
$self->{ ‘db’ }.

8 Save the Perl module.

5 If the file does not yet exist, initialize
the users and sessions keys to
blank hash refs.

6 Type lock_store($self->{ 'db' },
USERDB_FILE); to update the
database file on disk.

17_556801-ch15.indd 22117_556801-ch15.indd 221 8/31/10 9:24 AM8/31/10 9:24 AM

222

2

4
5

3
1

6

7
8

9
0

7

00

1

6 Type use Digest::SHA qw(sha1_base64);
to import a data-hashing module.

7 Check if $cmd is “add”; otherwise, display
the help screen.

8 Read the next two arguments as the
username and password.

9 Type $db->{ 'users' }->{ lc $username } ->{
'pwhash' } = sha1_base64($password); to
hash passwords and store them in $db.

0 Type lock_store($db, userfile); to write the
database to disk.

1 Create a new Perl script.

2 Type use constant { USERDB_FILE =>
"filename " }; to link the constant USERDB_
FILE to the full path to the actual user
database file.

3 Type use Storable qw(lock_store lock_
retrieve); to import the Storable module’s
subroutines as functions.

4 Type $db = lock_retrieve(userfile); to load
the user’s database into memory.

5 Read the first command-line argument as
$cmd; otherwise, display the help screen.

Store User Credentials in a User’s Database

Y ou need to have the means to write user
credentials into a database so that the
Authentication module can both identify who is

allowed to log in, and have access to your secure password
data. This user-database program could be a command-
line Perl script that is executed outside of CGI. You do not
want anyone to type in a URL to access this program. Here
you are leveraging the Storable module again, using the
same lock_retrieve and lock_store functions that the
Authentication module uses. This maintains the exclusivity
lock on the file while it is in use. The SHA1::Digest module
will be used as a hashing algorithm in order to store valid
passwords. Later in this chapter, the section “Validate a
User’s Credentials” will also use the same hashing
algorithm to compare the user’s submitted password-hash
to the database’s stored password-hash.

When running the program, the first argument is the
command, followed by a series of options. If an unknown
command is provided, or the wrong number of options, a
help screen should display as output:
userdb.pl command options ...

The first command to implement is add. It accepts two
arguments: a username and a password. The second
command to implement is dump with no arguments. It
allows you to see the database contents:
userdb.pl add username password
userdb.pl dump

Naturally, accepting a password in clear text is not the
best idea. Fortunately, it is possible to program Perl to
prompt you for the password and not echo the characters
back to the screen. You never know who could be looking
over your shoulder.

Store User Credentials
in a User’s Database

17_556801-ch15.indd 22217_556801-ch15.indd 222 8/31/10 9:24 AM8/31/10 9:24 AM

223

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

!

$
%

^
&

@
#

While this program may seem rather crude, it serves its purpose. Basically, you are providing a means to manipulate
a database file and store passwords securely. Eventually, you could create an administrative CGI script that would
allow you to manipulate the list of authorized users, directly from your Web browser. Before you get too far, it is a
good idea to add some additional functionality to this program, such as updating or deleting users. Updating a
hash uses the exact same logic as adding; however, deleting a user from the hash is slightly different.

$ Open a Terminal window.

% Type userdb.pl and press Enter.

• The help screen appears.

^ Type userdb.pl add username
password and press Enter.

 The username and password are written
to the database.

& Type userdb.pl dump and press Enter.

• The Terminal window displays the
database contents: all stored users and
their hashed passwords.

! Type use Data::Dumper; to import the
module.

@ Test if $cmd is “dump”.

Type print Dumper($db); to display
the contents of $db.

 Save the Perl script as userdb.pl.

TYPE THIS INTO PERL

if ($cmd eq “delete”) {
 if (! $db->{‘users’}->{$username}) {
 print “Error: $username not found!\n”;
 } else {
 delete($db->{‘users’}->{$username});
 lock_store($db, userfile);
 }
}

RESULT

The system first checks if $username
exists. If it does, the record is removed
from the $db->{‘users’} hash and
the database is written to disk.

➔

17_556801-ch15.indd 22317_556801-ch15.indd 223 8/31/10 9:24 AM8/31/10 9:24 AM

224

2

6

1

3 4 5

1

66

3 Type if ($self->{ 'db' }->{ 'sessions' }->{ to
begin a conditional test that checks for a
session in the database.

4 Type $self->{ 'sessID' } to specify the user’s
session identifier.

5 Type }) { to complete the conditional
statement and open the conditional block.

6 Type } to close the conditional block.

1 Open the Perl module Auth.pm in a text
editor.

2 Scroll to the check_authorization
subroutine.

Note: This subroutine, and the rest of the
Authenitcation module’s framework, was created in
the section, “Create a Perl Authentication Module,”
earlier in this chapter.

Check for Session Authorization (Step 1)

E very time a user accesses a restricted CGI script that
imports your Authentication module, the first thing
it does is to validate whether the user’s session has

been previously authorized. It does this by searching for
the user’s session identifier in the database, and matching
it to a valid user record. If authorization is found, the script
allows access to the original CGI. If authorization is not
found, the script prompts the user for login credentials.
Checking for session authorization is the first of four
steps required in order to allow a user access to a
restricted CGI page with your Authentication module. On
each page load, the CGI script first calls the module’s
validate method and waits for a return code indicating
the results. If authorization passes, validate returns
zero and the CGI script interprets this as a success: it
executes its normal functionality. If authorization fails,

the Authentication module workflow continues to the
second step: displaying the login prompt. If you are just
starting to code your own Authentication module, this
subroutine always produces a failing return code. This
happens until you code the fourth and final step,
authorizing a user’s session, which produces the
authorization grant that this subroutine is looking for.
Checking for session authorization has an important
secondary purpose. The subroutine must identify if an
expired session is used by a visiting user, and force the
user to re-authenticate by comparing the session’s last-
seen timestamp that is stored in the database against the
current time. If the difference is too great, the subroutine
displays the login prompt. Likewise, each time a valid
session identifier is used with your Authentication
module, the last-seen timestamp must be reset to the
current time within the module’s database.

Check for Session
Authorization (Step 1)

17_556801-ch15.indd 22417_556801-ch15.indd 224 8/31/10 9:24 AM8/31/10 9:24 AM

225

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

0

7
8

!

@

#

$

9

Deciding on the timeout depends on the level of security of the information on your site. Because high-security Web
sites, like those that offer online banking services, do not want unauthorized users to access information left on an
idle browser by an absent account owner, an unusually low timeout of two or three minutes is common.

The time function returns the number of seconds since January 1, 1970. Because it is already in a numeric form, it
is very easy to use it for calculating time differences, such as in your inactivity-timeout test.

If you are interested, you can convert a timestamp into a readable string with the help of the localtime function.
This can be useful when logging the literal date and time the user last visited the Web site.

! Check if the difference between the current
time and $session->{ ‘last-seen’ }
is within $timeout.

@ Update the last-seen timestamp to the
current time and write it to the database.

Note: Because $session is a reference derived
from $self->{ ‘db’ }, updating the shortcut
automatically updates the original hash ref.

Type $self->{ 'activeSession' } = $session;.

$ Move the success return code within the
timeout conditional block.

% Save the Authentication module.

7 Type return 0; to return success.

8 Update the comments to accurately
reflect the return codes’ results.

9 Type my $session = before the
conditional test expression.

Note: This makes accessing the correct
session in memory easier within the
conditional block.

0 Type my $timeout = 900; to define an
inactivity timeout in seconds.

TYPE THIS

print localtime(SECONDS);

RESULTS

Mon Apr 2, 03:21:56 2010➔

You can customize the output format of localtime by assigning it into an array instead of a scalar. For more
information, run the command-line PerlDoc program, perldoc -f localtime.

17_556801-ch15.indd 22517_556801-ch15.indd 225 8/31/10 9:24 AM8/31/10 9:24 AM

226

1
2

3

7

8

4

5

7 Open the Perl module Auth.pm in a text
editor.

8 Type use HTML::Template; to import the
module.

Note: HTML::Template is a third-party module
that is not part of the standard Perl installation.
See Chapter 13 for information on using
HTML::Template.

1 Create a new login template.

2 Type action="<tmpl_var name=SCRIPT_
NAME>" into the <form> tag.

3 Type <input type=text name=username> to
create a username prompt.

4 Type <input type=password name=password>
to create a password prompt.

5 Type <input type=submit name=process
value=Login> to create a login button.

6 Save the template file as login.tmpl.

Display a Login Prompt (Step 2)

A fter confirming that a user’s session identifier lacks
proper authorization in the database, the next thing
to do is present the user with a prompt to enter

their credentials. This user-login prompt supersedes the
normal output of every Perl CGI script that imports your
Authentication module. This display a login prompt step is
the second of four steps required in order to allow a user
access to a restricted CGI page with your Authentication
module. The login prompt appears to the user when the
Authentication module identifies that the user’s session ID
lacks authorization to view the current Web page. The login
prompt appears instead of the regular CGI script’s output;
the Web page URL the user is on remains the same.
The actual HTML code for the prompt should be displayed
using the HTML::Template module. This makes it easier

for you to change the HTML simply by editing the
template, and to include unique data within the template.
When validate needs to call the display_login_
prompt subroutine, the user is not currently authenticated;
therefore you need to send a signal to the main CGI script,
stopping it from producing its normal CGI output. This
happens when validate returns a failure code as a return
value. When the calling script receives this signal, it
immediately stops and displays nothing to the user.
Therefore, the display_login_prompt must produce
the HTTP header and display the login prompt HTML.
After completing this section, proceed to “Validate a
User’s Credentials,” which will accept the data from the
login prompt and continue the validation process. If it
fails, it will pass control back to this login prompt and
display an appropriate error message to the user.

Display a Login
Prompt (Step 2)

17_556801-ch15.indd 22617_556801-ch15.indd 226 8/31/10 9:24 AM8/31/10 9:24 AM

227

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

0

@

#

9

!

$

It is a good idea to display an appropriate message to the user that reflects what state they are in: new login
attempt, failed login attempt (try again), or timed-out session (try again). Right now you are hard-coding the login
message to assume it is always a new login attempt. You can customize the login.tmpl file, add a message
parameter, and then code display_login_prompt to populate the parameter.

Another feature that you can add is a password recovery page. While developing such a feature is beyond the scope
of this book, your users will appreciate the added convenience. Your password recovery page should be a dedicated
CGI script that, after using a form of alternative identification, resets the user’s password. The alternative
identification means you need to confirm that the user requesting the password recovery is the actual account
holder, without using the original password. Often, you can do this by sending an e-mail to the user, using an
address already stored on file. Once received, the e-mail can contain a link with a random token that, when clicked,
resets the user’s password. Only the original account holder would have access to that e-mail message, assuming
the e-mail address is valid.

@ Type $tmpl->param(SCRIPT_NAME =>
$ENV{ 'SCRIPT_NAME' });.

Note: The template’s form uses SCRIPT_
NAME so it knows where to submit the
username and password. CGI environment
variables are not automatically inherited by
HTML templates, so you need to manually
add them as a template parameter.

Print the HTTP header.

$ Print the template output.

9 Scroll to the display_login_
prompt subroutine.

0 Initialize the HTML::Template module.

! Use login.tmpl as the template.

17_556801-ch15.indd 22717_556801-ch15.indd 227 8/31/10 9:24 AM8/31/10 9:24 AM

228

1

2

2 Scroll to the validate function.

• The check_credentials function is
called only when the login form submits
process=Login, as defined by the
button in login.tmpl.

1 Type use Digest::SHA qw(sha1_base64
); to import the SHA module’s sha1_
base64 function.

Note: The password hash format here must
match the format used in the section, “Store
User Credentials in a User’s Database.”

Validate a User’s Credentials (Step 3)

A fter the user submits their username and
password with the login prompt, the
Authentication module must validate the user’s

credentials against the database. Only after the
credentials are correctly matched is the user’s session
granted access. Otherwise, the login prompt appears
again, with an error message stating that the previous
authentication attempt had failed.
This validate the user’s credentials step is the third of
four steps required to enable a user to access a restricted
CGI page with your Authentication module. In order to
validate the credentials, you need to receive the username
and password input from the HTML using CGI
parameters. The username and password values need to
be properly defined, and a user profile record needs to
exist in the database. It is strongly recommended that

you activate some sort of Web site encryption, such as
TLS/SSL in Apache, before you collect the user’s
credentials. While TLS/SSL encryption is not required
after the credentials have been validated, it gives the user
the confidence that your Web site is safe and secure while
they are logged in.
The validation process involves hashing the CGI password
with the same algorithm used earlier in this chapter,
Digest::SHA, and comparing this value with the already-
hashed database password. If they match, the user is
allowed to proceed. If they do not match, an appropriate
error message appears above the login prompt. The actual
error message needs to appear within the login prompt
template, but only in the event of a previous failed attempt.
When the user’s credentials are validated, the database
updates and activates the user’s session identifier, which
actually grants access.

Validate a User’s
Credentials (Step 3)

17_556801-ch15.indd 22817_556801-ch15.indd 228 8/31/10 9:24 AM8/31/10 9:24 AM

229

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

3

4
5

8
7

6

By hashing your user’s passwords, you are making it much more difficult for an attacker to access the user’s original
password value. A hash, by definition, has four primary features that make it ideal for passwords. First, it is very
easy to take source data and create a cryptographic hash; second, it is very difficult to derive the original data from
the hash; third, it is impossible to modify the source data without changing the calculated hash; fourth, it is
extremely unlikely that you will find two sources that generate the same hash.

Earlier in this chapter, you used the Digest::SHA module to produce a SHA-1 hash of the original password and
write it to the database. Therefore, as you have seen here, you must use the same module to rehash the submitted
password when the user authenticates. The hashed values must match, thus indicating that the user knows what
the original password value is.

Perl contains built-in support for more complex hashing algorithms. To compare, SHA-1 produces output of 160
bits, which is considered minimally secure. You have the option to use SHA-256, SHA-384, and SHA-512
algorithms to increase the mathematical complexity of your SHA password-hashes. For more information, check the
Digest module’s PerlDoc page.

7 Type return 0 if (sha1_base64($password
) eq $userdb->{ 'pwhash' }); to return
success if the submitted and database
hashes match.

8 Update the final comment, in case the
password hashes do not match.

3 Scroll to the check_credentials
function.

4 Store the CGI’s username and password
parameters as new variables.

5 Create a shortcut scalar to the user’s profile
in the database.

6 Type return 1 if (! $username || !
$password || ! $userdb); to ensure that
username, password, and database are all
properly defined before continuing.

Note: Typing a conditional statement like this is
equivalent to using a conditional block containing
the single command.

17_556801-ch15.indd 22917_556801-ch15.indd 229 8/31/10 9:24 AM8/31/10 9:24 AM

230

1

2

3

4

5
6

4 Scroll to the add_authorization
subroutine.

5 Type $self->{ 'db' }->{ 'sessions' }->{
$self->{ 'sessID' } = { to begin the update
session statement.

6 Type }; to close the statement.

1 Scroll to the validate subroutine.

2 Type print "Location: $ENV{ 'HTTP_
REFERER' }\n\n"; to redirect the user’s
Web browser.

3 Change the return code from 0 to 1.

Note: The previous Location redirection will send
the user back to check_authorization; the
return 1 code inhibits normal CGI output, at
least until after the redirection.

Authorize a User’s Session (Step 4)

A ssuming that the user has correctly provided
their username and password, the Authentication
module completes its validation process by

granting authorization to the user’s session. It does this
by linking the user’s session identifier to their user
profile in the database, and writing a timestamp.
This authorize a user’s session step is the final step
required to enable user access to a restricted CGI page
with your Authentication module. This grant is sufficient
to allow the user persistent access to any restricted CGI
script, without needing to revalidate their credentials on
each Web page click. The actual grant is stored in the
database by linking the session hashref with the user
hashref, and then assigning a starting value to the
‘last-seen’ timestamp.

The Authentication module passes control to the top of
the workflow process by redirecting the user’s Web
browser back to the URL in the HTTP_REFERER
environment value, or in other words, the URL that the
user came from when the login prompt appeared. This
redirection is extremely important as it prevents the
username and password fields from being present at any
point when the CGI script is running normally. If you
used the GET method in the login template, you would see
the username and password in the URL. This is mitigated
with POST, but the browser is still aware of the CGI fields.
Another benefit of the redirection is that bookmarks now
work correctly. For example, if the user were to bookmark
http://mydomain.com/secure_script.pl, you would
want the bookmark to work regardless of whether the
user is in an authorized or unauthorized state.

Authorize a User’s
Session (Step 4)

17_556801-ch15.indd 23017_556801-ch15.indd 230 8/31/10 9:24 AM8/31/10 9:24 AM

231

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

7

9

0

8

Right now, for every user that you authorize, there is currently no database cleanup. This means that data will
continue to be added to $self->{ ‘db’ }->{ ‘sessions’ }, but sessions that have expired a long time ago
will never be deleted. An easy way around this problem is to write a little janitor Perl script that reads all session
entries, compares the last-seen key to the current time, and deletes it from the database.

Technically speaking, you can add the same functionality to check_authorization. If it finds a session that has
expired, delete it from the database. However, this would only purge expired sessions when user actually attempts
to authenticate with that session. Remember that when a user closes their browser, their session identifier cookie is
automatically deleted. When they revisit the site, a new cookie will be assigned and the previous session will remain
in the database.

Again, the best way to solve this problem is to write a janitor script that runs every hour or so, which actively checks
for stale sessions by comparing last-seen timestamps, and cleans them from the database.

9 Type 'last-seen' => time, to create the
first timestamp in the session.

0 Write the authorization grant to the
database.

! Save the Auth.pm Perl module.

7 Type 'username' => $cgi->param
('username'), to store the username in
the session.

8 Type 'profile' => $self->{ 'db' }->{ 'users'
}->{ $cgi->param('username') }, to link
the profile to the session.

Note: Here you are linking the username
separate from the profile, because in the profile
hash ref there is no ‘username’ key.

17_556801-ch15.indd 23117_556801-ch15.indd 231 8/31/10 9:24 AM8/31/10 9:24 AM

232

2

3

7

4

1

6

6 Open the restricted CGI script’s
template.

7 Type <tmpl_var name="username"> to
display the logged-in user’s name.

Note: Anything that is found under $db->{
‘activeSession’ } is now accessible
from the template.

8 Save the restricted template file.

1 Open a Perl CGI script in a text editor.

2 Type use Auth; to import the
completed Authentication module.

3 Type my $auth = new Auth; to initialize
the module.

4 Type $auth->validate() && exit 1; to
validate the user.

5 Save the script.

Restrict Access to a CGI Script

Y ou can use your completed Authentication module
to restrict access to any CGI script, now that the
module supports all four stages of the validation

workflow, as described throughout this chapter.
To actually apply the module to an existing CGI script is
extremely easy. There are three simple changes that you
need to apply at the top of your CGI script. Once complete,
the authorization procedure happens every time a user
accesses your script in a Web browser. Depending on the
state of their session, the Authentication module
determines what the browser should display: a login
prompt or the normal CGI script.
The first thing to do is to import your new Authentication
module into a CGI script that will require authentication:
use Auth.pm;

Second, once the module is loaded, you need to initialize
the module into a reference handle variable. All methods
and variables controlled by your Authentication module
will be accessible from this variable:
my $auth = new Auth;

Third, you call the validation code prior to any native
functionality built-in to the restricted CGI script:
$auth->validate && exit 1;

The last half of this statement is new. The validate
method returns 0 when the user is correctly logged in,
and 1 if they are not. Because the Authentication module
contains the ability to display a login prompt, you need to
avoid the restricted CGI script’s normal output. So, if
validate returns 1, the && exit 1 code automatically
activates. if validate returns 0, the exit is ignored and
the restricted CGI script continues normally.

Restrict Access
to a CGI Script

17_556801-ch15.indd 23217_556801-ch15.indd 232 8/31/10 9:24 AM8/31/10 9:24 AM

233

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

9

0

!

One issue with this Authentication module implementation is that it cannot easily restrict access to a static file.
If you want to restrict an HTML file, it is possible to do this by reading the target file as a HTML::Template input
template, and passing it through a restricted Perl CGI script.

To restrict a text or image file, first ensure that all restricted files are stored in a directory that is not accessible by a
normal URL. Second, replace the $cgi->header() and HTML::Template components with something that can
access the original data with the correct MIME type.

For example, if you want to restrict JPEG images, you can create a restrict-jpeg.pl script that uses the
Authentication module, as well as the following commands:

print “content-type: image/jpeg\n\n”;

open (DATA, $cgi->param(‘file’));

while (<DATA>) { print $_; }

close(DATA);

Direct users to the Web page http://mydomain.com/restrict-jpeg.pl?file=image0001.jpg; on the
first load they are prompted for a username and password. On subsequent loads, they see the original image.

 The page reloads.

• The browser displays the restricted
CGI script output.

• The username appears.

Note: If you close your browser, the
session cookie is deleted. Opening the
page again redisplays the login prompt as
your new session cookie is a different
identifier value.

9 Load the Perl CGI script in a Web
browser.

Note: If the Perl CGI script has already
been linked into SHTML, as described in
Chapter 14, load the SHTML file instead.

• The login prompt appears.

• The browser displays the SHTML
header and footer, if applicable.

0 Type in the username and password
for a user in the database.

! Click Login.

17_556801-ch15.indd 23317_556801-ch15.indd 233 8/31/10 9:24 AM8/31/10 9:24 AM

234

5

6
7

3

4

1

2

5 Create a new Perl script called
logoff.pl that uses the Auth
module.

6 Type $auth->logoff();

7 Type print "Location: $ENV{ 'HTTP_
REFERER' }\n\n"; to send the user
back to the originating URL.

8 Save the script.

1 Open the Perl module Auth.pm in a
text editor.

2 Create a new method called logoff.

3 Type delete($self->{ 'db' }->{
'sessions' }->{ $self->{ 'sessID' } });
to delete the session.

4 Write the database memory to disk.

Terminate a User Session

Y ou need to be able to terminate a user’s session,
either when requested by the user with a logoff
button, or automatically after a period of

inactivity. You have implemented an automatic
termination function, so all that remains is a logoff
button. A manual logoff script can be accessible as a CGI
script through a standard HREF link. Such a script
redirects the user back to the page he just came from by
sending a “Location” HTTP header instead of the
normal “Content-type” header. In order to send the
user back to the page they just came from, you use the
HTTP_REFERER environment variable:
print “Location: $ENV{ ‘HTTP_REFERER’ }\n\n”;

Using this redirector creates the illusion that the user
never left the restricted page; the actual URL never

actually changes in the browser, even though the HTML
the user used to click the logoff button clearly states:
Logoff.
Note that this logoff link should only appear when the
user is currently logged in. This usually means integrating
the literal link into the HTML::Template output of all
restricted CGI scripts. The actual logoff process involves
destroying the link between the user’s session identifier
cookie and the user profile in the database. Optionally, the
browser can display a message to the user when the page
reloads, along with the login prompt.
This is the final step to securing CGI pages with your own
Authentication module. If you had implemented Apache
authentication, you would find that Apache does not
provide an equivalent logoff feature. Only by controlling
the entire authentication process can you add this feature
into your Web site.

Terminate a
User Session

17_556801-ch15.indd 23417_556801-ch15.indd 234 8/31/10 9:24 AM8/31/10 9:24 AM

235

Ch
apter 15: A

u
th

en
ticatin

g a U
ser Session

0

Displaying a You have been logged-off message is actually quite complex. You want the process to be initiated in the
logoff.pl script, but to appear within a restricted CGI script’s login prompt. You can implement this process by
saving the message in the users’ database, attached to the original session identifier, but disconnected from the
user profile. This may seem unusual, but it is the only way to transfer information from one CGI to another.

The first step, storing the message, can happen anywhere under $db outside of the users and sessions hash refs.
You can use this command just prior to writing $db to disk:

$db->{ ‘message’ }->{ $sessID } = “You have been logged off”;

Next, Auth.pm’s display_prompt requires something like this:

$tmpl->param(message => $self->{ ‘db’ }->{ ‘message’ }->{

 $self->{ ‘sessID’ } });

delete($self->{ ‘db’ }->{ ‘message’ }->{ $self->{ ‘sessID’ } });

You need the delete here because you only want the message to appear once. As described in Chapter 6, delete
can be used to trim a specific key from a hash.

Finally, add <tmpl_var name=message> into login.tmpl to display your new “logged-off” message as HTML
output.

 The Web page reloads.

• The Web page URL stays
the same.

• The login prompt appears.

Note: Add a HREF link to
logoff.pl in all of your
restricted-access templates.

9 Go to a restricted Web
page where you are
currently logged in.

 The Web page loads.

0 Click the link to your
logoff.pl script.

17_556801-ch15.indd 23517_556801-ch15.indd 235 8/31/10 9:24 AM8/31/10 9:24 AM

236

5

2

1

4

3

Register Your Web Site
as a Facebook Application

Register Your Web Site as a Facebook Application

1 Go to the URL http://developers.
facebook.com/setup/.

2 Type in your Web site’s name.

3 Type in your URL.

• You can select an alternative locale, if
required.

4 Click Create application.

• Your App ID.

• Your App Secret code.

5 Copy the sample code into a buffer.

R egistering as a Facebook Application grants you
access to the Facebook JavaScript SDK, which
you can use to add some cool Facebook features

directly to your Web site. Registration also grants you
access to create a Facebook Application with a Perl CGI
script. Once registered, you are assigned an Application
ID, an API Key, and an Application Secret. Together,
these values are used by your Web site to access the
Facebook servers.
You can use the Facebook JavaScript SDK to install simple
Facebook features, such as Social plugins and single
sign-on authentication. Because JavaScript only executes
on the Web browser, your Web server cannot monitor
what end-users are doing with Facebook. The JavaScript
SDK is the first thing you set up once you register your
Web site as a Facebook Application.

You use the Application ID value to identify individual
Web sites that are linked into Facebook. You also use
your Application ID for demographic purposes, so you can
review how much activity your Web site’s Facebook-
hosted features are handling.
You use the API Key to identify your Facebook
Application, which is actually a CGI program hosted on
your Web server. You will use the API Key and
Application Secret within your Perl CGI code, later in this
chapter.
You use the Application Secret value as a shared-secret
encryption key. All API communication between your
application and Facebook is encrypted using this secret
key. If you suspect your Application Secret was made
public, you must change it immediately on the Facebook
Application Dashboard. Setting up a Facebook Application
is described in more detail later in this chapter.

18_556801-ch16.indd 23618_556801-ch16.indd 236 8/31/10 9:24 AM8/31/10 9:24 AM

237

7

9

6

After you register your Web site, you can add the JavaScript SDK to any Web page. If you have configured SSI as
described in Chapter 14, just add the SDK code into your header.shtml file. Just be sure to set APP_ID to your
actual Application ID. Only the following code is required.

9 Navigate to the static HTML Web
page.

• This is an example of Facebook
JavaScript SDK functionality,
including Like and Login buttons.

6 Open a text editor.

7 Paste the Facebook sample code.

8 Save the static HTML file on your
Web site.

Ch
apter 16: In

terfacin
g Y

ou
r W

eb Site w
ith

 Facebook

TYPE THIS

<div id=”fb-root”></div>
<script>
 window.fbAsyncInit = function() {
 FB.init({appId: ‘APP_ID’, status: true,
 cookie: true, xfbml: true});

 };
 (function() {
 var e = document.createElement(‘script’); e.async =
true;

 e.src = document.location.protocol +
 ‘//connect.facebook.net/en_US/all.js’;
 document.getElementById(‘fb-root’).appendChild(e);
 }());
</script>

RESULTS

Any Web page with this code can
now use the Facebook JavaScript
SDK.

➔

18_556801-ch16.indd 23718_556801-ch16.indd 237 8/31/10 9:24 AM8/31/10 9:24 AM

238

3

4

1

2

3 Customize the button by changing the fields.

4 Click Get Code.

1 Go to the URL http://developers.
facebook.com/plugins.

2 Click a plugin.

Add a Facebook Social Plugin to Your Web Site

Y ou can add a Facebook Social plugin into your
Web site, which allows your users to experience
your Web site with their Facebook friends. There

are several Facebook features available as Social plugins;
the easiest to implement is a Like button that, when
clicked by a visiting user, adds a message into their
Facebook newsfeed that they like your Web site.
Because Facebook hosts the content, the plugin can
display personalized content even if it is the first time a
user visits your site. It is actually the Facebook JavaScript
SDK that is providing the core feature, which means that
you, as the Web site owner, cannot view what is being
displayed on the user’s Web browser.
Social plugins also display customized content on your
Web site, related to the visiting user’s Facebook profile.

As a result, only content related to that user, and their
friends, is displayed. Occasionally, generic statistical
information may also appear.
For example, in the case of a Like button, when you
connect to your own Web site and click it, you may read,
“You, Johnny Smith, Jane Doe, and 12 other people like
this site.” When a different person visits and clicks the
button, she may read, “You, Mike Jackson, Chris Hall,
and 12 other people like this site.”
While this feature does not require any Perl- or Apache-
specific code, it is the starting point to adding in some
form of social connectivity to your Web site.
You can find the full list of available Facebook Social
plugins online at http://developers.facebook.com/
plugins.

Add a Facebook Social
Plugin to Your Web Site

18_556801-ch16.indd 23818_556801-ch16.indd 238 8/31/10 9:24 AM8/31/10 9:24 AM

239

Ch
apter 16: In

terfacin
g Y

ou
r W

eb Site w
ith

 Facebook
5

6

When you click the Like button, Facebook registers your vote for the site and links it to your profile for your friends
to see. Other Social plugins are also available for you to implement, using the same basic procedure as the Like
button.

The Comments plugin allows your users to post comments on any page of content on your site with their Facebook
profile. If you are interested in running a blog, this plugin is the easiest way to implement some form of commenting
feature onto individual topic pages.

The Activity Feed plugin shows other users what recent activity their friends have been doing on your Web site. This
includes other Web pages that users like, along with posted comments. With this feed, you can provide a simple
stream aggregating all activity on your Web site.

The Live Stream plugin lets users visiting your Web site share activity and comments in real time. The plugin appears
in the form of a Live Stream Box, which works best when you are running a real-time event.

5 Copy the XFBML
code and paste it on
your Web site.

Note: If you have not yet
registered your Web site
and are using the
JavaScript SDK, then copy
the iframe code example
instead (if it is available).

6 View your Web site in
a browser.

• The Facebook Social
plugin appears.

18_556801-ch16.indd 23918_556801-ch16.indd 239 8/31/10 9:24 AM8/31/10 9:24 AM

240

6
7

8

1

3
2

4

5

6 Send your $facebookAppID to your
template; the JavaScript SDK will use it.

7 Retrieve the fbs_$facebookAppID cookie.

8 Test for the access token value.

Note: Matching regular expression patterns that use
brackets will automatically store the matching string
in a special variable: $1.

1 Open a Perl script in a text editor that uses
CGI, HTML::Template, and Data::Dumper.

2 Type use JSON;.

3 Type use LWP::Simple;.

Note: LWP::Simple and JSON do not need a special
initialization routine.

4 Type my $facebookAppID = "APP_ID ";.

5 Use the template file facebook-auth.
tmpl.

Enable Facebook Connect on Your Web Site

Y ou can enable Facebook Connect, a single sign-on
authentication service provided by Facebook, on
your Web site using the Facebook JavaScript SDK

and Graph API services. Once you have implemented this
feature, a user can instantly be authenticated onto your
Web site using their Facebook credentials, provided that
they indicate to Facebook that they trust your Web site.
Your Perl CGI template needs to load the Facebook
Connect JavaScript SDK, which provides the Facebook
Connect Login button. When clicked, the button
automatically opens a dialog box that connects to
Facebook, prompts the user for their credentials, and sets
an access token. Because Facebook Connect exists only as
JavaScript code, your Perl script needs to be able to
retrieve details about the connected user. The access
token, available to your Perl script in the form of a

cookie, can be used to query the Facebook Graph API
service to retrieve information about the connected user.
The Graph API is the latest Facebook security protocol.
Linking it into your Perl CGI code is very easy: you use
the LWP::Simple Perl module to query it over HTTPS, and
the JSON module to decode its output into a Perl hash
reference. Both LWP::Simple and JSON should be pre-
installed on most Perl distributions. If they are not, you
can install either of them using CPAN, or a platform-
specific method as described in Chapter 9.
Unfortunately, because Perl is not an officially supported
language, this module only supports the older REST API
and currently lacks Graph API support. However, manually
querying the Graph API is very easy with the help of
LWP::Simple and JSON. Additional information is available
at http://developers.facebook.com/docs/
authentication/.

Enable Facebook Connect
on Your Web Site

18_556801-ch16.indd 24018_556801-ch16.indd 240 8/31/10 9:24 AM8/31/10 9:24 AM

241

Ch
apter 16: In

terfacin
g Y

ou
r W

eb Site w
ith

 Facebook

#

$

9

0 ! @

The Facebook Graph API simplifies the way you query and submit Facebook data. In this section’s example, you are
only using it to query the me object, which will always refer to the user who is currently logged in. You can learn
more about interacting with the Graph API from the Facebook Developers’ documentation page at http://
developers.facebook.com/docs/api.

9 Type my $graphURL = "https://
graph.facebook.com";.

0 Type my $json = get("$graphURL/
me?access_token=$1");.

Note: The LWP::Simple module provides
get, which is a very easy way to make
HTTP or HTTPS queries and forward the
results into a Perl scalar.

! Type my $userData = decode_
json($json);.

Note: Raw JSON data is very close to a
Perl hash in structure, except it does not
use any Perl syntax. The function
decode_json makes its data
accessible as a hash reference.

@ Type $tmpl->param($userData);.

Type $tmpl->param(debug =>
Dumper($userData));.

Note: Dumping $userData is for
debugging purposes only. This shows
you everything being returned by the
Graph API query.

$ Type print $tmpl->output;.

% Save the Perl CGI script.

TYPE THIS

$cgi->cookie(“fbs_$facebookAppID”) =~ /
access_token=(.*)&?/;

my $token = $1;
sub QueryGraphAPI {
 my ($path, $params) = @_;
 my $json = get(“$graphURL/$path?access_
token=$token&$params”);

 return decode_json($json);
}
my $groups = QueryGraphAPI(“me/groups”);

RESULTS

You can query arbitrary objects using this
QueryGraph subroutine. In this case, the
object me/groups, according to the
Graph API documentation, retrieves a list
of all groups of which the currently
logged-in user is a member.

➔

continued ➔

18_556801-ch16.indd 24118_556801-ch16.indd 241 8/31/10 9:24 AM8/31/10 9:24 AM

242

)

q

^

&

*

(

e

w

) Use data provided by JSON to personalize the
logged-in user’s message.

q Import Facebook Connect’s JavaScript SDK
code synchronously.

w Type <tmpl_var name=facebookAppID> into
the SDK’s initialization function.

e Subscribe to the ‘auth.login’ event.

r Save your template.

^ Open the HTML template referenced by your
Perl CGI script.

& Type <fb:login-button
autologoutlink="true"></fb:login-button>.

“This is the JavaScript SDK FBML. It will be
converted into the Facebook Connect Login button.

* Type <tmpl_if name=id> </tmpl_if>.

Note: This id template value will resolve to the
user’s Facebook Profile ID number, but only when
the user is logged in using Facebook Connect.

(Type <pre><tmpl_var name=debug></pre> to
display Data::Dumper JSON output.

Enable Facebook Connect on Your Web Site (continued)

T he JSON data output produced by the Graph API
query is completely compatible with
HTML::Template, once you convert it into a Perl

hash reference. This makes it really convenient to display
the JSON array because it automatically converts itself
into a format compatible with TMPL_LOOP. However, if
you make multiple queries to the Graph API, there is a
chance that the same array key could be used multiple
times. This makes it impossible to chain two JSON
outputs into a single template without changing one of
the TMPL_LOOP key names.
In this section, you will load the JavaScript SDK in a
slightly different way from earlier in this chapter. You
want to load the SDK synchronously so the user’s Web
browser waits for it to be loaded before displaying your

Web site. In the SDK, you also subscribe to the auth.
login event, and tie it to a page reload command. This
ensures that your Web page is reloaded after the user has
successfully authenticated to Facebook, and indicates that
they trust your Web site.
The Facebook Connect Login button is provided by an
XFBML tag inside your HTML::Template file. Because the
JavaScript SDK renders XFBML, the only thing that
matters is its placement in your Web site template:
<fb:login-button></fb:login-button>

You can apply additional attributes to the button, which
allow you to control its text, display background, and
other cosmetic options. You can access the button’s
documentation at http://wiki.developers.
facebook.com/index.php/Fb:login-button.

Enable Facebook Connect
on Your Web Site (continued)

18_556801-ch16.indd 24218_556801-ch16.indd 242 8/31/10 9:24 AM8/31/10 9:24 AM

243

Ch
apter 16: In

terfacin
g Y

ou
r W

eb Site w
ith

 Facebook

u

t

y

If you are already logged into your Facebook profile, you can skip steps 26 and 27. Likewise, if you click the
Facebook Logout button now, you are also logged out of your Facebook profile. This is the nature of single sign-on:
your actions on one Facebook Connect site directly affect your state on other linked sites.

If you are only interested in using Facebook Connect for authentication, you can safely query the Graph API’s me
object, and only use the id value as the user’s unique identifier. Your CGI code can trust that the id value is unique,
and cannot be impersonated, as long as you trust Facebook Connect.

The amount of information that is actually available on the Graph API is immense. It is an alternate gateway to all
Facebook data. This actually makes using Facebook on third-party applications and Web sites very scary: any
information you have submitted into your Facebook profile is now accessible, and without your immediate consent.

Because Facebook is constantly attacked by privacy groups, and rightly so, expect this API to change and evolve
over time. The information and techniques listed in this chapter are accurate as of May 2010. You can find more
information about the current Facebook privacy policy at http://developers.facebook.com/policy/.

 Your Perl CGI automatically reloads.

• The Login button changes to a Logout
button.

• The browser displays the custom login
message.

• The browser displays the debug JSON
output.

t Open your Perl CGI script in a
browser.

y Click the Facebook Connect Login
button.

• The Facebook Authentication dialog
box appears.

u Type in your Facebook e-mail address
and password and click Connect.

18_556801-ch16.indd 24318_556801-ch16.indd 243 8/31/10 9:24 AM8/31/10 9:24 AM

244

Render Method

Facebook allows for two render methods: iframe and FBML.
The iframe is an HTML tag that superimposes one Web site
into another. This is the older way of displaying legacy Web
sites that were not designed for Facebook within the Facebook
interface. The FBML, or Facebook Markup Language, option is
a set of custom tags developed by Facebook to make it easier
for third-party applications to use Facebook features. If you
are just starting out, you should use FBML.

Canvas Page URL

The Canvas Page URL represents your unique path in the
Facebook Apps subdomain. This value must be one word,
lowercase, and only contain letters, numbers, dashes, and
underscores. This URL is your Application Path, which Perl
will use later.

Canvas Callback URL

The Canvas Callback URL is the path to your application CGI
script hosted on your Web server. Your CGI script must be
housed on a valid hosting provider. For more information on
finding a hosting provider, see Chapter 1. Note that the
Canvas Callback URL must end in a forward slash. This may
look unusual but it is intentional:

http://www.mydomain.com/cgi-bin/my-facebook-app.pl/

Preparation

T he Facebook Canvas feature allows you to create
a Facebook application that users of the popular
social media Web site can access and share with

their friends. An application is basically a CGI program
hosted on your Web servers but controlled by Facebook.
Once you create the program using the Canvas interface,
users can access it through a specially wrapped URL:
http://apps.facebook.com/myapp/.
Documentation for the Facebook Canvas feature is
available at http://developers.facebook.com/docs/

guides/canvas/. Note that this guide assumes that PHP
is your development language. The instructions and
theory are still relevant to Perl, as long as you ignore the
PHP-specific code. The code can be provided by a third-
party Perl module available on CPAN, called
WWW::Facebook::API. This module allows you to use Perl
to develop your Canvas page. The module includes
examples for implementing it, as well as additional
documentation specific to Perl.

Understanding the Facebook
Canvas Feature for Applications

Before you begin, you need to configure your Facebook Application as a canvas. Go to the Facebook Developers’ applications page
at www.facebook.com/developers/apps.php, click Edit Settings, and then click Canvas. Once you have set the Canvas
Page URL, Canvas Callback URL, and Render Method, you can begin developing your application’s Perl CGI script.

Using Perl

You can use Perl to connect to the Facebook Canvas API with the WWW::Facebook::API module. You can find details about the
module at http://wiki.developers.facebook.com/index.php/User:Perl. After you install the module, several
pages of documentation become available through PerlDoc. You can find a complete list of submodules and their descriptions in
Appendix D.

18_556801-ch16.indd 24418_556801-ch16.indd 244 8/31/10 9:24 AM8/31/10 9:24 AM

245

Ch
apter 16: In

terfacin
g Y

ou
r W

eb Site w
ith

 Facebook

Authentication and Validation

Your Facebook Application CGI needs to have the correct
API key and secret values in order to communicate to
Facebook. This happens automatically when you initialize
the module, specify the correct api_key and secret
attributes, and then call the validate_sig method:

my $cgi = new CGI;

my $params = $facebook->canvas->validate_sig(
$cgi);

Because the validation process involves decrypting the
fields submitted by Facebook with your App Secret value,
validate_sig requires access to the CGI module’s
reference scalar. The output of this process is the
decrypted parameters that are relevant to your session.

API Calls

Once a user has trusted your application, which they
typically do by adding it to their Facebook profile, you are
allowed to make specific API calls to the Facebook servers,
depending on what they trust you with.

Initialization

When first loading the WWW::Facebook::API, you need to
use the new constructor to initialize the module. The
constructor allows for several attributes when you initialize
it. You can set these attributes as options to new, or as
separate methods later. At a minimum, you should specify
the following attributes as options:

my $facebook = WWW::Facebook::API->new(

 api_key => ‘Application Key’,

 secret => ‘Application Secret’,

 app_path => ‘Application Path’,

);

The new constructor accepts other attributes, which you
can also set as methods. For example, if you want to
enable debugging midway through your program, you can
use something like this:

$facebook->debug(1);

You can find a complete list of available attributes in the
module’s PerlDoc page; scroll down to Attribute Methods
for a list and description.

Using Perl (continued)

Facebook Interaction

The Graph API

The Graph API is the newest Facebook programming
interface, designed to simplify communication to the
Facebook servers. Because WWW::Facebook::API actually
uses the older REST API, all the new features available in
the Graph API are not directly available from the Perl
module. Fortunately, the Graph API is very easy to connect
to. You only need a way to query an HTTPS source, and to
decode the JSON output. The LWP::Simple and JSON Perl
modules are a natural fit for connecting to the Graph API.
You can access online documentation for the Graph API at
http://developers.facebook.com/docs/api.

Facebook Markup Language

FBML, or Facebook Markup Language, is a customized series
of XHTML-like tags that allow for easy access to Facebook
functionality on their application. Two implementations of
FBML are available for Facebook applications: a server-side
JSON version and a client-side JavaScript SDK version. If you
have already implemented any Facebook Social plugins into
your Web site, you are already configured to use the
JavaScript method. Keep in mind that if you chose to
implement the JavaScript SDK version of FBML, you need to
configure your Facebook Application settings to use the
iframe rendering method, not FBML.

You can access online documentation for the server-side
JSON version of FBML at http://developers.
facebook.com/docs/reference/fbml/. You can
find documentation for the client-side JavaScript SDK
version of FBML at http://developers.facebook.
com/docs/reference/javascript/.

Facebook Query Language

FQL, or Facebook Query Language, is an SQL-like language
that Facebook developed to allow for easy access to the
Facebook back-end database. FQL is only available on the
server-side JSON interface, which you can manage using
the WWW::Facebook::API::FQL module.

The syntax of the query language is very close to SQL, but
it is not true SQL as you would find in a MySQL or Oracle
database. The following code is the basic structure of FQL,
where the fields, table, and conditions values can
be customized:

select fields from table where conditions

Some of the tables you can query from include comment,
event, friend, group, message, photo, status, user, and
video. This is all assuming that the user has granted your
application the rights to do so.

Using WWW::Facebook::API, you can interact with nearly the entire published Facebook API.

18_556801-ch16.indd 24518_556801-ch16.indd 245 8/31/10 9:24 AM8/31/10 9:24 AM

246

5

3

1

64

2

4 Click Canvas.

5 Type in your Canvas Page URL.

6 Type in your Canvas Callback URL.

Note: This address must end in a forward-slash.

1 Go to the URL www.facebook.com/
developers/apps.php.

2 Select your App.

• Your API Key value.

• Your Application Secret value.

3 Click Edit Settings.

Create a Facebook Application with Perl

Y ou can create a Facebook Application with a Perl
CGI script using the WWW::Facebook::API module
and the Facebook Canvas interface. Users can add

your application to their profile, and then access your CGI
code from a Facebook Apps URL, or directly from a
bookmark on their Facebook profile home page.
Before you can proceed, your CGI must be registered as
a Facebook Application, and correctly configured with a
Canvas Page URL, Canvas Callback URL, and specific
settings relevant to WWW::Facebook::API. The Canvas
Page URL is the public URL that users see under the
Facebook Apps subdomain, http://apps.facebook.
com/myapplication/. You can give this URL directly
to people if you want. It automatically logs a user onto
Facebook before displaying your application.

The Canvas Callback URL determines where Facebook can
access your CGI code. This must be hosted at a public Web
server that Facebook can access. The format of this URL
has one unique quirk: it must end in a forward-slash.
WWW::Facebook::API has examples that demonstrate how
URLs with content after the forward-slash reference
subpages on your application CGI. You also need to install
the WWW::Facebook::API module from CPAN. For more
information, see Chapter 9.
Unfortunately, because Perl is not an officially supported
development language for Facebook, it lags a little behind
the latest API features that are available on Facebook. For
this reason, you need to instruct Facebook to disable the
New Data Permissions. Eventually, WWW::Facebook::API
will be updated to the new permissions properly, but for
now you need to disable these permissions in order to
make your Perl Application work.

Create a Facebook
Application with Perl

18_556801-ch16.indd 24618_556801-ch16.indd 246 8/31/10 9:24 AM8/31/10 9:24 AM

247

Ch
apter 16: In

terfacin
g Y

ou
r W

eb Site w
ith

 Facebook

!
@

#
$

0

9

8

%

7

An example Perl script that uses the Facebook Canvas API is available from the authors of WWW::Facebook::API.
You can download it by typing http://cpansearch.perl.org/src/UNOBE/ in your browser and pressing Enter. Click
the latest WWW-Facebook-API version, click examples, and then click facebook-canvas-json.

If you download this Perl CGI example, be sure to configure your correct API Key and Application Secret values;
otherwise, Facebook will not be able to communicate to it over the Canvas interface.

It is beyond the scope of this book to describe for you exactly how to create a Facebook Application, feature by
feature. There are several Web sites, written by third-party and Facebook developers, that describe in detail
everything that you need to know. The trick to understanding this documentation is to identify the
WWW::Facebook::API equivalent whenever any PHP or Java code is referenced.

0 Open a Perl CGI script.

! Type use
WWW::Facebook::API;.

@ Type my $fb =
WWW::Facebook::API-
>new(.

Type api_key => 'API Key ',.

$ Type secret => 'Application
Secret ',.

% Type);.

Note: From here, you can use
$fb to access all of
WWW::Facebook::API’s methods.

7 Click Migrations.

8 Click to select the Disabled
option for New Data
Permissions.

9 Click Save Changes.

18_556801-ch16.indd 24718_556801-ch16.indd 247 8/31/10 9:24 AM8/31/10 9:24 AM

248

Introducing the
Twitter APIs

T witter has several application programming
interfaces (APIs) that you can use to interact with
users and feeds of the social media platform. If

you were to compare the features available through the
Twitter Web site against their APIs, you would find there
are more Twitter features available through third-party
apps than are offered by the Twitter Web site.
The protocol used to communicate to these APIs is called
REST, or Representational State Transfer. Using the HTTP
protocol, Twitter provides a specific URL for each API
service, where several REST requests can be made in
parallel to generate the complete picture of a user’s

current state on Twitter. As a response, REST outputs
XML or JSON back as your request results. You need to
use Perl to examine this data to determine whether or not
your request was successful. Within each REST session,
you need to authenticate your application to Twitter. You
can do this using the legacy basic authorization method,
or the more secure OAuth method.
Fortunately, there are some Twitter-specific Perl modules
that automate the REST communication and authentication
aspects of the available APIs. You can find the complete
API documentation online at http://dev.twitter.
com/doc/.

Authorization Protocols

Basic Authorization

Basic authorization involves sending a username and
password for every API request to Twitter’s servers. This
method is weak because it requires that users trust their
credentials to a third-party to keep secure.

As a result, basic authentication was disabled on the Twitter
API in July 2010. Developers are expected to use the OAuth
protocol within REST to manage authentication and
communication.

OAuth

OAuth is a protocol designed for secure authorization and
communication because all API requests are signed by a special
access token. This access token is only granted after you create
a request token and redirect the user for authorization directly on
the Twitter Web site. To manage both of these tokens, you are
assigned private and public keys that are used for signing and
authenticating traffic between your Web site and Twitter. After
you register your Perl application on the Twitter development
platform Web site, you are assigned OAuth-specific keys that
you can plug into Perl. Twitter recommends OAuth for all third-
party client authentications because it eliminates the need for
third parties to manage end-user credentials directly.

Twitter needs to know who you are when you use its APIs, and which Twitter user profile you are representing. You must use some
form of authorization when communicating over REST that introduces you correctly.

Twitter API Services

Twitter API

You can use the Twitter API to communicate on behalf of a
user to access their Twitter profile using your interface instead
of the standard Twitter Web site. The Twitter API uses the
REST protocol for communication, but also requires some
form of authorization, using either the legacy basic
authorization or, preferably, the newer OAuth method. This
ensures that Twitter recognizes your app, and that you have
authorization to represent a specific Twitter user.

You can use the Twitter API to query various resources linked
to Twitter profiles, including users’ timelines, tweets, trends,
lists, messages, friends, favorites, and notification settings.
This chapter demonstrates how to use the Twitter API within
Perl in these contexts and applications. You can learn more
about how to use the Twitter API at http://dev.
twitter.com/pages/intro-to-twitterapi/ and
http://dev.twitter.com/pages/api_overview/.

Twitter supports various APIs, each using different protocols and authentication methods. Listed here are two that are based on
REST, one that uses a persistently connected HTTP socket, and one based on JavaScript.

19_556801-ch17.indd 24819_556801-ch17.indd 248 8/31/10 9:24 AM8/31/10 9:24 AM

249

Ch
apter 17: In

terfacin
g w

ith
 th

e Tw
itter A

PI U
sin

g Perl

Twitter API Services (continued)

Search API

The Search API allows you to search past tweets on the
Twitter network, so that you can identify trending topics,
query specific hash-tags, and search for specific terms that
other people have tweeted about.

The Search API also uses the REST protocol, but it is kept
separate from the original Twitter API because it does not
require any form of authentication. In other words, when
searching for specific Twitter activity, you can do it
anonymously. For more information on how to use the
Search API, go to http://dev.twitter.com/doc/
get/search/.

Streaming API

The Streaming API offers near real-time access to Twitter
statuses, delivered through a persistently connected HTTP
request. This means that your application can listen for
status updates as they are posted to Twitter, through an
HTTP connection that rarely terminates.

According to the Streaming API documentation, Twitter
keeps the connection open for as long as is practical,
barring any server-side errors, client-side lags, network
problems, or server maintenance.

There is no Perl-specific module that links into the Streaming
API, but it is not difficult to develop an application that keeps
HTTP open and active using Net::HTTP (a low-level HTTP
development module for Perl). For more information on how
the Streaming API works and its caveats, go to http://
dev.twitter.com/pages/streaming_api/. An
example program to connect to the Streaming API with
Net::HTTP is described later in this chapter.

@Anywhere

@Anywhere is the Twitter JavaScript API designed to
easily add Twitter functionality to external Web sites. By
importing the JavaScript code into any of your HTML or
CGI pages, you can easily add some interesting Twitter
features with little effort. You can find more information
about @Anywhere at http://dev.twitter.com/
anywhere/begin.

Auto-Link User Profile

The auto-linking feature monitors your Web site’s content
for Twitter usernames, and automatically converts them
into a link to that user’s Twitter profile. This way, you only
need to reference @username in your Web site, and
JavaScript will automatically expand it into <a href=
’http://www.twitter.com/username’>@
username.

Hovercard

A Hovercard extends the auto-link feature. It adds a
dynamic popup window that appears when a user hovers
their mouse over the link. The user’s profile picture appears
in the Hovercard, along with their biography, latest tweet,
and a Follow Me button.

Follow Me Button

A Follow Me button is a link on your Web site that allows
other users to follow your Twitter profile from theirs, with a
single mouse-click. This makes it convenient for your users
to follow you without actually going to Twitter.com,
searching for your Twitter username, and clicking the
follow-me link there.

TweetBox

A TweetBox is like a self-contained Twitter client for your
Web site, written entirely in JavaScript. Adding this feature
allows your users to post tweets to their own account from
your Web site. You can use this feature to create pre-
composed tweets that promote a specific topic or event.
The user has the option of customizing the message before
clicking the Tweet button to make the text appear on their
personal Twitter feed.

19_556801-ch17.indd 24919_556801-ch17.indd 249 8/31/10 9:24 AM8/31/10 9:24 AM

250

U nlike Facebook, the support for Twitter in Perl is
much more robust and mature. There are
actually several modules you can use to make

creating a Twitter-friendly application easier for you to
develop for your Web site. You can install all of these
modules using CPAN, or, if available, using your
platform’s packaging system. You can find instructions
on how to do this in Chapter 9.
Each module has different interface levels, so choosing
the right one depends on your application. If you are
looking for a way to query friends and timelines,
Net::Twitter::Lite is your best option. If you just want to
post a tweet, try App::Tweet. Or, if you want something

like Facebook Connect to handle authentication, using
Net::OAuth directly is also an option.
Deciding on which module to use, and how to use it, will
be a matter of experimentation. Like Facebook, Twitter
does not officially support Perl as a development API
platform, but other Perl developers have made a decent
effort to provide an interface for Twitter using these
modules.
Before you can begin coding anything, you need to have
registered your Web site as an application on the Twitter
development platform. This assigns for you a series of
keys that you can use within any Perl scripts you develop.

Introducing the Perl
Twitter Modules

Perl Twitter Modules

Net::Twitter

The Net::Twitter module is the primary Perl module used
to access various Twitter APIs. This module features a
configuration mechanism that is not very common in Perl,
called a trait. When you initialize the module, you can define
which traits should be activated, such as OAuth for OAuth
authentication, API::REST to use the Twitter API standard,
and API::Search to use the Search API standard. Note that
this module does not currently support the Streaming API.

You also need to provide your consumer key and consumer
secret during initialization. These values are assigned to you
after you register your Web site as a Twitter application.
Twitter uses them to keep track of where their public APIs
are being deployed, and by whom:

use Net::Twitter;

my $tw = Net::Twitter->new(

 traits => [qw(TRAITS)],

 consumer_key => KEY,

 consumer_secret => SECRET,

);

Net::Twitter supports nearly every Twitter API and Search
API function, and even adds support for a third-party API
called Twittervision. Produced outside of Twitter, Twittervision
is a combination of tweets and Google Maps. You can find
additional information at www.twittervision.com/api.
html.

eval{

 VAR = $tw->function({ ARGS });

 # Examine VAR for returned function results.

}

if ($@) {

 # Process errors with Net::Twitter::Error

}

Net::Twitter uses a different mechanism for sending error
messages if there is a problem: it throws exception signals. In
case an API call encounters an error, the module actually kills
off itself and the running program. In doing so, it expects
developers to wrap their API functions in an eval block,
which traps the exception signal, allowing the module to die
while leaving your program running. After the module dies,

A few other Perl developers have produced “front-end” modules for the Twitter API that manage the communication protocols
automatically.

19_556801-ch17.indd 25019_556801-ch17.indd 250 8/31/10 9:24 AM8/31/10 9:24 AM

251

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

App::Tweet

App::Tweet is a simple wrapper for the Net::Twitter module,
providing the fastest way to produce a command-line
Twitter client in Perl. It features a built-in configuration
script that prompts for credentials automatically the first
time it is run:

use App::Tweet;

App::Tweet->run(message => message);

Unfortunately, this configuration script only interfaces with
a terminal and so you cannot use it with Apache as a CGI
program. As a result, it is only suitable for a command-line
Twitter application.

Once configured, you can easily post tweets using your
own Twitter account with the run method. There is even a
reconfigure method that allows you to update your
saved credentials for subsequent program runs.

you can access the actual error code and error message
through a special variable: $@. If you look at the submodule
Net::Twitter::Error and its PerlDoc page, you can find more
information about this particular technique.

If you do not like this exception process, you can apply the
WrapError trait when initializing the module. This causes
all Net::Twitter methods to return undef on failure, rather
than kill itself and your program; you then access the error
code through the module’s get_error method.

You can find out more information about Net::Twitter from
its CPAN page at http://search.cpan.org/dist/
Net-Twitter/.

Net::Twitter::Lite

As the name implies, Net::Twitter::Lite is a lightweight
version of Net::Twitter. If the larger module offers too many
features for your application, this scaled-down version may
be a better option.

Net::Twitter::Lite uses Net::Twitter with the API::REST
and OAuth traits enabled. This means that you can use
the Twitter API standard with either OAuth or basic
authentication.

Perl Twitter Modules (continued)

19_556801-ch17.indd 25119_556801-ch17.indd 251 8/31/10 9:24 AM8/31/10 9:24 AM

252

5

6

7

4

3

2

2

2

1

4 Enter your Callback URL.

5 Select the Read & Write access
type.

6 Type in the Captcha.

7 Click Register application.

1 Open a Web browser to http://
dev.twitter.com/apps/new.

 The Twitter Register an Application
form appears.

2 Enter your application’s details.

3 Select the Browser application type.

Note: If you want to compare the two
access types, you can register a second
application as a client application type.

Register a New Twitter Application

Y ou can register your Web site as a Twitter
application to access the Twitter API and
@Anywhere JavaScript API. Registration also

introduces your Web site to the Twitter community. To
begin the registration process, go to http://dev.
twitter.com/apps/new/.
The application registration form asks you for an
application name, description, and whether your
application is a client-side program or a browser-based
CGI. The decision of client or browser affects how OAuth
handles user authentications later. If you register as a
client application type, a browser will be created during
the authentication handover process. If you register as a
browser, Twitter will redirect the user within their current
browser window, then back to your Web site, using the
configured Callback URL.

Once you are registered, your browser displays an
application summary screen. Here you will find some keys,
secrets, and URLs that are specific to your application.
The API key is used by the @Anywhere JavaScript API. If
you are only interested in @Anywhere and do not plan to
develop a Net::Twitter Perl CGI program, you can skip to
the section, “Use the Twitter @Anywhere JavaScript API.”
The consumer key is a public key that is unique to your
application. The consumer secret is like a passcode that
is specific to your consumer key. Later, you will use both
within Net::Twitter to gain access to Twitter through
OAuth authorization, and to submit requests on behalf of
a user who has logged into your CGI program.
At any time, you can review your registered apps and
current configuration settings at http://dev.twitter.
com/apps/.

Register a New
Twitter Application

19_556801-ch17.indd 25219_556801-ch17.indd 252 8/31/10 9:24 AM8/31/10 9:24 AM

253

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

9

8

The registration process provides you with several OAuth keys, tokens, secrets, and URLs. If you plan to use
Net::Twitter, you only need to worry about the consumer key and consumer secret values; they are already
preprogrammed into the module. You may want to reference the actual Twitter URLs if you plan on using
Net::OAuth directly.

The Callback URL will become a Perl CGI script that you will develop later in this chapter. If you do not know its
correct URL value now, you can always come back to this screen later and update it.

On the right side of the application summary screen you will find a link called My Access Token. This is a pre-
calculated personal access token and access token secret that is already linked to your personal Twitter profile. If
you plan on creating a private Twitter application that only you will use, you can bypass the entire OAuth
authentication process and gain immediate access to your own account.

Do not divulge your access token and access token secret values. Otherwise, anyone can impersonate you on
Twitter.

 The application summary
screen appears.

• Your API key.

• Your Registered Callback URL.

 You can scroll down for the
OAuth Consumer key, secret,
and other OAuth URLs.

 The Twitter API Terms of
Service document appears.

8 Read the document.

9 Click I Accept.

19_556801-ch17.indd 25319_556801-ch17.indd 253 8/31/10 9:24 AM8/31/10 9:24 AM

254

7
8

9

0

1

5

2 3 4

6

7 Create an authorize_user subroutine.

 This will handle your first stage of the
authentication process.

8 Type my $url = $tw->get_authorization_
url(callback => URL);.

9 Store $tw->request_token and
$tw->request_token_secret into
a session cookie.

Note: Make sure you have imported the CGI
module and initialized it as $cgi.

0 Use CGI’s redirect method to redirect
the user to $url and assign the cookie.

1 Type use Net::Twitter;.

2 Type my $tw = Net::Twitter->new(.

3 Type traits => [qw(API::REST
OAuth)],.

4 Type consumer_key => KEY,.

5 Type consumer_secret => SECRET,.

6 Type);.

Authenticate to Twitter Using OAuth

T he OAuth authentication process is not overly
complicated, but the entire process must proceed
exactly as designed; otherwise, your Perl CGI

scripts will not be granted access to the Twitter API. Note
that OAuth is easier to work with if you use the
Net::Twitter Perl module, as opposed to implementing
Net::OAuth directly. Your Perl CGI script must first import
the Net::Twitter module, and initialize it with the consumer
key and consumer secret values you received during
registration. There are three stages of OAuth authentication,
so your Perl CGI will need to identify what stage the user is
currently at and process them to the next stage, accordingly.
When a user first visits your Web page, the user default to
the first stage of OAuth: not authorized. You must generate
a request token and request token secret, combine these

values with your consumer key, and redirect the user to
the Twitter OAuth URL. Here, the user types in their
credentials and clicks the Allow button, authorizing their
account to be accessed from your Web application. Twitter
then redirects the user’s browser to your Callback URL.
The second stage of OAuth, request access, begins when
you first respond to the Callback URL request. You
receive from Twitter two new CGI parameters validating
the preceding step. Called oauth_token and oauth_
verifier, both parameters must be combined with the
original request token secret and sent back to the Twitter
OAuth server. If Twitter is satisfied, you receive an access
token and access token secret.
The third and final stage of OAuth is access granted. The
access token and access token secret values are used to
access the Twitter API functions on behalf of the user.

Authenticate to
Twitter Using OAuth

19_556801-ch17.indd 25419_556801-ch17.indd 254 8/31/10 9:24 AM8/31/10 9:24 AM

255

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

^

&

*

!
@

#

%
$

You do not need to provide the Callback URL again into your Perl CGI script, even though you provided it when
registering your application. In fact, the two values do not even need to match; the version in your Perl script takes
priority.

When you do not define a Callback URL, you are instructing Twitter to treat your application like a desktop app.
The difference here is that Twitter does not pass control back to your script with oauth_token and oauth_
verify parameters, as it does in step 12. Instead, Twitter gives the user a special PIN, which effectively acts as the
$verifier value. Twitter expects you to prompt the user for this PIN, and supply it into step 15.

Throughout this process, cookies are a convenient way to link users to the various tokens and secrets as they
progress through each OAuth stage. As these values are represent private security information, storing them as a
cookie is not a great long-term idea. Instead, store this information into a local database, and then assign a single,
user-specific, uniquely identifying cookie as a key to the record in the database.

^ Store $tw->access_token and
$tw->access_token_secret into
the session cookie.

& Use CGI’s redirect method to redirect
the user to your Web site’s absolute URL
and assign the cookie.

Note: This second redirection is optional,
but it clears the URL query string from the
“oauth_token” and “oauth_verifier”
strings that Twitter supplied.

* Type else { &authorize_user(); }.

Note: This last else block catches users just
starting out at stage one.

! Read the session cookies into the %sess
hash.

@ Look for “oauth_token” and
“oauth_verifier” CGI parameters,
and store them as $request_token
and $verifier.

Type $tw->request_token($request_
token);.

$ Type $tw->request_token_secret($sess{
‘request_token_secret’ });.

% Type $tw->request_access_token(
verifier => $verifier);.

continued ➔

19_556801-ch17.indd 25519_556801-ch17.indd 255 8/31/10 9:24 AM8/31/10 9:24 AM

256

t

r

r

t y

e

() q

w

(

e Type my $results = eval{ $tw->verify_
credentials() };.

r Check if $@ exists, and store it in $err.

t Check if $err->code equals 401.

y If so, call &authorize_user() and exit.

Note: Error code 401 means that the current
access token is no longer valid. The user must
start over at stage one: not authorized.

u The API call succeeded, print the raw output
of $results using Data::Dumper.

i Save the Perl script.

(Check the session hash for the ‘access_
token’ and ‘access_token_secret’.

Note: When found, the user is identified to be at
stage three.

) Type $tw->access_token($sess{ 'access_
token' });.

q Type $tw->access_token_secret($sess{
'access_token_secret' });.

w Change the stage two conditional test from
if into elsif.

Authenticate to Twitter Using OAuth (continued)

T he third and final stage of the OAuth process
involves using the access token and access token
secret and starting to interact with the Twitter API

directly. These two values will not change as long as the
user has authorized your Web application access, so you
do not need to worry about the Reload button, bookmarks,
or even manually typing in your URL. As long as the
cookies remain intact, the user can access his profile with
your Perl CGI script without interruption.
If you are only interested in using Twitter to securely
authenticate users, you do not need to do anything with
the Twitter API and their profile. A call to validate_
credentials is prudent to ensure the access token is
still valid; this method even returns the user’s Twitter
user ID, which you can treat as a unique identifier in
your own code.

You do need to be careful using Net::Twitter, though. If
a call fails, it triggers a kill signal that forces your CGI
program to quit prematurely. For example, if the user
suddenly removes their access token cookie, you will
need your script to ignore the fatal error and attempt to
re-authenticate the user. In Perl, you can temporarily
bypass errors with the eval function:
eval { $tw->API_METHOD };
if ($@) {
 warn “Error (ignored): $@”;
 # Recover from the failure in API_METHOD.
}

This code instructs Perl to evaluate the block, but if
any errors occur, they can be accessed with the special
variable $@. This way, your program is given the
opportunity to identify what failed, recover from the
situation, and continue.

Authenticate to Twitter
Using OAuth (continued)

19_556801-ch17.indd 25619_556801-ch17.indd 256 8/31/10 9:24 AM8/31/10 9:24 AM

257

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

o

The current structure of this program flows well enough as a single CGI script, handling all three stages of Twitter
OAuth processing. However, its current structure appears odd, especially where the API call is executed; it actually
finishes in the middle of the script.

Think of program design as writing a story: every good program has a clear beginning, middle, and end. It should
always begin with its module initialization routines, as well as any one-time statements to set up its working
environment. The middle is for the core program logic and functionality that matches the program’s name and
intention. It ends by displaying the final program output, and calling any general clean-up code. Your current
program appears lopsided because the OAuth-handling code is actually initialization code that appears to
seamlessly merge into middle code: the API call.

The solution is to convert your OAuth code into a custom Perl module that actually builds upon Net::Twitter. This
new module can be initialized from any other Twitter CGI script, providing its OAuth functionality, yet not
interfering with their core purpose. An example of the OAuth Twitter module, called MyTwitter, is described in the
following section.

• Your Web site reloads.

• The browser displays the raw output of the
verify_credentials API method using
Data::Dumper.

o Load the Perl script in a browser.

• The Twitter OAuth authorization screen
appears.

Note: Twitter requires you to allow the application
to access your Twitter account.

• Your registered application name appears.

Note: If you were not already logged into Twitter,
you also see a username and password prompt
on this screen.

p Click Allow.

 Twitter redirects you back to your Web site.

19_556801-ch17.indd 25719_556801-ch17.indd 257 8/31/10 9:24 AM8/31/10 9:24 AM

258

0

7

7

2

4

6

!

8

9

9

3

5

1

88

7 Create an init_session
subroutine.

8 Type my $tw = shift;.

9 Copy the OAuth code that
handles stages two and three
into init_session.

0 Type return 0; at the end of
stage three.

! Type return 1; at the end of
init_session.

1 Open a blank text editor.

2 Type package MyTwitter;.

3 Type use CGI ':cgi';.

4 Type use Net::Twitter;.

5 Type @ISA = ("Net::Twitter");.

6 Type 1;.

Create a MyTwitter Perl Module That Inherits Net::Twitter

Y ou have a working Perl script that uses
Net::Twitter, supports the special OAuth
processing logic and can execute Twitter API

functions. However, if you need to create multiple Perl
CGI scripts, copying this code into each file is inefficient.
Instead, you can move the OAuth processing code into a
custom Perl module that inherits Net::Twitter, and use
that as your Twitter initialization routine.
Perl supports an object inheritance feature, which allows
you to take an existing Perl module’s functionality,
import it, build upon it, and store it as a new Perl module.
In your case, Net::Twitter provides the majority of what
you need for Twitter API connectivity, but it lacks the
OAuth authentication process. Creating a new module
that addresses the missing functionality, and inherits
Net::Twitter’s methods, is very easy:

package MyTwitter;
use Net::Twitter;
@ISA = (‘Net::Twitter’);

Simply assigning the parent module’s name into an array
called @ISA implies inheritance. You are announcing
this MyTwitter module is a Net::Twitter module. Perl
treats all code within MyTwitter.pm on the same level
as Net::Twitter, as if the two exist as one file. Before
transferring the OAuth code into MyTwitter.pm, you need
to make one more modification. The original OAuth code
used $tw as its reference to Net::Twitter; your new module
will need to maintain $tw but source it differently. Because
only core Perl scripts should initialize Perl modules,
MyTwitter’s subroutines will receive a ready-made $tw
module handle as an implicit first argument. The reference
to your hybrid Net::Twitter module class is accessible as
the first argument to its own subroutines through shift.

Create a MyTwitter Perl
Module That Inherits Net::Twitter

19_556801-ch17.indd 25819_556801-ch17.indd 258 8/31/10 9:24 AM8/31/10 9:24 AM

259

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

&

*

(

)

^

%

#

@

###

Your Perl CGI scripts can now use MyTwitter just like Net::Twitter, including your new OAuth method call,
$tw->init_session(). Similar to Chapter 15 when you built your own authentication module, you can use this
method’s return code to determine if authorization failed, as in the case of OAuth at stages one or two. By
returning code 1, your method instructs the normal program to stop.

The only disadvantage is that your Perl script still needs to be privy to error 401, and to call $tw->authorize_
user(), just in case the current Twitter access token is unexpectedly revoked. To address that issue, you could take
the contents of everything after the eval block and place it into MyTwitter.pm as a new subroutine: catch_
errors. This is possible because the variable $@ is globally accessible. Finally, you can simplify steps 18 and 19 to
the following code:

eval { $tw->function({ ARGS }) };

$tw->catch_errors();

Remember, you can always call multiple Twitter API functions within a single eval block. The catch_errors
method automatically applies to any preceding function that throws an exception error.

% Open a blank Perl script in a text editor.

^ Type use MyTwitter;.

& Type MyTwitter->new with the same
arguments as Net::Twitter to initialize your
new module.

Note: Remember, MyTwitter inherits Net::Twitter’s
original new constructor subroutine.

* Type $tw->init_session() && exit 1;.

(Create an eval block to execute API
functions.

) If there is a 401 error, call $tw->
authorize_user() and exit.

@ Copy the authorize_user subroutine for
stage one.

Type my $tw = shift;.

$ Save the file as MyTwitter.pm.

19_556801-ch17.indd 25919_556801-ch17.indd 259 8/31/10 9:24 AM8/31/10 9:24 AM

260

3

1
2

4 Open your Perl script in a Web browser.

• Your status ID number.

• The Data::Dumper output of $status.

1 Type my $status = $tw->update(message);.

2 Use $status->{ ‘id’ }, to get the
posted message status ID.

Note: You can always use Dumper($status)
to see what keys are available in the $status hash
reference.

Note: You can bundle multiple API calls within a
single eval block. This way, you only need a
single $@ block to catch all API errors.

3 Save your Perl CGI script.

Post a Twitter Status Update

Y ou can post a status update through a Perl CGI
script to your Twitter profile using Net::Twitter’s
update method. The simplest way to use it is to

supply one parameter: the status message. Remember to
use eval and trap any errors:
HASHREF = $tw->update(message);

You can also provide an anonymous hash into update to
specify optional fields related to your post:
HASHREF = $tw->update({ status => message,
OTHERARGS });

Other optional fields you can specify using this format
include in_reply_to_status_id => statusid, which
allows you to refer to another tweet that you are replying.
Also, if you have access to GPS coordinates, you can set
the lat and long values and post a geo-encoded tweet.
You can even try to identify what city or neighborhood

the user is in by using $tw->reverse_geocode(lat,
long). With this output, you can assign a new tweet to
a location on a map, rather than just obtuse latitude and
longitude coordinates.
The output of update will describe a summary of the
status update. Generally speaking, if your update did not
trigger an exception error with a corresponding $@
variable, it was accepted. The most common error is code
403. This is used in multiple scenarios, including tweets
that are longer than 140 characters, and multiple updates
with the same text. Because you are using the OAuth
method for authentication, the tweet source name and link
used will be automatically set to your registered application
name and URL. For more information, refer to the Twitter
API documentation at http://dev.twitter.com/doc/
post/statuses/update/ or the Net::Twitter PerlDoc page.

Post a Twitter
Status Update

19_556801-ch17.indd 26019_556801-ch17.indd 260 8/31/10 9:24 AM8/31/10 9:24 AM

261

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

4

 6

1

2

3

6 Open your Perl script in a Web browser.

• The Web browser displays the requested
timeline.

Note: You can experiment by using user_
timeline, home_timeline, and
public_timeline.

1 Type my $list = $tw->friends_timeline({
ARGS });.

2 Type foreach my $tweet (@{ $list }) {.

3 Use the hash ref $tweet to display
information about each post in the timeline.

Note: You can always use Dumper($tweet)
to see what keys are available in the $tweet hash
reference.

4 Type }.

5 Save your Perl CGI script.

Retrieve a Twitter Timeline

number, screen_name to search by screen name, or id to
search by both user ID and screen name. You can also set
the optional since_id => statusid to retrieve timeline
events that occur later than that status ID number. You
can also adjust the number of tweets returned by setting
count => number, up to a maximum of 200, and view
the next page of tweets with page => number.
Additional methods are available to query alternate
timelines. You can specify friends_timeline to retrieve
the latest tweets posted by you and the people you are
following. The method home_timeline is identical to
friends_timeline, except retweeted posts are also
included. You can even use public_timeline to retrieve
the latest tweets publicly posted by anyone, worldwide.
Although these methods all allow for the same optional
arguments, only user_timeline allows id, user_id, or
screen_name.

Y ou can retrieve various Twitter timelines
using Net::Twitter and the Twitter API. This
allows you to query all tweets posted by

you, your friends, other users, or even the general
public, and bring them into Perl CGI script:
ARRAYREF = $tw->user_timeline({ ARGS });

You can use user_timeline without any
arguments to retrieve the 20 most recent statuses
posted by you into a Perl array reference. From here,
you use foreach to iterate through each returned
tweet, accessible by hash reference.
When searching by timeline, you can also set
additional arguments. You can view a specific user’s
timeline by searching for the Twitter user profile
using user_id to search by their Twitter User ID

Retrieve a Twitter
Timeline

19_556801-ch17.indd 26119_556801-ch17.indd 261 8/31/10 9:24 AM8/31/10 9:24 AM

262

6

4

1

2

3

6 Open your Perl script in a Web browser.

• The browser displays the list of friends
(the users you follow).

1 Type my $list = $tw->friends();.

2 Type foreach my $user (@{ $list }) {.

3 Use the hash ref $user to display
information about each friend.

Note: You can always use Dumper($user)
to see what keys are available in the $user
hash reference.

4 Type }.

5 Save your Perl CGI script.

Retrieve a List of Twitter Friends

running your query. If you set it to -1, you retrieve about
100 users in your query. At the end the list, a next_
cursor value recommends the new value to use to get
the next 100 users. When there are no subsequent pages,
next_cursor returns zero. The list is returned as an
array reference variable, with each friend represented as a
user hash reference within. For each user found, you can
directly access information such as their last status
update, profile image, homepage URL, user ID, screen
name, location, language, and total number of friends
and followers.
Twitter also provides additional friend-related API calls that
allow you to create friend relationships, delete relationships,
or even query the status of a pending friend request. For
more information, refer to the Twitter API documentation
at http://dev.twitter.com/doc/post/statuses/
friends/ or the Net::Twitter PerlDoc page.

Y ou can retrieve a list of Twitter users you follow
using Net::Twitter and the Twitter API. This
feature, according to the Twitter API, actually

refers to this capability as a list of your Twitter friends.
Therefore, a friend on Twitter is regarded as someone
whose status you actively follow:
ARRAYREF = $tw->friends({ ARGS });

You can use friends without any arguments to retrieve a
list of the people you follow as a Perl array reference. You
can view a specific user’s friends list by searching for the
Twitter user profile by using user_id to search by their
Twitter User ID number, screen_name to search by screen
name, or id to search by both user ID and screen name.
Because the returned list can be rather long, you can
specify an optional cursor => number argument when

Retrieve a List of Twitter
Users You Follow

19_556801-ch17.indd 26219_556801-ch17.indd 262 8/31/10 9:24 AM8/31/10 9:24 AM

263

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

4

6

1

2

3

6 Open your Perl script in a Web browser.

• The browser displays the list of followers.

1 Type my $list = $tw->followers();.

2 Type foreach my $user (@{ $list }) {.

3 Use the hash ref $user to display
information about each follower.

Note: You can always use Dumper($user)
to see what keys are available in the $user
hash reference.

4 Type }.

5 Save your Perl CGI script.

Retrieve a List of Twitter Followers

Because the returned list can be rather long, you can
specify an optional cursor => number argument when
running your query. If you set it to -1, you retrieve about
100 users in your query. At the end of the list, a next_
cursor value recommends the new value to use to get
the next 100 users. When there are no subsequent pages,
next_cursor returns zero.
The list is returned as an array reference variable, with
each follower represented as a user hash reference within.
For each user found, you can directly access information
such as their last status update, profile image, homepage
URL, user ID, screen name, location, language, and total
number of friends and followers.
For more information, refer to the Twitter API
documentation at http://dev.twitter.com/doc/post/
statuses/followers/ or the Net::Twitter PerlDoc page.

Y ou can retrieve a list of Twitter followers
using Net::Twitter and the Twitter API. A
follower is someone who is interested in

your Twitter posts, and has selected your profile in
their friends list:
ARRAYREF = $tw->followers({ ARGS });

You can use followers without any arguments to
retrieve a list of people who are following you as a
Perl array reference.
When searching for followers, you can also set
additional arguments. You can view a specific user’s
friends list by searching for their Twitter user profile
using user_id to search by their Twitter User ID
number, screen_name to search by screen name, or
id to search by both user ID and screen name.

Retrieve a List of
Twitter Followers

19_556801-ch17.indd 26319_556801-ch17.indd 263 8/31/10 9:24 AM8/31/10 9:24 AM

264

8

8

5

6

7

2

3

4

1
1 Add API::Search into Net::Twitter’s traits.

2 Type my $search = $tw->search({ q =>
query, lang => 'en' });.

Note: Not specifying lang will return matching
tweets in any language.

3 Type foreach my $tweet (@{ $search->{
'results' } }) {.

4 Use the hash ref $tweet to display
information about each returned post.

Note: You can always use Dumper($tweet)
to see what keys are available in the $tweet
hash reference.

5 Type }.

6 Load the q CGI parameter into $query.

7 Create an HTML form to prompt for a search
term with a Submit button.

8 Check if $query is defined; if so, execute
the search.

Search for Content Using the Twitter Search API

the next page of tweets; since_id => statusid to
restrict your search to statuses later than this status ID;
and until => yyyy-mm-dd to only show tweets up to a
specific date. Finally, a recent add-on to the Search API is
the argument result_type => format where format is
one of the following: popular, which returns only the most
popular results; recent, which returns only the most recent
results; or mixed, which combines popular and recent
results. If you do not specify a result_type, it defaults to
mixed. If you are interested, you can save a search query
to the authenticated user’s profile using the following code:
HASHREF = $tw->create_saved_search({ query =>
query });

You can easily retrieve saved searches directly on the
regular Twitter Web site, or with the following code:
HASHREF = $tw->saved_searches();

Y ou can query Twitter for specific keywords
mentioned by its users, or even perform a general
query search of trending topics, using the Twitter

Search API. Unlike the main Twitter API, the Search API
does not require OAuth authentication. This means you
only need to provide your consumer key and secret
values into Net::Twitter, specify the API::Search trait,
and you can proceed to executing a search:
HASHREF = $tw->search({ q => query, ARGS });

The only required argument is q => query, which
specifies the term you want to search by. Optional
arguments that you can also use include the following:
lang => language, which restricts your search to a
specific language; rpp => number to set the number of
tweets to return per page; page => number to display

Search for Content Using
the Twitter Search API

19_556801-ch17.indd 26419_556801-ch17.indd 264 8/31/10 9:24 AM8/31/10 9:24 AM

265

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

%

#

9
0

!

^

$

The Search API also features several calls to search on current trending topics on Twitter. This allows you to follow
what people are talking about on Twitter, as the tweets happen, in real-time:

HASHREF = $tw->trends();

The trends method returns the top ten topics people are searching for, right now. You can also search by trending
topics, which are popular topics that people are talking about in their tweets. You can see what is trending right
now, or get a list of trends hour-by-hour in a day, or day-by-day in a week:

HASHREF = $tw->trends_current({ ARGS });

HASHREF = $tw->trends_daily({ ARGS });

HASHREF = $tw->trends_weekly({ ARGS });

Each of these three methods accepts an optional exclude => hashtags argument. This alters your trend search
to only list words and phrases that people are talking about. All trending hash tags are ignored. The daily and weekly
methods can also search for trending topics in the past; simply specify the argument date => yyyy-mm-dd to see
what was popular on that date.

Open the Perl script in a Web browser.

$ Type a search term.

% Click Submit Query.

• The search query results appear.

^ Click the Next page link.

 The next page of search results appears.

9 Type my $page = param('page') || 1;.

Note: This sets $page to 1 only if the
‘page’ CGI parameter is not defined.

0 Type page => $page.

! Add a link to open the next page of
search results.

@ Save your Perl script.

19_556801-ch17.indd 26519_556801-ch17.indd 265 8/31/10 9:24 AM8/31/10 9:24 AM

266

1

2

3 Type <script type="text/javascript">.

4 Type twttr.anywhere(function(T) {.

5 Type });.

6 Type </script>.

1 Open an HTML Web page in a text editor.

2 Type <script src="http://platform.
twitter.com/anywhere.js?id=
APIKEY&v=1" type="text/javascript">
</script>.

Note: If you do not yet have an API key, you
must register your Web site as a Twitter
application.

Use the Twitter @Anywhere JavaScript API

<script type=”text/javascript”>
 twttr.anywhere(function(T) {
 T(“#csstag”).feature(ARGS);
 }
</script>

The first line of the JavaScript never changes. The twttr.
anywhere method loads the function T asynchronously
on your page. You may specify multiple T().feature()
calls within a single twttr.anywhere function block, as
long as each call refers to a unique csstag.
The csstag value refers to the CSS identifier where you
want the feature to appear; note that this may be optional
for some @Anywhere features. The feature refers to the
API call you want to execute, and ARGS represents any
API call arguments, if applicable.

Y ou can use the Twitter @Anywhere JavaScript API
to easily add Twitter functionality directly onto
your Web site, without producing any Perl CGI

code. The @Anywhere JavaScript API provides features
such as auto-link user profiles, Hovercards, follow-me
buttons, and a TweetBox. To import the @Anywhere base
code, you can use the following JavaScript statement
within the <head>...</head> tags of any HTML page,
or in your header.shtml SSI page:
<script type=”text/javascript” src=”http://
platform.twitter.com/anywhere.
js?id=APIKEY&v=1”></script>

Be sure to set APIKEY with the appropriate value you
received when you registered your Twitter application. To
enable a specific @Anywhere feature, use the following
JavaScript code anywhere in your HTML:

Use the Twitter @Anywhere
JavaScript API

65
43

19_556801-ch17.indd 26619_556801-ch17.indd 266 8/31/10 9:24 AM8/31/10 9:24 AM

267

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

0

7

8

When using @Anywhere functionality,
Twitter may require a confirmation popup
that confirms with the user that your Web
site is going to interact with their Twitter
account. Because your original HTML
page will be used as a Callback URL after
the user clicks the Allow button, you must
make sure that the Callback URL you
registered matches any Web page using
the @Anywhere JavaScript SDK.

In contrast to this error message, only your
Web site’s domain name is actually used
when comparing your HTML page to the Callback URL. This was a modification that Twitter applied shortly after
launching @Anywhere because they realized that a single application may use the SDK on any URL, but the
application must still only use a single domain name.

For more information, refer to the Twitter @Anywhere documentation at http://dev.twitter.com/
anywhere/begin/.

7 Type <div id="NAME "></div>.

Note: Make sure that the CSS tag ID value is
unique.

Note: You can use almost any valid HTML tag,
like and
 <p id=”NAME”></p>.

8 Type T("#NAME ").function(ARGS);.

Note: Not all @Anywhere functions require
a CSS tag. In this case, use T.function
(ARGS);

9 Save your HTML file.

0 Open your HTML file in a Web browser.

• The browser displays the @Anywhere
function.

! Execute the function.

• A Twitter confirmation window appears.

19_556801-ch17.indd 26719_556801-ch17.indd 267 8/31/10 9:24 AM8/31/10 9:24 AM

268

7
9

!

1
3

8

0

5
6

2

4

1 Type use Net::HTTP;.

2 Type use MIME::Base64;.

3 Type use JSON;.

4 Type $| = 1; to display data as
it streams.

5 Type my $http = Net::HTTP-
>new(Host => "stream.
twitter.com");.

6 Type $http->write_request
('POST' => '/1/statuses/
filter.json',);.

7 Type 'Authorization' =>
encode_base64
("username:password", " "
),.

8 Type 'Content-type' =>
'application/x-www-form-
urlencoded',.

9 Type 'track=keywords ',.

0 Type my ($code, $msg) =
$http->read_response_
headers();.

! Stop the program unless the
response $code is 200.

Follow Real-Time Activity with the Twitter Streaming API

There are three low-level Perl modules that you need to
use: Net::HTTP, which allows for a persistent HTTP
connection; MIME::Base64 to support basic authentication;
and JSON to decode the raw data into a Perl hash
reference. Twitter says the Streaming API will try its best
to keep your HTTP connection active indefinitely. Twitter
recommends that you write your program to immediately
reconnect if it becomes disconnected, but you should not
abuse this if you encounter a legitimate error code.
Specifically, they advise that if you receive an HTTP 200
error code, you should wait ten seconds before trying
again. For each error you receive, double your wait time.
Twitter does monitor errors on the Streaming API and if
your program induces too many errors in a short period,
you can be banned from the service.
For more information, refer to the Twitter @Anywhere
documentation at http://dev.twitter.com/pages/
streaming_api/.

Y ou can use the Twitter Streaming API to actively
monitor all Twitter activity. You can use a filter to
only return tweets that match specific keywords,

or simply return every tweet as it is posted to Twitter.
The Streaming API permits you to open a persistent HTTP
connection while your program is active, and Twitter will
feed data through this connection in real-time.
Because Net::Twitter, and subsequently Perl, currently
lack modular support for the Streaming API, you will
have an easier time implementing it if you use basic
authentication, using specific low-level Perl modules.
Before you proceed with basic authentication, have a look
at your copy of Net::Twitter’s PerlDoc page. There is a
chance that by the time you read this, support for the
Streaming API will be added, and with it, support for
using the API with OAuth.

Follow Real-Time Activity with
the Twitter Streaming API

19_556801-ch17.indd 26819_556801-ch17.indd 268 8/31/10 9:24 AM8/31/10 9:24 AM

269

Ch
apter 17: In

terfacin
g w

ith
 th

e T
w

itter A
PI U

sin
g Perl

@ Type $http->read_entity_body
($buf, 1024);.

Append $buf onto a $json
scalar.

$ Process the raw JSON data
through a new decode
subroutine.

% Use from_json to decode the
raw JSON input into a hash ref.

^ Examine the contents of $data
with Data::Dumper.

& Save the Perl script.

* Run the Perl script in a
Terminal window.

• Twitter starts to feed the filtered
data to your browser from the
Streaming API.

• The program waits for the next
tweet in the stream.

(Press Ctrl+C to stop the
program.

Basic authentication is not very secure. You may want to consider manually implementing Net::OAuth with the
Streaming API, or you can use your personal access token and secret value that you received when you first
registered your Web site as a Twitter application. Throughout this chapter, you have only used OAuth; however, in
this case you have no choice, as Net::Twitter, which makes OAuth easier to implement, does not support the
Streaming API.

Four services are made available by the Streaming API:

SERVICE URL DESCRIPTION

/1/statuses/filter.json A filtered feed of all Twitter posts, by matching keyword.

/1/statuses/firehose.json An unfiltered raw feed of all Twitter posts.

/1/statuses/sample.json A random sample feed of Twitter posts, useful for testing purposes only.

/1/statuses/retweet.json A raw feed of all Twitter retweets.

Remember to review the documentation for each API call at http://dev.twitter.com/doc/get/statuses/
name.

^

$

*

%

#
@

19_556801-ch17.indd 26919_556801-ch17.indd 269 8/31/10 9:24 AM8/31/10 9:24 AM

270

5

7

4
6

1

2
3

Accept a File
for Upload

B y allowing your users to upload files, you can
expand the types of services that your Web site
offers by writing a Perl CGI script that accepts the

uploaded data, processes it, and produces some sort of
result. To allow users to upload files, you must first
create an HTML form that prompts the user for the file to
upload, and then create a Perl CGI script that accepts the
upload using the CGI library.
To accept files, your opening HTML form tag must specify
a special encoding-type attribute called “multipart/
form-data”, after which, all data fields that are sent will
be specially formatted for complex data payloads. This
allows you to accept relatively large files, and to maintain
support for legacy form input fields.
Within the actual form, you must add a “file” input
field. Its syntax is exactly the same as the other form-
input fields such as “text”, “password”, and “submit”,

except this field triggers additional functionality in the
Web browser that allows the user to browse their
personal hard drive and select a file to upload:
<form method=”post” method=”URL”
enctype=”multipart/form-data”>

<input type=”file” name=”field”><input
type=”submit”>

In your Perl script, the CGI library provides a built-in way
to decode the “multipart/form-data” protocol by way
of the upload method. You provide the following code:
$handle = $cgi->upload(field);
$data .= $_ while(<$handle>);

The CGI library does not restrict the maximum file size,
but you should enable an upper limit to prevent any
abuse of Web server resources. To configure your Perl
script to apply an upper limit, type the following code
before initializing the CGI library:
$CGI::POST_MAX = bytes;Accept a File for Upload

1 Open a Perl CGI script in a text
editor.

2 Type enctype='multipart/
form-data' in the opening HTML
form tag.

Note: Make sure the method is “post”.
This encoding-type is incompatible with
the “get” method.

3 Type <input type=file name=
'upload-file'> inside the HTML
form.

4 Check if the CGI upload-file
parameter exists.

5 Type my $upload = $cgi->upload
('upload-file');.

6 Type my $data = " ";.

7 Type $data .= $_ while (<$upload>);.

20_556801-ch18.indd 27020_556801-ch18.indd 270 8/31/10 9:25 AM8/31/10 9:25 AM

271

%

9 0 !

8

&$
^

9 00

#

You can actually use the technique described here for
any file type. Given your Web site’s objectives, you may
want to limit the types of files that will be accepted by
filtering on the file’s MIME type.

Load the CGI script in a Web
browser.

$ Click Browse.

• The File Upload window appears.

% Select a file.

^ Click Open.

& Click Upload.

• The Perl script receives the file in
memory.

8 Type my $info = $cgi->uploadInfo
($upload);.

9 Type length($data) to get the
number of bytes received.

0 Type $info->{ ‘Content-Type’ } to
access the file’s MIME type.

! Type $info->{ ‘Content-Disposition’ }
to access the file’s original filename.

@ Save the Perl CGI script.

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

To save the file to disk, you need to have Perl use binary
mode on your output file. After calling $handle =
$cgi->upload(field), you can save it to disk.

TYPE THIS

if ($info->{ ‘Content-Type’ } =~ /^image\//
) {

 # Process the uploaded image file.
}

➔

RESULTS

You can add this code immediately after calling the
$cgi->upload(field) statement. Once
implemented, you can ensure that only files whose
MIME type begins with “image/” will be accepted.

TYPE THIS

open(SAVE, “>filename”);
binmode(SAVE);
print SAVE $_ while(<$handle>);
close(SAVE);

➔

RESULTS

The uploaded file is saved to disk using binary mode.

20_556801-ch18.indd 27120_556801-ch18.indd 271 8/31/10 9:25 AM8/31/10 9:25 AM

272

4
5

1

2
3

4 Type my $err = $image->Read(
filename);.

5 Type die $err if $err;.

Note: The function die will kill your
program at that point; however, if you
want to continue but also display a
warning, then use warn.

1 Open a new Perl script in a text editor.

2 Type use Image::Magick;.

3 Type my $image = new Image::Magick;.

Open an Image with Image::Magick

P erl can use the ImageMagick graphics library to open,
create, manipulate, and save image files to disk.
ImageMagick is accessible from the Perl module

Image::Magick. If you are on Linux, you can install the
package perlmagick. If you are on Windows, you can
download the installation program from www.imagemagick.
org/script/binary-releases.php#windows. Be sure to
select the installation option, Install PerlMagick for
ActiveState Perl. After installing ImageMagick, reboot your
Web server to find the Perl module:
use Image::Magick;
my $image = new Image::Magick;
my $err = $image->Read(filename);

Once the $image handle has been initialized and an
image file is read, you can access ImageMagick’s methods
through the $image handle.

Open an Image with
Image::Magick

TYPE THIS:

my ($w, $h) = $image->Get(‘width’,
‘height’);

RESULTS:

The width and height of the image are written into the
variables $w and $h.

➔

After opening the image with Read, you can access the
image’s attributes with Get.

20_556801-ch18.indd 27220_556801-ch18.indd 272 8/31/10 9:25 AM8/31/10 9:25 AM

273

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

3

5
4

2

1

4 Type $err = $image->Crop
(x => x, y => y, width =>
width, height => height);.

5 Type die $err if $err;.

Note: Either function can accept
a geometry value to specify
coordinates, for example,
$image->Crop(geometry
=> “XxY+W+H”);.

1 Open a Perl script with an
image loaded into an
$image handle.

2 Type $err = $image-
>Resize(width => width,
height => height);.

3 Type die $err if $err;.

Resize or Crop an Image

resize the image in a separate process or server, shortly
after receiving the original image, and store the resized
copies of the original image on disk. The method for
resizing is Resize:
$image->Resize(width => width, height =>
height);

The resize function does not have a built-in aspect ratio
lock. This means that you are free to change the ratio
between the width and height, but if you only change one
value, the other remains the same. If you want to lock it,
you must calculate the width and height values.
ImageMagick also allows you to crop an image to a new
size, but keep the original aspect ratio. The method for
cropping is Crop:
$image->Crop(x => x, y => y, width => width,
height => height);

O nce you open an image using the
Image::Magick Perl module, you can use
the corresponding $image handle to begin

manipulating the image data. For an online gallery
application, this can be particularly useful as you
may want to convey the image in multiple display
sizes: a thumbnail for browsing the picture in a list,
a scaled image suitable for viewing the image in a
Web browser, and the original image for
downloading and printing.
You may choose to resize the image dynamically in
your Web site, as the image is requested by the
user’s Web browser in real-time, but this will take
away CPU resources from your Web server, possibly
resulting in slower performance. Instead, you should

Resize or Crop an
Image with Image::Magick

20_556801-ch18.indd 27320_556801-ch18.indd 273 8/31/10 9:25 AM8/31/10 9:25 AM

274

5 4

3

1

2

3 Open a Perl script with an image
loaded into an $image handle.

4 Type $err = $image->method
(parameters);.

5 Type die $err if $err;.

 When you run your program, the
script executes your chosen
manipulation function.

1 Browse to the ImageMagick image-
manipulation methods Web page.

2 Select a filter method.

• The method’s name.

• The method’s parameters.

Manipulate an Image with Image::Magick

I mageMagick supports dozens of image effect filters
that are accessible by your Perl script through the Perl
Image::Magick module. Manipulation filters include

the ability to blur, sharpen, rotate, scale, implode,
explode, swirl, negate, trim, wave, and tint any image.
You can also draw lines, circles, squares, or rectangles on
images, and even add colored text using a fancy font.
Additional advanced color manipulation commands are
also available. This includes the ability to segment an
image, apply a median filter, alter the color map, and
enhance or reduce the image brightness and contrast.
ImageMagick also supports some built-in manipulation
recipes that will add some graphical flare to an image
using multiple manipulation commands. This includes
adding an ornamental frame, even making the image
look like an oil painting, a charcoal drawing, or a picture.

Manipulate an Image
with Image::Magick

You can find a complete list of available filters and
arguments at www.imagemagick.org/script/
perl-magick.php#manipulate. Once you identify
a filter method you want to apply, the arguments
summarize what the filter accepts, but the Web site
does not explain which ones are required. You can find
additional documentation about each manipulation
filter at www.imagemagick.org/Usage/.

20_556801-ch18.indd 27420_556801-ch18.indd 274 8/31/10 9:25 AM8/31/10 9:25 AM

275

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

3

6

1

2

5 Execute your Perl script.

6 Open an image viewer.

• The original image file.

• The edited image file.

1 Open a Perl script with an image
loaded into an $image handle.

2 Type $err = $image->Write
(filename);.

3 Type die $err if $err;.

4 Save your Perl script.

Save an Image to Disk

my $filename = “filename.jpg”;
unlink($filename) if (-e $filename)
$err = $image->Write($filename);
die $err if $err;

After saving the file once, the image data is still available
in $image. This is useful in case you want to apply a
modification to the image, but you want to save the
current image to disk prior to doing so.
Image::Magick supports the most common Internet image
file formats, such as GIF, JPEG, and PNG, as well as
dozens of less-common formats. If you want to review a
complete list of formats that are available for your
installation of ImageMagick, use this command:
print join(‘, ‘, $image->QueryFormat());

A fter modifying an image with ImageMagick,
you can save it to disk. If you choose, you
can change the format of the file simply by

changing the output filename extension:
$err = $image->Write(“filename.jpg”);
die $err if $err;

If there is a problem writing the image to disk, $err
is populated with the error message. If the file
already exists, ImageMagick automatically appends
a number to the end of the filename — for example,
filename-0.jpg, filename-1.jpg, and so on. No
message is returned on $err if this happens.
However, one way to avoid this problem is to test if
the file already exists, remove it, and then save it:

Save an
Image to Disk

20_556801-ch18.indd 27520_556801-ch18.indd 275 8/31/10 9:25 AM8/31/10 9:25 AM

276

!

0

9

8
7

4

2

3

5

6

1

44

7

7 Check if an image exists and if a command
was requested.

8 Read the image file into ImageMagick.

9 Perform the selected command.

0 Write the image file back to disk.

Note: Undo functionality can be provided by
sequentially backing up the current image just
before executing the Image::Magick function.

! If you use the view CGI parameter, load
the image file and display it as the Perl
CGI script’s output.

1 Open a Perl CGI script that uses the CGI
and Image::Magick modules.

2 Assign and retrieve a unique cookie that
will track the user’s image name on disk.

3 Display the HTML form to upload a new
image.

4 Check if the image exists.

5 Display some input parameters to
modify it.

6 Display the image by calling this Perl CGI
script with a special CGI parameter.

Display a Dyanmic Image to the Browser

Y ou can construct a program that takes advantage
of the CGI library’s file-upload functionality, and
the Image::Magick module’s manipulation

functionality to produce a CGI Web page that accepts an
image, manipulates it through command links, and
displays the dynamic output of the image back to the user.
Because there are multiple display states that can be
presented to the end-user, this program needs to be
aware of what state the user is in, based upon the
information provided from the previous state. The trick is
to code each state in your CGI script backward. Naturally,
when a user first visits this Web page, they should only
see an upload prompt, but that upload prompt may be
preceded by the uploaded image, if the image is already
stored on disk.

You can verbalize your code like this: If you have an
image, display it; otherwise, if you are receiving an
image, save it; otherwise, just display the upload prompt.
Hence, backwards. This idea is extended to the next level,
displaying various commands when displaying the image,
but preceding the display with the execution of the actual
commands.
One challenge in creating this CGI script is that you want
multiple people to be able to use the CGI script at the same
time, but you also want each user’s uploaded files isolated
to the person who uploaded them. The last thing you
should do is pass a literal filename as a CGI parameter to
the file that is being manipulated. Instead, as a rudimentary
solution that provides moderate security, you can assign a
user a multi-randomized cookie, and then use this cookie
value to reference the actual image filename.

Display a Dynamic
Image to the Browser

20_556801-ch18.indd 27620_556801-ch18.indd 276 8/31/10 9:25 AM8/31/10 9:25 AM

277

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

$

*

(

%

^

@
#

) q

For simplicity, this program referenced the image filename using a literal, yet obfuscated, value. Nonetheless, this is
a weak security model. A more robust solution is to add in a user-authentication layer, as described in Chapter 15,
and tie the user’s identifier to a table that restricts the user to viewing and manipulating only those images that they
uploaded.

While this is a fair amount of work, you need to be extremely diligent in protecting your user’s personal data on
your Web site. If your CGI program is sloppy or incomplete, someone could gain access to view not only another
user’s images, but even system files stored locally on your Web server.

This is actually a risk under this current model. One way to circumvent any attempts at accessing other files is to
sanitize the cookie’s value by removing potentially dangerous characters, such as dots or slashes. Because you use
the literal cookie as your image filename, a dot or a slash could result in an attacker probing your system for private
files. Simply reject a cookie that contains anything other than numbers or letters, and re-assign it to a new value.
See Chapter 22 for more information on securing your CGI code.

* Open the CGI script in a Web browser.

(Upload an image.

• The image appears in the Web browser.

) Type new height and width values.

q Click Resize.

 The image displays at the new size you
specified.

@ Check if the user is uploading a file.

Store the uploaded data into a temporary
file.

$ Type binmode(SAVE); to write the
temporary file to disk in binary mode.

% Type print SAVE $_ while (<$upload>);
to save the image to the temporary file.

^ Open the temporary file with
Image::Magick, and save it as a cookie-
image JPEG.

& Save the CGI script.

20_556801-ch18.indd 27720_556801-ch18.indd 277 8/31/10 9:25 AM8/31/10 9:25 AM

278

6

9

4

8
0

7

1

2

3
5

77

6 Type my $md5sum = $captcha->
generate_code(number);.

Note: This number argument indicates
the total number of characters that
should appear in the Captcha image.

7 Display the $md5sum.png image.

8 Use this script as the HTML form’s
action attribute.

9 Pass $md5sum as a hidden form
variable.

0 Prompt for the user’s answer.

1 Open a new Perl CGI script in a
text editor.

2 Type use Authen::Captcha;.

3 Type my $captcha = new
Authen::Captcha;.

4 Type $captcha->data_folder
(secure-path);.

5 Type $captcha->output_folder
(public-path);.

Implement an Image Captcha Test

Y ou can use the Perl module Authen::Captcha to
create images that you can use as Captcha tests
on your Web site. The acronym stands for

Completely Automated Public Turing test to tell
Computers and Humans Apart. This is a very useful way
to limit portions of your Web site to human-users, and to
generally stop computer-users, such as automated
programs browsing the Web, from passing. See Chapter 9
for more information on installing modules.
When initializing Authen::Captcha, you need to provide
two directories. The first, data_folder, indicates a path
where it can store its database. This should be a directory
that is not visible from an Apache URL. The second,
output_folder, indicates a path where you want
Authen::Captcha to write its Captcha images. This must
be within a public URL directory.

This module requires a Perl CGI script that you write in
two parts. The first part requires you to call the method
generate_code, which creates the Captcha image, writes
it to disk in an output folder, and returns the md5sum
hash of the correct answer. Your program is responsible
for displaying the image and generating the HTML form
that prompts the user for the answer. In the actual form,
you must pass the md5sum hash as a hidden input value.
The second part is called from the first by way of
submitting the form. It must call the method check_code
with the md5sum hash and the user’s answer as
arguments. If the answer matches the md5sum hash, the
method returns the value 1, indicating a pass. Any
number other than 1 is a failure. Your program needs to
be able to identify the passing result and only then decide
whether to allow the user to continue.

Implement an Image
Captcha Test

20_556801-ch18.indd 27820_556801-ch18.indd 278 8/31/10 9:25 AM8/31/10 9:25 AM

279

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

^

@
#

$

& *

!

Each time Authen::Captcha generates an image or validates a response, it checks its data file for previously
generated images, and it automatically deletes all used Captcha images.

The images produced by Authen::Captcha are relatively rudimentary, but they do serve the purpose well enough.
If you are protecting an area of your Web site that is relatively important, you may want to consider increasing the
number of characters in the image, decreasing the expiry timeout, or even opening up the JPEG image file with
Image::Magick and adding in your modifications to make it more visually complex.

A Captcha test does not need to be only an image. Some commercial products are capable of producing a sound-
based test, or even a word-based math problem test.

For example, you might prompt your users with the message, “What is thirty plus seventeen minus five?” and
request that they type their answer as words, not numbers.

A Perl CGI script that demonstrates this type of test is provided on this book’s Web site.

^ Load the CGI script in a Web browser.

• The Captcha prompt appears.

& Type an answer.

* Click Submit Query.

• The failure or success message appears.

! Check if the md5sum and answer CGI
variables were provided.

@ Type my $result = $captcha->check_code
(answer);.

Check if $result is 1, indicating a pass.

$ Otherwise, display a failure message.

Note: For security purposes, do not provide an
explanation as to why the user’s answer failed
the test. The $result code does provide
other error levels, but you should only use these
for debugging.

% Save the Perl script.

20_556801-ch18.indd 27920_556801-ch18.indd 279 8/31/10 9:25 AM8/31/10 9:25 AM

280

6

7

8

0
9

1

2
3

4

5

6 Identify the uploaded file’s name, excluding the
extension.

7 Define the locations for the temporary upload,
and the original, sized, and thumbnail files.

8 Save the uploaded data into the temporary file.

9 Use Image::Magick to read the temporary file
and write it as the original image. This converts
all uploads into JPEG images.

0 Use Image::Magick’s Resize method to
produce the sized and thumbnail versions.

1 Open a Perl script in a text editor.

2 Import the CGI, Image::Magick, and
HTML::Template modules.

Note: Because you will have multiple template files,
you should only declare the $tmpl handle for now.

3 Define a location for the images, relative to the
script.

4 Define the program’s stages: upload, display
sized image, and display thumbnail list.

5 Display the template as program output.

Produce an Image Gallery

Y ou can produce a simple image gallery using Perl
to showcase your photos online. Such a program
does not have to be overly complex. If all you

want to do is showcase your vacation photos to your
family using a public URL, then a Perl CGI script is more
than sufficient.
The gallery is this example accepts images for upload,
and presents them in three display modes: thumbnail,
review, and original. The thumbnail mode allows you to
preview all images in your gallery using a smaller image
(around 140 x 140 pixels), displaying all available
images on one page. Clicking the thumbnail allows you to
view the image in more detail, using a resolution more
suitable to your Web browser, possibly at 500 x 300
pixels. Clicking that image displays the original image,
using its original resolution.

You can also add in a slide show feature, or include a
way to browse to the next and previous image while
reviewing an image.
When receiving an uploaded image, the program converts
its size right away, and redirects the Web browser back to
the previous page, reloading the thumbnails so the new
image is visible. This process is fairly easy, and avoids
the problem of clicking the Reload button immediately
after uploading an image, which effectively uploads it
again. After the image is uploaded and processed, you
add the following line of code:
print “Location: $ENV{ ‘HTTP_REFERER’ }\n\n”;

This location line, when used prior to Content-type:
text/html, redirects the user’s browser back to the
referring location. This effectively divides your program
between processing code and displaying code.

Produce an
Image Gallery

20_556801-ch18.indd 28020_556801-ch18.indd 280 8/31/10 9:25 AM8/31/10 9:25 AM

281

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

%

^
&

*
(

!

@

#
$$$

((

The hard-coded values used in the steps for the thumbnail and review images are not scaling consistently. When
resizing an image, maintain the height and width ratio between the original image and the resized copy; this
prevents distortion of the image.

% Compile a list of thumbnails.

^ For each thumbnail, identify the
sized filename.

& Push the thumbnail and sized files
into the $list array reference.

* Open the gallery_thumbnails.
tmpl template.

(Assign the list of thumbnails as a
parameter.

) Save the Perl script.

! Delete the temporary file, and
redirect the user to the previous
URL.

@ Identify the original filename from
the sized filename.

Open the gallery_review.tmpl
template.

$ Assign the sized and original files as
parameters.

TYPE THIS

my ($w, $h) = $image->Get(‘width’, ‘height’);
my ($w2, h2);
if ($w > $h) {
 $w2 = 140; $h2 = int($h * $w2 / $w);
} else {
 $h2 = 140; $w2 = int($w * $h2 / $h);
}
$image->Resize(width => $w2, height => $h2);

RESULTS

The code sets the larger image
dimension to be the maximum value,
140, and cross-multiplies by the
original height and width to find the
shorter dimension that keeps the
same image aspect ratio.

➔

continued ➔

20_556801-ch18.indd 28120_556801-ch18.indd 281 8/31/10 9:25 AM8/31/10 9:25 AM

282

u

i

o

w

e

q
t

r

u Open the gallery CGI script in a Web
browser.

 The list of thumbnails in the gallery
appears.

i Browse for an image and click
Upload.

 The new image’s thumbnail appears.

o Click a thumbnail image.

q Open the gallery_thumbnails.
tmpl template file.

w Insert the file upload HTML code.

e Display the loop of thumbnail images,
linked to the sized image.

r Open the gallery_review.tmpl
template file.

t Display the sized file, linked to the
original file.

y Save both templates.

Produce an Image Gallery (continued)

Y ou may want to add some technical information
about the picture while the user is reviewing the
scaled copy. Many digital cameras produce JPEG

images that contain additional data in EXchangeable
Image File (EXIF) format. While Image::Magick cannot
read EXIF content, there are Perl modules that can. One
such module is called Image::ExifTool. You can install it
over CPAN or ActiveState PPM, as described in Chapter 9.
The easiest way to use it, and to review the available
EXIF fields in an image, is to couple it with Data::Dumper:
use Image::ExifTool ‘:Public’;
use Data::Dumper;
my $info = ImageInfo(filename);
print Dumper($info);

If you already know what fields you are interested in, you
can bypass importing Data::Dumper and call the fields’
names directly:
print “Camera model: $info->{ ‘Model’ }\n”;
print “Exposure: $info->{ ‘ShutterSpeed’ }\n”;
print “Picture Date: $info->{ ‘CreateDate’
}\n”;

Depending on your camera model, a lot of data may be
returned. Fortunately, even though Image::Magick does
not understand EXIF, it does maintain the data structure
if you modify a JPEG file that already contains the data.
For more information on Image::ExifTool, see its PerlDoc
page. For more information on EXIF in general, go to
http://en.wikipedia.org/wiki/EXIF.

Produce an Image
Gallery (continued)

20_556801-ch18.indd 28220_556801-ch18.indd 282 8/31/10 9:25 AM8/31/10 9:25 AM

283

Ch
apter 18: Creatin

g D
yn

am
ic Im

ages w
ith

 Perl

p

After you set up a basic image gallery, you can start adding in simple image-editing tools, such as image rotation,
cropping, or even image modification effects. You may also want your users to be able to apply a title to the image,
or delete the image entirely from the gallery. If you add in these types of gallery editing features, you also need to
add in some form of user authentication. This will prevent anyone from accessing your Web site and editing your
images.

In this example, you are displaying the images directly in the HTML output, rather than through a Perl CGI script
wrapper as demonstrated earlier in this chapter. If you want to build your gallery to be completely private, you
should consider wrapping the images in a Perl CGI, and then leverage your authentication model in the same code.

The single-image upload window is not entirely convenient, especially if you have several new images to post. You
could create multiple file-upload form fields, but a more clever solution would be to specify a local directory on your
Web server. Simply FTP your images in bulk into this directory, and instruct your Gallery Web site to scan them.

• The original image appears.

Note: Even though the URL refers to the
original JPEG file, the Web browser may
still try to scale the image to fit in the
window.

• The browser displays the resized
image.

p Click the image.

20_556801-ch18.indd 28320_556801-ch18.indd 283 8/31/10 9:25 AM8/31/10 9:25 AM

284

Introducing
AJAX

A JAX, or Asynchronous JavaScript and XML, is a
development technique that uses client-side
JavaScript to communicate using XML through to

a server-side component, independent of the initial HTML
download of a Web page. AJAX has the benefit of being
able to change an already-loaded Web page dynamically,
without needing to download and render an entirely new
page just to display new content.
Normally, after an initial page load, when the user clicks a
button on a Web page, the browser loads the URL link
assigned to the button, and the entire Web page refreshes.
After implementing AJAX, that button click actually opens
up a connection to the Web server, independent of the

Web browser’s display window, performs a new request,
downloads some new information, and dynamically
displays it on the current Web page. This makes AJAX
Web pages appear and respond much faster than
traditional HTML, at least after the initial page load.
The individual parts of AJAX have been available since
the mid-1990s, but this particular combination and usage
was not common until 2005 when Google showcased
their Gmail and Google Maps applications. These sites are
just regular Web pages with HTML and JavaScript, but
with the creative execution of AJAX by Google, they
became dynamic, fast-loading Web applications.

The Purpose of AJAX

AJAX eliminates the need to reload a Web page each time the
user clicks a link and interacts with it. Prior to AJAX,
regardless of the complexity of the request made by a user,
the entire Web page needed to be downloaded and rendered
again. For a site with a lot of graphics and content, this was
slow and inefficient.

AJAX helps alleviate this problem by allowing the Web
developer to only update content that has changed, leaving
the rest of the page untouched from the initial Web page
download.

AJAX Process Flow

Asynchronous Interaction

Because JavaScript is already a Web browser-based
programming language, it is aware of how the end-user is
interacting with the Web site. This awareness is limited to the
code already delivered to it by the Web server each time the
Web page loads. With the advent of asynchronous interaction
functions in JavaScript, such as XMLHttpRequest, Web
developers can code JavaScript to query the Web server for
information outside of the initial Web page download. This
query performs just like a traditional HTTP GET or POST, except
the Web browser does not reset its display. JavaScript is
completely in charge of making the request to the Web server,
receiving the request, and parsing it for useful information to
enhance the end-user’s experience on the Web site.

Early AJAX implementations used XML-formatted content as a
communication language between the JavaScript and the CGI.
This made sense because standard HTML is a graphical
rendering language, but JavaScript is only concerned with
transferring raw information. However, XML is overly verbose
and can be inefficient at sending large amounts of data. Even
the JavaScript functions designed to parse and navigate XML
are inefficient and convoluted. A leaner communication
language called JSON has since become a popular alternative
to XML. When reading JSON, it appears like literal JavaScript
variable assignments. This makes it very easy to implement
JSON in JavaScript. In fact, in Chapters 16 and 17 you will
find that both Facebook and Twitter are producing services
that deliver dynamic content using JSON instead of XML.

Several key JavaScript features come together to form the AJAX experience. The two main ones are the asynchronous Web server
calls, and the dynamic updates to the browser’s currently rendered Web page.

21_556801-ch19.indd 28421_556801-ch19.indd 284 8/31/10 9:25 AM8/31/10 9:25 AM

285

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl
AJAX Process Flow (continued)

By using JavaScript to locate the output tag by its
identifier, you can inject new content into the Web page
using the tag’s innerHTML property:

var outputObj = document.getElementByID(
‘output’);

outputObj.innerHTML = “New content for the span
tag!”;

Because AJAX is already pulling in new data from the Web
server, it is a logical tie-in for it to use innerHTML to
update the Web browser with that data.

Dynamic Web Page Updates

The end-user experience is enhanced by the use of the
JavaScript property innerHTML. Text written to this
property inside of an HTML object automatically appears in
the Web browser at the placement of that tag. Nearly every
tag in HTML can be assigned an identifier which can be
located using JavaScript. By assigning any HTML tag with an
identifier, JavaScript can populate content within the tag
dynamically on the current Web page. For example, the
following code is invisible when the Web browser first
renders the page:

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

Implementing AJAX

Web Browser Support

Because AJAX relies primarily on JavaScript technologies,
implementing it actually becomes more difficult as each
Web browser can implement these specialized JavaScript
functions differently. The Web developer’s goal is to
produce a single Web site that works in all browsers;
however, JavaScript complicates that goal because each
browser implements JavaScript with its own extensions
and enhancements. The process of Web browser
identification and JavaScript function probing leads to code
that is two or three times longer than it should be, just
because of each Web browser’s idiosyncrasies.

Fortunately, developers have produced several JavaScript
libraries dedicated to simplifying the JavaScript
development effort, and reducing the time spent
implementing AJAX. One such library is called jQuery
(www.jquery.com). You only need to follow jQuery’s
common execution syntax to perform individual JavaScript
and AJAX tasks. Since each Web browser has slightly
different implementations of JavaScript, jQuery
automatically identifies the browser in use and executes the
correct browser-specific JavaScript code.

Web Server Support

From the perspective of Apache or any other Web server, it
does not need to worry about AJAX-specific Web traffic.
The XMLHttpRequest function produces HTTP queries
in the same fashion as the regular browser; Apache just
fulfills the request to the CGI program that is servicing the
requested URL.

Perl CGI Support

Perl has no built-in functions that specifically handle AJAX,
JavaScript, or even HTML. Because these are all languages
and techniques that are executed on the Web browser, and
Perl is only designed to be executed on the Web server,
your Perl CGI scripts can only use print to relay these
language commands to your user’s Web browser. This
means that you are free to implement AJAX manually, if
you so choose, but you must do this by coding JavaScript
and HTML within Perl print statements.

Fortunately, there are some helper modules that automate
the construction of AJAX and JavaScript in Perl, before it is
sent to the Web browser. One of these modules, CGI::Ajax,
is demonstrated throughout this chapter.

When implementing an AJAX solution, you need to be aware of special considerations on both the Web browser and server.

21_556801-ch19.indd 28521_556801-ch19.indd 285 8/31/10 9:25 AM8/31/10 9:25 AM

286

Y ou can use the Perl module CGI::Ajax to simplify
asynchronous Web site activity produced with
Perl CGI scripts. You do not necessarily need

CGI::Ajax to add AJAX functionality under Perl, but it
does help.
CGI::Ajax provides a connection between JavaScript and
Perl, allowing you to transmit data between both execution

environments. This is useful in case you have a feature
that you want to execute in JavaScript, but it requires data
that must be generated by Perl on a Web server. CGI::Ajax
bridges that gap so the two programming environments
can talk seamlessly to each other.

Introducing
CGI::Ajax

Requirements

Registered Perl Subroutines

CGI::Ajax requires you to register your Perl subroutines as
JavaScript functions. This is one of the best features of
CGI::Ajax as it provides for you a convenient and automated
way to link JavaScript activity with Perl functionality. When
JavaScript makes a request for one of your subroutines, you
need to be careful about how code outside of your registered
subroutine is executed. You must avoid code that is
automatically executed outside of the requested subroutine
that prints anything as output, as this affects how CGI::Ajax
transmits your Perl output back to JavaScript.

Your registered Perl subroutines receive data directly from
JavaScript in the form of an array. It in turn is expected to
return one or more values, also as an array, which populates a
predetermined HTML tag as identified by its CSS ID field.

Centralized HTML Code

CGI::Ajax does not function well if your Perl script prints
HTML at various points, scattered throughout its logic. This is
because your Perl CGI actually runs multiple times at various
states. The first state is general output; it is the normal code
requested when the page first loads. The second state
contains the asynchronous calls back to the script; you do not
want any uncontrolled HTML to be displayed, as this may
adversely affect the field that CGI::Ajax is trying to update.

CGI::Ajax recommends that you create a subroutine, typically
named show_html, which gets called from within its
controller method, aptly named build_html. Because
CGI::Ajax always knows what state it is acting in, it can decide
if it needs to display the HTML, depending on whether the user
is newly visiting your CGI, or performing an asynchronous
request.

If you are already separating HTML from Perl using another
library such as HTML::Template (as described in Chapter 13),
then you are already on the right track. In fact, HTML::Template
integrates very easily with CGI::Ajax because your template’s
HTML output has already been disconnected from the logic
and functions within your Perl CGI script.

Before you can implement CGI::Ajax, you need to reorganize how your Perl CGI script flows.

Installation

Class::Accessor is a tool that Perl module developers use to
automatically generate simple methods in Perl modules that can
get and set module-specific variables, called accessors.
Additional documentation is available for both modules by way of
the PerlDoc program.

CGI::Ajax is a third-party Perl module that is not a part of
the standard Perl distribution. You must manually install it
on all Web servers and workstations that you use to run
Perl CGI scripts. The process to install it is just like any
other third-party module, using any tool described in
Chapter 9. CGI::Ajax does have one dependency module,
Class::Accessor.

21_556801-ch19.indd 28621_556801-ch19.indd 286 8/31/10 9:25 AM8/31/10 9:25 AM

287

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

facilitate the asynchronous JavaScript calls later so that
they work regardless of the Web browser.

CGI::Ajax takes the liberty of also posting your CGI headers
to the Web server. If you do not want this functionality, you
can always call $ajax->skip_header(1). You may
also want to send additional arguments that would
normally be sent to $cgi->header. This can happen
automatically if you provide them as a third argument to
build_html.

Call Perl Asynchronously

Depending on the Web browser event you want to watch
for, your HTML code should reference a JavaScript
function registered to a Perl subroutine. Two arguments
are required for the JavaScript function: the first is the
input variables or CSS ID fields that you want to send to
Perl, and the second is the CSS ID field or fields that you
want to be updated to display Perl output:

Your Email: <input type=text id=email
onchange=”validate_
name([‘email’],[‘result’])”>

Validity check:

Execute Perl Subroutines

Your Perl subroutine automatically receives as input
parameters the data stored within HTML fields in the Web
browser. For example, if the user types john@foo.com into
the ‘email’ text input field, Perl automatically receives
that data as the first parameter of input to its subroutine
registered to the validate_name JavaScript function.

Update the Web Page

When your Perl subroutine ends, it is expected to return
something back to CGI::Ajax. This output is automatically
placed within another HTML tag somewhere on the Web
page. For example, if the user’s e-mail address passes the
Perl subroutine’s validity check, it may return “Looks
good!” This is automatically placed within the tag with the
‘result’ ID attribute.

Initialize CGI::Ajax

Your Perl CGI script can initialize CGI::Ajax by importing its
module and creating a module handle with the new
method. In order for CGI::Ajax to work, you must register
at least one JavaScript function-to-Perl subroutine
reference when initializing the module:

use CGI::Ajax;

my $ajax = CGI::Ajax->new(jsFunction => perl_
subroutine);

The CGI library is also required, but it is not used directly
within CGI::Ajax until you define your HTML output.

Your HTML code needs to be controlled by CGI::Ajax so it
only displays at specific times. The easiest way to do this is
to create a subroutine specific to displaying HTML, and
reference it in CGI::Ajax’s build_html method:

print $ajax->build_html($cgi, \&show_html);

The reference to your HTML subroutine is vital as you do
not want to actually execute it when calling build_html,
but instead pass a reference so that build_html can call
it when it is ready. CGI::Ajax also expects a module
reference to the CGI library, which is required because it
produces proper CGI headers and can interact with other
CGI functions on your behalf.

CGI::Ajax expects that your HTML code is properly
formatted in HTML 2.0 format. This means that it contains
a proper “<html><head></head><body>...</
body></html>” format structure. CGI::Ajax parses your
HTML and inject its JavaScript code at the correct point.

Your HTML code should have some way of making
JavaScript function calls, triggering your registered Perl
subroutines, based upon some sort of user event or
activity.

CGI::Ajax Builds the Output

When your CGI script is loaded into a Web browser,
CGI::Ajax begins to work and delivers a large chunk of
JavaScript code to the user automatically. This is to

Process Workflow

CGI::Ajax makes executing asynchronous calls easy because it wraps around your Perl CGI scripts, providing a predetermined
workflow to both JavaScript and Perl.

21_556801-ch19.indd 28721_556801-ch19.indd 287 8/31/10 9:25 AM8/31/10 9:25 AM

288

6
7

0

2

3
4

5

1

9

8

6 Create a show_html subroutine.

7 Type return <<EOF;.

8 Call the placeholder jsFunction function.

9 Create a span tag to display the Perl output.

Note: The exchange of Perl and JavaScript variables
is described in more detail in the section, “Call Perl
Subroutines through JavaScript.” For now, you just
need a placeholder, as CGI::Ajax requires at least
one subroutine.

0 Type EOF.

1 Open a Perl CGI script in a text editor.

2 Type use CGI::Ajax;.

3 Type my $ajax = new CGI::Ajax(jsFunction
=> \&perl_subroutine);.

4 Create a placeholder perl_subroutine
subroutine.

Note: CGI::Ajax requires at least one registered Perl
subroutine.

5 Return dynamic data.

Add CGI::Ajax into Your Perl CGI Scripts

Y ou can add CGI::Ajax into your Perl CGI scripts to
simplify AJAX communication between JavaScript
and Perl. The CGI::Ajax module injects JavaScript

code automatically into your CGI script’s output,
providing an easy-to-use communication bridge between
JavaScript code and Perl code. JavaScript now has access
to Perl functionality and database content only found on
your Web server:
use CGI;
use CGI::Ajax;
my $cgi = new CGI;
my $ajax = CGI::Ajax->new(Registered
Functions);

Somewhere in the middle of your CGI script, you should
create an HTML subroutine that describes your CGI’s
output. Because CGI::Ajax needs to inject a large amount
of JavaScript to provide the AJAX functionality, CGI::Ajax
must correctly place your script’s HTML within its own
code. As a result, you cannot just print HTML code; you
must make it available within a subroutine called by
CGI::Ajax when it needs it.
The last line of code in your Perl CGI script should be the
build_html method, with the CGI library’s handle, as
well as a reference to your HTML subroutine:
print $ajax->build_html($cgi, \&show_html);

There is no need to specify $cgi->header() prior to
build_html, as CGI::Ajax takes care of that for you.

Add CGI::Ajax into
Your Perl CGI Scripts

21_556801-ch19.indd 28821_556801-ch19.indd 288 8/31/10 9:25 AM8/31/10 9:25 AM

289

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

!

#

$

You can easily add HTML::Template into CGI::Ajax. Simply bypass the step where you create a show_html
subroutine and instead place this information directly in the template. When you are ready to call build_html,
simply reference the HTML::Template output method. Make sure that build_html and the template output
methods are the last line in your code, and that you can omit $cgi->header(), as build_html takes care of
that for you.

Load the Perl CGI script in a Web
browser.

$ Trigger the JavaScript function call.

• The browser displays the Perl
subroutine’s output.

! Type print $ajax->build_html($cgi,
\&show_html);.

Note: Make sure $cgi is already
initialized as a CGI library handle.

@ Save the Perl CGI script.

RESULTS

The Perl CGI script contains no
actual HTML or JavaScript code; it
only exists in the separate HTML
template file. Regular program
execution continues.

TYPE THIS

use HTML::Template;
my $tmpl = HTML::Template->new(filename =>
“template.tmpl”);

...
print $ajax->build_html($cgi, $tmpl->output());

➔

For more information on how to use HTML::Template, see Chapter 13.

21_556801-ch19.indd 28921_556801-ch19.indd 289 8/31/10 9:25 AM8/31/10 9:25 AM

290

3

4

6

5

1

2

3 Create a perl_subroutine
subroutine.

4 Type my (input) = @_; to accept
variables as input.

5 Use the subroutine’s input data to
produce output data.

6 Type return (output); to return the
output as an array.

1 Open a Perl CGI script in a text editor
that imports CGI::Ajax.

2 Type $ajax->register(jsFunction =>
\&perl_subroutine);.

Note: You can call register if you
already have one function registered
during new. Alternatively, you can register
multiple functions during new
simultaneously.

Call Perl Subroutines Through JavaScript

Y ou can execute Perl subroutines through your
Web site’s JavaScript with the CGI::Ajax module.
You can use this to populate content on your Web

site with data that must originate from your Web server,
without the need to reload the entire Web page.
my $ajax = CGI::Ajax->new(jsFunction =>
\&perl_subroutine);

If you have additional Perl subroutines that you want to
execute through JavaScript, you can either append to this
list when you initialize the CGI::Ajax object, or use the
register method. Once you have registered your Perl
subroutine in CGI::Ajax, you can define it in your script
as a normal subroutine:
sub perl_subroutine {
 my ($input1, $input2, ...) = @_;
 # ...

 return $output;
}

To call the function with JavaScript, the syntax is fairly
specific. Two parameters are accepted: the first one
represents the values you want to pass to Perl; the second
parameter indicates what CSS ID in your HTML will
display the Perl output. Both arguments must be
represented as an array, hence the square brackets:
jsFunction([‘var1’,’var2’,...], [‘result’]
);

When you call your function in JavaScript, CGI::Ajax
assumes you want to output the Perl result into the HTML
output of the site. You must ensure in your HTML code
that you have something that references CSS ID used as
the second parameter of the JavaScript function. Placing
 anywhere is sufficient.

Call Perl Subroutines
Through JavaScript

21_556801-ch19.indd 29021_556801-ch19.indd 290 8/31/10 9:25 AM8/31/10 9:25 AM

291

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

!

8

7

@ @ @

9

8

Because a registered Perl function actually returns an array, you can have multiple CSS IDs represented in the
second parameter of the JavaScript function. This allows a single Perl subroutine to produce output in multiple
locations of your HTML code during a single function call.

For example, if the user types in any non-numeric characters, Perl will fail to evaluate the equation. It would be
useful to display the Perl error message to the user, so add the following code:

calculate([‘val1’,’oper’,’val2’], [‘result’,’errmsg’]);

Later in the HTML file, display the error message by referencing the second output CSS ID called errmsg:

Perl evaluation error message, if any:

In the calculate subroutine, modify the return line to return the error message from the preceding eval
function as the second element of the array output. The error message is automatically accessible from the special
variable $@:

return ($result, $@);

Reload the page. Now if you enter in only numbers, the browser does not display an error message; however, if you
enter any other characters, the Perl error message appears dynamically in the HTML.

! Open the Perl CGI in a Web browser.

@ Trigger the JavaScript function call.

• The browser displays the Perl
subroutine’s output.

7 Scroll to the show_html subroutine.

8 Type jsFunction(['input '], ['display'])
to call the Perl subroutine
perl_subroutine.

Note: In this example, you have three input
fields that you want to trigger your registered
Perl function.

9 Type .

Note: You can use any HTML tag as the display
output, as long as you reference the CSS ID
value as display output only once.

0 Save the Perl CGI script.

21_556801-ch19.indd 29121_556801-ch19.indd 291 8/31/10 9:25 AM8/31/10 9:25 AM

292

5

6
7

1

2

3

4 Type return ($result, $@); in the last line
of the Perl subroutine that you created in the
previous task.

5 Use a special arguments array to access
the output from the Perl subroutine.

6 Perform a JavaScript-specific activity with
the data coming from Perl.

7 Type document.getElementById(display)
.innerHTML = variable; to update an HTML
tag with the variable’s data.

1 Open a Perl CGI script that uses CGI::Ajax.

2 Scroll to the show_html subroutine.

3 Create a JavaScript function inside your
HTML output.

Call JavaScript Through Perl Subroutines

A fter CGI::Ajax calls a registered Perl subroutine, it
is possible to forward that subroutine’s output to
another JavaScript function, one that is outside the

direct control of CGI::Ajax. This is useful if you want to
further process Perl output data in JavaScript. To implement
this feature, you first create a new JavaScript function,
and then supply it as the only element in the second array
argument of your registered JavaScript function. You must
not use single quotes at all; otherwise, CGI::Ajax will treat
it like a CSS ID that needs to be populated, rather than a
separate function:
jsFunction([‘var1’,’var2’,...], [
myFunction]);

Your new JavaScript function will be able to access the
output variables from Perl by way of a special arguments
array, automatically declared and populated by CGI::Ajax.

This process will disable the automatic CSS ID auto-
population with your Perl subroutine’s output. If you want
to maintain that functionality, you need to add into your
new custom function some way to get the CSS ID’s object,
and then assign the input to its innerHTML property:
function myFunction() {
 var perlOutput = arguments[0];
 var resultsObject =
 document.getElementByID(‘result’);

 resultsObject.innerHTML = perlOutput;
}

If your new function does not require the ability to update
any HTML tag in the Web page as program output, you
can bypass the getElementByID and innerHTML
JavaScript commands entirely.

Call JavaScript Through
Perl Subroutines

21_556801-ch19.indd 29221_556801-ch19.indd 292 8/31/10 9:25 AM8/31/10 9:25 AM

293

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

! !

8

8

0

You can have CGI::Ajax convey new JavaScript code, generated by Perl, and have it evaluated by the Web browser as
native JavaScript. This can be useful if you want to provide new, dynamic JavaScript functionality after the initial
Web page load. To make this happen, use the JavaScript eval function to execute the new JavaScript code.

0 Open the Perl CGI in a Web browser.

! Trigger the JavaScript function call.

• The browser displays the Perl
subroutine’s output using the
JavaScript call.

Note: In this example, the JavaScript
alert function only displays an error
message when eval produces an error.

8 Type [function] as the second
argument to all registered JavaScript
functions that call Perl subroutines.

9 Save the Perl CGI script.

TYPE THIS INTO PERL

sub perl_subroutine {
 my ($input) = @_;
 return (“alert(
 ‘Received input: $input’)”);
}

TYPE THIS INTO JAVASCRIPT

function myFunction() {
 var perlJsCode = arguments[0];
 eval(perlJsCode);
}

RESULTS

When CGI::Ajax calls your registered Perl
subroutine, Perl returns JavaScript code. When
the corresponding output function is called by
CGI::Ajax, it uses eval to execute the custom
JavaScript code as if it were written in-line.

➔

21_556801-ch19.indd 29321_556801-ch19.indd 293 8/31/10 9:25 AM8/31/10 9:25 AM

294
4

2

1

3

3 Type $ajax->JSDEBUG(2); to
enable full JavaScript debugging
without any compression.

4 Type $ajax->DEBUG(1); to show
debug information in the Apache
logs.

5 Save the CGI script.

1 Open a Perl CGI script that uses
CGI::Ajax.

2 Scroll to the build_html method.

Enable Debug Mode in CGI::Ajax

Y ou can enable a debug mode in CGI::Ajax to help
you diagnose any communication problems
between Perl and JavaScript. Because AJAX

interactions occur behind the regular Web browser’s
display output, it can be harder to identify if a JavaScript
function is working incorrectly, or if Perl is responding to
the request inappropriately. Prior to calling build_html,
CGI::Ajax provides two methods that allow you to see the
activity that is going on behind its interface:
$ajax->JSDEBUG(number);

If you set JSDEBUG’s number to 1, CGI::Ajax prints the
internal URL it is using to call your Perl CGI script. The
Web site’s JavaScript source code for your registered
functions is also visible. If you set JSDEBUG’s number to
2, the internal URL is still displayed, but the complete
CGI::Ajax JavaScript code is now visible.

Clicking that URL in your Web browser allows you to view
the raw output being produced by your Perl CGI script’s
registered subroutine. This is useful if you believe that
there is a problem in your Perl CGI script:
$ajax->DEBUG(number);

If you set this debug parameter to 1, additional data
concerning the Perl functionality of CGI::Ajax is printed to
the Apache error log. The default value for both is 0.
The log directory Apache stores its log files into differs,
depending on your operating system. On Windows, this is
Apache Install Dir\logs, on Debian and Ubuntu this
is /var/log/apache2/, and on Red Hat this is /var/
log/httpd/. In your Perl code, you can always insert
arbitrary debug information into the Apache logs by
printing to standard-error (STDERR):
print STDERR “Log Message”;

Enable Debug
Mode in CGI::Ajax

21_556801-ch19.indd 29421_556801-ch19.indd 294 8/31/10 9:25 AM8/31/10 9:25 AM

295

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

8

9

6

0

77

Using a profiler in your Web browser is another way to gain a new perspective on the low-level communication
between your browser and the Web server. A profiler helps you identify what requests are generated, how they are
responded to, and how the browser interprets the response on the Web page. It also allows you to investigate and
debug core JavaScript syntax errors and other problems.

If you use Google Chrome, you can access a built-in profiler by pressing Ctrl+Shift+I. Other available features
include an inspector, script reviewer, timeline summary, local storage, and auditing for network utilization and Web
page performance.

If you use Mozilla Firefox, Firebug is an excellent add-on program that contains a profiler, inspector, logger,
analyzer, and layout examiner, all installed using a single extension. In Firefox, click Tools ➔ Add-ons ➔ Browse All
Add-ons to locate Firebug.

If you use Microsoft Internet Explorer, you can install the Internet Explorer Developer Toolbar as a free add-on.
Search the Microsoft Developers Network, or MSDN, for a download link for your region.

0 View the Apache Error Log.

• Activity produced by CGI::Ajax in
Perl.

6 Open the Perl CGI script in a Web
page.

7 Interact with the Web site to trigger
AJAX functionality.

• The browser displays CGI::Ajax’s
internal URL.

8 Right-click the Web page.

9 Click View Page Source.

• The uncompressed JavaScript
produced by CGI::Ajax.

21_556801-ch19.indd 29521_556801-ch19.indd 295 8/31/10 9:25 AM8/31/10 9:25 AM

296

6 7

1

2
3

4 5

6 Type $xml = XMLout($hashref);.

7 Examine the output of the XML::Simple
conversion.

8 Run the program to view the original
XML data, the converted hash reference,
and the re-converted XML data.

Note: If you lose any data between the
original and the two conversion steps,
XML::Simple may not be appropriate for you.
Read the Perl-XML FAQ for more information.

1 Type use XML::Simple;.

2 Read an XML stream or text file into
Perl.

3 Examine the original XML input data.

4 Type my $hashref = XMLin($xml);.

5 Examine the output of the XML::Simple
hash reference with Data::Dumper.

Integrate Perl and XML

Y ou can use Perl to interact with XML-formatted
communications between third-party services, or
within your own JavaScript AJAX code, using the

third-party Perl module named XML::Simple. This module
is not a part of the standard Perl distribution and you
must install it manually. See Chapter 9 for more
information about installing third-party modules.
XML is similar to HTML, except its tag names are entirely
open. While it theoretically has the same structure as a Perl
hash reference, in practice XML does support features that
do not translate well into Perl. XML::Simple is one parser
implementation that makes several assumptions on your
behalf so that you can simplify an XML tree into a Perl
hash reference. When you receive XML text data, you can
convert it into a hash reference with XMLin:

use XML::Simple;
$hashref = XMLin($xmlText);

Likewise, if Perl has its own hash reference of data that
you want to send to convert into XML, you can use
XMLout:
$hashref = { key1 => arrayref, key2 =>
hashref, key3 => scalar, ... };

$xmlText = XMLout($hashref);

Parsing XML in Perl, or in any language, is not a simple
process. You may find that XML::Simple makes too many
assumptions and so you require a more fine-grained parser.
CPAN contains dozens of XML parsers. Fortunately, there
is a Perl-XML FAQ that summarizes the strengths and
weaknesses of the more popular parsers, allowing you to
make an informed decision. You can find it at http://
perl-xml.sourceforge.net/faq/.

Integrate Perl
and XML

21_556801-ch19.indd 29621_556801-ch19.indd 296 8/31/10 9:25 AM8/31/10 9:25 AM

297

Ch
apter 19: Facilitatin

g D
yn

am
ic A

JA
X

 Calls w
ith

 Perl

76

5

1

2
3

4

6 Type $json = to_json($hashref);.

7 Examine the output of the JSON
conversion.

8 Run the program to view the original
JSON data, the converted hash
reference, and the re-converted
JSON data.

1 Type use JSON;.

2 Read a JSON stream or text file into
Perl.

3 Examine the original JSON input
data.

4 Type my $hashref = from_json
($json);.

5 Examine the output of the JSON
hash reference with Data::Dumper.

Integrate Perl and JSON

When you receive a JSON text file, you can convert it into
a hash reference with from_json:
use JSON;
$hashref = from_json($jsonText);

Likewise, if Perl has its own hash reference of data that
you want to send, to convert to JSON you can use
to_json:
$hashref = { key1 => arrayref, key2 =>
hashref,

 key3 => scalar, ... };
$jsonText = to_json($hashref);

You can now take this data and return it to CGI::Ajax
for processing within a JavaScript function. For more
information about JSON, see the official JSON Web site
at www.json.org/.

Y ou can use Perl to interact with JSON-
formatted communications between third-
party services, or within your own JavaScript

AJAX code, using the third-party Perl module simply
named JSON. This module is not a part of the
standard Perl distribution and you must install it
manually. See Chapter 9 for more information about
installing third-party modules.
Because JSON is merely JavaScript code written in a
structured object notation, the idea is actually very
close to a Perl hash reference. Perl can navigate
through a hash reference with ease, and JavaScript
can do the same for JSON, so all you need is a way
to convert data from one format into the other.

Integrate Perl
and JSON

21_556801-ch19.indd 29721_556801-ch19.indd 297 8/31/10 9:25 AM8/31/10 9:25 AM

298

Introducing
PayPal

I f you have a product or service to sell, it makes sense
to provide it for sale on the Internet. In the early days
of the Internet, many startup companies appeared,

promising secure credit card transactions and instant
payment transfers to serve a growing digital economy.
Since that time, some companies have disappeared but
one that has remained viable is PayPal.

PayPal offers multiple solutions and products for both
consumers and merchants. You can use PayPal as a
financial transaction engine for your Web site, charging
credit cards, issuing refunds, transferring funds, and as
a database for organizing your orders, transactions, and
shipping addresses.

PayPal Integration Options

PayPal Encrypted Web Payments

The Encrypted Web Payments (EWP) API is a programming
interface that is easiest to set up on Web sites where you want
to implement credit card payment transactions. After you sign
up for the EWP service, PayPal helps you create a payment
button that you can place anywhere on your Web site. When
users click the button, they are redirected to the PayPal Web
site where their payment is processed.

Ideally, you should already have a catalog of products or services
available on your Web site that users can easily browse. Adding
the PayPal EWP button allows your users to purchase the item
now, or to add the item to a PayPal-managed shopping cart.

This API requires no back-end Perl CGI integration. You can
use the PayPal setup program to construct any PayPal buttons
you require. The program provides you with static HTML code
that you can simply copy and paste into your Web site.

PayPal provides several interfaces for online merchants to process credit card transactions. Each solution is tailored to the size of
your Web site and the amount of e-commerce traffic you can expect to process.

PayPal API

The PayPal API is a service that allows you to process PayPal
transactions directly from your Web site’s Perl CGI scripts. This
is a hands-on approach to credit card transactions, meaning
you are in charge of producing your own online catalog,
shopping cart, and checkout application, and managing your
Web site’s security and private user information. The end-user
never knows that PayPal is being used as a financial transaction
engine for their online purchase on your Web site.

The PayPal API provides several integration services. The
most common service used by Web sites is the Express
Checkout. This allows you to redirect the user to the PayPal
Web site for payment processing after they have amassed
items in a shopping cart. You can also issue a one-time credit
card transaction directly with Express Checkout. Both of these
services are demonstrated in this chapter.

Other services, such as Website Payments Pro, Mobile
Checkout, and Mass Payment, are also available. For more
information about all the API services that are available, see
the PayPal Tools for Developers Web site at https://
www.x.com/community/ppx/dev-tools.

NVP Interface

To call a PayPal API service from your Web site, you can use
the Name-Value Pairs, or NVP, interface. This is the
recommended method to call the PayPal API, which utilizes
simple HTTP POST transactions that follow a predetermined
CGI parameter structure.

The remainder of this chapter uses the NVP interface to
demonstrate how to integrate the PayPal API into your Web site.
You can learn more about using NVP at the PayPal developers’
Web site at https://www.x.com/docs/DOC-1242.

SOAP Interface

The Simple Object Access Protocol, or SOAP, is an alternative
method you can use to call the PayPal API. SOAP is an XML-
based communication protocol that uses WSDL and XSD files
to define the PayPal API function structure. If you are already
familiar with SOAP in general, you can use the Perl
SOAP::WSDL module to interface with the PayPal API.

22_556801-ch20.indd 29822_556801-ch20.indd 298 8/31/10 9:25 AM8/31/10 9:25 AM

299

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

PayPal Environments

Sandbox Account

The PayPal sandbox is a special environment that is an
exact clone of the live system. You can use this
environment to test your Web site, the PayPal APIs, and
your Perl scripts using the APIs, and review the e-mail and
GUI experienced by all parties.

When you sign up for a sandbox account, you have the
option to create as many dummy buyer or seller accounts
as you need. This way, you can post fictional transactions
and be able to experience exactly what the customer,
merchant, and PayPal experience through every stage of
the process. The sandbox account is free, has no fees
associated with it, and you can sign up without being
subject to any approval process.

Live Account

When you are ready to perform real transactions, you can
sign up for a live PayPal account. Depending on the types of
transactions you are performing, there is a set registration
and approval process dictated by PayPal. For more
information, go to https://merchant.paypal.com.

PayPal offers two different environments for you to use to familiarize yourself with its services.

PayPal Perl Modules

Business::PayPal::NVP

You can use the Perl module Business::PayPal::NVP to
execute any method call that PayPal has made available on
its NVP API. You can use this module to access the
following services: Address Verify, Direct Payment, Express
Checkout, Get Balance, Get Transaction Details, Mass
Payment, Recurring Payments, Refund Transaction, and
Transaction Search.

Because the NVP API is constantly changing, you need to
refer to the official NVP documentation for a current list of
available methods and arguments. You can find this
information at https://cms.paypal.com/cms_
content/US/en_US/files/developer/PP_
NVPAPI_DeveloperGuide.pdf.

Business::PayPal::IPN

The Perl module Business::PayPal::IPN allows you to
confirm that online transactions are valid and legitimate
after a monetary transaction has been completed on the
PayPal network. By writing a Perl script to independently
check a transaction’s status, you ensure that your Web site
cannot be duped into fulfilling an order that has not yet
been completed.

You can install third-party Perl modules that interface with various PayPal services. These modules were developed by other
Perl developers and not PayPal, and were derived from public API documentation for other officially supported languages.

PayPal Instant Payment Notification

The Instant Payment Notification (IPN) API is a PayPal
service that sends a notification to your Web site when a
payment transaction has been completed. This service is
intended for larger e-commerce Web sites that deal with
hundreds of transactions per day.

If you choose not to implement IPN, you will still be notified
of transactions by way of regular e-mail; however, this
means that you require a person to confirm that a payment
has been received before an order can be fulfilled. IPN
automates this process by allowing you to link your back-
end fulfillment software with the PayPal transaction engine.

PayPal Integration Options (continued)

22_556801-ch20.indd 29922_556801-ch20.indd 299 8/31/10 9:25 AM8/31/10 9:25 AM

300

5

3

2

1

4

 The Sandbox Signup form appears.

3 Enter your personal information to
create an account.

4 Click here to review the PayPal
Sandbox User Agreement document.

5 Click Agree and Submit.

1 Open a Web browser and go to
https://developer.paypal.com.

2 Click Sign Up Now.

Sign Up for a PayPal Sandbox Account

You can get access to the PayPal sandbox
environment by signing up for a sandbox account
on the PayPal Developers’ Web site. The sandbox

environment is an exact clone of the same PayPal APIs you
will find in the live environment, except that all transactions
posted by you will not involve any real money. This is a
very useful way to validate that your Perl CGI scripts are
working correctly, without risking any costly mistakes.
PayPal recommends that all new developers test their
applications in the sandbox environment prior to
deployment. This way you can ensure that it functions as
you intend and within the guidelines set forth by PayPal.
You can sign up for a sandbox account by going to the
PayPal Developers’ Web site at https://developer.
paypal.com.

Once you sign up, you can create fictional buyer and
seller accounts, and even access the e-mail inbox of those
accounts. You will be able to link these accounts into
your Perl CGI scripts later and simulate transactions,
query your transaction log, query your PayPal balance,
and debit and credit other fictional accounts.
Your Perl CGI scripts require you to enter in API
credentials in order to facilitate NVP and IPN API
communications. Here you can create these credentials
and plug them directly into your Perl scripts.
Be sure to review the PayPal Sandbox User Guide
document for additional information. You can download a
PDF from the Web site at https://cms.paypal.com/
cms_content/US/en_US/files/developer/PP_
Sandbox_UserGuide.pdf.

Sign Up for a PayPal
Sandbox Account

22_556801-ch20.indd 30022_556801-ch20.indd 300 8/31/10 9:25 AM8/31/10 9:25 AM

301

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

You can now enter your credentials on the front page of the PayPal Developer Sandbox Web site and log in. You can
access the PayPal Sandbox administrator and set up your fictional users to represent buyers and sellers in your
sandbox environment.

Remember that all activity in the sandbox is segregated, but only from the live PayPal network. You can theoretically
interact with other sandbox users and developers if you know their PayPal Sandbox e-mail address. To prevent
developers from accidentally creating duplicate fictional accounts, you are assigned a convoluted e-mail address:

username_timestamp_accounttype@mydomain.com

Note that you still access the sandbox by authenticating with a real PayPal Developers’ Network login ID that you
just created.

Once you are satisfied with how your Perl CGI scripts react to the PayPal APIs, it is time to create a real account for
yourself. This setup process requires you to actually own a business account profile on PayPal, which does require a
complex validation setup procedure. To sign up, go to the PayPal Merchant Services Web site at https://
merchant.paypal.com.

 The login screen appears.

• Your developer account is now
created and activated.

 The Sandbox Signup Complete
screen appears.

• An e-mail message is sent to your
address.

6 Open your e-mail client.

7 Click the link in your e-mail to
activate your developer account.

22_556801-ch20.indd 30122_556801-ch20.indd 301 8/31/10 9:25 AM8/31/10 9:25 AM

302
8

2

5

4

6

7

1

3

 The Create a Sandbox Test Account screen
appears.

4 Select the account type.

5 Assign a login name for the account.

6 Assign a password.

7 Assign an account balance.

8 Click Create Account.

 The fictional account is created in your
PayPal sandbox.

1 Log on to your PayPal Developer
Sandbox account.

2 Click Test Accounts.

 The PayPal Sandbox Test Accounts
summary screen appears.

3 Click Preconfigured to create a
preconfigured test account.

Create Buyer and Seller Sandbox Accounts

Y ou must create test accounts to represent a
fictional buyer and seller in your PayPal sandbox.
With these accounts you can represent yourself as

a fictional customer or merchant using your Web site.
If you are just starting out with PayPal, you should create
test accounts using the preconfigured method, as opposed
to creating one manually. This allows you to create
fictional buyers and sellers quickly. If you want to do
post-credit card transactions, as described later in this
chapter, be sure to set up your seller account as either a
Website Payments Standard or Website Payments Pro
account. This way, even your fictional transactions will
succeed as the sandbox environment ensures that your
business account, even the fake one, has the proper
settings in order to allow these types of transactions.

Create Buyer and Seller
Sandbox Accounts

When you create your buyer and seller sandbox
accounts, use a logical login name. For example, use
user1 for the buyer account, and store1 for the seller
account. When you are finished, you should see two
test accounts on the Test Accounts summary page.

You can now click the Enter Sandbox Test Site link and
authenticate into a false PayPal Web site using either
your buyer or seller test account.

22_556801-ch20.indd 30222_556801-ch20.indd 302 8/31/10 9:25 AM8/31/10 9:25 AM

303

Ch
apter 20: Processin

g Credit Card T
ran

saction
s w

ith
 Perl2

3

1

 The API Credentials page appears.

• Your test account API username.

• Your API password.

• Your signature.

1 Log on to your PayPal Developer
Sandbox account.

2 Click Test Accounts.

• You need to have a seller test
account created.

3 Click API Credentials.

Retrieve Your Seller’s Sandbox API Credentials

PayPal recommends that you keep all three values
private, especially the password and signature. This is
particularly important when using an API in the live
environment. The onus is on you as the Web developer to
properly secure this information; otherwise, anyone could
authenticate as your merchant account on the PayPal API.
All three fields must exactly match this Web site; otherwise,
you will not be able to authenticate into your account.
When you are ready to have a real merchant account on
PayPal, you will be given live versions of these fields,
which you can configure into your Perl CGI scripts.
However, the process of accessing your account’s
signature, as shown here, is slightly different between
the two environments. In the sandbox, it is automatically
generated for you. In the live environment, you must
generate your own private key according to the procedure
described on the PayPal Merchant Web site.

I n order to use your sandbox seller account in
your Perl CGI scripts, you must retrieve the
account’s API credentials from the PayPal

Developers’ Sandbox Web site. The API credentials
consist of three fields: your API username, API
password, and signature.
Your API username is derived from your test
account username. Your API password is
automatically generated based upon a timestamp,
and is not related to your test account password.
Your signature is also automatically generated, but
using a form of private-key encryption. In other
words, the signature is unique to this account, and
is generated by combining your API username and
API password with a private key owned by PayPal.

Retrieve Your Seller’s
Sandbox API Credentials

22_556801-ch20.indd 30322_556801-ch20.indd 303 8/31/10 9:25 AM8/31/10 9:25 AM

304

6
8

7
5

2
3

4

1

5 Type user => username,.

6 Type pwd => password,.

7 Type sig => signature,.

8 Type version => number,.

1 Open a new Perl script in a text
editor.

2 Type use Business::PayPal::NVP;.

3 Type my $pp =
Business::PayPal::NVB->new
(test => {.

4 Type });.

Use Business::PayPal::NVP to Connect to Paypal

Y ou can use the third-party Perl module
Business::PayPal::NVP to connect to your seller
PayPal account, provided that you have the account

properly set up. You must have the Business::PayPal::NVP
module installed on your workstation or Web server in
order to connect to PayPal. You can find instructions for
doing this in Chapter 9.
To connect, you need to provide your username,
password, and signature that you retrieved from either
your PayPal seller sandbox account, or your live PayPal
merchant account:
my $pp = Business::PayPal::NVP->new(test => {
 user => username, pwd => password, sig =>
signature,

 version => num });

You can optionally specify the API version number when
initializing the Business::PayPal::NVP module. This value
is sent to the PayPal NVP servers when requesting
methods and can be used specify which API methods are
available, according to the API documentation you are
currently referencing. As of August 2010, the latest API
version available is 63.0. This task demonstrates how to
connect Perl to your seller’s sandbox account. If you are
connecting to a live account, the Apply It section gives you
information about this.
You can get a complete list of the available API methods
by downloading the NVP API document from the PayPal
Developer Network at https://www.x.com/community/
ppx/documentation. On this Web page, click Express
Checkout, and select the PDF download for the NVP API
Developer Guide and Reference. You can find the latest
API version available by looking at the document’s
revision history.

Use Business::PayPal::NVP
to Connect to PayPal

22_556801-ch20.indd 30422_556801-ch20.indd 304 8/31/10 9:25 AM8/31/10 9:25 AM

305

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

9

@

0

#

If an error occurs, the %resp variable’s value for the ACK key will hold Failure. If you do not use Data::Dumper to
view the contents of %resp, you can at least get the error code by accessing $resp{ ‘L_ERRORCODE0’ }, and an
explanation from $resp{ ‘L_LONGMESSAGE0’ }. If you still do not know why the method is failing, you can look
up the error code number in the NVP API Developer Guide PDF.

When you are ready to connect your Perl code to a live PayPal merchant account, you need to make some minor
changes to your module initialization code.

@ Open a Terminal window.

Execute the Perl script.

 The Terminal window displays
the response of the PayPal
method.

• The PayPal method completed
successfully.

9 Type my %resp = $pp->method(
arguments); to execute an NVP
method.

0 Type print Dumper({ %resp });
to examine the method’s
response codes.

! Save the Perl script.

TYPE THIS

my $pp = Business::PayPal::NVP->new
(branch => live,

 live => { user => username, pwd =>
password, sig => signature,

 version => num });

RESULTS

By adding branch => live and changing test
=> to live =>, you automatically connect to the
live PayPal NVP interface. All methods you execute
will now be against your live PayPal merchant
account, provided your login credentials are
correct for the live system.

➔

22_556801-ch20.indd 30522_556801-ch20.indd 305 8/31/10 9:25 AM8/31/10 9:25 AM

306

4

6
5

2
3

1

4

4 Specify the amount to charge, currency
code, and payment action type for this
transaction.

Note: The currency code must use three
characters, and be a valid PayPal currency,
such as USD or CAD.

5 Specify the credit card type, numbers,
and expiry date for the transaction.

Note: Use the automatically generated VISA
numbers for your sandbox buyer account.

6 Specify the buyer’s information in the
transaction.

Note: The country code must use two
characters.

1 Open a Perl script that uses
Business::PayPal::NVP.

2 Type my %resp = $pp->DoDirectPayment(.

3 Type);.

Process a Credit Card Payment with PayPal

O nce you have successfully used
Business::PayPal::NVP to connect to your
PayPal seller account, you can begin processing

credit card transactions with the DoDirectPayment
method. If you are using the PayPal sandbox, you can
start doing this right away through a command-line
Perl script.
At minimum, the following fields are required to use
DoDirectPayment over the NVP API:
%resp = $pp->DoDirectPayment(AMT => amount,
 CURRENCYCODE => code, PAYMENTACTION =>
‘Sale’,

 CREDITCARDTYPE => type, ACCT => ccnumbers,
 EXPDATE => mmyyyy, IPADDRESS => ipaddr,
 FIRSTNAME => firstname, LASTNAME =>
lastname,

 STREET => address, CITY => city, STATE =>
state,

 COUNTRYCODE => code, ZIP => zipcode,);

The %resp hash returns a transaction ID for the payment,
and confirms the amount charged. You can use this
transaction ID later for viewing the details on past
payments, and for issuing refund requests. This helps you
to determine for yourself exactly how the method is
constructed, and the data it returns. Eventually, may want
to use this method in a CGI shopping cart and checkout
program of your own design, or use the PayPal Express
Checkout API to handle the checkout process for you.
There are additional request and response fields that are
supported by this method. Refer to Chapter 4 in the NVP
API Developer Guide (DoDirectPayment API Operation) for
a complete list of what is available and how to reference it.

Process a Credit Card
Payment with PayPal

22_556801-ch20.indd 30622_556801-ch20.indd 306 8/31/10 9:25 AM8/31/10 9:25 AM

307

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

9

7

0

PayPal allows you to record additional value amounts related to your transaction. Only the final amount, AMT, is
required but you may also configure a value for SHIPPINGAMT, HANDLINGAMT, and TAXAMT. All monetary values
must be less than $10,000.00, and be represented with two decimal places.

It is even possible for you to summarize into your PayPal transaction the shopping cart items that the buyer is
purchasing. This will allow you to store the information in PayPal so that both the buyer and seller can review
exactly what was sold in this transaction. These fields include L_NAMEn for the item name, L_DESCn for the item
description, L_AMTn for the cost, and L_TAXAMTn for the sales tax. Each field ends in a number, representing the
item number being purchased. This number always starts counting at zero.

Note that the IPADDRESS field is used for fraud protection. If you are using this method on a Perl CGI Web site,
use the variable $ENV{ ‘REMOTE_ADDR’ }. If you are just testing this method in a sandbox environment, enter
any value that is formatted like an IP address.

9 Open a Terminal window.

0 Execute the Perl script.

 The credit card payment is
processed.

• The response hash of the
request.

• The transaction ID of the
request.

7 Use Data::Dumper to review
the contents of %resp.

8 Save the Perl script.

22_556801-ch20.indd 30722_556801-ch20.indd 307 8/31/10 9:25 AM8/31/10 9:25 AM

308

5

5

6

7

3

4

2

1

0

8
9

Use the PayPal Express Checkout API

Y ou can use the Business::PayPal::NVP module to
support the most popular and commonly used
feature available on the PayPal network: the

Express Checkout. You require some logic in your Perl
CGI script to manage the different states of the Express
Checkout, as multiple API methods need to be used.
The Express Checkout API has four unique stages:
introduction, redirection, confirmation, and completion.
Your code must manage the user through each stage.
The introduction stage uses the API method SetExpress
Checkout. This introduces PayPal to the user’s transaction,
allowing you to describe what is being purchased and for
how much. This returns a token value that is your unique
identifier to this Express Checkout session.

The second stage, redirection, requires you to send the
user and token to a special Express Checkout URL, hosted
by PayPal. The user authenticates into their PayPal
account, confirms the items being purchased and the
payment method, and approves the transfer.
For the third stage, confirmation, the PayPal Express
Checkout Web site redirects the user back to your Perl
CGI script, delivering the original token and a PayerID in
the query-string URL. The PayerID is your reference to
the user’s PayPal account. You may optionally create one
more confirmation screen, using the
GetExpressCheckoutDetails method.
The final stage, completion, requires you to close the
Express Checkout session by calling DoExpress
CheckoutPayment with the token and PayerID. This
actually executes the transfer of funds and completes the
Express Checkout process.

Use the PayPal
Express Checkout API

1 Open a Perl CGI script that uses
Business::PayPal::NVP.

2 Assign a hard-coded purchase
price.

Note: This is temporary, as described
later.

3 Construct the framework for the
four Express Checkout stages.

4 Create the starting Express
Checkout form that begins the
process.

5 Type my %resp = $pp->
SetExpressCheckout();.

6 Insert the purchase amount and
describe the item or items
purchased.

7 Assign the RETURNURL to use this
Perl CGI script’s URL.

8 Assign the CANCELURL to use a
static HTML page.

9 If the method succeeded, redirect
the user to the PayPal Web site.

0 Include the token returned by
SetExpressCheckout in the
PayPal URL.

22_556801-ch20.indd 30822_556801-ch20.indd 308 8/31/10 9:25 AM8/31/10 9:25 AM

309

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

^

^

#

%

(

&
*

$

@

!

#

Unfortunately, you have to hard-code the purchase price directly into this script because of the simplicity of the
example program. PayPal requires you to submit the purchase amount for both the SetExpressCheckout and
DoExpressCheckoutPayment methods, but your program lacks any way of keeping track of this value between
those two calls. There is a chance that the user will add shipping and insurance, or apply a discount when using the
Express Checkout Web site, and this may affect the final price.

You could use the token and store it into an internal database immediately after SetExpressCheckout. When the
user returns, you can retrieve it from that database. Alternatively, you could also get the final purchase value out of
GetExpressCheckoutDetails.

Ideally, you should generate an invoice order number and assign it to the Express Checkout session through the
INVNUM field, but you still need to link this number to the purchase price using a persistent database. The best
possible solution is to set up a relational database, using a program such as MySQL, as described in Chapter 21.

^ Type my %resp =
$pp->DoExpress
CheckoutPayment();

& Include the token and
PayerID values in this
method.

* Confirm the payment action,
amount, and currency.

(If the method succeeds, print
a nice Thank You message.

) Save the Perl CGI script.

 PayPal provides you with the
token and the PayerID.

! Store the PayPal token and
PayerID CGI values into Perl
variables.

@ Type my %resp =
$pp->GetExpress
CheckoutDetails
(TOKEN => $token);

If the method succeeded,
create a new form.

$ Include the token and
PayerID values as hidden
form inputs.

% Create a Pay button.

continued ➔

22_556801-ch20.indd 30922_556801-ch20.indd 309 8/31/10 9:25 AM8/31/10 9:25 AM

310

r

e

q

w

 The PayPal Express Checkout Web
site loads.

e Type in your e-mail address and
password.

Note: Use your sandbox buyer
credentials if you are connecting
to the PayPal sandbox.

r Click Log In.

q Open your Perl CGI script in a Web
browser.

 The purchase screen appears.

w Click Checkout.

Use the PayPal Express Checkout API (continued)

T he PayPal Express Checkout methods allow for
dozens of additional fields that you can use to
customize how the end-user experiences the

process. You can only apply these fields to the
SetExpressCheckout method, the first stage of the
Express Checkout process.
You must set the AMT field to establish the total cost of
the transaction. You can also set the CURRENCYCODE field
to establish the base currency. The currency code must be
represented in exactly three characters, for example, USD,
CAD, or GBP. If you omit the currency code, it defaults to
USD. You can also set additional fields to provide more
details on how the final amount is calculated. ITEMAMT
represents the subtotal, SHIPPINGAMT and HANDLINGAMT
represent shipping and handling costs, and TAXAMT
represents the taxes charged. The item subtotal, shipping,

handling, and tax amounts, if defined, must all add up to
the value used for AMT.
Individual items in the order can be summarized by fields
that begin with L_ and end in a number. L_NAMEn
represents the nth item’s name in the purchase order.
L_DESCn is its longer description. L_AMTn and L_QTYn
represent the base item price and the total quantity. The
first item in the list should start numbering at zero.
Note that, if defined, the sum of all L_AMTn times L_QTYn
fields must equal ITEMAMT, unless there are no item
subtotal, shipping, handling, and tax amounts, in which
case the total of these fields should equal AMT.
All cost-associated fields must be less than $10,000.00,
and contain up to five digits, one decimal point, and
exactly two digits. Do not use commas or any currency
characters.

Use the PayPal Express
Checkout API (continued)

22_556801-ch20.indd 31022_556801-ch20.indd 310 8/31/10 9:25 AM8/31/10 9:25 AM

311

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

t

y

There are many fields you can specify in SetExpressCheckout to further customize the Express Checkout
process. Refer to Chapter 6 in the NVP API Developer Guide (ExpressCheckout API Operations) for a complete list
of additional request and response fields supported by this method and how to reference it.

FIELD DESCRIPTION

ALLOWNOTE Allows the buyer to enter a note to the merchant.

HDRIMG URL for the header image.

HDRBORDERCOLOR Sets the border color around the header image.

HDRBACKCOLOR Sets the background color around the header image.

PAYFLOWCOLOR Sets the background color for the payment page.

EMAIL Pre-populates the PayPal login page with this e-mail address.

SOLUTIONTYPE Type of checkout flow: Sole for optional PayPal process, Mark for PayPal account required.

BRANDNAME Overrides the business name in the PayPal merchant account.

SURVEYENABLE Enables Express Checkout survey functionality.

SURVEYQUESTION The text for the survey question on the PayPal review page.

 Your Perl CGI script loads
again.

y Click Pay.

• The payment process is
completed.

 The PayPal Express Checkout
order summary screen
appears.

• The item.

• The unit price.

• The quantity.

• The total price.

t Click Continue.

22_556801-ch20.indd 31122_556801-ch20.indd 311 8/31/10 9:25 AM8/31/10 9:25 AM

312

4
5

2 3

1

7

8

7 Open a Terminal window or DOS
Prompt.

8 Execute the Perl script.

 The Perl script displays the
transactions.

• Two transaction IDs, randomly
appearing beside each other.

1 Open a Perl script that uses
Business::PayPal::NVP.

2 Type my %resp =
$pp->TransactionSearch(.

3 Type STARTDATE => "YYYY-mm-dd
HH:MM:SS ",.

4 Type);.

5 Use Data::Dumper to review the
contents of %resp.

6 Save the Perl script.

Search Your PayPal Transaction History

Y ou can search for all transactions processed by your
seller account through the TransactionSearch
method. This allows you to review and audit your

seller account’s history using the PayPal network. By
default, the only required search field is STARTDATE, but
you can narrow down the results by searching for matching
fields. Additional fields include ENDDATE, EMAIL, INVNUM,
ACCT, TRANSACTIONCLASS, and STATUS.
The response fields that are returned will summarize
some information about the transactions, but not
everything. Returned fields include L_TYPEn, L_STATUSn,
L_NAMEn, L_AMTn, L_FEEAMTn, and L_NETAMTn. You can
use GetTransactionDetails with the TRANSACTIONID
field for more information about a specific transaction.
Refer to the NVP API Developer Guide document for an
explanation of these fields.

Because of the nature of NVP, the returned data will
appear in no particular order. There is no sorting done on
the PayPal NVP end; fortunately, sorting this yourself is
pretty easy in Perl. All fields end in a number to indicate
each row returned by the search, and numbering starts at
zero. You could use the following code to sort everything
into a two-dimensional array reference:
my $data = [];
while (my ($key, $val) = each %resp {
 $key =~ s/(\d*)$//; $row = $1;
 $data->[$row]->{ $key } = $val;
}

Note that the information returned here will match what
is conveyed on the PayPal Merchant Web site when
searching for transactions by criteria.

Search Your PayPal
Transaction History

22_556801-ch20.indd 31222_556801-ch20.indd 312 8/31/10 9:25 AM8/31/10 9:25 AM

313

Ch
apter 20: Processin

g Credit Card T
ran

saction
s w

ith
 Perl

4
5

3

1

7

8

2

7 Open a Terminal window or
DOS Prompt.

8 Execute the Perl script.

 The Perl script displays the
transaction details.

1 Open a Perl script that uses
Business::PayPal::NVP.

2 Type my %resp =
$pp->GetTransactionDetails(.

3 Type TRANSACTIONID =>
value,.

4 Type);.

5 Use Data::Dumper to review
the contents of %resp.

6 Save the Perl script.

View a PayPal transaction’s Details

profile was specifically involved, as it is during the
Express Checkout process. A refund transaction will only
contain information specific about the refund, and then
cite the original transaction ID that it reversed.
Like the other methods that are available on the NVP
API, some response fields can only be specified once per
transaction; others may be used multiple times, which
is indicative of multiple items in the order. In this case,
singular fields will be described with their full name, such
as ORDERTIME, FIRSTNAME, LASTNAME, SHIPTONAME,
SHIPTOCITY, and so forth. Item-related fields always
begin with L_ and end in a number, such as L_DESCn,
L_QTYn, and L_AMTn. If you are parsing the fields with
Perl, be aware of this when scanning the results. Note
that the information returned here will match what is
conveyed on the PayPal Merchant Web site when you are
viewing a specific transaction’s details.

I f you are interested in viewing all the
information PayPal knows about a transaction,
and you already have its transaction ID, then

you can use GetTransactionDetails to retrieve it
using the Business::PayPal::NVP module. If you do
not already know the transaction ID, you must
search for it in your transaction history using the
TransactionSearch method.
The actual information that appears will vary,
depending on the transaction type, its status,
and the type of user it affected. For example, a
transaction produced using DoDirectPayment will
not contain as many fields as one produced using
DoExpressCheckoutPayment. This is because
information from the user’s PayPal account profile
will only appear in the transaction if the account

View a PayPal
Transaction’s Details

22_556801-ch20.indd 31322_556801-ch20.indd 313 8/31/10 9:25 AM8/31/10 9:25 AM

314

4
5

2
3

1

4 Type TRANSACTIONID => value,.

5 Type REFUNDTYPE => type,.

Note: If the refund type is not Full,
you must also provide the AMT and
CURRENCYCODE fields.

1 Open a Perl script that uses
Business::PayPal::NVP.

2 Type my %resp =
$pp->RefundTransaction(.

3 Type);.

Refund a PayPal Transaction

Y ou can issue a refund transaction for any
payment transaction processed with your
merchant account on PayPal. The refund will

reverse funds from your seller account’s PayPal balance,
and direct it back to the buyer’s original funding source.
This can happen at any time after a transaction has
cleared. To issue a refund, you can use the
RefundTransaction method with the original
transaction ID.
Sometimes, you may want to only issue a refund for a
partial amount of the original purchase. This is handled
by the request field REFUNDTYPE. If you set it to Partial,
you must also supply AMT and CURRENCYCODE fields. If
you set the type of refund to Full, you must omit these
fields.

You may also add a NOTE field into this refund
transaction. This allows you to record a possible reason
why the buyer required a refund. PayPal will keep track
of this value and display it each time you display this
refund transaction’s details.
Note that PayPal does charge a fee for refunds. The exact
amount depends on your merchant account type and
country of origin, but could be as high as five percent of
the original transaction amount. PayPal will summarize
for you in the response fields the GROSSREFUNDAMT,
FEEREFNDAMT, and NETREFUNDAMT values.
In your transaction log, PayPal generates a new
transaction ID for this refund, and assigns to it the
original purchase transaction ID in the PAYMENT
TRANSACTIONID field. The original purchase transaction’s
PAYMENTSTATUS field will change from Completed to
Refunded.

Refund a PayPal
Transaction

22_556801-ch20.indd 31422_556801-ch20.indd 314 8/31/10 9:25 AM8/31/10 9:25 AM

315

Ch
apter 20: Processin

g Credit Card Tran
saction

s w
ith

 Perl

9

6

7

0

It is possible to issue a refund to a PayPal user if you do not have an original transaction ID. Obviously, from an
accounting perspective, you should avoid issuing this type of refund as it will be recorded on your PayPal account as
a refund-only transaction. Your accountant may inquire why you are randomly giving money away!

%resp = $pp->DoNonReferencedCredit(AMT => amount, NOTE => text,

 CURRENCYCODE => code, CREDITCARDTYPE => cctype, ACCT => ccnumbers,

 EXPDATE => mmyyyy, FIRSTNAME => firstname, LASTNAME => lastname,

 STREET => address, CITY => city, STATE => state,

 COUNTRYCODE => country, ZIP => zipcode);

There are other request fields that you can optionally use with this method. Refer to Chapter 5 in the NVP API
Developer Guide (DoNonReferencedCredit API Operation) for a complete list of what is available and how to
reference it.

9 Open a Terminal window or
DOS Prompt.

0 Execute the Perl script.

 The refund transaction is
processed.

• The PayPal fee for the refund.

• The net refund amount.

6 Type NOTE => text, to store
an optional note with the
refund.

7 Use Data::Dumper to review
the contents of %resp.

8 Save the Perl script.

22_556801-ch20.indd 31522_556801-ch20.indd 315 8/31/10 9:25 AM8/31/10 9:25 AM

316

Introducing the
MySQL Database

M ySQL is a relational database system that is
available for Linux, Windows, and many other
platforms. You can use MySQL to efficiently

store and retrieve data for your Perl CGI Web site, when
you interface with it using the Perl DBI library.
The core of the MySQL source code has been released
under the terms of the GNU General Public License (GPL);
however, it still has proprietary components that are
licensed separately. For this reason, a free Community
version of MySQL is available for download, along with
a paid Enterprise version for higher-end deployments.
For small-scale Web sites, the MySQL client and server
are installed directly onto the Web server’s computer.
This is possible because the server’s CPU can comfortably
handle the overall load of Apache and MySQL. For larger

Web sites, you should use a dedicated computer to host
the MySQL server; however, in this case each Web server
requires the separate MySQL client program. In other
words, the MySQL client facilitates communications with
a local or remote MySQL server.
In this chapter you will learn what MySQL is, how to
install it, how basic SQL statements work, how the Perl
DBI library interfaces with it, and how you can leverage
DBI in your own Perl scripts.
The specific MySQL tasks covered in this book are very
limited, compared to the full scope of what MySQL and
DBI have to offer you. While MySQL is not the primary
focus of this book, it is a very important topic for any
Web site that wants to bill itself as professional, dynamic,
feature-rich, and user-friendly.

MySQL Server Editions

MySQL Community Server

The Community edition of MySQL is the free version of the
MySQL database software that is licensed under the GPL. As
of mid-2010, the latest stable version of MySQL Community
Server is 5.1.46, and the development version is 5.5.3. You can
download either version directly from the MySQL download
page at http://dev.mysql.com/downloads/mysql/.

Generally speaking, unless you require a feature that is
available in MySQL 5.5, you should use the stable release of
MySQL 5.1. Because you will be using MySQL on your Web
site and not redistributing the software with a physical
product, you do not need to upgrade to the Enterprise edition.

MySQL Enterprise Server

The Enterprise edition of MySQL is the commercial version
of the MySQL database software. The commercial entity that
manages MySQL Enterprise, MySQL AB, offers additional
benefits to entice buyers. These include enhanced server
monitoring tools, emergency security patches, monthly
maintenance patches, and additional support channels with
a guaranteed service level agreement (SLA).

If you want to learn more about MySQL Enterprise, visit the
Web site at www.mysql.com/products/enterprise/
server.html.

MySQL comes in two primary editions that vary in the features they offer. Which one you choose depends on your specific needs,
the level of support you require, and your budget.

MySQL Server

Authentication

All MySQL clients that connect to your MySQL server need to
authenticate themselves to be able to access the data. Often,
the server will allow incoming connections from clients on the
local server only, or, at most, the local network.

If you are running multiple Web sites, or multiple people share
your MySQL server, it is a good idea to create user accounts

for each individual site and person, and to restrict access to
databases and tables to only those who need it.

You need to create a specific username and password for your
Perl CGI scripts to use when connecting to the MySQL server
using the DBI client library. Generally speaking, it is a good
idea to restrict Perl write access as much as possible. This
helps reduce the risk of a person visiting your Web site and,
purposefully or not, causing an event that detrimentally
updates or deletes data on your system.

The MySQL server is the server-side component that hosts the database, manages incoming connections from clients, and
interprets ANSI SQL (1999) queries and statements.

23_556801-ch21.indd 31623_556801-ch21.indd 316 8/31/10 9:25 AM8/31/10 9:25 AM

317

MySQL Server (continued)

Performance

The developers of MySQL pride themselves on its
enhanced level of performance, compared to its
competitors. For instance, MySQL automatically
implements query caching, efficient indexing and
searching, customizable stored procedures, and high-
availability replication.

MySQL efficiently manages its own internal system
resources, taking full advantage of multi-processor, high-
end servers. Multi-server instances are possible through a
master/slave relationship, or by using a newer feature
called MySQL Cluster. This feature divides the database
into semi-redundant components, and assigns each node
in the cluster specific components. In fact, MySQL Cluster
does for databases what RAID does for file systems.

MySQL Clients

Command-Line Interface

The MySQL command-line interface is a program that runs
in either a DOS prompt or a Terminal window. It allows you
to connect to a MySQL server and execute SQL statements
by typing them in. It is the most direct way to interact with
a SQL database.

When developing a Perl script that references SQL
statements, you should keep the command-line interface
client open in the background. If you experience any syntax
issues in Perl, you can test the equivalent statement in the
command-line interface; you may notice an additional
syntax error messages that were invisible from the
perspective of Perl.

Perl DBI Library

The Perl DBI library provides the means for a Perl script to
communicate with a MySQL server as a client. Once you
connect to a MySQL database in Perl, the commands you
use to interact with the database are exactly the same as

the MySQL command-line interface program; however, the
DBI library does provide additional conveniences that are
not available in other clients.

This chapter is dedicated to describing how to use the Perl
DBI library to interact with a MySQL server. For more
information about DBI, see the section, “Introducing the
Perl DBI Library.”

Graphical User Interface

The MySQL developers produce an official graphical user
interface, or GUI, called MySQL Workbench. This helps you
with database design, SQL statement development, and
server administration. All database statements and
commands can be represented as graphical operations,
which makes using MySQL easier for beginning SQL
developers.

Several third-party developers have produced their own
GUI programs, such as MySQL Administrator and MySQL
Query Browser.

MySQL allows for client-side programs to interact with its server-side components. Once a client has authenticated itself to
the MySQL server, it may execute various SQL commands to interact with the database.

MySQL Documentation and Resources

MySQL has been a staple tool since it was first released in 1995. Since then, it has been well documented by its
developers, as well as third-party users and authors. The MySQL 5.1 and 5.5 Reference Manuals are available online at
http://dev.mysql.com/doc/.

If you are just starting out, useful resources include Chapter 3: Tutorial, Chapter 10: Data Types, Chapter 12: SQL
Statement Syntax, and Appendix A: MySQL 5.1 FAQ. Another excellent resource for MySQL development is the MySQL
Administrator’s Bible (Wiley 2009).

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

23_556801-ch21.indd 31723_556801-ch21.indd 317 8/31/10 9:25 AM8/31/10 9:25 AM

318

S QL, or Structured Query Language, is a fourth-
generation programming language: you instruct
the computer what you want a task to produce as

output. By comparison, Perl is a third-generation
language: you instruct the computer how a task is to
produce the output. This means you are telling the
computer what you want to see, as opposed to instructing
the computer how to actually do it.
An individual SQL statement is a phrase that begins with
a specific verb, followed by a series of options and
arguments, and ending with an optional clause; a valid
statement almost reads like a normal sentence. The SQL
server’s parsing abilities are very particular, so each

statement must follow SQL standards exactly. It is not
very forgiving if even one word or comma is off.
Note that SQL is an immense language that has generated
hundreds of books and dozens of server implementations.
The commands listed here are merely a subset of the
complete list, and should be enough to get you started
with MySQL in Perl.
If you need help constructing a complex or advanced
SQL statement, try using a program such as MySQL
Workbench or MySQL Query Browser. You can describe
your task using its graphical interface, after which the
equivalent SQL statement is presented to you along with
the results. This is a very useful technique to discover
new SQL statements and results.

Understanding
the SQL Syntax

Basic SQL Statements

Create a Database

After installing a fresh MySQL server, the first thing to do is to
create a new database:

create database DATABASE

A database houses the tables that store the actual data as
rows. In the context of a simple, dynamic Web site, the entire
site should reference data from multiple tables, but out of a
single database. More complex dynamic Web sites may pull
information from multiple databases, as required.

Connect to a Database

Once a database is established, you need to instruct the
MySQL client that all future commands are to be applied to
that specific database:

use DATABASE

When using the command-line MySQL client, you must use
this command only immediately after establishing a connection
to the server. When using the Perl DBI module, you specify the
database in the DSN field of your script. See the section,
“Introducing the Perl DBI Library,” for an example.

Create a Table

Every table within the database has a schema, or format,
describing each column. After the table is created, you can
insert, select, update, and delete data from it by table row:

create table TABLE (COLUMN1 DATATYPE1, COLUMN2
DATATYPE2, ...)

Each column has a data type, which dictates the type of data
that is stored in the column. For numerical values, use int
for a whole number and float for a floating-point number.
For a specific timestamp, use date, time, or datetime.
For strings, varchar(##) is most common, where the
number represents the maximum number of characters.

Every table should have a column for an auto-incrementing,
uniquely identifying number. This value increases with each
new row that is inserted, and it allows you to isolate an
individual row. The identifier’s integer data type also has
additional properties: primary key indicates that a value
cannot be repeated in another row, auto_increment states
that its value increases by one from the previous row, and
not null indicates that it cannot be undefined:

create table TABLE (id int primary key auto_
increment not null, COLUMN2 DATATYPE2, ...)

Note that this list of data types is not complete. Refer to the
MySQL documentation for the complete list of data types, and
for the commands to update and delete an existing table.

The following commands provide the foundation for communicating to a SQL database. At a minimum, you need to be familiar with
these commands because they are required to read and write data in the database.

23_556801-ch21.indd 31823_556801-ch21.indd 318 8/31/10 9:25 AM8/31/10 9:25 AM

319

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

Insert Data into a Table

When inserting a new row of data into a table, you need to
specify all columns first, followed by all values. For the
columns that you do not specify, the column’s default value
is auto-assigned into that row:

insert into TABLE (COLUMN1, COLUMN2, ...)
values (VALUE1, VALUE2, ...)

If your table’s schema is fairly small, you can bypass
stating the columns, which implies them all, and specify all
column values:

insert into TABLE values (VALUE1, VALUE2, ...)

Select Data from a Table

You can use select as the primary means to retrieve data
from a table. The where clause allows you to only retrieve
specific rows that match a condition. If you omit where,
all rows in the table are returned:

select COLUMN from TABLE where CONDITION

To retrieve multiple columns from a table, you can specify
them as a comma-separated list:

select COLUMN1, COLUMN2, ... from TABLE where
CONDITION

You can use an asterisk (*) to return all columns in the
table that match the condition:

select * from TABLE where CONDITION

Update Data in a Table

You can use update to change an existing row in a table.
The where clause allows you to limit which rows will be
affected. If you omit where, all rows in the table will be
updated:

update TABLE set COLUMN = VALUE where CONDITION

You can update multiple columns by separating each pair
with a comma:

update TABLE set COLUMN1 = VALUE1, COLUMN2 =
VALUE2, ... where CONDITION

Delete Data from a Table

The delete command removes all rows in a table that
match a specific condition:

delete from TABLE where CONDITION

Be careful — if you omit the where clause, every row in
the table is deleted without confirmation or warning.

Basic SQL Statements (continued)

Advanced SQL Statements

Join Tables

You can select content from multiple tables at once using a
single SQL statement. This can be useful if two tables
share a column relationship. When you reference more
than one table, there must be a where clause that
describes the relationship:

select TABLE1.COLUMNS, TABLE2.COLUMNS from
TABLE1, TABLE2 where TABLE1.COLUMN1 = TABLE2.
COLUMN1

In the MySQL Reference Manual, see section 12.2.9.1 for
more information on joining tables.

Subquery Statements

A subquery statement allows you to nest a second select
statement within the first statement’s where clause. All
values that match the second statement are used as
matching values for the first statement:

select COLUMNS from TABLE1 where COLUMN1 =
(select COLUMN1 from TABLE2)

In the MySQL Reference Manual, see section 12.2.10 for
information on constructing subquery statements.

Advanced SQL statements are like compounded basic statements. Once constructed, they allow you to efficiently perform a
complex task on the SQL database using a single command statement. Again, the following list is just an introduction to what
is available. For more information, see the MySQL Reference Manual.

23_556801-ch21.indd 31923_556801-ch21.indd 319 8/31/10 9:25 AM8/31/10 9:25 AM

320

3
4

2
1

5

3 Scroll to the platform
selection box.

4 Choose Microsoft
Windows from the drop-
down list and click Select.

5 Click the Download button
for the Essentials Installer.

Note: You have the option to
create an account on mysql.
com, or to scroll down to
download anonymously.

1 Open a Web browser.

2 Type http://dev.mysql.
com/downloads/mysql/.

• The MySQL Community
Server download page
appears.

Download MySQL for Windows

Y ou need to download MySQL from the MySQL
Web site and install it onto your Web server. This
process sets you up with both the MySQL server

and client software components simultaneously. If you
have multiple Web servers, you may share a central
database by installing MySQL server on a dedicated
database server, and MySQL client on each Web server.
You want to download the MySQL Community Server
edition. This version is freely available for most projects
and you can easily upgrade it. If you are unsure whether
your Web site can appropriately use the free version,
contact a MySQL sales representative at www.mysql.com/
about/contact/sales.html.
The latest stable release of the MySQL server is version
5.1, and the latest development version is 5.5. You can

download both versions from the MySQL Web site at
http://dev.mysql.com/downloads/mysql/. The stable
version is available under the Generally Available (GA)
Releases tab, and the development version is under the
Development Releases tab. Unless you are interested in a
specific feature in version 5.5, you should download the
stable 5.1 version. If you just want the MySQL client and
server programs, you can download the Essentials installer.
If you require the entire MySQL suite, including the Instance
Manager tool, documentation, and various developer
components, then you can download the larger Full installer.
When downloading MySQL for Windows, the software is
packaged as an MSI, or Microsoft Installer File. You have
the option to download either the 32-bit or 64-bit version
of the program. Unless you know that you are running a
64-bit version of Windows, you should download the
32-bit installer.

Download MySQL
for Windows

23_556801-ch21.indd 32023_556801-ch21.indd 320 8/31/10 9:25 AM8/31/10 9:25 AM

321

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

8 9

6

7

When downloading the MySQL server, you can also download additional programs depending on what options you
choose. If you choose the full download, you also receive the Instance Manager tool, a local copy of the
documentation, and special developer components. In most cases, unless you are planning on running multiple
instances of the server, cannot access the online documentation, or are developing a new feature for MySQL, you
should download the Essentials version of the server.

Other programs are also available for free on the MySQL download page:

• MySQL Cluster is like the MySQL server, except the database is shared across multiple physical machines, also
known as nodes, thus providing constant access. Use this only if you have a large database and a lot of user
activity, and when you cannot afford any downtime.

• MySQL Connectors allows you to link a legacy ODBC- or JDBC-compatible software program into MySQL.
This is only necessary if you already have a program written in Java, .NET, C, or C++ connecting to an ODBC
or JDBC database and you want to migrate it to MySQL.

• MySQL Workbench is a graphical user-interface program that you can use to design tables, execute queries,
and administer your MySQL server from the Windows desktop.

• The MySQL Installation MSI
is downloaded.

8 Right-click the download.

9 Select Open Containing
Folder.

• The MySQL MSI installation
program.

6 Click either the HTTP or
FTP link next to a mirror.

7 In the dialog box that
appears, click Save File.

23_556801-ch21.indd 32123_556801-ch21.indd 321 8/31/10 9:25 AM8/31/10 9:25 AM

322
3

1
2

3 In the Setup Wizard, click
Next.

4 Select the Typical
Installation option.

5 Click Next.

6 Click Install.

1 Open the Downloads
folder.

2 Double-click the MSI file.

• The installation program
launches.

Install MySQL for Windows

Y ou need to install MySQL alongside your Perl and
Apache Web server so that you can use it as a
database back-end for your Perl CGI Web pages.

This usually means installing it onto the same server that
hosts Perl and Apache, or onto a separate server in the
same subnet as your Web server. In a multi-server
production deployment, only the MySQL client should be
installed onto every Web server alongside Apache and Perl.
You should configure each client to connect to a centralized
MySQL server. It is inefficient to install the full MySQL
server onto each Web server, as each machine’s database
will be autonomous, unless you enable replication. Instead,
you may want to consider using MySQL Cluster, which is
better suited for multi-server scenarios.
The Windows installation wizard displays several screens,
guiding you through the installation process. Once

installed, a separate configuration wizard appears. This
prompts you for various configuration and security options,
one of which is the ability to set the password for your
MySQL administrator user, called root. After installation
and configuration are complete, you still need to set up
your table schema and specific accounts for your Perl CGI
scripts. You can do this by following the MySQL tutorial at
http://dev.mysql.com/doc/refman/5.1/en/
tutorial.html.
MySQL runs on all recent Windows operating systems,
including workstations running Windows 2000, XP, Vista,
and 7. However, you should only install MySQL onto a
workstation for testing and development purposes. When
you are ready to deploy your work onto the Internet, be
sure to use MySQL on a Windows Server 2003 or 2008
computer, or even a professionally managed Linux server.
MySQL supports both 32-bit and 64-bit native architecture.

Install MySQL
for Windows

23_556801-ch21.indd 32223_556801-ch21.indd 322 8/31/10 9:25 AM8/31/10 9:25 AM

323

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

9

%

You must complete the MySQL configuration wizard before you can use your MySQL server. It first prompts you for
a configuration type; choose Standard Configuration. You see a check box labeled Include Bin Directory in Windows
PATH; make sure this is enabled. This allows you to open the MySQL client with the command mysql from any
directory in a DOS prompt.

The MySQL installation process does not install the Perl Database Interface (DBI) or Database Driver (DBD)
modules, which you will require later in this chapter. If you are using ActiveState Perl, you can install these modules
from the command-line.

0 Click Next.

! Select the Standard
Configuration option.

@ Click Next.

Type in a root password.

$ Click Next.

% Click Execute.

 The MySQL configuration
wizard applies your requested
settings to your MySQL server.

• The Setup Wizard installs
MySQL.

7 Click Next to skip through
the MySQL Enterprise
advertisement.

8 Select the Configure the
MySQL Server check box.

Note: Registration is optional.

9 Click Finish.

TYPE THIS

ppm install DBI
ppm install DBD::mysql
perldoc DBI
perldoc DBD::mysql

RESULTS

The Perl DBI and DBD modules are installed
using ActiveState Perl Package Manager. Using
the PerlDoc program, you can bring up each
module’s documentation to validate that they
are present on your computer.

➔

23_556801-ch21.indd 32323_556801-ch21.indd 323 8/31/10 9:25 AM8/31/10 9:25 AM

324

3

5

4

2
1

5 Type in a root password and
press Enter.

6 Type in the password again to
confirm, and press Enter.

Note: You can change the root
password with the command sudo
dpkg-reconfigure
mysql-server-5.1.

 The MySQL installation process
continues.

• The MySQL server is now
installed.

 The DBI and DBD modules are
also installed.

1 Open a Terminal window.

2 Type sudo apt-get install
mysql-server and press Enter.

3 Type your password if prompted
and press Enter.

4 Type Y and press Enter.

Install MySQL for Debian/Ubuntu Linux

T he installation of MySQL server is very easy
on Linux when using a pre-packaged binary
distribution system. You can launch the

download, installation, and configuration process with
a single command. Debian and Ubuntu systems use the
DEB packaging format. The suite Advanced Package Tool,
or APT, is used for downloading, installing, and removing
DEB packages. On Debian- and Ubuntu-based Linux
systems, the MySQL server DEB package is identified as
mysql-server, and the MySQL client is mysql-client.
You need to install both packages.
The installation process requires that your computer be
connected to the Internet. The download, installation, and
setup process is handled by a single command, apt-get,
which you should execute in a Terminal window.

You can also install the packages mysql-admin, mysql-
query-browser, and mysql-workbench-oss to connect
using GUI clients to your local MySQL server.
Regarding documentation, as of Ubuntu v9.10, only the
MySQL 5.0 documentation is available, as the package
mysql-doc-5.0; for some reason, the 5.1 and later
documentation is unavailable in APT. Once installed, you
can access the HTML files under the path /usr/share/
doc/mysql-doc-5.0; however, you may find that it is
just as easy to go to the MySQL Documentation URL at
http://dev.mysql.com/doc.
After installation and configuration are complete, you still
need to set up your table schema and specific accounts
for your Perl CGI scripts. You can do this by following the
MySQL tutorial at http://dev.mysql.com/doc/
refman/5.1/en/tutorial.html.

Install MySQL for
Debian/Ubuntu Linux

23_556801-ch21.indd 32423_556801-ch21.indd 324 8/31/10 9:25 AM8/31/10 9:25 AM

325

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

3

5

2
4

1

• The MySQL client and
server are now installed.

• The DBI and DBD modules
are now installed.

1 Open a Terminal window.

2 Type su - and press Enter.

3 Type in root’s password
and press Enter.

4 Type yum install mysql
mysql-server and press
Enter.

5 Type Y and press Enter.

Install MySQL for Red Hat Linux

Web servers. If you only have a single Web server, install
both packages.
The installation process requires that your computer be
connected to the Internet. You launch the download,
installation, and setup process by using a single command,
yum, which you should execute in a Terminal window.
You can also install the package mysql-gui-tools,
which sets up various GUI programs for you, including
Administrator and Query Browser, which you can use to
connect to your local MySQL server. If you want to try
MySQL Workbench, you need to download that RPM
package separately from http://dev.mysql.com/
download/workbench/. After installation and
configuration are complete, set up your table schema and
specific accounts for your Perl CGI scripts by following the
MySQL tutorial at http://dev.mysql.com/doc/
refman/5.1/en/tutorial.html.

The installation of a MySQL server is very easy
on Linux when using a pre-packaged binary
distribution system. In fact, you can launch

the download, installation, and configuration process
with a single command. All Red Hat-based Linux
distributions contain software packages using the RPM
packaging format. You can use the suite Yellowdog
Updater, Modified (or YUM) for downloading,
installing, and removing RPM packages. On Red
Hat-based Linux systems, in the MySQL server RPM
package identified as mysql-server, the MySQL
client is mysql. You need to install both packages.
If you have multiple Web servers sharing a central
MySQL database, you only need to install the
mysql_server package on that database server,
and the mysql package on to your Red Hat-based

Install MySQL
for Red Hat Linux

23_556801-ch21.indd 32523_556801-ch21.indd 325 8/31/10 9:25 AM8/31/10 9:25 AM

326

Y ou can use the Perl Database Interface, or DBI,
library to access information stored on a database
server running on your network, alongside Perl

and Apache.
DBI actually consists of two parts. First, a Perl module
provides the interface for your scripts to use. Second, the
database driver, or DBD, is used by DBI to provide access
to the database’s native API and connection methodology.
Together, these DBI components can provide support for
many third-party servers, such as SQLite2, SQLite3,
Oracle, Sybase, DB2, MS-SQL, and PostgreSQL.
In fact, you can even use DBI to interface to local files
and have them act like a database, such as a CSV file,

XBase file, or Excel spreadsheet. DBI can even
communicate over database network protocols such as
ODBC and LDAP.
In this chapter, you will be installing the DBI and
DBD::mysql modules to connect your Perl scripts to a
MySQL database. The neat thing about using DBI is that
your code does not need to be MySQL-aware at all; DBI
and DBD handle all the database-specific nuances, and all
your code requires are the relevant SQL statements to
access the data.
For more information on Perl DBI, you can access its
project Web page at http://dbi.perl.org.

Introducing the
Perl DBI Library

Import the DBI Library

Module Installation

If you are using a Windows system, you need to install the
DBI and DBD::mysql modules manually. If you are using a
Linux distribution such as Red Hat, Debian, or Ubuntu, the
modules’ packages are installed alongside the MySQL server
installation package.

As always, CPAN should work on most Perl platforms. If you
are using ActiveState Perl in Windows, its Perl Package
Manager program, or ppm, is preferred.

See Chapter 9 for more information on installing modules
using CPAN, ActiveState PPM, or pre-compiled packages,
depending on your computing environment.

Documentation

The DBI and DBD::mysql modules provide their
documentation locally using the PerlDoc program. You can
access it at any time using the command-line program:

perldoc DBI

perldoc DBD::mysql

DBI’s documentation focuses on the Perl API in general.
DBD::mysql’s documentation describes the MySQL-specific
driver and any special conditions pertaining to DBI.

In Your Perl Script...

To load the DBI library, all you need to do is import the
module with use at the top of your Perl script:

use DBI;

Unlike other libraries, there are no optional arguments or
parameters at this stage. In fact, there is not even a new
function to call. Instead, you use connect to link with a
database server, which generates a database-handle. This
handle is what you use to access the methods contained in
the DBI module.

You can use the DBI library by importing the DBI module into any Perl script. You may need to first install the DBI library onto your
system as it is not included on all Perl distributions.

Interacting with the MySQL Server

Regardless of the server you are connecting to, the commands you use, even SQL statements’ syntax, can be relatively generic.
Only when opening a connection to the server do you need to specify mysql in your script. In fact, if at a later date you choose to
change your database server from MySQL to Oracle, for example, you only have to change one line in Perl.

23_556801-ch21.indd 32623_556801-ch21.indd 326 8/31/10 9:25 AM8/31/10 9:25 AM

327

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl
Interacting with the MySQL Server (continued)

Connecting to MySQL

The DSN, or data source name, is a special string that
describes what database on the MySQL server you want to
connect to, as well as the server’s IP address and port
number. If you omit the host and port values, it defaults to
localhost and 3306:

$dsn = “DBI:mysql:database=database;host=hostna
me;port=port”;

$dbh = DBI->connect($dsn, username, password);

The database-handle, $dbh, is then used for all other
commands through the remainder of the Perl script, such
as retrieving and updating data, and disconnecting from
the database.

Reading Data from MySQL

Reading data from MySQL by way of a select statement
happens in four separate stages: prepare, execute, fetch,
and finish. You must represent each stage as a Perl
statement.

First, you must use the database-handle’s prepare
method to create a statement-handle variable with your
SQL command. The statement-handle is used to access the
remaining three stages:

$sth = $dbh->prepare(sql);

Second, with your new statement-handle, you use
execute with any optional arguments to run the
statement on the MySQL server. The arguments are
provided as a comma-separated list, and each item in the
list replaces any question-mark characters found in the
prepared SQL statement:

$sth->execute(values);

Third, you retrieve the results from the MySQL server by using
repeated calls to a fetch method. The fetchrow_hashref

method is easiest to use because all rows returned can be
accessed as a hashref whose keys represent the column
names in the database:

while (my $row = $sth->fetchrow_hashref()) {

 print $row->{ column };

}

Finally, you complete the statement by using the finish
method. This closes any temporary memory handles that
could have been allocated when retrieving large amounts of
data:

$sth->finish();

Writing Data to MySQL

You can run SQL insert or update statements with the
prepare, execute, and finish steps described previously, but
if you only need to run one basic command that returns no
output, you can use the do shortcut method, which
handles all three at once:

$dbh->do(sql, attrs, values);

Again, the arguments are optional. This is by far the most
efficient way to write data to MySQL.

Disconnecting from MySQL

When your program is finished with its database
connection, you use the disconnect method to free any
active memory:

$dbh->disconnect();

In the context of a Perl script, the database-handle is
automatically destroyed when the script is closed.
However, it is considered good practice to clean up after
yourself by running this command once you no longer
need any MySQL connectivity.

Error Handling

For example, if you are just connecting, there is no
database-handle or statement-handle yet. You must use
err and errstr as scalars in the DBI module directly:

DBI->connect(...) || die $DBI::errstr;

If the error results from either a database-handle or
statement-handle, you can access err and errstr as
methods through the failed handle:

$dbh->prepare(...) || die $dbh->errstr;

$sth->execute(...) || die $sth->errstr;

If any DBI method results in a failure, it returns a zero return code and allows you to access the native database’s error code
and message with err and errstr, respectively. However, the point where you access these methods depends on how far
along you are in the DBI workflow.

23_556801-ch21.indd 32723_556801-ch21.indd 327 8/31/10 9:25 AM8/31/10 9:25 AM

328

7

3
4

1

2

5 65 Type ;host=host in the DSN.

Note: If MySQL is installed locally, you
do not need a port field. It defaults to
localhost.

6 Type ;port=port in the DSN.

Note: If you did not change the MySQL
service port, you do not need a port field
in the DSN. It defaults to 3306.

7 Type || die $DBI::errstr; after
connect to catch and display any
connect errors, if they occur.

1 Open a Perl CGI script.

2 Type use DBI; to import the DBI
module.

3 Type my $dsn = "DBI:mysql:
database=database "; to create a
DSN string.

4 Type my $dbh = DBI->connect(
$dsn, username, password); to
create a new database-handle.

Note: If you do not yet have an account
configured, use the “root” username and
password you set up during the server
installation.

Connect to a MySQL Database with the DBI Library

Y ou can use the DBI library to connect to a MySQL
database in Perl. This creates a special database-
handle, $dbh, which you can use to access the

DBI’s methods. When finished, you must use the database-
handle to terminate the connection to the database server.
Before you can connect, you need to ensure that both the
DBI library and the MySQL-specific DBD library are
installed on your Web server. On Linux, these modules are
usually pre-installed when you install MySQL using either
a DEB or RPM package. On Windows, you may need to
install both modules manually. You can confirm that they
are installed by using PerlDoc to open the DBI or
DBD::mysql documentation pages. If you cannot find either
module, use the cpan or ppm programs to install them.
To prepare a Perl script for database connectivity, you
must import DBI and generate a DSN, or database source

name. This describes which driver to use, the database
name, and the server’s IP address and port number:
use DBI;
$dsn = “DBI:driver:database=database;host=IP;p
ort=number”;

The host and port fields are optional, defaulting to
localhost and 3306. Next, call DBI’s connect method
providing the DSN, as well as the username and
password. If successful, a database-handle is returned:
$dbh = DBI->connect($dsn, username, password);

When you first installed MySQL, it would have prompted
you for a default root account and password; use that
account here. Finally, the last thing your program should
do is call the disconnect method from the database-
handle. This frees any memory that is allocated to the
database connection: $dbh->disconnect();.

Connect to a MySQL
Database with the DBI Library

23_556801-ch21.indd 32823_556801-ch21.indd 328 8/31/10 9:25 AM8/31/10 9:25 AM

329

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

0
!

8

You can build a custom SQL module that automates DBI’s connect and disconnect methods. This can be useful
if you have multiple CGI scripts that leverage database connectivity, but you want to amalgamate the database
connect procedure into a single location.

Regarding the get_info method in the example steps, the arguments 17 and 18 are actually constants for SQL_
DBMS_NAME and SQL_DBMS_VERSION. You can get a complete list of all available driver implementation fields
using the following code.

0 Open a Terminal window.

! Run the Perl script.

• Either the program runs
normally, or the Terminal
window displays any
connect errors.

8 Type $dbh->disconnect; to
close the database-handle.

9 Save the Perl script.

TYPE THIS

use DBI::Const::GetInfoType;
while (my ($key, $val) = each
%GetInfoType) {

 printf “%40s: %s\n”, $key, $dbh-
>get_info($val);

}

RESULTS

All available server fields are displayed, with
their get_info values. The %40s argument in
printf forces 40-character spacing with text
aligned to the right. This makes the output
easier to read. With access to %GetInfoType,
you can use this as a shortcut to get a specific
value using get_info:

print $dbh->get_info($GetInfoType{
‘SQL_DATA_SOURCE_NAME’ });

➔

23_556801-ch21.indd 32923_556801-ch21.indd 329 8/31/10 9:25 AM8/31/10 9:25 AM

330

3

4

5

1

2

3 Type $sth->execute(); to execute the
prepared statement.

4 Type my $row = $sth->fetchrow_
hashref within a while loop.

5 Type $sth->finish; to close the
statement-handle session.

Note: Calling finish manually is
optional. It’s only necessary if you intend
to use break within the while loop, or
to recycle the statement-handle, $sth,
by calling execute again.

1 Open a Perl script that uses the DBI
module.

2 Type my $sth = $dbh->prepare
(sql); to create a statement-handle
from your SQL query.

Note: If you have not yet configured a
table in MySQL, you have nothing to
query. Go through the online MySQL
Tutorial at http://dev.mysql.com/
doc/.

Retrieve SQL Data Using the DBI LIbrary

Y ou can use the DBI library to execute SQL data-
retrieval queries to load data stored in a database
table. This process can use to retrieve any database

content into your Perl script and on your Web page.
First, use the database-handle and call the prepare
method to specify your SQL statement, which returns a
statement-handle:
$sth = $dbh->prepare(sql);

Second, with the statement-handle, call the execute
method. This actually executes your statement on the
MySQL server, and prepares the returned results in
internal memory:
$sth->execute();

You may retrieve the number of rows affected by your
query with $sth->rows.

Third, use a while loop to iterate through the rows of
data returned by your SQL query. On each pass, use the
statement-handle to call the fetchrow_hashref method.
This returns a hash reference of each row returned by your
SQL statement, using the literal column names as keys:
while (my $row = $sth->fetchrow_hashref()) {
 print $row->{ column };
}

Last, use the statement-handle to call finish to instruct
the DBI to free any temporary storage data from active
memory. finish executes automatically when the last
row of data has been retrieved with fetchrow_hashref.
However, you should call it manually to re-execute a
previously prepared statement-handle:
$sth->finish();

Retrieve SQL Data
Using the DBI Library

23_556801-ch21.indd 33023_556801-ch21.indd 330 8/31/10 9:25 AM8/31/10 9:25 AM

331

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

0

6
7

8

You can use one or more question marks (?) in your prepare statement as placeholders for bind values supplied
as execute arguments. This is an extremely important feature as it ensures that your SQL code, when the column
values are properly quoted and escaped, is not susceptible to any SQL code-injection attacks.

0 Execute the Perl script in a
Terminal window.

• The Perl script displays the
SQL results.

6 Type || die $dbh->errstr; to
catch any prepare errors.

7 Type || die $sth->errstr; to
catch any execute errors.

8 Type $row->{ column } to
access the actual column data
for each row in your query.

Note: This example prints the
results as raw Perl output. If this
were a CGI script, you would use
the HTML::Template module to
display content to the browser.

9 Save the Perl script.

TYPE THIS

use CGI::Carp qw(fatalsToBrowser);
$sth = $dbh->prepare(“select * from
users where createdDate > ?”) ||

 die $dbh->errstr;
$sth->execute(“2010-05-30”) || die
$sth->errstr;

RESULTS

The question mark in the SQL query is replaced
by the value in execute. In other words, the
query runs, returning all users created after May
30, 2010. All date-stamps are in YYYY-MM-DD
format.

➔

23_556801-ch21.indd 33123_556801-ch21.indd 331 8/31/10 9:25 AM8/31/10 9:25 AM

332

5
6

1

2

3

4

5 Type push(@{ $arrayref }, $row); to
populate each loop’s TMPL_VAR values.

6 Type $tmpl->param(listName =>
$arrayRef); to populate the template’s
TMPL_LOOP list.

Note: Use $sth->rows to get the total
number of rows returned.

Note: If you want to bypass TMPL_LOOP, you
can insert all columns from the first row into
the template with $tmpl->param($sth->
fetchrow_hashref);.

1 Open a Perl CGI script that uses the DBI
and HTML::Template modules.

2 Type my $arrayref = []; to create a blank
array reference variable.

3 Prepare, execute, and retrieve the SQL
query normally.

4 Print the HTML::Template output normally.

Note: See Chapter 13 for information about
using HTML::Template.

Display SQL Data Through HTML::Template

U sing the HTML::Template module, you can
efficiently display data sourced from a SQL
database, through various template tags. A

template file must be constructed referencing the original
SQL column names through TMPL_VAR tags, which
supplies the SQL query results as output. If multiple rows
of data are expected, you can use TMPL_LOOP to generate
a table, within which you can use TMPL_VAR to generate
each column per output row. To start, you first need to
define a blank array reference. This is used to collect the
data retrieved from the SQL query, and is then forwarded
to the template:
my $arrayref = [];

The query process is normal, except for the third step.
Instead of using the returned hash reference data directly,

you store each row into $arrayref with push:
while (my $row = $sth->fetchrow_hashref) {
 push(@{ $arrayref }, $row);
}

You can use the populated $arrayref as a template
parameter directly. Because TMPL_LOOPs naturally expect
an array reference, you can simplify this into a single Perl
statement: $tmpl->param(loopName => $arrayref);
In your template file, use TMPL_LOOP with loopName,
then TMPL_VAR for each returned SQL column:
<tmpl_loop name=loopName>
 <tmpl_var name=column1> <tmpl_var
name=column2> ...

</tmpl_loop>

If at any point you are lost on what $arrayref holds, you
can always use Data::Dumper to examine its contents.

Display SQL Data
Through HTML::Template

23_556801-ch21.indd 33223_556801-ch21.indd 332 8/31/10 9:25 AM8/31/10 9:25 AM

333

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

9

@

0

7

8

If you are using any built-in MySQL functions in your SQL query, the column name according to the template is
literally the function name:

select year(date), month(date), min(total) from sales where year(date) = “2010” group by
year(date),month(date);

In the template, the TMPL_VAR columns are the literal function names specified in the query:

Lowest sales in <tmpl_var name=”month(date)”> <tmpl_var name”year(date)”>: <tmpl_var
name=”min(total)”>

This can become complicated because the names are sensitive to spacing and case. If you were to change the
function in the SQL query, you would also have to change the TMPL_VAR name to match.

In the SQL query, you can use the as modifier to force the column to a specific name. This allows you to change the
column name for the duration of the query, and assign a new name independent of the function or formula:

select year(date) as salesYear, month(date) as salesMonth, min(total) as lowestSalesTotal from
sales where year(date) = “2010” group by salesYear,salesMonth;

The TMPL_VAR names can then use the new as column name:

Lowest sales in <tmpl_var name=”salesMonth”> <tmpl_var name”salesYear”>: <tmpl_var
name=”lowestSalesTotal”>

@ Open the Perl CGI script in a
Web browser.

• The HTML table is generated
from the template. For every
query result row, a table row
displays.

7 Open the template file.

8 Type <tmpl_loop name=
”listName”>.

9 Type <tmpl_var name=
”column”>.

0 Type </tmpl_loop>.

! Save the template file.

Note: The content outside of
TMPL_LOOP is your HTML table
formatting; it is only used once.
Everything within TMPL_LOOP is
repeated for each row of the table.

23_556801-ch21.indd 33323_556801-ch21.indd 333 8/31/10 9:25 AM8/31/10 9:25 AM

334

2

1

3 4 5

3 Insert question-mark characters
into the SQL statement.

4 Type undef to specify no additional
attributes for do.

5 Insert the bind values to replace the
statement’s question marks.

 Note: Using bind values automatically
escapes any sensitive characters
when they are replacing question
marks in the statement.

1 Open a Perl script that uses the DBI
module.

2 Type my $rows = $dbh->do(sql);.

 Note: A SQL statement may be on
one line, or span multiple lines. In
this example, it spans multiple lines
to ease readability.

Change SQL Data Using the DBI Library

Y ou can use the Perl DBI library to execute SQL
data-manipulation statements with the intention
of changing the data stored in a database table.

Such statements use the SQL commands update, insert,
and delete.
You learned that a select statement uses the DBI
methods prepare, execute, fetchrow_hashref, and
finish through a statement-handle. Because a data-
manipulation statement does not return any query
results, you can forgo these four methods in lieu of one:
do. The do method is interchangeable with prepare,
execute, and finish. It is best used if you know that
there is no requirement for a statement-handle, and you
are not retrieving any data from a table:
$rows = $dbh->do(sql, attrs, value1,
value2, ...);

The first argument to do is always the SQL statement.
The second argument is an attributes hash reference. The
remaining arguments represent one or more bind values,
which replace any question-mark characters found in the
SQL statement. When executed, your SQL statement can
apply to multiple rows in your table. You can use do’s
return value to see how many rows were modified by
your statement. If the query is successful but no rows are
affected, you may expect do to return 0, and if there is a
legitimate SQL error, it should return undef. When
validating its return value, there can be an element of
confusion when your code compares zero to undefined.
To resolve this problem, do actually returns “0E0” if no
rows are affected by a good SQL statement, and it returns
undef if the statement fails. Use $dbh->err to find
MySQL’s native error code, and $dbh->errstr to find
MySQL’s explanation of the error in plain English.

Change SQL Data
Using the DBI Library

23_556801-ch21.indd 33423_556801-ch21.indd 334 8/31/10 9:25 AM8/31/10 9:25 AM

335

Ch
apter 21: A

ccessin
g a B

ack-E
n

d M
ySQ

L
 D

atabase w
ith

 Perl

6

9

8
76

!

66

It is strongly recommended that you use bind values to automatically replace any question mark in your SQL query
with properly escaped values. This helps reduce SQL injection attacks as it becomes impossible for a value to
supersede the actual statement using strategic quotes and statements within the actual value:

$rows = $dbh->do(sql, attrs, value1, value2, ...);

It is relatively uncommon to specify any additional attributes in that second argument. They are mostly used to
apply special functionality pertaining to the DBI module. As a result, the second argument is often simply
represented as undef, shifting the starting position for the bind values, which must start as the third argument.

! Execute the Perl script.

• The script prints the number
of rows that are affected.

6 Assign the $rows value and test
if it is defined.

7 If it is not defined, kill the
program with $dbh->errstr.

8 Test if $rows is equal to “0E0”.

9 Test if $rows is greater than
zero.

Note: You can rewrite the last
elsif condition as else. The test
$rows > 0 is made redundant by
the two previous tests: there is no
other possible value for $rows.

0 Save the Perl script.

TYPE THIS

$dbh->do(“update table set column1 = ?
where column2 = ?”,

 undef, “value1”, “value2”);

RESULTS

The SQL update statement is executed as
“update table set column1 = ‘value1’
where column2 = ‘value2’”. Had the bind
values contained any single- or double-quotes,
they would be escaped and treated as literal
characters from MySQL’s perspective.

➔

23_556801-ch21.indd 33523_556801-ch21.indd 335 8/31/10 9:25 AM8/31/10 9:25 AM

336

Understanding
TLS/SSL Encryption

E very modern Web browser supports the two major
forms of encryption technology: transport layer
security, or TLS, and its predecessor, secure

sockets layer, or SSL. Enabling TLS/SSL encryption on
your Web site makes it virtually impossible for a third
party to listen in on any session activity between the
end-user and the Web server.
In other words, not enabling TLS/SSL encryption means
that a clandestine individual could spy on an end-user’s
HTTP session and record its communication activity. If
any sensitive data is transmitted, such as a login

username and password, that data is visible to anyone
with access to one of the Internet’s core routing hubs, and
at both the end-user’s and Web site’s service provider.
It is not difficult to configure Apache for TLS/SSL
encryption, after which users can access your site through
an HTTPS URL, such as https://www.mydomain.com.
The setup procedure requires four steps: creating a
private key file, creating a certificate signing request from
the key, submitting the request to a certificate authority
(CA) to sign, and finally installing the signed certificate
and private key using the Apache SSL module.

TLS/SSL Protocol Versions

Over time, attackers were able to identify flaws in the SSL
handshake process, so a new protocol, TLS, was developed.
TLSv1 was released in 1999 and has since been implemented as
the standard for Internet encryption, providing up to 2048-bit
encryption strength.

The Apache SSL module supports SSLv3 and TLSv1. SSLv2 is
also available, but is disabled by default. The actual protocol used
depends on what the user’s Web browser negotiates.

Over the years, several versions of encryption protocols
have been developed, with each new version attempting to
address vulnerabilities discovered in its predecessor. The
first attempt to encrypt Internet traffic was SSLv1, which
was developed in the early 1990s, but never released.
SSLv2 became the first public version in 1995, and was
able to provide marginal obfuscation through 40-bit and
56-bit encryption. After its release, researchers discovered
several vulnerabilities, which prompted the development of
SSLv3, featuring 128-bit encryption, in 1996.

Encryption Prerequisites

Your Private Key

A private key is a special file that consists of a randomly
generated series of bytes that are unique to you and your Web
site. Generally speaking, your key is like a unique fingerprint
and an authorization credential rolled into a single file. You
use the private key to create an initial certificate request file,
and later, you install the key into Apache to decrypt incoming
TLS/SSL traffic.

If your private key were to be obtained by a third party, any
certificate you created with it would be compromised. This
makes it possible for someone else to decrypt TLS/SSL traffic
that is intended only for you.

For this reason, private keys are encrypted using triple DES,
and so you must decrypt them each time you use them.

Your Certificate

You use the private key to generate a basic certificate file that
describes who you are, where you are located, and the domain
name that will be encrypted. The certificate is saved as a
certificate signing request, or CSR, which must be submitted
to a third party to be signed.

The signing process indicates to your users that your
certificate has been validated as real, and that you are who
you say you are. Web browsers use your certificate to encrypt
data intended only for you. The only way to decrypt the data is
with the private key that initially built the certificate.

Before you can enable TLS/SSL encryption, you must generate a private key and a certificate, and have the certificate signed by a
trusted third-party.

24_556801-ch22.indd 33624_556801-ch22.indd 336 8/31/10 9:26 AM8/31/10 9:26 AM

337

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

information, users are expected to compare this certificate
with the Web site’s content. This way, the user can be
confident in knowing that their sensitive data, such as their
credit card information, can only be read by the Web site,
and that the site is authentic.

The Certificate Authority

The purpose of the certificate authority, or CA, is to act as
a trusted third-party and endorse a Web site implementing
TLS/SSL. Because a site’s certificate contains identifying

Encryption Prerequisites (continued)
Ch

apter 22: Secu
rin

g D
yn

am
ic W

eb Sites

TLS/SSL on Apache

Apache SSL Module

Apache implements TLS/SSL encryption using its SSL
Module, commonly referred to as mod_ssl. For more
information on how mod_ssl works, how TLS/SSL
encryption works, and for more examples on how to
implement it in Apache, read the mod_ssl documentation
page at http://httpd.apache.org/docs/2.2/
mod/mod_ssl.html.

Apache Configuration Directives

The mod_ssl library adds dozens of new SSL configuration
directives. You do not require all of the directives, but they
do allow you to fine-tune how Apache handles TLS/SSL
encryption. Apache ships with an example configuration that
demonstrates and documents most directives. The location
of this file depends on your platform.

PLATFORM LOCATION

Windows APACHEDIR/conf/extra/httpd-
ssl.conf

Debian/Ubuntu
Linux

/etc/apache/mods-enabled/
ssl.conf *

Debian/Ubuntu
Linux

/etc/apache/sites-enabled/
default-ssl *

Red Hat Linux /etc/apache2/conf.d/ssl.conf

Note that these files are only available after running
a2enmod and a2ensite, respectively. At a minimum,
you only need to specify three SSL directives to activate
TLS/SSL encryption in mod_ssl. Refer to the sample
configuration files for additional documentation and
examples.

First, you must activate the TLS/SSL engine:

SSLEngine on

Second, you need to specify the full path to your signed
certificate file:

SSLCertificateFile PATH

Third, you specify the full path to the certificate’s private
key file:

SSLCertificateKeyFile PATH

Activate SSL for a Domain

The example Apache SSL configuration is 99 percent
complete. All you need to do is specify your unique SSL
key and certificate. Once implemented, all traffic coming in
on port 443 will implement TLS/SSL. If you only host a
single domain, HTTPS encryption is implemented globally
on your Apache server.

If you host multiple domains on a single Apache
installation, you require a unique SSL certificate for each
domain where you choose to implement TLS/SSL
encryption. The example SSL configuration is not sufficient,
as a signed certificate is domain-specific. Because each
domain already requires a valid <VirtualHost>
configuration group, you can define the domain’s SSL
directives within, thus limiting the scope of each certificate
file to its pre-assigned domain name.

Automatic HTTPS Redirectors

It is possible to force your users into a secure connection,
regardless of the URL they use to access your Web page.
Using the Apache Rewrite module, commonly known as
mod_rewrite, you can write a simple rule to automatically
redirect users from http://www.mydomain.com/ to
https://www.mydomain.com/. If the user requests a
specific Web page or CGI script in that URL, it is also
maintained by mod_rewrite. Once implemented, users
who bookmarked or linked to your Web site prior to your
deploying SSL will not have to update anything to go to the
TLS/SSL encrypted page; their existing http:// links will
automatically convert to https://.

You can implement TLS/SSL easily in Apache, thus supporting https:// URLs that end-users can trust as a secure
communication channel.

24_556801-ch22.indd 33724_556801-ch22.indd 337 8/31/10 9:26 AM8/31/10 9:26 AM

338

3 4

1

2

3 Type in a pass-phrase and
press Enter.

4 Type in the pass-phrase
again and press Enter.

 OpenSSL generates the
private SSL key file.

1 Open a Terminal window in
the Apache configuration
directory.

2 Type openssl (..\bin\
openssl.exe in Windows)
genrsa -des3 -out KEYFILE
2048 and press Enter.

Create a Private SSL Key

Y ou need to create a private SSL key for your
Apache Web server. You generate the key with a
program called OpenSSL using this command:

openssl genrsa -des3 -out KEYFILE 2048

If you are using Linux, your distribution contains a
package called openssl that you can install. If you are
using Windows, Apache installs OpenSSL in the bin
directory. To use it, you need to already be in the Apache
configuration directory, and then call the OpenSSL
executable stored in ..\bin:
cd C:\Program Files\Apache Software
Foundation\Apache2.2\conf

..\bin\openssl.exe genrsa -des3 -out KEYFILE
2048

Create a Private
SSL Key

Because the Apache service needs access to the
decrypted key in order to make use of your signed SSL
certificate, you need to type in your pass-phrase each
time you start Apache. This may not always be practical,
especially if you need to reboot your Web server
remotely and cannot log in to type it in. You can erase
your private key’s pass-phrase so Apache can access it
unhindered with the following OpenSSL command: You
are prompted for a pass-phrase to encrypt the key.

openssl rsa -in server.key -out server.
insecure.key

24_556801-ch22.indd 33824_556801-ch22.indd 338 8/31/10 9:26 AM8/31/10 9:26 AM

339

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

2

4
5

6

3

11 Type openssl (..\bin\
openssl.exe in
Windows) req -new -key
KEYFILE -out CSRFILE and
press Enter.

2 Type the pass-phrase for
the private key and press
Enter.

3 Type in your two-letter
country name and press
Enter.

4 Continue entering in your
state or province, city,
company, and section
names.

5 Type your secure domain
name, such as www.
mydomain.com, as the
common name and press
Enter.

6 Type an e-mail address and
press Enter.

7 Press Enter to leave the
‘extra’ attributes as
undefined.

 OpenSSL generates the
CSR file.

Generate an SSL Certificate Signing Request

cd C:\Program Files\Apache Software
Foundation\Apache2.2\conf

..\bin\openssl.exe req -new -key KEYFILE -out
CSRFILE

It is generally a good idea to name the file to match the
intended domain. For example, www.mydomain.com
would use mydomain.csr. The CSR filename is largely
irrelevant, as Apache never uses it directly. However, the
signed certificate, the CRT file, typically matches the
name of the CSR (for example, mydomain.crt). It is the
CRT that is referred to by the Apache configuration.
The CSR generation process asks you for some
information that is stored in the request file. This
information will be used later by a CA to validate that you
are who you say you are. The only field that is absolutely
required is the common name, or CN. This must match the
domain name you will be securing with SSL.

Y ou need to generate an SSL certificate
signing request, or CSR, using OpenSSL and
your new private key. The CSR you create is

your template for your SSL certificate. This file must
be submitted to a certificate authority, or CA, which
signs your CSR, producing your final SSL certificate
on your behalf.
Each domain name you want to secure with SSL
requires its own CSR file. You may re-use the same
private key on multiple CSRs:
openssl req -new -key KEYFILE -out CSRFILE

Remember, if you are using OpenSSL in Windows,
you need to be in the Apache configuration directory
when you run the OpenSSL executable, which is
stored in the bin directory:

Generate an SSL Certificate
Signing Request

24_556801-ch22.indd 33924_556801-ch22.indd 339 8/31/10 9:26 AM8/31/10 9:26 AM

340

1

2

3
 OpenSSL generates the

self-signed CRT file.

3 Type openssl (..\bin\
openssl.exe in Windows)
x509 -noout -text -in
CRTFILE and press Enter.

• The Terminal window
displays the contents of the
self-signed CRT file.

1 Type openssl (..\bin\
openssl.exe in Windows)
x509 -signkey KEYFILE
-req -in CSRFILE -out
CRTFILE and press Enter.

2 Type the pass-phrase for
the private key.

Sign Your Own CSR to Create a Test SSL Certificate

Y ou can sign your own CSR file for testing
purposes only. This creates a properly encrypted
session between the Web browser and Web

server, but any Web browser using the certificate warns
the user that the TLS/SSL session is not completely
trusted. Self-signing bypasses the step where a CA signs
your CSR, so use only self-sign for testing purposes:
openssl x509 -signkey KEYFILE -req -in CSRFILE
-out CRTFILE

If you are using OpenSSL in Windows, you need to be in
the Apache configuration directory when you run the
OpenSSL executable, stored in the bin directory:
cd C:\Program Files\Apache Software
Foundation\Apache2.2\conf

..\bin\openssl.exe x509 -signkey KEYFILE -req
-in CSRFILE -out CRTFILE

The CRT file’s name should match the CSR file, except
with a new file extension. For example, mydomain.csr
should create mydomain.crt. Your self-signed CRT file
should be stored in the Apache configuration directory.
After a CSR file is signed as a CRT, it is safe to delete the
original CSR, as Apache never uses it directly — that is,
unless you plan on actually submitting it to a real CA. For
more information, see the section, “Submit Your CSR to
Be Signed by a Certificate Authority.”
It is actually possible to create your own CA, and then
have it sign your CSRs. This is only really practical if you
have a large-scale SSL deployment, and can deploy your
CA’s public certificate onto your users’ Web browsers
directly. Doing this actually instructs the browser that
your CA is to be trusted, as well as any SSL certificate
your CA signs.

Sign Your Own CSR to
Create a Test SSL Certificate

24_556801-ch22.indd 34024_556801-ch22.indd 340 8/31/10 9:26 AM8/31/10 9:26 AM

341

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

2

4

1

6

7

1 Open a Web browser and go to
a CA Web site.

 Purchase a SSL Certificate plan.

2 Open your CSR with a text
editor.

3 Press Ctrl+A to select all text.
Press Ctrl+C to copy it into your
clipboard.

4 Press Ctrl+V to paste your CSR
in to the CA’s submission form.

5 Complete the form and follow
the CA’s instructions for
processing your request.

Note: If you purchased a corporate
SSL certificate, the CA’s verification
process provides additional
instructions that must be followed
before you receive your signed
CRT file.

 The signed CRT file is generated
by the CA.

6 Locate your certificate on the
CA Web site.

7 Download the signed CRT file.

 Save the downloaded CRT file
into Apache’s configuration
directory.

Submit Your CSR to Be Signed by a Certificate Authority

whom you choose as your CA, and the type of SSL
certificate requested. CAs usually charge according to the
length of time a certificate is to be valid, as well as for
any additional SSL features, such as multiple subdomains,
identity verification, and stronger SSL encryption
indicators. The annual price ranges from $30 for a single,
unverified, personal domain, to as much as $599 for a
verified corporate domain. Shop around for the best price:
www.godaddy.com/ssl/
www.thawte.com/ssl/
www.verisign.com/ssl/

After you select a CA and submit payment, you need to
provide your CSR. Once the CA is satisfied with your
request, you receive a signed CRT file that must be
applied to your Web site in the Apache configuration
using special SSL directives.

I f you plan to deploy SSL, you must get your
CSR signed by a certificate authority, or CA. The
CA’s job is to validate who you say you are by

examining your CSR and optionally requesting
additional support documentation.
Web browsers are installed with a preconfigured list
of CAs, each of which is an independent third party.
Because the browser already trusts each CA, SSL
dictates that everyone the CA trusts can be implicitly
trusted by the end-user.
If you are a business, the CA may request additional
documentation, such as a business license certificate,
to support your claim as the legitimate trademark
owner of an Internet domain name. Deploying SSL
on a personal Web site usually means relaxed
security checks. The exact process depends on

Submit Your CSR to Be Signed
by a Certificate Authority

24_556801-ch22.indd 34124_556801-ch22.indd 341 8/31/10 9:26 AM8/31/10 9:26 AM

342

2

4

1

3

2 Scroll down to <Virtual
Host _default_:443>.

3 Un-comment the SSLEngine
directive.

4 Set its value to on.

1 Open the Apache SSL
configuration file in a text
editor.

Note: In Windows, this is in the
Apache install directory under
conf\extra\httpd-ssl.
conf. In Ubuntu, edit /etc/
apache2/sites-enabled/
default-ssl. In Red Hat, edit
/etc/apache2/conf.d/
ssl.conf.

Configure Apache to Use TLS/SSL

O nce you have your CSR signed, you are ready
to configure Apache to use TLS/SSL on your
Web site. Doing so means that all

communication with users who access your site with an
https:// URL will be encrypted.
The Apache module that activates TLS/SSL is called mod_
ssl. Once enabled, it provides additional directives that
you can use in the Apache configuration to control how
SSL is used on your server. When you install Apache, it
provides a preconfigured, example SSL configuration.
This example configuration assumes that you only have
one domain, and, once the module is activated, you want
to allow basic SSL encryption parallel to non-encrypted
traffic. The exact process to enable the configuration
differs, depending on your server platform.

If you are using Windows, edit the main Apache
configuration file and enable mod_ssl.so and httpd-
ssl.conf. Edit httpd.conf and un-comment the
following directives:
LoadModule ssl_module modules/mod_ssl.so
Include conf/extra/httpd-ssl.conf

If you are using Debian or Ubuntu Linux, run the
following commands to activate the SSL module and
default site configuration:
sudo a2enmod ssl
sudo a2ensite default-ssl

Regardless of the platform, you need to enable the following
SSL directives in the example Apache SSL configuration:
SSLEngine on
SSLCertificateFile CRTFILE
SSLCertificateKeyFile KEYFILE

Configure Apache
to Use TLS/SSL

24_556801-ch22.indd 34224_556801-ch22.indd 342 8/31/10 9:26 AM8/31/10 9:26 AM

343

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

0

5 6

7 8

If you want to enable SSL on multiple domains, you must apply these SSL directives into each domain’s
<VirtualHost domain:443> configuration group. This customizes which directives are enabled for each
domain, allowing each one to have unique key and certificate configuration.

You may want to copy all the default SSL directives within the example <VirtualHost _default_:443> group
into each domain’s configuration group. However, at minimum, you only need three SSL-specific directives —
SSLEngine, SSLCertificateFile, and SSLCertificateKeyFile — alongside the normal virtual host
directives.

0 Restart the Apache Web
server.

Note: For platform-specific
instructions on starting and
stopping Apache on Windows,
see Chapter 4. For platform-
specific instructions on
starting and stopping Apache
on Linux, see Chapter 5.

 Apache restarts.

5 Locate the directive
SSLCertificate
File.

6 Set its value to the full
path to your CRT file.

7 Locate the directive
SSLCertificate
KeyFile.

8 Set its value to the full
path to your KEY file.

9 Save the Apache SSL
configuration file.

TYPE THIS

<VirtualHost www.newdomain.com:443>
 DocumentRoot PATH
 ServerName www.newdomain.com:443
 SSLEngine on
 SSLCertificateFile CRTFILE
 SSLCertificateKeyFile KEYFILE
</VirtualHost>

RESULTS

The URL https://www.newdomain.com/
now uses its own SSL key and certificate.

➔

For more information about how to use <VirtualHost>, go to http://httpd.apache.org/docs/2.2/mod/
core.html#virtualhost.

continued ➔

24_556801-ch22.indd 34324_556801-ch22.indd 343 8/31/10 9:26 AM8/31/10 9:26 AM

344

#

$

!
@

 If a problem is detected,
the Web browser
intervenes.

• The warning message in
Mozilla Firefox.

Click I Understand the
Risks.

$ Click Add Exception.

! Open a Web browser.

@ Type https://www.
mydomain.com and press
Enter.

 The SSL/TLS handshake
process begins between the
Web browser and Apache.

Configure Apache to Use SSL (continued)

D ifferent Web browsers respond differently to the
TLS/SSL handshake process. A problem occurs
when visiting a Web site that uses an SSL

certificate that has expired, been signed by an un-trusted
CA, assigned to a different domain name, or improperly
configured in Apache.
If the connection process succeeds, Firefox and Internet
Explorer display a lock icon in the bottom-right corner of
the browser, and Google Chrome in the URL bar. Clicking
on the lock icon brings up some technical details about
the level of encryption that is established. If the
connection fails, a warning message appears and the user
has the option to continue to connect using TLS/SSL
anyway, or to cancel loading the Web page. Internet
Explorer displays a Security Alert popup that summarizes
the problem, but provides an easy way to continue on to

the site. Google Chrome changes the browser background
to red with a warning message, but still allows for an
easy way to continue with the click of a button. Firefox
displays a less threatening message, but the steps needed
to proceed are significantly more complicated. Firefox still
wants users to have the option to continue, but
emphasizes what is going on by requiring the user to
make multiple clicks to allow an exception, thus lessening
the chances of inattentive users continuing accidentally.
This behavior of Firefox can be annoying, especially for
Web developers trying to debug SSL. It does provide the
option to permanently store an exception rule so that
specific SSL warnings will be silently ignored in the
future. Unfortunately, a permanent exception rule makes
it more difficult to identify when the original SSL problem
has been legitimately fixed.

Configure Apache to
Use TLS/SSL (continued)

24_556801-ch22.indd 34424_556801-ch22.indd 344 8/31/10 9:26 AM8/31/10 9:26 AM

345

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

%

^
&

It is possible to easily force all traffic on your Web site to use an encrypted TLS/SSL connection. You do this by
creating a new <VirtualHost domain:80> group running a simple rewrite rule on the non-encrypted port,
alongside the real <VirtualHost domain:443> group with the actual Web site directives.

For this to work, you need to make sure the mod_rewrite.so module is active in Apache. You can follow the
same activation procedure that you used to enable mod_ssl.so earlier in this section, or manually specify the
LoadModule directive with the path to mod_rewrite.so.

• The Add Security Exception dialog
box appears.

% Click Get Certificate.

• The problems with the current
certificate appear.

Note: Click View to see the information
about the current certificate. This matches
the information you provided in the
section, “Generate an SSL Certificate
Signing Request,” earlier in this chapter.

^ Click the Permanently store this
exception check box.

& Click Confirm Security Exception.

 The browser loads the TLS/SSL
encrypted Web page.

• Firefox highlights the encrypted
domain name near the URL.

• Firefox displays a clickable lock
icon.

Note: In Firefox, to delete a permanently
stored exception rule, click Tools ➔
Options ➔ Advanced ➔ Encryption ➔
View Certificates ➔ Servers. Select an
exception rule and click Delete.

TYPE THIS

LoadModule rewrite_module modules/mod_
rewrite.so

<VirtualHost www.mydomain.com:80>
 RewriteEngine on
 RewriteRule (.*)
https://%{HTTP_HOST}%{REQUEST_URI}

</VirtualHost>

RESULTS

All users requesting the non-encrypted URL
http://www.mydomain.com/ are
automatically redirected to https://www.
mydomain.com/. The advantage of this
method is that any legacy bookmarks or
external links going to a specific non-encrypted
HTML or CGI address are silently redirected to
the encrypted address.

➔

24_556801-ch22.indd 34524_556801-ch22.indd 345 8/31/10 9:26 AM8/31/10 9:26 AM

346

N o programming language is completely secure.
Regardless of the effort made by the language’s
designers to make it so, it is impossible to

guarantee 100-percent security if its users (that is, you)
do not follow best practices and common sense in a
program’s design. Even if the latest model car has the
most advanced safety features, it cannot stop you from
driving on the wrong side of the road, or from getting
into an accident.
Naturally, if your program displays a particular security
flaw, it is possible that it was not caused directly by your
design. Sure, you may discover a way to manipulate your
own code to eliminate the problem, or perhaps an
upgrade or patch already exists online, but the point is
that you are ultimately responsible for keeping your Web
site, server, and the user’s data safe.

Even before such a security flaw can be exploited, there
are steps you can take now to minimize your exposure
so that an attacker cannot leverage it. You do this by
disabling any unnecessary system access and protocols,
error-correcting data entered by the end-user, and
monitoring the system’s log files. These recommendations
are not a complete list, but they are a good start.
The best way to identify any potential security problem
is to exploit it yourself. Put yourself in the shoes of a
potential attacker, and ask, “What on my Web site is
of any value? What can I not afford to lose?”
Only by devising a scenario and gaining insight from
each participant — including the end-user, their Web
browser, the Web server, and your Perl code — can you
find the weak link, construct a plan, and correct the
situation. Ask yourself, “If I purposely do something
unexpected and uncommon, something a normal user
is never likely to do, how will my program respond?”

Understanding Security
in Perl CGI Development

Controlled CGI Execution

Limiting CGI and SSI

Remember, CGI is a direct link from remote URL to local
program execution. If a malicious CGI script is installed in a
CGI-enabled directory, Apache will readily execute it. You
must limit CGI execution to only pre-approved, limited-access
directories, and restrict permissions so that unauthorized
users cannot read or write files on your Web server.

You can easily restrict SSI from running programs, CGI or
native, and maintain its ability to read and import other HTML
files. Unless you have a specific requirement for an SHTML
page to import actual program output, you should only enable
SSI with the Apache directive IncludesNoExec.

Executing CGI as the User

Your Web server has built-in controls for native program
execution, provided by the operating system. When a regular
user runs any program, unauthorized system calls are
automatically restricted. Apache follows this convention by
executing all CGI scripts as the user who owns the script.

In other words, if your CGI script always runs as a regular
user, and it does something damaging, the scope of impact
on other users and the core OS is automatically limited.

Even if you are the only active user on your Apache Web server, and you already have root or administrator access on the system,
you should only allow CGI execution conservatively and where appropriate.

24_556801-ch22.indd 34624_556801-ch22.indd 346 8/31/10 9:26 AM8/31/10 9:26 AM

347

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

One Script, Multiple Pages, Specific Workflow

Initial CGI Load

Obviously, when a complex CGI script is first loaded, the first
page appears. The challenge here is that the CGI protocol is
not session-aware, so it is up to the script to identify if the
user is new to the process, or further along. An HTTP cookie
that stores a unique session identifier is a convenient way of
identifying multiple users who are simultaneously using the
CGI script.

The session identifier’s value needs to be unique for every
user, and impossible to guess. Otherwise, another user’s
session could be hijacked, revealing personal information
to the attacker about that user’s session and activity. A
good identifier uses two or three values independent of one
another, concatenated into a single string. For instance,
appending a timestamp, a process ID, and a random
number produces a session identifier value that is
guaranteed to be unique and virtually impossible to guess:

my $sessId = $$. time . rand(5);

The session identifier is a static value; your code will need
to correctly identify new users from returning users and
use the previously assigned session identifier from the
cookie, if found. For an example of how to do this, see
Chapter 15.

Progressing Through the CGI’s Screens

The idea behind a user session is an unknown concept to
the Web browser and Web server. It is your Perl CGI
script’s responsibility to follow the user’s activity from
page to page, and to make sense of the information that it
receives.

As each page is submitted, the CGI must decide if the
values collected satisfy the previous form’s fields. Were the
first and last name fields populated? Is the phone number
formatted like a phone number? Does the e-mail address
field contain an “@” and a domain?

If something is not properly submitted, the user should not
be allowed to continue. The last form must be displayed
again along with an error message. It is a good practice to
pre-populate the fields that were submitted correctly, so
that the user only needs to correct the invalid fields and
resubmit the form.

If everything checks out, the CGI appends the new
information into the database, linked to the session
identifier, and allows the user to proceed to the next page
in the workflow.

The advantage of this whole process is that the URL never
changes. By limiting the user to simply submitting form
data, the CGI maintains control over the workflow, and
decides what to display based upon their status. You
effectively make it impossible for the user to drift outside
of the CGI’s hard-coded process. Even if the user manages
to change or delete their session cookie, the worst that can
happen is that their previous session is left stagnant and
they must start over.

A CGI script that implements multiple HTML forms, such as a shopping-cart checkout program, requires the user to progress
through each page, but stay in the same URL. The script may implement a specific workflow where the user must progress
from one screen to the other in order. For each page load, your script must decide where the user is in the process, and
display the appropriate page. If in the middle of the process the user does something unusual, such as clicking Refresh, or
setting a bookmark to return later, the CGI must correctly filter out duplicate or incomplete form data correctly. Otherwise,
the user could end up in an unexpected session state with unforeseen security implications.

24_556801-ch22.indd 34724_556801-ch22.indd 347 8/31/10 9:26 AM8/31/10 9:26 AM

348

4

3

5

1

3

1

42

2

Windows Server Only

1 Open the properties of your
cgi-bin folder.

2 Click Security.

3 Click Advanced.

4 In the Advanced Security
Settings dialog box, click
Owner.

5 Click Other Users or Groups.

Windows XP Only

1 Open the properties of your
cgi-bin folder.

2 Click Sharing.

3 Click the Make this folder
private check box.

4 Click OK.

Limit CGI Access in Apache

Y ou can limit CGI access in Apache to only pre-
approved users and directories that require it. CGI
is inherently powerful; by restricting these

avenues of execution, it will help you to minimize the
potential for unauthorized users to install and execute
unauthorized CGI scripts on your server.
It is always a good practice to limit which users have
write access to CGI directories, regardless of whether you
are the only person who can access the Web server. This
restriction makes it very difficult for an unauthorized
user account, one that has been compromised and
accessed by an attacker, to install a malicious CGI
program. In fact, you should also apply this simple rule to
all HTML directories, thus limiting the chances of
irrevocably altering your entire Web site.

An additional layer of security is applied to CGI scripts by
a module called suEXEC. Because Apache runs as a
system-level user, suEXEC allows Apache to switch its
effective user to the CGI script’s owner account when
executed. This module limits the potential impact of
compromised CGI scripts because non-privileged users
have far fewer opportunities to cause significant damage
to the core system functionality. This feature is only
available on Unix Apache installs; no equivalent feature
exists for Windows.
The methods described in this book are not guaranteed to
make your Web site unhackable, but they do block
common avenues that an attacker would attempt to
leverage, thus making it more difficult for you to be
directly affected.

Limit CGI Access
in Apache

24_556801-ch22.indd 34824_556801-ch22.indd 348 8/31/10 9:26 AM8/31/10 9:26 AM

349

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites1

5

43
2

6

7

89

Note that Fedora Linux ships with suEXEC preconfigured. On other Unix distributions, you may need to manually
enable the appropriate LoadModule directive:

LoadModule suexec_module path/mod_suexec.so

The examples here demonstrate one possible way to harden, or lock down, your cgi-bin directory, which limits the
chances of someone else installing their own CGI script here. However, this is making the assumption that the core
operating system, and even the physical server, are both sufficiently secured. If an attacker gains access to your
account, the root account, or even physical access to the room that holds your server, it does not matter what you
do to harden the Apache configuration. If the attacker can impersonate you, then Apache and the operating system
will readily oblige their commands.

There have been volumes of books written about server hardening, such as Microsoft SQL Server 2008 Management
and Administration (Wiley, 2009), Professional Windows Desktop and Server Hardening (Programmer to Programmer)
(Wiley, 2006), Ubuntu Linux Bible: Featuring Ubuntu 10.04 LTS (Wiley, 2010), Linux Bible 2010 Edition: Boot Up to
Ubuntu, Fedora, KNOPPIX, Debian, openSUSE, and 13 Other Distributions (Wiley, 2010), and Linux Command Line and
Shell Scripting Bible (Wiley, 2008).

Ubuntu Linux Only

1 Open a Terminal window in
your cgi-bin directory.

2 Type chown -R USER.USER
. * and press Enter.

3 Type chmod -R 755 . * and
press Enter.

4 Type sudo a2enmod
suexec and press Enter.

5 Restart Apache.

Note: The suEXEC module is
unavailable for Windows.

6 In the Select User or Group
dialog box, type your
username and click OK.

7 In the Advanced Security
Settings dialog box, enable
the check box for Replace
owner on subcontainers
and objects.

8 Click OK.

9 In the Properties dialog box,
click OK.

24_556801-ch22.indd 34924_556801-ch22.indd 349 8/31/10 9:26 AM8/31/10 9:26 AM

350

Y ou need to watch for unusual activity on your
Web site. Users will always find creative and
unexpected ways to interact with your CGI scripts.

Attackers often use programs that automatically probe
Web sites for holes and known weaknesses. Even before
your Web site becomes popular, it is extremely important
to monitor the activity on your server. By catching and
identifying unusual activity, you can apply code into your
CGI scripts to circumvent it.

Unusual activity is a rather vague concept. How can you
watch for and circumvent it if you do not know exactly
what it is? Simply put, this is any Web site activity that
you did not plan for.
One way to practice identifying it is to do something
unusual on your own Web site. Try typing in a bunch
of garbage characters into one input field. Try typing in
HTML code in another. Try changing your own session
identifier cookie midway through a complex CGI process.
These three examples are the kinds of unusual activity
that you need to learn how to identify, trap, and counter.

Identify Unusual Activity
on Your Web Site

Monitor the Apache Activity and Error Logs

Install an Apache Log Scanner

A log scanner is a program designed to monitor large
amounts of logged activity for you, and to either send you a
summary of anything interesting, or simply take appropriate
action. If a single user is initiating an unusual amount of
errors, this could be a sign of an attacker probing your Web
site for weaknesses. A log scanner can isolate that user and
apply a rule that bans them from your Web site.

fail2ban

fail2ban is a Python script designed to monitor Apache and
SSH authentication requests by scanning system log files.
You could easily apply this to your Web site if you implement
Apache User Authentication, as discussed in the first half of
Chapter 15.

When fail2ban identifies a potential attacker, that person’s IP
address is added to the local system’s firewall table, banning
them from being able to connect to your Web server. Because
fail2ban uses the program iptables to do this, only Linux is
supported.

You can find more information on the fail2ban Web site, at
www.fail2ban.org.

ScanErrLog

ScanErrLog is also a Python script, but it is designed for
on-demand error log checking, and focusing on the actual
error messages, not the users who cause them. It produces
an HTML, PDF, or XML summary of what it finds, allowing
you to examine which component of your Web site is failing.
It also counts how many times a particular error has occurred,
which is useful for comparing these results over time.

This program is more focused on identifying problems so
dynamic Web site developers can address their code and
minimize anything that causes an error. For more information,
go to www.librelogiciel.com/software/
ScanErrLog/action_Presentation.

As discussed in Chapter 10, all hits to your Web site are logged to the access.log file, and any errors are summarized into the
error.log file. The error reporting is rather limited, but you can retrieve information such as when an error occurred, the user’s
IP address, and the URL they accessed.

24_556801-ch22.indd 35024_556801-ch22.indd 350 8/31/10 9:26 AM8/31/10 9:26 AM

351

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

Monitor Submitted Form Data Carefully

Apply Sanitizing Rules

All data that users submit should be sanitized for
inappropriate content. Usually this means removing unusual
characters, such as excessive spacing and non-alphanumeric
symbols, and stripping out anything that looks like an HTML
tag. You may also want to automatically filter inappropriate
words, or even implement a moderator-style workflow.

For example, if you allow regular users to write comments
on your Web pages or blog posts, be very careful about
making those comments appear online immediately. You
can use Perl to do some of the sanitization work for you,
but you may also need to manually review and approve it.

Search-and-replace statements using a regular-expression
pattern are the best way to implement automatic data
sanitization.

Apply Validation Checks

The validation check happens after input data has passed
sanitization. This ensures that the user’s input for a
particular field matches its predefined format. A validation
check may verify that a phone number has the correct
number of digits and dashes, that an e-mail address is
genuine, or simply that a required field was not ignored.

You can implement a validation check with a conditional
statement, followed by a regular-expression pattern match.
You then need to decide what to do if the check identifies a
failure. You need to communicate back to the user,
indicating what field has failed, how it failed, and that the
user must try submitting the form again.

When a user submits data in an HTML form, anything can be sent to your Web server, anticipated or not. You must code
your Perl CGI scripts to handle anything the server receives. There are some simple techniques in Perl to sanitize and validate
all CGI data that is submitted.

Generate Your Own Activity Log

You can easily generate a custom activity log of any event
handled by Perl CGI scripts. If you choose to do this, you
can create a subroutine that identifies the file, and writes
key identifying data such as a timestamp and the script’s
filename, along with a custom text message:

sub logger {

 my $msg = shift;

 my $time = localtime;

 open(OUTPUT, “>> FILE.log”);

 printf OUTPUT “%s - %s: %s\n”, $time, $0,
$msg;

 close(OUTPUT);

}

Each time you call this subroutine, the timestamp,
filename, and message text are appended to a log file.

You can use the Perl module Log::Agent for custom
logging. Available on CPAN, Log::Agent provides an
abstract way to add logging into individual modules, while
Log::Agent::Logger in your actual Perl CGI scripts channels
the activity to an output file. You can configure the module
Log::Agent::Rotate to automatically rotate a growing log file
and archive it. It can even clear archived logs after a
number of days to help you manage disk space.

Reviewing Collected Data

Always perform routine reviews of the data you have accepted into your database. Even though this is all content that has
passed your sanitization and validation checks, you may find an anomaly that should not be there. It may be quickest to
edit the database directly and manually fix the offending field, but do not forget to update your CGI code to stop this
problem from happening again.

Remember, your sanitization and validation rules should evolve as more users visit your Web site. They will continually
find more unusual text to enter, which you must catch; otherwise, you risk affecting your core data integrity, and
potentially your Web site’s reputation.

24_556801-ch22.indd 35124_556801-ch22.indd 351 8/31/10 9:26 AM8/31/10 9:26 AM

352

7

2

6
8

1

3 4

5

6 Type $params->{ $_ } =~
s/^\s+//;.

7 Type $params->{ $_ } =~
s/\s+$//;.

8 Type $params->{ $_ } =~
s/\s+/ /g;.

Note: \s+ is a whitespace
pattern, but a literal space is
used as the replacement. This
way, even a tab or new line will
be converted into a space.

1 Type my @fields = (
field1, field2, ...);.

2 Type my $params = {};.

3 Type foreach (@ fields) {.

4 Type $params->{ $_ } =
$cgi->param($_);.

Note: This foreach loop cycles
through all HTML fields
populated by the user.

5 Type }.

Sanitize User Content in Perl CGI

Y ou can sanitize all user content submitted to your
Web site with Perl search-and-replace regular
expressions. Sanitizing a field keeps the response,

but filters out garbage and common user mistakes.
VAR =~ s/pattern/replace/flags;

This statement searches VAR for the regular expression
pattern. Any matches are changed to replace. Optional
flags alter how the whole matching process works. For
example, you can sanitize all phone numbers by
removing all characters but numbers and dashes:
$phone =~ s/[^\d\-]//g;

There are some basic rules you can use to sanitize every
submitted field. Removing all excessive spacing at the
beginning, end, and middle of text-based variables is a
very easy way to ensure that user-submitted data uses
clean spacing:

$field =~ s/^\s+//;
$field =~ s/\s+$//;
$field =~ s/\s+/ /g;

The first statement removes all whitespace from the start
of $field. The second statement removes it from the
end. The last statement ensures that multiple spaces
anywhere in the middle are replaced with a single space.
Once implemented, the submitted text “ This is my
data “ is sanitized to “This is my data”.
You should also filter out anything that looks like an
HTML tag. This completely eliminates the potential for an
HTML-injection attack by someone submitting a cleverly
crafted <script> or <object> tag as form input:
$field =~ s/<.*?>//g;

Sanitizing user content may seem unnecessary, but you
will encounter users that warrant it.

Sanitize User
Content in Perl CGI

24_556801-ch22.indd 35224_556801-ch22.indd 352 8/31/10 9:26 AM8/31/10 9:26 AM

353

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites

09

@!

If you want to keep the literal HTML code, but not have it interpreted by a browser, you can convert the angle
brackets in the tags into HTML character entities.

! Type $params->{ field } =~
s/\s/-/g;.

Note: This statement converts all
spaces to dashes, but only for a
specific field.

@ Type $params->{ field } =~
s/[^\d\-]//g;.

Note: This statement is a regular
expression that strips everything
else, excluding numbers and
dashes, from field.

9 Type $params->{ $_ } =
~ s/<.*?>//g;.

0 Type $params->{ $_ } =
~ s/[^\w\s_\-\.\&\@]//g;.

Note: This filter removes all
characters that are not
alphanumeric or a space,
underscore, dash, period,
ampersand, or @ sign for all
CGI input values. This is very
useful as a generic catch-all
filter.

TYPE THIS

$param->{ $_ } =~ s/</</g;
$param->{ $_ } =~ s/>/>/g;

RESULTS

The HTML tags are converted into a string that is no longer
interpreted by the browser as HTML. For example, “text</
b>” becomes “text”.

This has the advantage of maintaining the essence of the
original HTML code, only now when it displays in the browser,
it’s like only seeing the literal HTML source.

➔

For more information about regular-expression pattern matching, see the PerlDoc page perlre. For information
about search-and-replace operations, see the page perlop. You can also find a summary of regular Perl expression
elements and formats in Appendix A.

24_556801-ch22.indd 35324_556801-ch22.indd 353 8/31/10 9:26 AM8/31/10 9:26 AM

354

3

4
6 5

1
2

1

4 Type if ($fields->{ field } !~
/pattern/) {.

Note: In regular-expression
conditional tests, the operator
“=~” returns true for a positive
pattern match, and “!~” returns
true for a negative match.

5 Insert code to raise the
error on field if it does
not match the regular
expression pattern.

6 Type }.

1 Type if (! $params->
{ field }) {.

Note: Placing this check within
the foreach(@fields) block
results in all fields being
required.

2 Insert code to raise the
error on field if it is
blank.

3 Type }.

Validate User Content in Perl CGI

V alidating user content implies testing individual
fields for correctly structured values, after they
have passed sanitization, and rejecting the values

outright if they fail. As in the section, “Sanitize User
Content in Perl CGI,” you are using regular expressions,
but here you are just matching a pattern, not replacing it.
Matching a phone number is not overly difficult,
assuming you do not need to worry about international
phone numbers. The United States, Canada, and many
Caribbean countries use a standardized “###-###-####”
format. Using a conditional test and regular expression
pattern, you can check if the user’s input matches this
format:
if ($phone =~ /^\d{3}-\d{3}-\d{4}$/) {
 # This looks like a phone number!
}

To validate an e-mail address, you can use the third-
party Perl module Mail::RFC822::Address. This module
uses regular expressions that are preconfigured to match
standard e-mail addresses. Everything is accessible from
a single function called valid:
use Mail::RFC822::Address ‘valid’;
if (valid($email)) {
 # This looks like an email address!
}

Sure enough, random characters can still be made to look
like an e-mail address or phone number, provided that
they follow the appropriate syntax. The only way to be
completely sure that an e-mail address is genuine is to
send it a message with instructions or a special URL back
on your Web site. This form of validation goes beyond
regular-expression pattern matching, but it serves the
same purpose.

Validate User
Content in Perl CGI

24_556801-ch22.indd 35424_556801-ch22.indd 354 8/31/10 9:26 AM8/31/10 9:26 AM

355

Ch
apter 22: Secu

rin
g D

yn
am

ic W
eb Sites9

! 0

8

3

In your code that validates phone numbers, you should not exclude international users. Although the two formats
are not mutually compatible, you can still validate both by implementing two conditional tests. Only one format
test actually needs to match to identify the number as valid.

8 Open the template.

9 Type <tmpl_if name=
error> to check if there
are errors as the TMPL_
LOOP is processed.

0 Type <tmpl_var name=
error> to display the
error value to the user.

! Type </tmpl_if>.

7 Display any errors raised
during this process to
the user by using a
template parameter.

TYPE THIS

if ($phone =~ /^\d{3}-\d{3}-\d{4}$/ ||
 $phone =~ /^\+\d+$/) {
 # This looks like a phone number!
}

RESULTS

Numbers formatted using either the North
American or international syntax rules are
accepted. However, North American numbers
cannot use a plus sign and require dashes, while
international numbers must begin with a plus
sign and use no dashes.

➔

24_556801-ch22.indd 35524_556801-ch22.indd 355 8/31/10 9:26 AM8/31/10 9:26 AM

356

Introducing the Apache
mod_perl Module

Y ou can enable the Apache mod_perl module as a
way to embed the Perl interpreter directly within
your Apache Web server. Doing this makes your

CGI script’s respond much faster because Apache has
most of the Perl code preloaded into memory before the
first user visits your Web site. If your CGI scripts import
any Perl modules, mod_perl will keep them active in
memory after your program is finished, so subsequent
CGI load times will become faster.
Without mod_perl, each time a user types in your CGI
script’s URL, the Apache CGI handler reads the first line
of the script to identify the file type and supporting

binary interpreter. This is why all your CGI scripts have
either #!/usr/bin/perl or #!C:/Perl/bin/perl.exe
at the top of every Perl file. The CGI handler executes the
Perl binary, which then loads its internals into memory,
interprets your script into binary code, and executes it.
This process happens for every single CGI page request.
With mod_perl, Apache already has the Perl binary in
memory, along with any support modules that your CGI
script requires. The only thing it needs to do is interpret
your script into binary code and execute it.
You can access online documentation for mod_perl 2.0
from the mod_perl homepage at http://perl.apache.
org/docs/2.0/index.html.

Installing mod_perl

for Windows and have set up a PPM repository. This makes
downloading and installing mod_perl very easy.

On Linux, mod_perl.so may be delivered as a standard part of
your Apache installation, but this depends on your distribution.
If you are using Debian or Ubuntu Linux, you need to install an
additional package, libapache2-mod-perl2. If you are using
a distribution based on Red Hat Linux, such as Fedora, mod_perl
should already be installed alongside Apache; if not, you need to
install the package mod_perl.

The mod_perl installation process is relatively simple. You
need to install a new file called mod_perl.so into the
Apache modules directory. Unfortunately, this file is not
always delivered with the normal Apache installation
method, depending on your platform.

On Windows, you can easily install mod_perl.so with
the ActiveState Perl Package Manager (PPM). While it is
not a part of the standard ActiveState installation, some
community members have precompiled mod_perl’s code

Activating mod_perl

Load mod_perl.so

You need to modify your Apache configuration to load mod_
perl.so into memory. This process may be done
automatically for you when you install mod_perl onto your
Web server; however, if you notice that after completing this
chapter you cannot use mod_perl, you should validate that the
module has actually been loaded.

If you are using Windows, there are two commands to add
into httpd.conf:

LoadFile C:/Perl/bin/perl510.dll

LoadModule perl_module modules/mod_perl.so

If you are using a Linux distribution, you only need one
command in httpd.conf:

LoadModule perl_module /usr/lib/apache2/modules/
mod_perl.so

Note that the actual path to mod_perl.so on Linux should
be absolute, and on Windows it is relative to the Apache
installation directory.

The activation process is split into two steps: loading the module and applying it to cgi-bin.

25_556801-ch23.indd 35625_556801-ch23.indd 356 8/31/10 9:26 AM8/31/10 9:26 AM

357

Ch
apter 23: Speedin

g U
p D

yn
am

ic W
eb Sites

Using mod_perl

Speed Up Perl CGI Scripts

The Apache module that speeds up your Web site is called
ModPerl::Registry. Its job is to read your Perl script,
compile it, execute it, and store a cache in memory.
Because Perl is constantly running in each Apache child
process, every CGI page that was served by that process
has a cache of your script in memory.

Technically speaking, there is nothing that you need to do
to your Perl code to take advantage of mod_perl. Most Perl
syntax is still valid; however, if you use “dirty” code — for
example, by not declaring your variables with my — mod_
perl may produce unexpected results when your CGI code
assigns and retrieves these variables’ values.

The best way to reduce these anomalies is to import the
strict module in all your CGI scripts and modules. This
enforces proper variable declaration, as well as other good
code habits:

use strict;

Preload Perl Modules

You can use mod_perl to preload modules into memory
on Apache startup. All modules that are loaded will be kept
persistently alive in memory, making them faster to access
in your CGI code.

The only real disadvantage to mod_perl is that it can
complicate things if you are actively developing any custom

Perl modules when it is enabled. If you change any of the
module code, you need to restart the Apache service to force
mod_perl to refresh itself. This is because the modules are
cached by each Apache process serving HTTP requests. If a
process has not seen your CGI script, it loads the latest
module code; however, if it has served a request using an
earlier version of your module, that earlier version will be
maintained in memory and reused for future page hits.

To avoid this problem, you can implement the
Apache2::Reload module in your Apache configuration:

PerlModule Apache2::Reload

PerlInitHandler Apache2::Reload

However, only do this on your development machine.
Applying this onto your production network may result in a
degraded performance gain each time the modules change.
In this case, it is probably best just to restart the Apache
server and avoid Apache2::Reload.

Other Features and Benefits

Other than Perl script and module speed-ups, mod_perl
also allows you to write Apache handlers, and even create
custom Apache directives out of raw Perl code.

A handler is developed like a Perl module, except that it
is loaded directly by your Apache configuration. Once
assigned to a directory path, all requests to that directory
execute a special function in the handler.

Enabling mod_perl in your code is completely automatic; however, it does not behave like the normal Apache CGI handler.
You may find that some bugs appear differently, or not at all, when comparing the two methods.

Activating mod_perl (continued)

Applying mod_perl to cgi-bin

In Chapter 10, you learned that in order to enable the
Apache CGI handler onto a cgi-bin directory, you must
add the following directive:

Options +ExecCGI

To activate mod_perl, you need to add three more new
directives provided by mod_perl.so:

SetHandler perl-script

PerlResponseHandler ModPerl::Registry

PerlOptions +ParseHeaders

As described in Chapter 10, the cgi-bin directory can be
defined in the original httpd.conf configuration file that
is activated within a <directory> or <location>
configuration group, or it can be applied in an .htaccess
file in the cgi-bin directory. If you use the httpd.conf
method, remember to restart the Apache service to re-read
the new configuration.

25_556801-ch23.indd 35725_556801-ch23.indd 357 8/31/10 9:26 AM8/31/10 9:26 AM

358

6
5

4

2

3

11 Open a DOS Prompt in
Windows.

2 Type ppm install http://cpan.
uwinnipeg.ca/
PPMPackages/10xx/mod_perl.
ppd and press Enter.

 The mod_perl PPM downloads.

3 Type C:\Program Files\Apache
Software Foundation\Apache2.2\
modules and press Enter.

Note: You need to verify that this path
is the actual directory where Apache
2.2 modules exist.

4 Open the Apache configuration
file.

5 Type LoadFile C:/Perl/bin/
perl510.dll.

6 Type LoadModule perl_module
modules/mod_perl.so.

7 Save the configuration file and
restart Apache.

Install the Apache mod_perl Module for Windows

Y ou can install mod_perl for Windows by using a
prebuilt binary package available from a third-party
repository that is compatible with ActiveState

Perl Package Manager (PPM). The installation process
downloads the necessary Perl package descriptor (PPD) file
from the on-line host and installs it with a single command.
The installation prompts you for the location of the
Apache module directory. This is required so that the PPD
knows where to save the mod_perl.so file that Apache
will reference.
Once PPM is finished, you still need to instruct Apache to
load the new mod_perl.so file, along with a Perl DLL.
You do this by adding new LoadFile and LoadModule
directives to the Apache httpd.conf file.

Install the Apache mod_perl
Module for Windows

The third-party PPM repository located at the
University of Winnipeg contains almost 300 other
packages that you can use to extend ActiveState Perl.
To enable the repository, you need to start PPM in
Windows and click Edit ➔ Preferences ➔ Repositories.

The Repositories screen comes preconfigured with
suggested repositories, so you can just select
uwinnipeg :: University of Winnipeg from
the suggested drop-down list and click Add. After
PPM resynchronizes its database, you can browse the
packages provided by UWinnipeg PPM by clicking
View ➔ View Columns ➔ Repo.

25_556801-ch23.indd 35825_556801-ch23.indd 358 8/31/10 9:26 AM8/31/10 9:26 AM

359

Ch
apter 23: Speedin

g U
p D

yn
am

ic W
eb Sites

4

3

2
1

 The mod_perl package
downloads and installs.

4 (Debian/Ubuntu only) Type
sudo /etc/init.d/apache2
restart to restart Apache.

 (Red Hat only) Type su -c '/
etc/init.d/httpd restart' and
press Enter.

 Apache restarts.

1 Open a Terminal window in
Linux.

2 (Debian/Ubuntu only) Type
sudo apt-get install
libapache2-mod-perl2 and
press Enter.

 (Red Hat only) Type yum
install mod_perl and press
Enter.

3 Type Y and press Enter.

Install the Apache mod_perl Module for Linux

package you need to install is just called mod_perl. This
package installation includes additional documentation by
default.
Regardless of the Linux distribution, the mod_perl
documentation is available under the directory /usr/
share/doc/packagename/.
After you install the mod_perl package, the actual module
file, mod_perl.so, should automatically load into your
Apache configuration. All you need to do is restart
Apache to enable it.
If mod_perl.so is not loading properly, you may need to
manually add the LoadModule directive to specify the
path to the module. Be sure to validate that mod_perl.so
exists in this path:
LoadModule perl_module /usr/lib/apache2/
modules/mod_perl.so

Y ou can install mod_perl for Linux by using a
prebuilt binary package that is available from
your Linux distribution repository using

either apt-get or yum. The installation process
downloads the package from the repository and
installs it with a single command. The installation
process requires that your computer be connected to
the Internet. The download, installation, and setup
process should be executed in a Terminal window.
If you are using Debian or Ubuntu, the package you
need to install is called libapache2-mod-perl2.
Optionally, the mod_perl documentation is available
in the package libapache2-mod-perl2-doc.
If you are using a Red Hat-based distribution, the

Install the Apache mod_perl
Module for Linux

25_556801-ch23.indd 35925_556801-ch23.indd 359 8/31/10 9:26 AM8/31/10 9:26 AM

360

2

5
3 4

1

2 Verify that Options
+ExecCGI is already present,
as described in Chapter 10.

3 Type SetHandler perl-script.

4 Type PerlResponseHandler
ModPerl::Registry.

5 Type PerlOptions
+ParseHeaders.

6 Save the configuration file.

Note: If you modified httpd.conf,
you should restart Apache.

1 Open an Apache configuration
file that already enables the CGI
handler.

Note: See Chapter 10 for examples
of enabling the CGI handler in
<directory> and .htaccess
contexts.

Note: Technically, using cgi-bin
as a CGI directory name is no longer
accurate. Here you call it cgi-perl,
as only Perl scripts can be executed
in a mod_perl directory.

Configure the Apache mod_perl Module

Y ou can configure mod_perl in Apache by adding a
few new configuration directives into the Apache
httpd.conf or .htaccess file. As discussed in

Chapter 10, enabling the Apache CGI handler involves
using Options +ExecCGI in either file. This is still
required for mod_perl with a few new directives:
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlOptions +ParseHeaders

The SetHandler directive allows you to set all matching
files to be processed by a specific handler. In essence, the
value perl-script activates mod_perl, adding support
for all new Apache directives that begin with “Perl”.
PerlResponseHandler defines which Perl module
provides the actual HTTP response to the user. The value

ModPerl::Registry allows mod_perl to read the URL
requested, identify which Perl CGI file is required, and
forward your code to the Perl process.
The PerlOptions directive allows you to pass additional
options specific to the response handler. In this example,
+ParseHeaders is an instruction to ModPerl::Registry
that the Perl script is called to produce additional HTTP
headers that must be included in the Apache output to the
user. You can validate whether or not mod_perl is working
by reading some new environment variables within your
Perl CGI scripts. Specifically, $ENV{ ‘MOD_PERL’ }
displays the version installed, and $ENV{ ‘MOD_PERL_
API_VERSION’ } reports the API version implemented.
If either is absent, mod_perl has not been properly
configured. A complete description of Apache directives
provided by mod_perl is available at http://perl.
apache.org/docs/2.0/user/config/config.html.

Configure the Apache
mod_perl Module

25_556801-ch23.indd 36025_556801-ch23.indd 360 8/31/10 9:26 AM8/31/10 9:26 AM

361

Ch
apter 23: Speedin

g U
p D

yn
am

ic W
eb Sites

9

7

8

So far, you have learned that mod_perl delivers its content through the PerlResponseHandler directive. The
handler module that is most often used, ModPerl::Registry, acts as a wrapper between your Perl script and the
embedded Perl interpreter inside of Apache. However, there are handlers that you can enable, and you can even
create your own custom response handler.

One response handler that ships with mod_perl is Apache2::Status. Enabling this handler dumps a complete report
of mod_perl’s status and activity within Apache to your Web browser, allowing you to view the current state of
mod_perl’s internals and memory.

9 Open the Perl CGI script in
a Web browser.

• The browser displays the
current environment
variables.

• The Apache mod_perl
module is correctly
enabled.

Note: If the MOD_PERL
environment variable is not
present, mod_perl has not been
correctly enabled or installed.

7 Open a Perl CGI script in
the cgi-perl directory.

8 Display environment
variables from the HTTP
session.

Note: Simply typing print
$ENV{‘ MOD_PERL ‘}; would be
sufficient.

TYPE THIS INTO THE APACHE CONFIGURATION FILE

<Location /perl-status>
 SetHandler perl-script
 PerlResponseHandler Apache2::Status
</Location>

RESULTS

After restarting the server, navigate to
http://localhost/perl-status.
A status screen summarizes the current
state of mod_perl on Apache.

➔

For more information about how Apache2::Status works, see its PerlDoc manual page. If you want to learn how to
program your own custom response handler, see the mod_perl documentation at http://perl.apache.org/
docs/2.0/user/coding/coding.html.

25_556801-ch23.indd 36125_556801-ch23.indd 361 8/31/10 9:26 AM8/31/10 9:26 AM

362

Y ou may notice that after enabling mod_perl, your
Perl CGI code starts to behave differently, at least
compared to the built-in Apache CGI handler. mod_

perl keeps your scripts and modules active in memory after
the CGI request is completed, as opposed to freeing the
memory immediately after your script exits. While this
does speed up response times significantly, you need to
watch out for a new series of problems that require
different fixes and workarounds.
The benefits of switching to mod_perl certainly outweigh
any caveats, but knowing them in advance will make the
development process easier. Unless you understand how
mod_perl works, you may believe your computer is
misbehaving.

Issues such as spontaneous Web site bugs, changes
simply not appearing online, and errors not properly
being logged are all issues that new developers to mod_
perl quickly become frustrated with — and it’s justified.
Why waste the effort debugging unexplained, intermittent
problems on your Web site, when you could be working
on new content and features?
Beyond what is described here, if you still need help, the
online mod_perl documentation is a great resource for
additional troubleshooting techniques. Visit http://
perl.apache.org/docs/2.0/user/troubleshooting/
troubleshooting.html.

Understanding
mod_perl’s Caveats

Disappearing, Reappearing Content

As you develop your Web site’s dynamic CGI code, you
may notice that most changes appear online right away,
but sometimes your site spontaneously reverts to an earlier
copy of your code, and back again.

Apache always has several child processes running parallel
in memory, which helps when a spike of users visit, but
only one process fulfills a single HTTP request at a time.
When a user requests a CGI script, mod_perl loads the
code, executes it, and caches a binary snapshot of the
code in memory. If that same process receives another
request for the same page, it reuses the cache rather than
referring to the original CGI file. This results in a significant
increase in the speed of your Web site.

However, if you use poor development practices when
coding, such as not declaring variables correctly, then
seemingly random errors may be hiding in the cached
data, and subsequent requests may produce unexpected
results. Each process has its own memory pool, so the
cached data is not shared. When a different process
responds to a request for the same CGI page, it will load
the code directly from the file on your server, and
everything will appear correct once again. The best way to
avoid this problem is to write safe code, and import the
strict module.

Restrict Unsafe Perl Code

You should import the strict module in your Perl code
to reduce the risk of unsafe code problems, especially after
enabling mod_perl. You can identify unsafe code by adding
the following code to your scripts and modules:

use strict;

The strict module requires that all variables are properly
declared with my. Not using my can cause earlier values to
drift across HTTP requests. For example, if you have a Perl
script that always sets a value to a variable, yet does not
use my, it will work correctly. However, if your code only
sets a value, then the variable is undefined, and unexpected
things may happen to the variable and its value:

if (! defined $time) {

 $time = localtime;

}

print $time;

When Apache first runs the script, $time is set, but on
subsequent reloads the $time value will never change.
After importing the strict module, you will see an error
such as, “Global symbol ‘$time’ requires explicit page
name”, which is another way of saying, “Use ‘my $time’ to
localize your variable.” The ModPerl::Registry handler, which
understands my, respects the variable’s localization and
ignores its value when the script’s cache is executed again.

25_556801-ch23.indd 36225_556801-ch23.indd 362 8/31/10 9:26 AM8/31/10 9:26 AM

363

Ch
apter 23: Speedin

g U
p D

yn
am

ic W
eb Sites

Changes in Perl Files

Restarting Apache

You may consider simply restarting the entire Apache
service to flush its memory of cached data. While this may
seem excessive, it is not all bad, as Apache comes back
quickly enough. Just be careful if your Web site offers large
files to download, as the downloads could be interrupted
when restarting.

Spawning New Apache Children

If you change a Perl module and do not restart Apache, the
new module code will eventually be used on your Web site,
but only after a new Apache child process has been spawned.

The Apache configuration determines how long each child
process is to remain alive in memory before being
restarted. The directive MaxRequestsPerChild is set
rather high at 10000, and is mostly there as a catch-all to
prevent accidental memory leakage within Apache.

For very minor module changes on a high-traffic Web site,
this solution will have the least impact on the Web site’s
day-to-day responsiveness. Not restarting Apache means
no downtime; however, if your traffic is not high enough, it
may be a while before new module code naturally appears.
For major module changes, you can either restart Apache
or implement the Apache2::Reload module.

Monitoring Module Files, Reloading When Changed

You can instruct mod_perl to monitor modules used by
Perl and to reload them in memory if they change on disk.
There is a slight reduction in performance if you enable this
feature, so you should only do so on development
machines, or only enable it sparingly:

PerlModule Apache2::Reload

PerlInitHandler Apache2::Reload

This enables the reload functionality for all modules found
in @INC and used in your Perl code. If you only want to
limit Apache2::Reload to specific, frequently changing
modules, you can specify them in your Apache
configuration:

PerlSetVar ReloadAll Off

PerlSetVar ReloadModules “ModPerl::*
Apache2::*”

Alternatively, inside applicable Perl modules, you can
import Apache2::Reload directly, which has the same
effect. To validate that modules are correctly reloading
when changed, you can enable additional debugging on
Apache2::Reload with the following code:

PerlSetVar ReloadDebug On

Because mod_perl maintains a persistent Perl process in Apache, if any of your Perl scripts change, then ModPerl::Registry
should load the new file into memory. However, Perl modules do not do this by default. Therefore, if your code changes
frequently, you need to manage Apache and mod_perl accordingly.

Disable mod_perl While Developing

You may want to consider disabling mod_perl while doing any major code development. Remember that mod_perl is best
used as an efficiency tool in a production environment, and it can actually get in the way while you are actively developing,
as described earlier.

Once your new feature stabilizes, and all bugs are removed, do not forget to test your code with mod_perl enabled before
you deploy your update to production. As mentioned, there is always a chance that a problem will remain hidden under
the regular CGI handler, but will become prevalent under mod_perl.

25_556801-ch23.indd 36325_556801-ch23.indd 363 8/31/10 9:26 AM8/31/10 9:26 AM

364

Access Perl
Documentation

P erlDoc is a command-line program that you can
use to look up Perl documentation in pod format
and display it on your screen. All Perl modules,

functions, operations, regular expressions, and command-
line options are available in pod format, and are shipped
with most standard Perl distributions. A complete list of

PerlDoc pages is available on the main Perl documentation
page. You can access this page by running the following
commands on a Terminal window or DOS Prompt:
perldoc perl.
You can also access the complete PerlDoc library online at
www.perl.com/pub/q/documentation.

COMMON COMMANDS DESCRIPTION

perldoc page View the documentation of a page.

perldoc module View the documentation of a module.

perldoc program View the documentation of a program.

perldoc -f function View the documentation of a function.

perldoc -q keyword Search the FAQ by keyword.

PERLDOC OPTIONS DESCRIPTION

-h View the help page.

-v Display verbose details when searching.

-t Display documentation pages in plain-text.

-u Show the unformatted .pod source.

-l Display only the filename found.

-F file Open a specific file.pod file.

-L code Open .pod files by language-code.

-V Display the version of PerlDoc.

OVERVIEW PAGE DESCRIPTION

perl Display an overview of Perl.

perlintro Display an introduction to Perl for beginners.

perltoc Display the Perl documentation table of contents.

TUTORIAL PAGE DESCRIPTION

perlreftut Perl references short introduction

perldsc Perl data structures intro

perllol Perl data structures: arrays of arrays

26_556801-bapp01.indd 36426_556801-bapp01.indd 364 8/31/10 9:26 AM8/31/10 9:26 AM

365

A
ppen

dix A
: Perl R

eferen
ce

TUTORIAL PAGE DESCRIPTION

perlrequick Perl regular expressions introduction

perlretut Perl regular expressions tutorial

perlboot Perl object-orientated tutorial for beginners

perltoot Perl object-orientated tutorial, part 1

perltooc Perl object-orientated tutorial, part 2

perlbot Perl object-orientated tricks and examples

perlstyle Perl style guide

perlcheat Perl cheat sheet

perltrap Perl traps for the unwary

perldebtut Perl debugging tutorial

perlopentut Perl open tutorial

perlpacktut Perl pack and unpack tutorial

perlthrtut Perl threads tutorial

perlfaq Perl FAQ table of contents

perlfaq1 FAQ: General Questions about Perl

perlfaq2 FAQ: Obtaining and Learning about Perl

perlfaq3 FAQ: Programming Tools

perlfaq4 FAQ: Data Manipulation

perlfaq5 FAQ: Files and Formats

perlfaq6 FAQ: Regular Expressions

perlfaq7 FAQ: Perl Language Issues

perlfaq8 FAQ: System Interaction

perlfaq9 FAQ: Networking

REFERENCE PAGE DESCRIPTION

perlsyn Perl syntax

perldata Perl data structures

perlop Perl operators and precedence

perlsub Perl subroutines

perlfunc Perl built-in functions

perlpod Perl plain old documentation

perlrun Perl execution and options

perldiag Perl diagnostic messages

(continued)

continued ➔

26_556801-bapp01.indd 36526_556801-bapp01.indd 365 8/31/10 9:26 AM8/31/10 9:26 AM

366

Access Perl
Documentation (continued)

REFERENCE PAGE DESCRIPTION

perllexwarn Perl lexical warnings

perldebug Perl debugging

perlvarz Perl predefined variables

perlre Perl regular expressions

perlrebackslash Perl regular expressions: backslash sequences

perlrecharclass Perl regular expressions: character classes

perlreref Perl regular expressions: quick reference

perlref Perl references

perlform Perl formats

perlobj Perl objects

perltie Perl objects hidden behind simple variables

perlipc Perl interprocess communication

perlfork Perl fork information

perlnumber Perl number semantics

perlport Perl portability guide

perllocale Perl locale support

perluniintro Perl Unicode introduction

perlunicode Perl Unicode support

perlunifaq Perl Unicode FAQ

perlunitut Perl Unicode tutorial

perlsec Perl security

perlmod Perl modules: how they work

perlmodlib Perl modules: how to write and use

perlmodstyle Perl modules: how to write modules with style

perlmodinstall Perl modules: how to install from CPAN

perlnewmod Perl modules: preparing a new module for distribution

perlpragma Perl modules: writing a user pragma

perlutil Utilities packaged with the Perl distribution

perlcompile Perl compiler suite introduction

perlfilter Perl source filters

perlglossary Perl glossary

26_556801-bapp01.indd 36626_556801-bapp01.indd 366 8/31/10 9:26 AM8/31/10 9:26 AM

367

A
ppen

dix A
: Perl R

eferen
ceOPTION DESCRIPTION

-c Checks program syntax and exit.

-d Runs the program under the Perl debugger.

-e command Enters a Perl statement to be executed.

-h Prints a summary of all options.

-i[extension] Allows you to edit files in-place, optionally backing them to extension. This is
useful with -p and -e.

-I directory Adds directory into the search path for modules.

-M module Imports a module into Perl. This is useful with -e.

-n Loops around your one-line program by creating a while (<>) block for
each line of input, similar to sed -n, or awk. This is useful with -e.

-p Loops around your one-line program, just like sed, and prints the output
when finished. This is useful with -e.

-T Enables taint checks as fatal errors. Your program will not run if a security
check is identified.

-t Enables taint checks as warnings.

-v Prints the version and patch-level of your Perl executable.

-V Prints a summary of the major Perl configuration values.

-w Prints warnings about dubious constructs and unusually formatted code.

T he Perl interpreter allows for several command-
line options, which enables you to change how
Perl executes your programs. You can even

execute Perl code as a one-liner program completely
from the command-line. A one-liner is a simple Perl

program that is described and executed totally on the
command-line, without the use of a .pl Perl script.
You can find a complete list of available options on the
following PerlDoc page using the command-line
perldoc perlrun.

Execute Perl on
the Command-Line

26_556801-bapp01.indd 36726_556801-bapp01.indd 367 8/31/10 9:26 AM8/31/10 9:26 AM

368

P erl functions refer to the built-in programs that
you can call from within your Perl scripts and
modules. More than 250 functions are available

that allow you to manipulate scalars, arrays, hashes,
numbers, lists, regular expressions, files, directories,
sockets, system processes, and time. Even if a feature
you are looking for is not available, there is probably a
third-party module on CPAN that provides it.
For all the available Perl functions, the use of parenthesis —
also referred to as round brackets — around the arguments
are generally recommended for clarity, but are not required.
Some functions enforce no parenthesis, such as use, but
most functions and subroutines are flexible. For example,
take the following program that uses all parentheses:

open(H, “>> myfile.txt”) || die(“error: $!”
);

print(H “The time is: “ . time . “\n”);
close(H);

Now, it is rewritten without any parenthesis around its
functions:
open H, “>> myfile.txt” || die “error: $!”;
print H “The time is: “ . time . “\n”;
close H;

Both programs are technically identical, but appear very
different. Deciding whether to use parenthesis around
arguments is a matter of personal preference. Following
are descriptions of several conventions that you can use
to represent function arguments. See Chapter 6 for more
information on these variable types.

Available Built-In
Perl Functions

CONVENTION DESCRIPTION

SCALAR A single string, number, object, or reference variable.

ARRAY An array variable.

HASH A hash variable.

STRING A quoted string, or scalar holding a string.

NUMBER A number.

POSITION, OFFSET, LENGTH A number, usually counting from the start of a string or file handle referenced according to
the function.

EXPR An expression representing an object, such as a variable, quoted string, number, subroutine,
and so on.

LIST A series of zero or more expressions, comma-separated, or an array or series of arrays.

TEMPLATE, FORMAT Predefined formatting specific to a function.

DIRHANDLE, FILEHANDLE A handle used to read from a directory or file.

PATTERN A regular-expression pattern.

SUBNAME The name of a user-defined subroutine.

BLOCK A { ... } block of code.

You can access additional details and documentation with the PerlDoc program on the command-line using the following
command:

perldoc -f function

26_556801-bapp01.indd 36826_556801-bapp01.indd 368 8/31/10 9:26 AM8/31/10 9:26 AM

369

A
ppen

dix A
: Perl R

eferen
ce

SCALAR FUNCTIONS DESCRIPTION

chop(SCALAR) Chops off the last character of a string and returns the chopped
character.

chomp(SCALAR) A safer version of chop that removes any trailing input record
separators, also known as line-feeds.

chr(NUMBER) Returns the character represented by that NUMBER in the character set.

crypt(STRING, EXPR) A one-way hash function that creates a digest string exactly like the
crypt(3) function in the C library.

index(STRING, SUBSTRING) Searches for one string within another.

index(STRING, SUBSTRING, POSITION) Searches for one string within another, starting at POSITION.

lc(EXPR) Returns a lowercased version of EXPR.

lcfirst(EXPR) Returns the value of EXPR with the first character lowercased.

length(EXPR) Returns the length in characters of the value of EXPR.

oct(EXPR) Interprets EXPR as an octal string and returns the corresponding value.

ord(EXPR) Returns the numeric value of the first character of EXPR.

pack(TEMPLATE, LIST) Takes a LIST of values and converts it into a string using the rules
given by the TEMPLATE.

reverse(LIST) Concatenates the elements of LIST and returns a string value with all
characters in the opposite order, when used to populate a SCALAR
variable. May also be used in list context to populate an ARRAY variable.

rindex(STRING, SUBSTRING) Works just like index except that it returns the position of the last
occurrence of SUBSTR in STR.

rindex(STRING, SUBSTRING, POSITION) Works like rindex but starts at POSITION.

sprintf(FORMAT, LIST) Returns a string formatted by the usual printf conventions of the C
library function sprintf.

substr(EXPR, OFFSET) Extracts a substring out of EXPR and returns it.

substr(EXPR, OFFSET, LENGTH) Extracts a substring out of EXPR, up to LENGTH, and returns it.

substr(EXPR, OFFSET, LENGTH,
REPLACEMENT)

Extracts a substring out of EXPR, up to LENGTH, and replaces it with
REPLACEMENT, returning the original match.

uc(EXPR) Returns an uppercased version of EXPR.

ucfirst(EXPR) Returns the value of EXPR with the first character in uppercase.

REGULAR EXPRESSION FUNCTIONS DESCRIPTION

pos(SCALAR) Returns the offset of where the last “m//g” search left off for the
variable in question.

quotemeta(EXPR) Returns the value of EXPR with all non-word characters backslashed.

split(/PATTERN/, EXPR) Splits the string EXPR into a list of strings and returns that list.

split(/PATTERN/, EXPR, LIMIT) Splits the string EXPR into a list of strings and returns that list, stopping
at LIMIT.

study(SCALAR) Takes extra time to study SCALAR in anticipation of doing many pattern
matches on the string before it is next modified.

continued ➔

26_556801-bapp01.indd 36926_556801-bapp01.indd 369 8/31/10 9:26 AM8/31/10 9:26 AM

370

Available Built-In
Perl Functions (continued)

NUMERIC FUNCTIONS DESCRIPTION

abs(NUMBER) Returns the absolute value of its argument.

atan2(NUMBER1, NUMBER2) Returns the arctangent of numbers 1 and 2, in the range -PI to PI.

cos(EXPR) Returns the cosine of EXPR (expressed in radians).

exp(EXPR) Returns e (the natural logarithm base) to the power of EXPR.

hex(EXPR) Interprets EXPR as a hexadecimal string and returns the corresponding decimal value.

int(EXPR) Returns the integer portion of EXPR.

log(EXPR) Returns the natural logarithm (base e) of EXPR.

oct(EXPR) Interprets EXPR as an octal string and returns the corresponding value.

rand(EXPR) Returns a random fractional number greater than or equal to zero and less than the
value of EXPR.

sin(EXPR) Returns the sine of EXPR (expressed in radians).

sqrt(EXPR) Returns the square root of EXPR.

srand(EXPR) Sets the random number seed for the rand operator.

ARRAY FUNCTIONS DESCRIPTION

pop(ARRAY) Returns the last value of the array, shortening the array by one element.

push(ARRAY, LIST) Treats ARRAY as a stack, and inserts the values of LIST onto the end of ARRAY.

shift(ARRAY) Returns the first value of the array, shortening the array by 1 and moving
everything down.

splice(ARRAY, OFFSET) Removes the elements designated by OFFSET from ARRAY.

splice(ARRAY, OFFSET, LENGTH) Removes LENGTH number of elements designated by OFFSET from ARRAY.

splice(ARRAY, OFFSET, LENGTH,
LIST)

Removes LENGTH number of elements designated by OFFSET from ARRAY, and
replaces them with the elements of LIST.

unshift(ARRAY, LIST) Treats ARRAY as a stack, and inserts the values of LIST onto the beginning of
ARRAY.

26_556801-bapp01.indd 37026_556801-bapp01.indd 370 8/31/10 9:26 AM8/31/10 9:26 AM

371

A
ppen

dix A
: Perl R

eferen
ce

LIST FUNCTIONS DESCRIPTION

grep(EXPR, LIST) Evaluates EXPR for each element of LIST (locally setting $_ to each element) and returns
the list value consisting of those elements for which the expression evaluated to true.

join(EXPR, LIST) Joins the separate strings of LIST into a single string with fields separated by the value
of EXPR, and returns that new string.

map(EXPR, LIST) Evaluates EXPR for each element of LIST (locally setting $_ to each element) and
returns the list value composed of the results of each such evaluation.

reverse(LIST) Returns a list value consisting of the elements of LIST in the opposite order, when used
to populate an ARRAY variable. This function may also be used in scalar context to
populate a SCALAR variable.

sort(SUBNAME LIST) Sorts LIST using the subroutine SUBNAME for comparison logic and returns the sorted
list value.

sort(BLOCK LIST) Sorts LIST using an anonymous subroutine, or BLOCK, for comparison logic and
returns the sorted list value.

sort(LIST) Sorts LIST in standard string comparison order and returns the sorted list value.

unpack(TEMPLATE, EXPR) Does the reverse of pack, taking a string and expanding it out into a list of values.

HASH FUNCTIONS DESCRIPTION

delete(EXPR) Given an expression that specifies a hash element, array element, hash slice, or array
slice, deletes the specified element(s) from the hash or array.

each(HASH) Returns a two-element list consisting of the key and value for the next element of a
hash, so that you can iterate over it.

exists(EXPR) Given an expression that specifies a hash element or array element, returns true if the
specified element in the hash or array has ever been initialized, even if the
corresponding value is undefined.

keys(HASH) Returns a list consisting of all the keys of HASH.

values(HASH) Returns a list consisting of all the values of HASH.

INPUT/OUTPUT FUNCTIONS DESCRIPTION

binmode(FILEHANDLE) Arranges for FILEHANDLE to be read or written in binary or text mode on
systems where the run-time libraries distinguish between binary and text
files.

close(FILEHANDLE) Closes the file or pipe associated with the filehandle, flushes the IO
buffers, and closes the system file descriptor.

closedir(DIRHANDLE) Closes a directory opened by opendir.

die(LIST) Prints the value of LIST to STDERR and exits with the current value of $!.

eof(FILEHANDLE) Returns 1 if the next read on FILEHANDLE will return end of file, or if
FILEHANDLE is not open.

fileno(FILEHANDLE) Returns the file descriptor for a filehandle, or undefined if the filehandle
is not open.

(continued)

continued ➔

26_556801-bapp01.indd 37126_556801-bapp01.indd 371 8/31/10 9:26 AM8/31/10 9:26 AM

372

INPUT/OUTPUT FUNCTIONS DESCRIPTION

flock(FILEHANDLE, OPERATION) Calls the GNU C library’s flock function, or an emulation of it, on
FILEHANDLE. This is the Perl portable file locking interface, although it locks
only entire files, not records.

getc(FILEHANDLE) Returns the next character from the input file attached to FILEHANDLE.

print(FILEHANDLE LIST) Prints a string or a list of strings to FILEHANDLE.

print(LIST) Prints a string or a list of strings to STDOUT.

printf(FILEHANDLE FORMAT, LIST) Uses FORMAT to print LIST to FILEHANDLE.

printf(FORMAT, LIST) Uses FORMAT to print LIST to STDOUT.

read(FILEHANDLE, SCALAR, LENGTH) Attempts to read LENGTH characters of data into variable SCALAR from the
specified FILEHANDLE.

read(FILEHANDLE, SCALAR, LENGTH,
OFFSET)

Like read but starts reading at OFFSET.

readdir(DIRHANDLE) Returns the next directory entry for a directory opened by opendir.

rewinddir(DIRHANDLE) Sets the current position to the beginning of the directory for the readdir
routine on DIRHANDLE.

say(LIST) Just like print, but automatically appends a new-line character.

seek(FILEHANDLE, POSITION,
WHENCE)

Sets the current position for the read on FILEHANDLE, using WHENCE to
define how the POSITION value changes the current position. The values for
WHENCE are 0 to set the new position in bytes to POSITION, 1 to set it to the
current position plus POSITION, and 2 to set it to FILEHANDLE’s end-of-file,
plus POSITION.

seekdir(DIRHANDLE, POSITION) Sets the current position for the readdir routine on DIRHANDLE.

select(FILEHANDLE) Sets FILEHANDLE as the default filehandle for output.

select Returns the currently selected filehandle.

syscall(NUMBER, LIST) Calls the system call specified as the first element of the list, passing the
remaining elements as arguments to the system call.

sysread(FILEHANDLE, SCALAR,
LENGTH)

Attempts to read LENGTH bytes of data into variable SCALAR from the
specified FILEHANDLE, using the GNU C library’s read function.

sysread(FILEHANDLE, SCALAR,
LENGTH, OFFSET)

Starts sysread at OFFSET bytes from FILEHANDLE.

sysseek(FILEHANDLE, POSITION,
WHENCE)

Like seek, but uses the GNU C library’s lseek function.

tell(FILEHANDLE) Returns the current position in bytes for FILEHANDLE.

telldir(DIRHANDLE) Returns the current position of the readdir routines on DIRHANDLE.

truncate(FILEHANDLE, LENGTH) Truncates the file opened on FILEHANDLE to the specified length.

warn(LIST) Prints the value of LIST to STDERR.

Available Built-In
Perl Functions (continued)

26_556801-bapp01.indd 37226_556801-bapp01.indd 372 8/31/10 9:26 AM8/31/10 9:26 AM

373

A
ppen

dix A
: Perl R

eferen
ce

FILE/DIRECTORY FUNCTIONS DESCRIPTION

-X FILEHANDLE A file test, where X is a specific letter. See perldoc -f -X for a valid letter.

chdir(EXPR) Changes the working directory to EXPR.

chmod(MODE, LIST) Changes the permissions of a list of files.

chown(UID, GID, LIST) Changes the owner (and group) of a list of files.

chroot(DIRNAME) Makes the named directory the new root directory for all further pathnames
that begin with a forward slash (/) by your process and all its children.

fcntl(FILEHANDLE, FUNCTION,
SCALAR)

Implements the GNU C library’s fcntl function from Unix.

glob(EXPR) In list context, returns a list of filename expansions on the value of EXPR such
as the standard Unix shell would do.

ioctl(FILEHANDLE, FUNCTION,
SCALAR)

Implements the GNU C library’s ioctl function from Unix.

link(OLDFILE, NEWFILE) Creates a new filename linked to the old filename.

lstat(FILENAME) Does the same thing as the stat function but stats a symbolic link instead of
the file that the symbolic link points to.

mkdir(FILENAME, MASK) Creates the directory specified by FILENAME, with permissions specified by
MASK (as modified by umask).

open(FILEHANDLE, FILENAME) Opens the file whose filename is given by EXPR, and associates it with
FILEHANDLE.

opendir(DIRHANDLE, DIRNAME) Opens a directory named EXPR and associates it with DIRHANDLE.

readlink(FILENAME) Returns the value of a symbolic link, if symbolic links are implemented.

rename(OLDNAME, NEWNAME) Changes the name of a file; if an existing file is already using NEWNAME, it will
be deleted.

rmdir(DIRNAME) Deletes the directory specified by DIRNAME if that directory is empty.

stat(HANDLE) Returns a 13-element list giving the status information for a file opened using
FILEHANDLE or DIRHANDLE.

stat(FILENAME) Returns a 13-element list giving the file-system status information for
FILENAME.

symlink(OLDFILE, NEWFILE) Creates a new filename symbolically linked to the old filename.

sysopen(FILEHANDLE,
FILENAME, MODE)

Opens the file whose filename is given by FILENAME, and associates it with
FILEHANDLE.

umask(EXPR) Sets the umask for the process to EXPR and returns the previous value.

unlink(LIST) Deletes a list of files.

utime(LIST) Changes the access and modification times on each file of a list of files.

continued ➔

26_556801-bapp01.indd 37326_556801-bapp01.indd 373 8/31/10 9:26 AM8/31/10 9:26 AM

374

FLOW CONTROL KEYWORDS DESCRIPTION

caller(EXPR) Returns the context of the current subroutine call.

continue Used to increment a loop variable within a block.

do(FILENAME) Executes a Perl FILENAME within an existing Perl script.

dump Causes an immediate core dump.

eval(EXPR) The return value of EXPR is parsed and executed as if it were a short Perl program.

exit(EXPR) Exits immediately with the value EXPR.

goto(LABEL) The goto-LABEL form finds the statement labeled with LABEL and resumes execution
there.

last Like the break statement in C (as used in loops); it immediately exits the current loop.

next Like the continue statement in C; it starts the next iteration of the loop.

redo Restarts the loop block without evaluating the conditional expression again.

return(EXPR) Returns from a subroutine, eval, or do with the value given in EXPR.

sub NAME BLOCK Forms a subroutine definition.

wantarray Returns true if the context of the currently executing subroutine or eval is looking for a
list value.

Available Built-In
Perl Functions (continued)

MISCELLANEOUS FUNCTIONS DESCRIPTION

defined(EXPR) Returns a Boolean value telling whether EXPR has a value other than the undefined value
undef.

local(LIST) Modifies the listed variables to be local to the enclosing block, file, or eval.

my(LIST) Declares the listed variables to be local (lexically) to the enclosing block, file, or eval.

our(EXPR) Associates a simple name with a package variable in the current package for use within
the current scope.

reset(EXPR) Generally used in a continue block at the end of a loop to clear variables and reset ??
searches so that they work again.

scalar(EXPR) Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

undef(EXPR) Undefines the value of EXPR.

26_556801-bapp01.indd 37426_556801-bapp01.indd 374 8/31/10 9:26 AM8/31/10 9:26 AM

375

A
ppen

dix A
: Perl R

eferen
ce

PROCESS FUNCTIONS DESCRIPTION

alarm(SECONDS) Arranges to have a SIGALRM delivered to this process after the specified
number of seconds has elapsed.

exec(PROGRAM, LIST) Executes a system command PROGRAM with arguments LIST and never
returns.

fork Executes the GNU C library’s fork function to create a new process running
the same program at the same point.

kill(SIGNAL, LIST) Sends a signal to a list of processes.

pipe(READHANDLE, WRITEHANDLE) Opens a pair of connected pipes like the corresponding system call.

sleep(EXPR) Causes the script to sleep for EXPR seconds, or forever if there is no EXPR.

system(PROGRAM, LIST) Executes a system command PROGRAM with arguments LIST.

wait Waits for a child process to terminate and returns the pid of the deceased
process.

waitpid(PID, FLAGS) Waits for a particular child process to terminate and returns the pid of the
deceased process.

MODULE KEYWORDS DESCRIPTION

bless(REF, CLASSNAME) Tells REF that it is now an object in the CLASSNAME package.

no MODULE The opposite of use. This is used to unload a module.

package NAME Declares the compilation unit as being in the given namespace.

require VERSION Demands a minimum version of Perl specified by VERSION.

use MODULE LIST Imports some semantics into the current package from the named module, generally
by aliasing certain subroutine or variable names into your package.

TIME FUNCTIONS DESCRIPTION

gmtime(EXPR) Works just like localtime but the returned values are localized for the standard
Greenwich time zone.

localtime(EXPR) Converts a time as returned by the time function to a nine-element list with the time
analyzed for the local time zone. In scalar context, it returns the GNU C library’s
ctime value string.

time Returns the number of non-leap seconds since whatever time the system considers to
be the epoch.

times Returns a four-element list giving the user and system times, in seconds, for this
process and the children of this process.

26_556801-bapp01.indd 37526_556801-bapp01.indd 375 8/31/10 9:26 AM8/31/10 9:26 AM

376

VARIABLE DESCRIPTION

$_ The default input and pattern-searching space.

$a, $b Special package variables when using sort.

$digit Contains the subpattern from the corresponding set of capturing
parentheses from the last regular expression pattern match.

$&, $MATCH The string matched by the last successful pattern match.

$`, $PREMATCH The string preceding whatever was matched by the last successful pattern
match.

$’, $POSTMATCH The string following whatever was matched by the last successful pattern
match.

$+, $LAST_PAREN_MATCH The text matched by the last parenthesis of the last successful regular
expression search pattern.

$^N, $LAST_SUBMATCH_RESULT The text matched by the used group that was most-recently closed in the
last successful search pattern.

@+, @LAST_MATCH_END This array holds the offsets of the ends of the last successful submatches
in the currently active dynamic scope.

%+ Similar to @+, the %+ hash allows access to the named capture buffers,
should they exist, in the last successful match in the currently active
dynamic scope.

$., $NR, $INPUT_LINE_NUMBER The current line number for the last filehandle that was accessed.

$/, $RS, $INPUT_RECORD_SEPARATOR The input record separator, newline by default.

$|, $OUTPUT_AUTOFLUSH If set to nonzero, this forces a flush right away and after every write or
print on the currently selected output channel.

$,, $OFS, $OUTPUT_FIELD_SEPARATOR The output field separator for the print operator.

$\, $ORS, $OUTPUT_RECORD_SEPARATOR The output record separator for the print operator.

P erl supports a series of pre-defined variables that
you can use within your scripts. Most of these
variables are read-only, but you can use them in

various contexts of your Perl code to customize your Perl
experience. Many pre-defined variables are only useful
under specific contexts. Some are rarely used, while
others are more common. For example, $_ is commonly
used as the default iterator within foreach and while
loops, where each element within can be accessed with
this variable.
As you go through this table, do not think of it as a list
of everything you should be taking advantage of, but

instead keep it in mind as you read existing Perl code. If
a program arbitrarily assigns or retrieves a variable that
does not appear to be properly declared, you should be
able to find that variable, and an explanation of what it
does, in this table. Once you are familiar with what is
available, you may come across a situation where
changing one of these pre-defined variables is
legitimately warranted.
You can access additional details and documentation with
the PerlDoc program on the command-line using perldoc
perlvar.

Using Perl
Pre-Defined Variables

26_556801-bapp01.indd 37626_556801-bapp01.indd 376 8/31/10 9:26 AM8/31/10 9:26 AM

377

A
ppen

dix A
: Perl R

eferen
ce

VARIABLE DESCRIPTION

$”, $LIST_SEPARATOR Like $, except that it applies to array and slice values interpolated
into a double-quoted string.

$;, $SUBSEP, $SUBSCRIPT_SEPARATOR The subscript separator for multidimensional array emulation.

@-, @LAST_MATCH_START $-[0] is the offset of the start of the last successful match.
$-[n] is the offset of the start of the substring matched by the
nth subpattern, or undef if the subpattern did not match.

%- Similar to %+, this variable allows access to the named capture
buffers in the last successful match in the currently active dynamic
scope.

$?, $CHILD_ERROR The status returned by the last pipe close, backtick (``)
command, successful call to wait or waitpid, or from the
system operator.

${^CHILD_ERROR_NATIVE} The native status returned by the last pipe close, backtick (``)
command, successful call to wait or waitpid, or from the
system operator.

${^ENCODING} The object reference to the Encode module object that is used to
convert the source code to Unicode.

$!, $ERRNO, $OS_ERROR If used numerically, it yields the current value of the C errno
variable; in other words, if a system or library call fails, it sets this
variable.

%!, %ERRNO, %OS_ERROR Each element of %! has a true value only if $! is set to that value.

$^E, $EXTENDED_OS_ERROR Error information specific to the current operating system.

$@, $EVAL_ERROR The Perl syntax error message from the last eval() operator.

$$, $PID, $PROCESS_ID The process number of the Perl running this script.

$<, $UID, $REAL_USER_ID The real uid of this process.

$>, $EUID, $EFFECTIVE_USER_ID The effective uid of this process.

$(, $GID, $REAL_GROUP_ID The real gid of this process.

$), $EGID, $EFFECTIVE_GROUP_ID The effective gid of this process.

(continued)

continued ➔

26_556801-bapp01.indd 37726_556801-bapp01.indd 377 8/31/10 9:26 AM8/31/10 9:26 AM

378

Using Perl Pre-Defined
Variables (continued)

VARIABLE DESCRIPTION

$0, $PROGRAM_NAME Contains the name of the program being executed.

$[The index of the first element in an array, and of the first character in a
substring.

$] The version + patchlevel / 1000 of the Perl interpreter.

$^C, $COMPILING The current value of the flag associated with the -c switch.

$^D, $DEBUGGING The current value of the debugging flags.

${^RE_DEBUG_FLAGS} The current value of the regular expression debugging flags.

${^RE_TRIE_MAXBUF} Controls how certain regular expression optimizations are applied and
how much memory they utilize.

$^F, $SYSTEM_FD_MAX The maximum system file descriptor, ordinarily 2.

$^I, $INPLACE_EDIT The current value of the inplace-edit extension.

$^O, $OSNAME The name of the operating system under which this copy of Perl was
built, as determined during the configuration process.

$^S, $EXCEPTIONS_BEING_CAUGHT The current state of the Perl interpreter.

$^T, $BASETIME The time at which the program began running, in seconds since the
epoch (beginning of 1970).

${^TAINT} Reflects if taint mode is on or off, representing whether variables can be
influenced from events outside of your program.

${^UNICODE} Reflects certain Unicode settings of Perl.

${^UTF8CACHE} A variable that controls the state of the internal UTF-8 offset caching
code.

${^UTF8LOCALE} A variable that indicates whether a UTF-8 locale was detected by Perl at
startup.

$^V, $PERL_VERSION The revision, version, and subversion of the Perl interpreter, represented
as a version object.

26_556801-bapp01.indd 37826_556801-bapp01.indd 378 8/31/10 9:26 AM8/31/10 9:26 AM

379

A
ppen

dix A
: Perl R

eferen
ce

VARIABLE DESCRIPTION

$^W, $WARNING The current value of the warning switch.

${^WARNING_BITS} The current set of warning checks enabled by the use warnings
pragma.

${^WIN32_SLOPPY_STAT} If true, then stat() on Windows will not try to open the file.

$^X, $EXECUTABLE_NAME The name used to execute the current copy of Perl.

ARGV The special filehandle that iterates over command-line filenames
in @ARGV.

$ARGV Contains the name of the current file when reading from <>.

@ARGV Contains the command-line arguments intended for the script.

ARGVOUT The special filehandle that points to the currently open output file
when doing edit-in-place processing with -i.

@F Contains the fields of each line read in when autosplit mode is
turned on.

@INC Contains the list of places where the do EXPR, require, or use
constructs look for their library files.

@_, @ARG Within a subroutine, the array @_ contains the parameters passed
to that subroutine.

%INC Contains entries for each filename, included using the do,
require, or use operators.

%ENV Contains your current environment.

%SIG Contains signal handlers for signals.

26_556801-bapp01.indd 37926_556801-bapp01.indd 379 8/31/10 9:26 AM8/31/10 9:26 AM

380

Quote-Like Operators

OPERATOR DESCRIPTION

q/STRING/ Returns STRING with literal single-quotes, like ‘STRING’.

qq/STRING/ Returns STRING with literal double-quotes, like “STRING”.

qw/STRING/ Returns STRING split by words as an array.

qx/PROGRAM LIST/ Executes a system command PROGRAM with arguments LIST, and returns the output of the program.

Regular Expression Quote-Like Operators

OPERATOR DESCRIPTION

qr/STRING/ Returns STRING as a regular expression pattern.

if (VAR =~ /PATTERN/) { ... } True if PATTERN is found in VAR.

VAR =~ s/PATTERN/EXPR/; Replaces PATTERN with EXPR in VAR.

if (VAR =~ s/PATTERN/EXPR/) { ... } True if PATTERN found in VAR, and replaced with EXPR.

VAR =~ tr/X/Y/; Replaces a single character, X, with Y in VAR.

Quote Operators

P erl operators control variable assignment, testing,
and manipulation. They exist as the special
characters in between statements that allow you

to state, calculate, append, search, replace, and compare

variables. You can access additional details and
documentation with the PerlDoc program on the
command-line using perldoc perlop.

Perl
Operators

OPERATOR APPLICATION DESCRIPTION

“STRING” Literal interpolate Returns STRING, and resolve any Perl keywords that are found.

‘STRING’ Literal non-interpolate Returns the literal STRING.

`COMMAND` Command Execute Returns output of COMMAND as executed as a command-line program.

/EXPR/ Pattern match Perforams a regular expression pattern match.

26_556801-bapp01.indd 38026_556801-bapp01.indd 380 8/31/10 9:26 AM8/31/10 9:26 AM

381

A
ppen

dix A
: Perl R

eferen
ce

Mathematic Operators

OPERATOR APPLICATION DESCRIPTION

NUM1 + NUM2 Add Returns NUM1 added to NUM2.

NUM1 - NUM2 Subtract Returns NUM2 subtracted from NUM1.

NUM1 * NUM2 Multiply Returns NUM1 multiplied by NUM2.

NUM1 / NUM2 Divide Returns NUM1 divided by NUM2.

NUM1 % NUM2 Modulus Returns remainder of NUM1 divided by NUM2.

NUM ** EXP Exponent Multiplies NUM by itself EXP times.

++VAR Pre-auto-increment Increments VAR by one; returns new VAR value.

--VAR Pre-auto-decrement Decrements VAR by one; returns new VAR value.

VAR++ Post-auto-increment Returns current VAR value; increments VAR by one.

VAR-- Post-auto-decrement Returns current VAR value; decrements VAR by one.

Assignment Operators

Assignment Operator

OPERATOR APPLICATION DESCRIPTION

VAR = VALUE Assign Assign VALUE into VAR.

VAR =~ REGEXP Apply Apply REGEXP onto VAR.

Numeric Assignment Operators

OPERATOR APPLICATION DESCRIPTION

VAR += NUM Add to Add NUM to VAR.

VAR -= NUM Subtract from Subtract NUM from VAR.

VAR *= NUM Multiply by Multiply VAR by NUM.

VAR /= NUM Divide by Divide VAR by NUM.

VAR **= NUM Exponent Multiply VAR by itself NUM times.

String Assignment Operators

OPERATOR APPLICATION DESCRIPTION

VAR .= STR Concatenate Concatenate STR onto VAR.

VAR x= NUM Duplicate Duplicate VAR by NUM times.

Assignment operators exist as a way to store a value, on the right side of the statement, into a variable, on the left side. Some
of these operators can do more than simply store a value into a variable; they can simultaneously manipulate the pre-existing
variable’s value, before it actually applies the new value.

continued ➔

26_556801-bapp01.indd 38126_556801-bapp01.indd 381 8/31/10 9:26 AM8/31/10 9:26 AM

382

Shift Assignment Operators

OPERATOR APPLICATION DESCRIPTION

VAR <<= NUM Shift left Shift VAR left by NUM bits.

VAR >>= NUM Shift right Shift VAR right by NUM bits.

Assignment Operators (continued)

Perl Operators
(continued)

Binary Test, or Equality Operators

OPERATOR APPLICATION DESCRIPTION

! VAR Logical not True if VAR is false, and false if VAR is true.

VAR1 && VAR2 Logical and True if VAR1 and VAR2 are not zero.

VAR1 || VAR2 Logical or True if VAR1 or VAR2 is not zero.

VAR1 // VAR2 Logical defined-or True if VAR1 is defined, or VAR2 is not zero.

Binary operators reduce a variable to a simple true or false status. Often, if a variable has a
value status, its binary status is true. If the variable has not been defined, or if there is no
value, it is false. You can use these binary operators within conditional tests.

Relational Operators

OPERATOR APPLICATION DESCRIPTION

NUM1 == NUM2 Numeric equal-to True if NUM1 is equal to NUM2.

NUM1 != NUM2 Numeric not-equal-to True if NUM1 is not equal to NUM2.

NUM1 < NUM2 Numeric less-than True if NUM1 is less than NUM2.

NUM1 > NUM2 Numeric greater-than True if NUM1 is greater than NUM2.

NUM1 <= NUM2 Numeric less-than or equal-to True if NUM1 is less than or equal to NUM2.

NUM1 >= NUM2 Numeric greater-than or equal-to True if NUM1 is greater than or equal to NUM2.

VAR1 eq VAR2 Binary equal-to True if VAR1 is equal to VAR2.

VAR1 ne VAR2 Binary not-equal-to True if VAR1 is not equal to VAR2.

VAR1 lt VAR2 Binary less-than True if VAR1 is less than VAR2.

VAR1 gt VAR2 Binary greater-than True if VAR1 is greater than VAR2.

VAR1 le VAR2 Binary less-than or equal-to True if VAR1 is less than or equal to VAR2.

VAR1 ge VAR2 Binary greater-than or equal-to True if VAR1 is greater than or equal to VAR2.

Relational operators are used in conditional tests. They provide a way of comparing the left side with the right side.

26_556801-bapp01.indd 38226_556801-bapp01.indd 382 8/31/10 9:26 AM8/31/10 9:26 AM

383

A
ppen

dix A
: Perl R

eferen
ce

List Operator

OPERATOR APPLICATION DESCRIPTION

 (VAR1, VAR2, VAR3, ...) Absolute list Returns an array of VAR1, VAR2, VAR3.

 (VAR1 .. VAR2) Binary range Produces a list of all values between VAR1 and VAR2.

A list operator is the opening and closing parenthesis around one or more variables or values. This makes it easier to deal
with the data as an array. When you group multiple variables together as a list, without storing them into an array variable,
they implicitly become an anonymous array.

Conditional Operator

OPERATOR APPLICATION DESCRIPTION

TEST ? VAR1 : VAR2 Conditional test statement Returns a VAR1 if TEST is true;
otherwise, it returns a VAR2.

A conditional operator is like combining an if-then-else conditional test into a single statement. There are always three
parts, separated by a question mark and a colon. The first is the test, the second is the value used if the test is true, and
the third is the value used if the test is false.

26_556801-bapp01.indd 38326_556801-bapp01.indd 383 8/31/10 9:26 AM8/31/10 9:26 AM

384

META-CHARACTER DESCRIPTION

\ Quote the next meta-character.

^ Match the beginning of the line.

. Match any character (except newline).

$ Match the end of the line (or before newline).

| Define alternation.

() Define grouping and capture buffer.

[xyz] Define character class list of x, y, z.

[^xyz] Define not character class list of x, y, z.

[a-z] Define character class range of a to z.

[^a-z] Define not character class range of a to z.

A regular expression is a string that describes a
pattern. In Perl, regular expressions are used for
pattern matching for conditional tests, or for

search-and-replace operations. A regular expression’s
capabilities are what give Perl its strength and versatility,

especially when it comes to pattern matching. Many other
programming languages actually design their own regular
expression syntax and functionality based on the Perl
model.

Perl Regular
Expressions

CHARACTER CLASSES DESCRIPTION

\w Match a word character (alphanumeric plus “_”).

\W Match a non-word character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\d Match a digit character.

\D Match a non-digit character.

You can access additional details and documentation with the PerlDoc program on the command-line using the following commands:

perldoc perlrequick
perldoc perlretut
perldoc perlre

A character class represents a group of characters that share a common lexical characteristic. This allows you to specify a large
number of characters by type, without specifying the literal characters in the pattern match.

26_556801-bapp01.indd 38426_556801-bapp01.indd 384 8/31/10 9:26 AM8/31/10 9:26 AM

385

A
ppen

dix A
: Perl R

eferen
ce

GREEDY QUANTIFIERS DESCRIPTION

• Match zero or more times.

+ Match 1 or more times.

? Match 1 or zero times.

{n} Match exactly n times.

{n,} Match at least n times.

{n,m} Match at least n but not more than m times.

NON-GREEDY QUANTIFIERS DESCRIPTION

*? Match zero or more times, not greedily.

+? Match 1 or more times, not greedily.

?? Match 1 or zero times, not greedily.

{n}? Match exactly n times, not greedily.

{n,}? Match at least n times, not greedily.

{n,m}? Match at least n but not more than m times, not greedily.

MODIFIER FLAGS DESCRIPTION

m Treat string as multiple lines.

s Treat string as a single line.

e Evaluate replacement text as Perl code.

i Do case-insensitive pattern matching.

x Extend pattern’s legibility; allow whitespace and comments.

g Enable global matching.

c Keep current position after failed match.

A quantifier allows you to match by multiple copies of any character, meta-character, or character class in your pattern string.
You can match the largest possible number of values in a string using greedy quantifiers; or the smallest possible number of
values using non-greedy quantifiers.

A modifier flag allows you to change options controlling how entire regular expression pattern executes.

26_556801-bapp01.indd 38526_556801-bapp01.indd 385 8/31/10 9:26 AM8/31/10 9:26 AM

386

Apache Run-Time
Configuration Directives

A pache 2.2 supports almost 800 different
configuration directives that allow you to
customize its functionality as your Web server.

Each directive is context sensitive and can only be applied
in specific locations in the Apache httpd.conf
configuration file.

CONFIGURATION CONTEXT DESCRIPTION

server Specify and apply configuration directives globally to the Apache server.

virtual Specify and apply configuration directives only within <virtualhost> ... </
virtualhost> configuration groups.

directory Specify and apply configuration directives only within <directory> ... </
directory> configuration groups

.htaccess Specify configuration directives only within .htaccess configuration files; apply only
to a specific Web site directory containing the file.

If you modify anything in the server, virtual, or directory
contexts, you must restart the Apache service to apply the
change. If you apply your change to an .htaccess file,
you do not need to restart the service.

You can find additional documentation on Apache
directives online at http://httpd.apache.org/
docs/2.2/mod/directives.html.

Core Apache Directives

DIRECTIVE DESCRIPTION CONTEXT

AcceptFilter protocol accept_filter Configures optimizations for a
protocol’s listener sockets

server

AcceptPathInfo On|Off|Default Resources accept trailing pathname
information

server, virtual, directory, .htaccess

AccessFileName filename [filename] ... Sets the name of the distributed
configuration file

server, virtual

AddDefaultCharset On|Off|charset Sets the default charset parameter to be
added when a response content-type is
text/plain or text/html

server, virtual, directory, .htaccess

AddOutputFilterByType filter[;filter]
MIME-type [MIME-type] ...

Assigns an output filter to a particular
MIME-type

server, virtual, directory, .htaccess

AllowEncodedSlashes On|Off Determines whether encoded path
separators in URLs are allowed to be
passed through

server, virtual

AllowOverride All|None|directive-type
[directive-type] ...

Types of directives that are allowed in
.htaccess files

directory

27_556801-bapp02.indd 38627_556801-bapp02.indd 386 8/31/10 9:26 AM8/31/10 9:26 AM

387

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

DIRECTIVE DESCRIPTION CONTEXT

AuthName auth-domain Sets the Authorization realm for use in
HTTP authentication

directory, .htaccess

AuthType Basic|Digest Defines the type of user authentication
supported

directory, .htaccess

CGIMapExtension cgi-path .extension Configures a technique for locating the
interpreter for CGI scripts

directory, .htaccess

ContentDigest On|Off Enables the generation of Content-
MD5 HTTP Response headers

server, virtual, directory, .htaccess

DefaultType MIME-type|None Sets the MIME content-type that will
be sent if the server cannot determine
a type in any other way

server, virtual, directory, .htaccess

<Directory directory-path> ... </
Directory>

Encloses a group of directives that
apply only to the named file-system
directory and subdirectories

server, virtual

<DirectoryMatch regex> ... </
DirectoryMatch>

Encloses directives that apply to file-
system directories matching a regular
expression and their subdirectories

server, virtual

DocumentRoot directory-path Sets a directory that forms the main
document tree visible from the Web

server, virtual

EnableMMAP On|Off Uses memory-mapping to read files
during delivery

server, virtual, directory, .htaccess

EnableSendfile On|Off Uses the kernel sendfile support to
deliver files to the client

server, virtual, directory, .htaccess

ErrorDocument error-code document Configures what the server will return
to the client in case of an error

server, virtual, directory, .htaccess

ErrorLog file-path|syslog[:facility] Sets the location where the server will
log errors

server, virtual

FileETag component ... Configures file attributes used to
create the ETag HTTP response header
for static files

server, virtual, directory, .htaccess

<Files filename> ... </Files> Contains directives that apply to
matched filenames

server, virtual, directory, .htaccess

<FilesMatch regex> ... </FilesMatch> Contains directives that apply to
regular-expression matched filenames

server, virtual, directory, .htaccess

ForceType MIME-type|None Forces all matching files to be served
with the specified MIME content-type

directory, .htaccess

HostnameLookups On|Off|Double Enables DNS lookups on client IP
addresses

server, virtual, directory

<IfDefine [!]parameter-name> ... </
IfDefine>

Encloses directives that will be
processed only if a test is true at
startup

server, virtual, directory, .htaccess

<IfModule [!]module-file|module-
identifier> ... </IfModule>

Encloses directives that are processed
conditional on the presence or absence
of a specific module

server, virtual, directory, .htaccess

Include file-path|directory-path Includes other configuration files from
within the server configuration files

server, virtual, directory

(continued)

Core Apache Directives (continued)

continued ➔

27_556801-bapp02.indd 38727_556801-bapp02.indd 387 8/31/10 9:26 AM8/31/10 9:26 AM

388

DIRECTIVE DESCRIPTION CONTEXT

KeepAlive On|Off Enables HTTP persistent connections server, virtual

KeepAliveTimeout seconds Sets the amount of time the server will
wait for subsequent requests on a
persistent connection

server, virtual

<Limit method [method] ... > ... </Limit> Restricts enclosed access controls to only
certain HTTP methods

server, virtual, directory, .htaccess

<LimitExcept method [method] ... > ... </
LimitExcept>

Restricts access controls to all HTTP
methods except the named ones

server, virtual, directory, .htaccess

LimitInternalRecursion number [number] Determines maximum number of internal
redirects and nested subrequests

server, virtual

LimitRequestBody bytes Restricts the total size of the HTTP
request body sent from the client

server, virtual, directory, .htaccess

LimitRequestFields number Limits the number of HTTP request
header fields that will be accepted from
the client

server

LimitRequestFieldSize bytes Limits the size of the HTTP request
header allowed from the client

server

LimitRequestLine bytes Limits the size of the HTTP request line
that will be accepted from the client

server

LimitXMLRequestBody bytes Limits the size of an XML-based request
body

server, virtual, directory, .htaccess

<Location URL-path|URL> ... </
Location>

Applies the enclosed directives only to
matching URLs

server, virtual

<LocationMatch regex> ... </
LocationMatch>

Applies the enclosed directives only to
regular-expression matching URLs

server, virtual

LogLevel level Controls the verbosity of the ErrorLog server, virtual

MaxKeepAliveRequests number Sets the number of requests allowed on a
persistent connection

server, virtual

NameVirtualHost addr[:port] Designates an IP address for name-
virtual hosting

server

Options [+|-]option [[+|-]option] ... Configures what features are available in
a particular directory

server, virtual, directory, .htaccess

Require entity-name [entity-name] ... Selects which authenticated users can
access a resource

directory, .htaccess

RLimitCPU seconds|max [seconds|max] Limits the CPU consumption of
processes launched by Apache children

server, virtual, directory, .htaccess

RLimitMEM bytes|max [bytes|max] Limits the memory consumption of
processes launched by Apache children

server, virtual, directory, .htaccess

RLimitNPROC number|max
[number|max]

Limits the number of processes that can
be launched by processes launched by
Apache children

server, virtual, directory, .htaccess

Core Apache Directives (continued)

Apache Run-Time Configuration
Directives (continued)

27_556801-bapp02.indd 38827_556801-bapp02.indd 388 8/31/10 9:26 AM8/31/10 9:26 AM

389

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

Core Apache Directives (continued)

DIRECTIVE DESCRIPTION CONTEXT

Satisfy Any|All Interaction between host-level access
control and user authentication

directory, .htaccess

ScriptInterpreterSource
Registry|Registry-Strict|Script

Configures the technique for locating
the interpreter for CGI scripts

server, virtual, directory, .htaccess

ServerAdmin email-address|URL Sets the e-mail address that the server
includes in error messages sent to the
client

server, virtual

ServerAlias hostname [hostname] ... Configures alternate names for a host
used when matching requests to name-
virtual hosts

virtual

ServerName [scheme://]
fully-qualified-domain-name[:port]

Configures the hostname and port that
the server uses to identify itself

server, virtual

ServerPath URL-path Sets the legacy URL pathname for a
name-based virtual host that is
accessed by an incompatible browser

virtual

ServerRoot directory-path Configures the base directory for the
server installation

server

ServerSignature On|Off|EMail Configures the footer on server-
generated documents

server, virtual, directory, .htaccess

ServerTokens Major|Minor|Min[imal]
|Prod[uctOnly]|OS|Full

Configures the Server HTTP response
header

server

SetHandler handler-name|None Forces all matching files to be
processed by a handler

server, virtual, directory, .htaccess

SetInputFilter filter[;filter...] Sets the filters that will process client
requests and POST input

server, virtual, directory, .htaccess

SetOutputFilter filter[;filter...] Sets the filters that will process
responses from the server

server, virtual, directory, .htaccess

TimeOut seconds Amount of time the server will wait for
certain events before failing a request

server, virtual

TraceEnable [On|Off|extended] Determines the behavior on TRACE
requests

server

UseCanonicalName On|Off|DNS Configures how the server determines
its own name and port

server, virtual, directory

UseCanonicalPhysicalPort On|Off Configures how the server determines
its own name and port

server, virtual, directory

Win32DisableAcceptEx Uses accept() rather than
AcceptEx() to accept network
connections

server

continued ➔

27_556801-bapp02.indd 38927_556801-bapp02.indd 389 8/31/10 9:26 AM8/31/10 9:26 AM

390

DIRECTIVE DESCRIPTION CONTEXT

AcceptMutex Default|method Configures the method that Apache uses to serialize multiple
children accepting requests on network sockets

server

Group unix-group Sets the group under which the server will answer requests server

Listen [IP-address:]portnumber [protocol] Sets the IP addresses and ports that the server listens to server

ListenBacklog backlog Sets the maximum length of the queue of pending connections server

LockFile filename Sets the location of the serialization lock file server

MaxClients number Sets the maximum number of connections that will be
processed simultaneously

server

MaxMemFree KBytes Sets the maximum amount of memory that the main allocator is
allowed to hold without calling free()

server

MaxRequestsPerChild number Sets the maximum number of requests that an individual child
server will handle during its life

server

MaxSpareServers number Sets the maximum number of idle child server processes server

MaxSpareThreads number Sets the maximum number of idle threads server

MinSpareServers number Sets the minimum number of idle child server processes server

MinSpareThreads number Sets the minimum number of idle threads available to handle
request spikes

server

PidFile filename Sets the file where the server records the process ID of the
daemon

server

ReceiveBufferSize bytes Sets the size of the TCP receive buffer server

ScoreBoardFile file-path Sets the location of the file used to store coordination data for
the child processes

server

SendBufferSize bytes Sets the TCP buffer size server

ServerLimit number Sets the upper limit on configurable number of processes server

StartServers number Sets the number of child server processes created at startup server

ThreadLimit number Sets the upper limit on the configurable number of threads per
child process

server

ThreadsPerChild number Sets the number of threads created by each child process server

ThreadStackSize size Sets the size in bytes of the stack used by threads handling client
connections

server

User unix-userid Sets the local userID under which the server will answer requests server

Multi-Process Module Directives

Apache Run-Time Configuration
Directives (continued)

Multi-Process Module (MPM) directives are responsible for binding to network ports on
the server, accepting requests, and dispatching children to handle the requests.

27_556801-bapp02.indd 39027_556801-bapp02.indd 390 8/31/10 9:26 AM8/31/10 9:26 AM

391

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

DIRECTIVE DESCRIPTION CONTEXT

Action action-type cgi-script [virtual] Activates a CGI script for a particular
handler or content-type

server, virtual, directory, .htaccess

Script method cgi-script Activates a CGI script for a particular
request method

server, virtual, directory

mod_actions

B elow is a list of all of the base modules that come as part of the
Apache distribution. These are considered base modules because
they allow Apache to act as a standard Web server.

Apache Base Modules
and Directives

The mod_actions module has two directives. The Action directive lets you run CGI scripts whenever a file of
a certain MIME content type is requested. The Script directive lets you run CGI scripts whenever a particular
method is used in a request. This makes it much easier to execute scripts that process files.

mod_alias

DIRECTIVE DESCRIPTION CONTEXT

Alias URL-path file-path|directory-path Maps URLs to filesystem locations server, virtual

AliasMatch regex file-path|directory-path Maps URLs to filesystem locations using
regular expressions

server, virtual

Redirect [status] URL-path URL Sends an external redirect asking the
client to fetch a different URL

server, virtual, directory, .htaccess

RedirectMatch [status] regex URL Sends an external redirect based on a
regular expression match of the current
URL

server, virtual, directory, .htaccess

RedirectPermanent URL-path URL Sends an external permanent redirect
asking the client to fetch a different URL

server, virtual, directory, .htaccess

RedirectTemp URL-path URL Sends an external temporary redirect
asking the client to fetch a different URL

server, virtual, directory, .htaccess

ScriptAlias URL-path
file-path|directory-path

Maps a URL to a filesystem location and
designates the target as a CGI script

server, virtual

ScriptAliasMatch regex
file-path|directory-path

Maps a URL to a filesystem location
using a regular expression and
designates the target as a CGI script

server, virtual

The directives contained in the mod_alias module allow
for manipulation and control of URLs as requests arrive at
the server. The Alias and ScriptAlias directives are used to
map between URLs and filesystem paths. This allows for
content that is not directly under the DocumentRoot

configuration path to be served as part of the Web site from
an aliased URL path. The ScriptAlias directive has the
additional effect of marking the target directory as containing
only CGI scripts.

continued ➔

27_556801-bapp02.indd 39127_556801-bapp02.indd 391 8/31/10 9:26 AM8/31/10 9:26 AM

392

DIRECTIVE DESCRIPTION CONTEXT

AddAlt string file [file] ... Assigns the alternate text to display for a file,
instead of an icon selected by filename

server, virtual, directory, .htaccess

AddAltByEncoding string MIME-encoding
[MIME-encoding] ...

Assigns the alternate text to display for a file
instead of an icon selected by
MIME-encoding

server, virtual, directory, .htaccess

AddAltByType string MIME-type [MIME-
type] ...

Assigns the alternate text to display for a file,
instead of an icon selected by MIME
content-type

server, virtual, directory, .htaccess

AddDescription string file [file] ... Assigns a description to display for a file server, virtual, directory, .htaccess

AddIcon icon name [name] ... Assigns an icon to display for a file selected
by name

server, virtual, directory, .htaccess

AddIconByEncoding icon MIME-encoding
[MIME-encoding] ...

Assigns an icon to display next to files
selected by MIME content-encoding

server, virtual, directory, .htaccess

AddIconByType icon MIME-type [MIME-
type] ...

Assigns an icon to display next to files
selected by MIME content-type

server, virtual, directory, .htaccess

DefaultIcon url-path Sets the default icon to display for files when
no specific icon is configured

server, virtual, directory, .htaccess

HeaderName filename Configures the name of the file that will be
inserted at the top of the index listing

server, virtual, directory, .htaccess

IndexHeadInsert “markup ...” Inserts text in the HEAD section of an index
page

server, virtual, directory, .htaccess

IndexIgnore file [file] ... Adds to the list of files to hide when listing a
directory

server, virtual, directory, .htaccess

IndexOptions [+|-]option [[+|-]option] ... Configures various settings for directory
indexing

server, virtual, directory, .htaccess

IndexOrderDefault
Ascending|Descending
Name|Date|Size|Description

Sets the default ordering of the directory
index

server, virtual, directory, .htaccess

IndexStyleSheet url-path Adds a CSS stylesheet to the directory index server, virtual, directory, .htaccess

ReadmeName filename Configures the name of the file that will be
inserted at the end of the index listing

server, virtual, directory, .htaccess

mod_autoindex

Apache Base Modules
and Directives (continued)

The index of a directory can come from one of two sources:

• A file written by the user, typically called index.html. The
DirectoryIndex directive sets the name of this file. This is
controlled by mod_dir.

• A listing generated by the server. The other directives
control the format of this listing. The AddIcon,
AddIconByEncoding, and AddIconByType directives are used
to set a list of icons to display for various file types; for each

file listed, the first icon listed that matches the file is
displayed. These are controlled by mod_autoindex.

The two functions are separated so that you can completely
remove (or replace) automatic index generation should you
want to.

Automatic index generation is enabled when using the
“Indexes” option. See the Options directive for more details.

27_556801-bapp02.indd 39227_556801-bapp02.indd 392 8/31/10 9:26 AM8/31/10 9:26 AM

393

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_cgi

DIRECTIVE DESCRIPTION CONTEXT

ScriptLog file-path Sets the location of the CGI script error logfile server, virtual

ScriptLogBuffer bytes Sets the maximum amount of PUT or POST requests that will be
recorded in the scriptlog

server, virtual

ScriptLogLength bytes Sets the size limit of the CGI script logfile server, virtual

Any file that has the handler cgi-script will be treated as a
CGI script, and run by the server, with its output being
returned to the client. Files acquire this handler either by

having a name containing an extension defined by the
AddHandler directive, or by being in a ScriptAlias directory.

mod_dir

DIRECTIVE DESCRIPTION CONTEXT

DirectoryIndex local-URL [local-URL] ... Configures a list of resources to look
for when the client requests a directory

server, virtual, directory, .htaccess

DirectorySlash On|Off Toggles trailing slash redirects on or
off

server, virtual, directory, .htaccess

The index of a directory can come from one of two sources:

• A file written by the user, typically called index.html.
The DirectoryIndex directive sets the name of this file.
This is controlled by mod_dir.

• A listing generated by the server. This is provided by
mod_autoindex.

The two functions are separated so that you can completely
remove (or replace) automatic index generation should you
want to.

mod_env

DIRECTIVE DESCRIPTION CONTEXT

PassEnv env-variable [env-variable] ... Passes environment variables from the
shell

server, virtual, directory, .htaccess

SetEnv env-variable value Sets environment variables server, virtual, directory, .htaccess

UnsetEnv env-variable [env-variable] ... Removes variables from the
environment

server, virtual, directory, .htaccess

The mod_env module allows for control of the environment
that will be provided to CGI scripts and SSI pages.
Environment variables may be passed from the shell that

invoked the httpd process. Alternatively, environment
variables may be set or unset within the configuration
process.

27_556801-bapp02.indd 39327_556801-bapp02.indd 393 8/31/10 9:26 AM8/31/10 9:26 AM

394

DIRECTIVE DESCRIPTION CONTEXT

FilterChain [+=-@!]filter-name ... Configures the filter chain server, virtual, directory, .htaccess

FilterDeclare filter-name [type] Declares a smart filter server, virtual, directory, .htaccess

FilterProtocol filter-name [provider-name]
proto-flags

Deals with correct HTTP protocol handling server, virtual, directory, .htaccess

FilterProvider filter-name provider-name
[req|resp|env]=dispatch match

Registers a content filter mod_filter server, virtual, directory, .htaccess

mod_filter

Apache Base Modules
and Directives (continued)

The mod_filter module enables smart, context-sensitive configuration of output content filters.
For example, you can configure Apache to process different content-types through different filters,
even when you do not know the content-type in advance (for example, in a proxy).

mod_imagemap

DIRECTIVE DESCRIPTION CONTEXT

ImapBase map|referer|URL Configures the default base for
imagemap files

server, virtual, directory, .htaccess

ImapDefault
error|nocontent|map|referer|URL

Configures the default action when an
imagemap is called with coordinates
that are not explicitly mapped

server, virtual, directory, .htaccess

ImapMenu none|formatted|semiformat
ted|unformatted

Configures the action if no coordinates
are given when calling an imagemap

server, virtual, directory, .htaccess

The mod_imagemap module allows for control of the environment that will be provided to CGI scripts
and SSI pages. Environment variables may be passed from the shell that invoked the httpd process.
Alternatively, environment variables may be set or unset within the configuration process.

mod_log_config

DIRECTIVE DESCRIPTION CONTEXT

BufferedLogs On|Off Buffers log entries in memory before writing
to disk

server

CookieLog filename Sets a filename for the logging of cookies server, virtual

CustomLog file|pipe format|nickname [env=[!]
environment-variable]

Sets the filename and format of a log file server, virtual

LogFormat format|nickname [nickname] Describes a format for use in a log file server, virtual

TransferLog file|pipe Specifies the location of a log file server, virtual

The mod_log_config module allows for control of the environment that will be provided to CGI
scripts and SSI pages. Environment variables may be passed from the shell that invoked the httpd
process. Alternatively, environment variables may be set or unset within the configuration process.

27_556801-bapp02.indd 39427_556801-bapp02.indd 394 8/31/10 9:26 AM8/31/10 9:26 AM

395

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_mime

DIRECTIVE DESCRIPTION CONTEXT

AddCharset charset extension
[extension] ...

Maps the given filename extensions to
the specified content charset

server, virtual, directory, .htaccess

AddEncoding MIME-encoding extension
[extension] ...

Maps the given filename extensions to
the specified encoding type

server, virtual, directory, .htaccess

AddHandler handler-name extension
[extension] ...

Maps the filename extensions to the
specified handler

server, virtual, directory, .htaccess

AddInputFilter filter[;filter] extension
[extension] ...

Maps filename extensions to the filters
that will process client requests

server, virtual, directory, .htaccess

AddLanguage MIME-lang extension
[extension] ...

Maps the given filename extension to
the specified content language

server, virtual, directory, .htaccess

AddOutputFilter filter[;filter] extension
[extension] ...

Maps filename extensions to the filters
that will process responses from the
server

server, virtual, directory, .htaccess

AddType MIME-type extension
[extension] ...

Maps the given filename extensions
onto the specified content type

server, virtual, directory, .htaccess

DefaultLanguage MIME-lang Sets all files in the given scope to the
specified language

server, virtual, directory, .htaccess

ModMimeUsePathInfo On|Off Tells mod_mime to treat path_info
components as part of the filename

directory

MultiviewsMatch Any|NegotiatedOnly
|Filters|Handlers [Handlers|Filters]

Configures the types of files that will
be included when searching for a
matching file with MultiViews

server, virtual, directory, .htaccess

RemoveCharset extension [extension] ... Removes any character set associations
for a set of file extensions

virtual, directory, .htaccess

RemoveEncoding extension [extension] ... Removes any content encoding
associations for a set of file extensions

virtual, directory, .htaccess

RemoveHandler extension [extension] ... Removes any handler associations for
a set of file extensions

virtual, directory, .htaccess

RemoveInputFilter extension
[extension] ...

Removes any input filter associations
for a set of file extensions

virtual, directory, .htaccess

RemoveLanguage extension
[extension] ...

Removes any language associations for
a set of file extensions

virtual, directory, .htaccess

RemoveOutputFilter extension
[extension] ...

Removes any output filter associations
for a set of file extensions

virtual, directory, .htaccess

RemoveType extension [extension] ... Removes any content type associations
for a set of file extensions

virtual, directory, .htaccess

TypesConfig file-path Configures the location of the mime.
types file

server

The mod_mime module allows for control of the environment that will be provided to CGI scripts and
SSI pages. Environment variables may be passed from the shell that invoked the httpd process.
Alternatively, environment variables may be set or unset within the configuration process.

continued ➔

27_556801-bapp02.indd 39527_556801-bapp02.indd 395 8/31/10 9:26 AM8/31/10 9:26 AM

396

DIRECTIVE DESCRIPTION CONTEXT

CacheNegotiatedDocs On|Off Allows content-negotiated documents to
be cached by proxy servers

server, virtual

ForceLanguagePriority
None|Prefer|Fallback [Prefer|Fallback]

Configures the action to take if a single
acceptable document is not found

server, virtual, directory, .htaccess

LanguagePriority MIME-lang
[MIME-lang] ...

Sets the precedence of language variants
for cases where the client does not
express a preference

server, virtual, directory, .htaccess

mod_negotiation

Apache Base Modules
and Directives (continued)

Content negotiation, or more accurately, content selection, is
the selection of the document that best matches the client’s
capabilities, from one of several available documents. There are
two implementations of this:

• A type map (a file with the handler type-map) that explicitly
lists the files containing the variants.

• A MultiViews search (enabled by the MultiViews Options),
where the server does an implicit filename pattern match,
and chooses from among the results.

DIRECTIVE DESCRIPTION CONTEXT

BrowserMatch regex [!]env-variable[=value]
[[!]env-variable[=value]] ...

Sets environment variables conditional
on HTTP User-Agent

server, virtual, directory, .htaccess

BrowserMatchNoCase regex [!]env-
variable[=value] [[!]env-variable[=value]] ...

Sets environment variables conditional
on User-Agent without respect to case

server, virtual, directory, .htaccess

SetEnvIf attribute regex [!]env-variable[=value]
[[!]env-variable[=value]] ...

Sets environment variables based on
attributes of the request

server, virtual, directory, .htaccess

SetEnvIfNoCase attribute regex [!]env-
variable[=value] [[!]env-variable[=value]] ...

Sets environment variables based on
attributes of the request without respect
to case

server, virtual, directory, .htaccess

mod_setenvif

The mod_setenvif module allows you to set environment
variables according to whether different aspects of the request
match regular expressions you specify. Other parts of the server

can use these environment variables to make decisions about
actions to be taken.

27_556801-bapp02.indd 39627_556801-bapp02.indd 396 8/31/10 9:26 AM8/31/10 9:26 AM

397

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_status

DIRECTIVE DESCRIPTION CONTEXT

ExtendedStatus On|Off Keeps track of extended status
information for each request

server

SeeRequestTail On|Off Determines if mod_status displays
the first 63 characters of a request or
the last 63 characters, assuming the
request is greater than 63 characters

server

The mod_status module allows a server administrator to
find out how well their server is performing. An HTML page
is presented that gives the current server statistics in an
easily readable form. If required, this page can be made to

automatically refresh (if the browser supports refreshing).
Another page gives a simple machine-readable list of the
current server state.

mod_userdir

DIRECTIVE DESCRIPTION CONTEXT

UserDir directory-filename [directory-
filename] ...

Sets the location of the user-specific
directories

server, virtual

The mod_userdir module allows user-specific directories to be
accessed using the http://example.com/~user/ syntax.

27_556801-bapp02.indd 39727_556801-bapp02.indd 397 8/31/10 9:26 AM8/31/10 9:26 AM

398

DIRECTIVE DESCRIPTION CONTEXT

AuthBasicAuthoritative On|Off Sets whether authorization and
authentication are passed to lower-level
modules

directory, .htaccess

AuthBasicProvider provider-name [provider-name] ... Sets the authentication provider(s) for
this location

directory, .htaccess

mod_auth_basic

A uthentication is any process by which you verify
that someone is who they claim they are.
Authorization is any process by which someone

is allowed to be where they want to go, or to have
information that they want to have.

Apache Authentication and
Authorization Modules and Directives

The mod_auth_basic module allows the use of HTTP Basic
Authentication to restrict access by looking up users in the
given providers. HTTP Digest Authentication is provided by
mod_auth_digest. You should usually combine this module

with at least one authentication module such as mod_authn_
file and one authorization module such as
mod_authz_user.

DIRECTIVE DESCRIPTION CONTEXT

AuthDigestAlgorithm MD5|MD5-sess Selects the algorithm used to calculate
the challenge and response hashes in
digest authentication

directory, .htaccess

AuthDigestDomain URI [URI] ... Configures the URIs that are in the same
protection space for digest
authentication

directory, .htaccess

AuthDigestNcCheck On|Off Enables or disables checking of the
nonce-count sent by the server

server

AuthDigestNonceFormat format Determines how the nonce is generated directory, .htaccess

AuthDigestNonceLifetime seconds Sets how long the server nonce is valid directory, .htaccess

AuthDigestProvider provider-name
[provider-name] ...

Sets the authentication provider(s) for
this location

directory, .htaccess

AuthDigestQop none|auth|auth-int
[auth|auth-int]

Determines the quality-of-protection to
use in digest authentication

directory, .htaccess

AuthDigestShmemSize size Sets the amount of shared memory to
allocate for keeping track of clients

server

mod_auth_digest

The mod_auth_digest module implements HTTP Digest Authentication
(RFC 2617), and provides a more secure alternative to mod_auth_basic.

27_556801-bapp02.indd 39827_556801-bapp02.indd 398 8/31/10 9:26 AM8/31/10 9:26 AM

399

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce
mod_authn_alias

DIRECTIVE DESCRIPTION CONTEXT

<AuthnProviderAlias baseProvider Alias>
... </AuthnProviderAlias>

Encloses a group of directives that
represent an extension of a base
authentication provider and referenced
by the Alias URL

server

The mod_authn_alias module allows extended
authentication providers to be created within the
configuration file and assigned an alias name. The alias
providers can then be referenced through the directives
AuthBasicProvider or AuthDigestProvider in the

same way as a base authentication provider. Besides the
ability to create and alias an extended provider, it also allows
the same extended authentication provider to be referenced
by multiple locations.

mod_authn_anon

DIRECTIVE DESCRIPTION CONTEXT

Anonymous user [user] ... Specifies userIDs that are allowed
access without password verification

directory, .htaccess

Anonymous_LogEmail On|Off Specifies whether the password
entered will be logged in the error log

directory, .htaccess

Anonymous_MustGiveEmail On|Off Specifies whether blank passwords are
allowed

directory, .htaccess

Anonymous_NoUserID On|Off Specifies whether the userID field may
be empty

directory, .htaccess

Anonymous_VerifyEmail On|Off Specifies whether to check the
password field for a correctly
formatted e-mail address

directory, .htaccess

The mod_authn_anon module provides authentication
front-ends such as mod_auth_basic to authenticate users
similar to anonymous FTP sites — that is, they have a

userID anonymous and the e-mail address as a password.
These e-mail addresses can be logged.

mod_authn_dbd

DIRECTIVE DESCRIPTION CONTEXT

AuthDBDUserPWQuery query Configures the SQL query to look up a
password for a user

directory

AuthDBDUserRealmQuery query Configures the SQL query to look up a
password hash for a user and realm

directory

The mod_authn_dbd module provides authentication front-
ends such as mod_auth_digest and mod_auth_basic
to authenticate users by looking them up in SQL tables.
Modules such as mod_authn_file provide similar
functionality.

This module relies on mod_dbd to specify the back-end
database driver and connection parameters, and manage the
database connections.

When using mod_auth_basic or mod_auth_digest,
this module is invoked using the AuthBasicProvider or
AuthDigestProvider with the dbd value.

continued ➔

27_556801-bapp02.indd 39927_556801-bapp02.indd 399 8/31/10 9:26 AM8/31/10 9:26 AM

400

DIRECTIVE DESCRIPTION CONTEXT

AuthDBMType
default|SDBM|GDBM|NDBM|DB

Sets the type of database file that is used
to store passwords

directory, .htaccess

AuthDBMUserFile file-path Sets the name of a database file
containing the list of users and
passwords for authentication

directory, .htaccess

mod_authn_dbm

Apache Authentication and Authorization
Modules and Directives (continued)

The mod_authn_dbm module provides authentication front-
ends such as mod_auth_digest and mod_auth_basic to
authenticate users by looking them up in dbm password files.
The mod_authn_file module provides similar functionality.

When using mod_auth_basic or mod_auth_digest, this
module is invoked using the AuthBasicProvider or
AuthDigestProvider with the dbm value.

DIRECTIVE DESCRIPTION CONTEXT

AuthDefaultAuthoritative On|Off Specifies whether authentication is
passed to lower-level modules

directory, .htaccess

mod_authn_default

The mod_authn_default module is designed to be the fallback module, if you have not configured an
authentication module such as mod_auth_basic. It simply rejects any credentials supplied by the user.

DIRECTIVE DESCRIPTION CONTEXT

AuthUserFile file-path Sets the name of a text file containing
the list of users and passwords for
authentication

directory, .htaccess

mod_authn_file

The mod_authn_file his module provides authentication
front-ends such as mod_auth_digest and mod_auth_
basic to authenticate users by looking them up in plain-text
password files. The mod_authn_dbm module provides similar
functionality.

When using mod_auth_basic or mod_auth_digest, this
module is invoked using the AuthBasicProvider or
AuthDigestProvider with the file value.

27_556801-bapp02.indd 40027_556801-bapp02.indd 400 8/31/10 9:26 AM8/31/10 9:26 AM

401

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce
mod_authnz_ldap

DIRECTIVE DESCRIPTION CONTEXT

AuthLDAPBindAuthoritative On|Off Determines if other authentication
providers are used when a user can be
mapped to a DN but the server cannot
successfully bind with the user’s
credentials

directory, .htaccess

AuthLDAPBindDN distinguished-name Sets the optional DN to use in binding to
the LDAP server

directory, .htaccess

AuthLDAPBindPassword password Sets the password used in conjunction
with the bind DN

directory, .htaccess

AuthLDAPCharsetConfig file-path Sets the language-to-charset conversion
configuration file

server

AuthLDAPCompareDNOnServer On|Off Allow the LDAP server to compare the
DNs

directory, .htaccess

AuthLDAPDereferenceAliases
never|searching|finding|always

Specifies when the module de-references
aliases

directory, .htaccess

AuthLDAPGroupAttribute attribute Configures the LDAP attributes used to
check for group membership

directory, .htaccess

AuthLDAPGroupAttributeIsDN On|Off Enables whether the DN of the client
username is used when checking for group
membership

directory, .htaccess

AuthLDAPRemoteUserAttribute uid Configure the value of the attribute
returned during the user query to set the
REMOTE_USER environment variable

directory, .htaccess

AuthLDAPRemoteUserIsDN On|Off Enables whether the DN of the client
username is used to set the REMOTE_USER
environment variable

directory, .htaccess

AuthLDAPUrl url
[NONE|SSL|TLS|STARTTLS]

URL specifying the LDAP search
parameters

directory, .htaccess

AuthzLDAPAuthoritative On|Off Prevents other authentication modules
from authenticating the user if this one
fails

directory, .htaccess

The mod_authnz_ldap module provides authentication front-ends such as mod_auth_basic to authenticate users
through an ldap directory.

mod_authnz_ldap supports the following features:

• It is known to support the OpenLDAP SDK (both 1.x and 2.x), Novell LDAP SDK, and the iPlanet (Netscape) SDK.

• Complex authorization policies can be implemented by representing the policy with LDAP filters.

• Uses extensive caching of LDAP operations through mod_ldap.

• Support for LDAP over SSL (requires the Netscape SDK) or TLS (requires the OpenLDAP 2.x SDK or Novell LDAP SDK).
When using mod_auth_basic, this module is invoked using the AuthBasicProvider directive with the ldap value.

continued ➔

27_556801-bapp02.indd 40127_556801-bapp02.indd 401 8/31/10 9:26 AM8/31/10 9:26 AM

402

DIRECTIVE DESCRIPTION CONTEXT

AuthDBMGroupFile file-path Sets the name of the database file
containing the list of user groups for
authorization

directory, .htaccess

AuthzDBMAuthoritative On|Off Sets whether authorization will be
passed on to lower-level modules

directory, .htaccess

AuthzDBMType
default|SDBM|GDBM|NDBM|DB

Sets the type of database file that is used
to store a list of user groups

directory, .htaccess

mod_authz_dbm

Apache Authentication and Authorization
Modules and Directives (continued)

The mod_authz_dbm module provides authorization capabilities so that authenticated
users can be allowed or denied access to portions of the Web site by group membership.

DIRECTIVE DESCRIPTION CONTEXT

AuthzDefaultAuthoritative On|Off Sets whether authorization is passed to
lower-level modules

directory, .htaccess

mod_authz_default

The mod_authz_default module provides authorization capabilities so that authenticated
users can be allowed or denied access to portions of the Web site by group membership.

DIRECTIVE DESCRIPTION CONTEXT

AuthGroupFile file-path Sets the name of a text file containing
the list of user groups for authorization

directory, .htaccess

AuthzGroupFileAuthoritative On|Off Sets whether authorization will be
passed on to lower-level modules

directory, .htaccess

mod_authz_groupfile

The mod_authz_groupfile module provides authorization capabilities so that authenticated
users can be allowed or denied access to portions of the Web site by group membership.

27_556801-bapp02.indd 40227_556801-bapp02.indd 402 8/31/10 9:26 AM8/31/10 9:26 AM

403

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce
mod_authz_host

DIRECTIVE DESCRIPTION CONTEXT

Allow from all|host|env=[!]env-variable
[host|env=[!]env-variable] ...

Controls which hosts can access an area of the
server

directory, .htaccess

Deny from all|host|env=[!]env-variable
[host|env=[!]env-variable] ...

Controls which hosts are denied access to the
server

directory, .htaccess

Order ordering Controls the default access state and the order
in which the Allow and Deny directives are
evaluated

directory, .htaccess

The directives provided by mod_authz_host are used in
<Directory>, <Files>, and <Location> sections as
well as .htaccess files to control access to particular
parts of the server. You can control access based on the
client hostname, IP address, or other characteristics of the
client request, as captured in environment variables. You use
the Allow and Deny directives to specify which clients are or
are not allowed access to the server, while you use the Order
directive to set the default access state, and configure how
the Allow and Deny directives interact with each other.

Both host-based access restrictions and password-based
authentication may be implemented simultaneously. In that

case, you use the Satisfy directive to determine how the two
sets of restrictions interact. The Satisfy directive has two
possible configurations: Satisfy Any requires at least
one restriction to pass, Satisfy All requires all
restrictions to pass.

In general, access restriction directives apply to all access
methods (GET, PUT, POST, and so on). This is the desired
behavior in most cases. However, it is possible to restrict
some methods, while leaving other methods unrestricted, by
enclosing the directives in a <Limit> section.

mod_authz_owner

DIRECTIVE DESCRIPTION CONTEXT

AuthzOwnerAuthoritative On|Off Sets whether authorization will be passed on to
lower-level modules

directory, .htaccess

The mod_authz_owner module authorizes access to files
by comparing the userID used for HTTP authentication (the
Web userID) with the file-system owner or group of the

requested file. The supplied username and password must
already be properly verified by an authentication module,
such as mod_auth_basic or mod_auth_digest.

mod_authz_user

DIRECTIVE DESCRIPTION CONTEXT

AuthzUserAuthoritative On|Off Sets whether authorization will be passed on to
lower-level modules

directory, .htaccess

The mod_authz_user module provides authorization
capabilities so that authenticated users can be allowed or
denied access to portions of the Web site. The mod_
authz_user module grants access if the authenticated

user is listed in a Require user directive. Alternatively, you
can use Require valid-user to grant access to all successfully
authenticated users.

27_556801-bapp02.indd 40327_556801-bapp02.indd 403 8/31/10 9:26 AM8/31/10 9:26 AM

404

DIRECTIVE DESCRIPTION CONTEXT

CacheDefaultExpire seconds Configures the default duration to cache a
document when no expiry date is specified

server, virtual

CacheDisable url-string Disables caching of specified URLs server, virtual

CacheEnable cache_type url-string Enables caching of specified URLs using a
specified storage manager

server, virtual

CacheIgnoreCacheControl On|Off Ignores a request to not serve cached content to a
client

server, virtual

CacheIgnoreHeaders header-string [header-string] ... Does not allow the given HTTP header(s) to be
stored in the cache

server, virtual

CacheIgnoreNoLastMod On|Off Ignores the fact that a response has no Last
Modified header

server, virtual

CacheIgnoreQueryString On|Off Ignores a query string when caching server, virtual

CacheIgnoreURLSessionIdentifiers identifier [identifier] ... Ignores defined session identifiers encoded in the
URL when caching

server, virtual

CacheLastModifiedFactor float Sets the factor used to compute an expiry date
based on the LastModified date

server, virtual

CacheLock On|Off Enables the mod_cache locking functionality server, virtual

CacheLockMaxAge integer Sets the maximum possible age of a cache lock server, virtual

CacheLockPath directory Sets the lock path directory server, virtual

CacheMaxExpire seconds Sets the maximum time in seconds to cache a
document

server, virtual

CacheStoreNoStore On|Off Attempts to cache requests or responses that
have been marked as no-store

server, virtual

CacheStorePrivate On|Off Attempts to cache responses that the server has
marked as private

server, virtual

mod_cache

B elow is a list of extended modules that come as
part of the Apache distribution. They are not a
part of the base group because they provide

optional, extended functionality beyond a normal Web
server.

Apache Extended
Modules and Directives

mod_cache module implements an RFC 2616-compliant HTTP content cache that you can use to cache either
local or proxied content. This module requires the services of one or more storage management modules.

27_556801-bapp02.indd 40427_556801-bapp02.indd 404 8/31/10 9:26 AM8/31/10 9:26 AM

405

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce
mod_cern_meta

DIRECTIVE DESCRIPTION CONTEXT

MetaDir directory Sets the name of the directory where you can find
CERN-style meta information files

server, virtual, directory, .htaccess

MetaFiles On|Off Activates CERN meta-file processing server, virtual, directory, .htaccess

MetaSuffix suffix Assigns the filename suffix for the file containing
CERN-style meta information

server, virtual, directory, .htaccess

The mod_cern_meta module emulates the CERN HTTPD Meta file semantics. Meta files are HTTP
headers that can be output in addition to the normal range of headers for each file a user accesses.

mod_charset_lite

DIRECTIVE DESCRIPTION CONTEXT

CharsetDefault charset Sets the character-set to translate into server, virtual, directory, .htaccess

CharsetOptions option [option] ... Configures character-set translation behavior server, virtual, directory, .htaccess

CharsetSourceEnc charset Configures the source character-set of files server, virtual, directory, .htaccess

The mod_charset_lite module allows the server to
change the character set of responses before sending them
to the client. In an EBCDIC environment, Apache always
translates HTTP protocol content (such as response
headers) from the code page of the Apache process locale to
ISO-8859-1, but not the body of responses. In any

environment, you can use mod_charset_lite to specify
that response bodies should be translated. For example, if
files are stored in EBCDIC, then mod_charset_lite can
translate them to ISO-8859-1 before sending them to the
client.

mod_dav

DIRECTIVE DESCRIPTION CONTEXT

Dav On|Off|provider-name Enables WebDAV HTTP methods directory

DavDepthInfinity On|Off Allows PROPFIND, Depth: Infinity
requests

server, virtual, directory

DavLockDB file-path Location of the DAV lock database server, virtual

DavMinTimeout seconds Minimum amount of time the server
holds a lock on a DAV resource

server, virtual, directory

The mod_dav module provides class 1 and class 2 WebDAV
(Web-based Distributed Authoring and Versioning)
functionality for Apache. This extension to the HTTP protocol

allows creating, moving, copying, and deleting resources and
collections on a remote Web server.

continued ➔

27_556801-bapp02.indd 40527_556801-bapp02.indd 405 8/31/10 9:26 AM8/31/10 9:26 AM

406

DIRECTIVE DESCRIPTION CONTEXT

DBDExptime seconds Sets the keepalive time for idle connections server, virtual

DBDKeep number Sets the maximum sustained number of connections server, virtual

DBDMax number Sets the maximum number of connections server, virtual

DBDMin number Sets the minimum number of connections server, virtual

DBDParams
param1=value1[,param2=value2]

Appends parameters for the database connection server, virtual

DBDPersist On|Off Specifies whether to use persistent connections server, virtual

DBDPrepareSQL “SQL statement” label Defines an SQL prepared statement server, virtual

DBDriver name Specifies an SQL driver server, virtual

mod_dbd

Apache Extended Modules
and Directives (continued)

The mod_dbd module manages SQL database connections
using Apache Portable Runtime (APR) library. It provides
database connections on request to modules requiring SQL

database functions, and takes care of managing databases with
optimal efficiency and scalability for both threaded and non-
threaded MPMs.

DIRECTIVE DESCRIPTION CONTEXT

DeflateBufferSize value Fragment size to be compressed at one time by zlib server, virtual

DeflateCompressionLevel value Specifies how much compression you apply to the output server, virtual

DeflateFilterNote [type] notename Places the compression ratio in a note for logging server, virtual

DeflateMemLevel value Specifies how much memory zlib should use for compression server, virtual

DeflateWindowSize value Sets the zlib compression window size server, virtual

mod_deflate

The mod_deflate module provides the DEFLATE output filter that allows output from
your server to be compressed before being sent to the client over the network.

DIRECTIVE DESCRIPTION CONTEXT

CacheDirLength length Sets the number of characters in subdirectory names server, virtual

CacheDirLevels levels Sets the number of levels of subdirectories in the cache server, virtual

CacheMaxFileSize bytes Sets the maximum size (in bytes) of a document to be placed in the cache server, virtual

CacheMinFileSize bytes Sets the minimum size (in bytes) of a document to be placed in the cache server, virtual

CacheRoot directory Sets the directory root under which cache files are stored server, virtual

mod_disk_cache

The mod_disk_cache module implements a disk-based
storage manager. You would use it primarily in conjunction with
mod_cache.

Content is stored in and retrieved from the cache using URI-
based keys. Content with access protection is not cached.

27_556801-bapp02.indd 40627_556801-bapp02.indd 406 8/31/10 9:26 AM8/31/10 9:26 AM

407

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_expires

DIRECTIVE DESCRIPTION CONTEXT

ExpiresActive On|Off Enables the generation of Expires
headers

server, virtual, directory, .htaccess

ExpiresByType MIME-type seconds Configures the value of the Expires
header configured by MIME type

server, virtual, directory, .htaccess

ExpiresDefault base [plus] number type Sets the default algorithm for
calculating expiration time

server, virtual, directory, .htaccess

The mod_expires module controls the setting of the
Expires HTTP header and the max-age directive of the
Cache-Control HTTP header in server responses. You can
set the expiration date to be relative to either the time the
source file was last modified, or to the time of the client
access.

These HTTP headers are an instruction to the client about
the document’s validity and persistence. If cached, the
document may be fetched from the cache rather than from
the source until this time has passed. After that, the cache
copy is considered expired and invalid, and a new copy must
be obtained from the source.

mod_ext_filter

DIRECTIVE DESCRIPTION CONTEXT

ExtFilterDefine filtername parameters Defines an external filter characteristics server

ExtFilterOptions option [option] ... Configures a filter’s options directory

The mod_ext_filter module presents a simple and
familiar programming model for filters. With this module, a
program that reads from stdin and writes to stdout
(such as a Unix-style filter command) can be a filter for
Apache. This filtering mechanism is much slower than using
a filter that is specially written for the Apache API and runs
inside of the Apache server process, but it does have the
following benefits:

• The programming model is much simpler.

• You can use any programming/scripting language,
provided that it allows the program to read from standard
input and write to standard output.

• You can use existing programs, unmodified, as Apache
filters.

Even when the performance characteristics are not suitable
for production use, you can use mod_ext_filter as a
prototype environment for filters.

mod_headers

DIRECTIVE DESCRIPTION CONTEXT

Header [condition] set|append|merge|
add|unset|echo|edit header [value]
[early|env=[!]variable]

Configures HTTP response headers server, virtual, directory, .htaccess

RequestHeader
set|append|merge|add|unset|edit
header [value] [replacement]
[early|env=[!]variable]

Configures HTTP request headers server, virtual, directory, .htaccess

The mod_headers module provides directives to control and modify HTTP
request and response headers. You can merge, replace, or remove headers.

continued ➔

27_556801-bapp02.indd 40727_556801-bapp02.indd 407 8/31/10 9:26 AM8/31/10 9:26 AM

408

DIRECTIVE DESCRIPTION CONTEXT

IdentityCheck On|Off Enables logging of the RFC 1413 identity
of the remote user

server, virtual, directory

IdentityCheckTimeout seconds Determines the timeout duration for
identity requests

server, virtual, directory

mod_ident

Apache Extended Modules
and Directives (continued)

The mod_ident module queries an RFC 1413-compatible
daemon on a remote host to look up the owner of a connection.

mod_include

DIRECTIVE DESCRIPTION CONTEXT

SSIEnableAccess On|Off Enables the -A flag during conditional flow-control
processing

directory, .htaccess

SSIEndTag tag String that ends an include element server, virtual

SSIErrorMsg message Error message displayed when there is an SSI error server, virtual, directory, .htaccess

SSIETag On|Off Controls whether the server generates ETags directory, .htaccess

SSILastModified On|Off Controls whether the server generates Last-Modified
headers

directory, .htaccess

SSIStartTag tag String that starts an include element server, virtual

SSITimeFormat formatstring Configures the format in which date strings are
displayed

server, virtual, directory, .htaccess

SSIUndefinedEcho string String displayed when an unset variable is echoed server, virtual, directory, .htaccess

XBitHack On|Off|Full Parses SSI directives in files with the execute bit set server, virtual, directory, .htaccess

The mod_include module provides a filter that will process
files before they are sent to the client. The processing is
controlled by specially formatted SGML comments, referred to

as elements. These elements allow conditional text, the
inclusion of other files or programs, and the setting and
printing of environment variables.

27_556801-bapp02.indd 40827_556801-bapp02.indd 408 8/31/10 9:26 AM8/31/10 9:26 AM

409

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce
mod_ldap

DIRECTIVE DESCRIPTION CONTEXT

LDAPCacheEntries number Sets the maximum number of entries in
the primary LDAP cache

server

LDAPCacheTTL seconds Sets the time that cached items remain
valid

server

LDAPConnectionTimeout seconds Specifies the socket connection
timeout in seconds

server

LDAPOpCacheEntries number Sets the number of entries used to
cache LDAP compare operations

server

LDAPOpCacheTTL seconds Sets the time that entries in the
operation cache remain valid

server

LDAPSharedCacheFile directory/filename Sets the shared memory cache file server

LDAPSharedCacheSize bytes Sets the size in bytes of the shared-
memory cache

server

LDAPTrustedClientCert type directory/
filename/nickname [password]

Sets the file containing or nickname
referring to a per-connection client
certificate. Not all LDAP toolkits
support per-connection client
certificates.

server, virtual, directory, .htaccess

LDAPTrustedGlobalCert type directory/
filename [password]

Sets the file or database containing
global trusted Certificate Authority or
global client certificates

server

LDAPTrustedMode type Specifies the SSL/TLS mode to be used
when connecting to an LDAP server

server, virtual

LDAPVerifyServerCert On|Off Forces server certificate verification server

The mod_ldap module was created to improve the performance of Web sites relying on back-end connections to LDAP
servers. In addition to the functions provided by the standard LDAP libraries, this module adds an LDAP connection pool and
an LDAP shared memory cache.

mod_log_forensic

DIRECTIVE DESCRIPTION CONTEXT

ForensicLog filename|pipe Sets the filename of the forensic log server, virtual

The mod_log_forensic module provides for forensic logging of client requests. Logging is done
before and after processing a request, so the forensic log contains two log lines for each request.

continued ➔

27_556801-bapp02.indd 40927_556801-bapp02.indd 409 8/31/10 9:26 AM8/31/10 9:26 AM

410

DIRECTIVE DESCRIPTION CONTEXT

MCacheMaxObjectCount value Sets the maximum number of objects
allowed to be placed in the cache

server

MCacheMaxObjectSize bytes Sets the maximum size (in bytes) of a
document allowed in the cache

server

MCacheMaxStreamingBuffer bytes Sets the maximum amount of a streamed
response to buffer in memory before
declaring the response uncacheable

server

MCacheMinObjectSize bytes Sets the minimum size (in bytes) of a
document to be allowed in the cache

server

MCacheRemovalAlgorithm LRU|GDSF Configures the algorithm used to select
documents for removal from the cache

server

MCacheSize KBytes Sets the maximum amount of memory
used by the cache in KBytes

server

mod_mem_cache

Apache Extended Modules
and Directives (continued)

The mod_mem_cache module requires the service of mod_
cache. It acts as a support module for mod_cache and
provides a memory-based storage manager. You can configure
mod_mem_cache to operate in two modes: caching open file
descriptors or caching objects in heap storage. The

mod_mem_cache module is most useful when you use it to
cache locally generated content or to cache back-end server
content for mod_proxy configured for ProxyPass (also called
reverse proxy).

DIRECTIVE DESCRIPTION CONTEXT

MimeMagicFile file-path Enables MIME-type determination based
on file contents using the specified magic
file

server, virtual

mod_mime_magic

The mod_mime_magic module determines the MIME type of
files in the same way the Unix file(1) command works: it
looks at the first few bytes of the file. It is intended as a second

line of defense for cases where mod_mime cannot resolve the
MIME type.

27_556801-bapp02.indd 41027_556801-bapp02.indd 410 8/31/10 9:26 AM8/31/10 9:26 AM

411

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce
mod_proxy

DIRECTIVE DESCRIPTION CONTEXT

AllowCONNECT port [port] ... Configures the ports that are allowed to connect
through the proxy

server, virtual

BalancerMember [balancerurl] url
[key=value [key=value ...]]

Adds a member to a load balancing group directory

NoProxy host [host] ... Configures the hosts, domains, or networks that will
be connected to directly

server, virtual

<Proxy wildcard-URL> ...</Proxy> Defines a container for directives applied to proxied
resources

server, virtual

ProxyBadHeader
IsError|Ignore|StartBody

Determines how to handle bad header lines in a
response

server, virtual

ProxyBlock *|word|host|domain
[word|host|domain] ...

Configures the words, hosts, or domains that are
banned from being proxied

server, virtual

ProxyDomain domain Sets the default domain name for proxied requests server, virtual

ProxyErrorOverride On|Off Overrides error pages for proxied content server, virtual

ProxyFtpDirCharset character-set Defines the character set for proxied FTP listings server, virtual, directory

ProxyIOBufferSize bytes Determines the size of the internal data throughput
buffer

server, virtual

<ProxyMatch regex> ...</ProxyMatch> Defines a container for directives applied to regular-
expression-matched proxied resources

server, virtual

ProxyMaxForwards number Sets the maximum number of proxies that a request
can be forwarded through

server, virtual

ProxyPass [path] !|URL [key=value
key=value ...]] [nocanon] [interpolate]

Maps remote servers into the local server URL-space server, virtual, directory

ProxyPassInterpolateEnv On|Off Enables Environment Variable interpolation in
Reverse Proxy configurations

server, virtual, directory

ProxyPassMatch [regex] !|URL
[key=value [key=value ...]]

Maps remote servers into the local server URL-space
using regular expressions

server, virtual, directory

ProxyPassReverse [path] URL
[interpolate]

Adjusts the URL in HTTP response headers sent
from a reverse-proxied server

server, virtual, directory

ProxyPassReverseCookieDomain
internal-domain public-domain
[interpolate]

Adjusts the Domain string in Set-Cookie headers
from a reverse-proxied server

server, virtual, directory

ProxyPassReverseCookiePath internal-
path public-path [interpolate]

Adjusts the Path string in Set-Cookie headers from a
reverse-proxied server

server, virtual, directory

ProxyPreserveHost On|Off Uses an incoming Host HTTP request header for a
proxy request

server, virtual

ProxyReceiveBufferSize bytes Sets the network buffer size for proxied HTTP and
FTP connections

server, virtual

ProxyRemote match remote-server Configures the remote proxy used to handle certain
requests

server, virtual

(continued)

The mod_proxy module implements a proxy/gateway for
Apache. It implements proxying capability for AJP13 (Apache
JServe Protocol version 1.3), FTP, CONNECT (for SSL),

HTTP/0.9, HTTP/1.0, and HTTP/1.1. You can configure the
module to connect to other proxy modules for these and
other protocols.

continued ➔

27_556801-bapp02.indd 41127_556801-bapp02.indd 411 8/31/10 9:26 AM8/31/10 9:26 AM

412

DIRECTIVE DESCRIPTION CONTEXT

ProxyRemoteMatch regex remote-server Configures the remote proxy used to handle requests
matched by regular expressions

server, virtual

ProxyRequests On|Off Enables forward (standard) proxy requests server, virtual

ProxySCGIInternalRedirect On|Off Enables internal redirect responses from the back-end server, virtual, directory

ProxySCGISendfile On|Off|headername Enables evaluation of an X-Sendfile pseudo response header server, virtual, directory

ProxySet URL key=value [key=value ...] Sets various Proxy balancer or member parameters directory

ProxyStatus Off|On|Full Shows Proxy LoadBalancer status in mod_status server, virtual

ProxyTimeout seconds Sets the network timeout for proxied requests server, virtual

ProxyVia On|Off|Full|Block Shows information provided in the Via HTTP response
header for proxied requests

server, virtual

mod_proxy (continued)

Apache Extended Modules
and Directives (continued)

mod_rewrite

DIRECTIVE DESCRIPTION CONTEXT

RewriteBase URL-path Sets the base URL for per-directory rewrites directory, .htaccess

RewriteCond TestString CondPattern Defines a condition under which rewriting will
take place

server, virtual, directory, .htaccess

RewriteEngine On|Off Enables or disables the runtime rewriting
engine RewriteMap synchronization

server, virtual, directory, .htaccess

RewriteLock file-path Sets the name of the lock file used for
RewriteMap synchronization

server

RewriteLog file-path Sets the name of the file used for logging
rewrite engine processing

server, virtual

RewriteLogLevel level Sets the verbosity of the log file used by the
rewrite engine

server, virtual

RewriteMap MapName
MapType:MapSource

Defines a mapping function for key-lookup server, virtual

RewriteOptions Options Sets some special options for the rewrite engine server, virtual, directory, .htaccess

RewriteRule Pattern Substitution [flags] Defines rules for the rewriting engine server, virtual, directory, .htaccess

The mod_rewrite module uses a rule-based rewriting engine
(based on a regular-expression parser) to rewrite requested
URLs on the fly. It supports an unlimited number of rules and
an unlimited number of attached rule conditions for each rule,
to provide an extremely flexible and powerful URL manipulation
mechanism. The URL manipulations can depend on various
tests, of server variables, environment variables, HTTP headers,
or timestamps. You can even use external database lookups in
various formats to achieve highly granular URL matching.

This module operates on the full URLs (including the path-
information part) both in per-server context (httpd.conf)
and per-directory context (.htaccess) and can generate
query-string modifications on the result. The rewritten result
can lead to internal subprocessing, external request redirection,
or even an internal proxy throughput.

You can find further details, discussion, and examples in the
detailed mod_rewrite documentation at http://httpd.
apache.org/docs/2.2/rewrite/.

27_556801-bapp02.indd 41227_556801-bapp02.indd 412 8/31/10 9:26 AM8/31/10 9:26 AM

413

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_ssl

DIRECTIVE DESCRIPTION CONTEXT

SSLCACertificateFile file-path Sets the file of concatenated PEM-encoded CA
Certificates for Client Auth

server, virtual

SSLCACertificatePath directory-path Sets the directory of PEM-encoded CA Certificates
for Client Auth

server, virtual

SSLCADNRequestFile file-path Sets the file of concatenated PEM-encoded CA
Certificates for defining acceptable CA names

server, virtual

SSLCADNRequestPath directory-path Sets the directory of PEM-encoded CA Certificates
for defining acceptable CA names

server, virtual

SSLCARevocationFile file-path Sets the file of concatenated PEM-encoded CA CRLs
for Client Auth

server, virtual

SSLCARevocationPath directory-path Sets the directory of PEM-encoded CA CRLs for
Client Auth

server, virtual

SSLCertificateChainFile file-path Sets the file of PEM-encoded Server CA Certificates server, virtual

SSLCertificateFile file-path Sets the server PEM-encoded X.509 Certificate file server, virtual

SSLCertificateKeyFile file-path Sets the server PEM-encoded Private Key file server, virtual

SSLCipherSuite cipher-spec Defines the cipher Suite available for negotiation in
an SSL handshake

server, virtual, directory,
.htaccess

SSLCryptoDevice engine Enables use of a cryptographic hardware accelerator server

SSLEngine on|off|optional Enables the SSL operation switch server, virtual

SSLHonorCipherOrder flag Configures the server’s cipher preference order server, virtual

SSLInsecureRenegotiation On|Off Enables support for insecure renegotiation server, virtual

SSLMutex type Configures the semaphore for internal mutual
exclusion of operations

server

SSLOptions [+|-]option ... Configures various SSL engine run-time options server, virtual, directory,
.htaccess

SSLPassPhraseDialog type Configures the type of pass-phrase dialog for
encrypted private keys

server

SSLProtocol [+|-]protocol ... Configures usable SSL protocol flavors server, virtual

SSLProxyCACertificateFile file-path Sets the file of concatenated PEM-encoded CA
Certificates for Remote Server Auth

server, virtual

SSLProxyCACertificatePath
directory-path

Sets the directory of PEM-encoded CA Certificates
for Remote Server Auth

server, virtual

SSLProxyCARevocationFile file-path Sets the file of concatenated PEM-encoded CA CRLs
for Remote Server Auth

server, virtual

SSLProxyCARevocationPath
directory-path

Sets the directory of PEM-encoded CA CRLs for
Remote Server Auth

server, virtual

SSLProxyCheckPeerCN On|Off Specifies whether to check the remote server
certificate’s CN field

server, virtual

(continued)

The mod_ssl module provides SSL v2/v3 and TLS v1 support for the Apache HTTP Server.
It was contributed by Ralf S. Engelschall based on his mod_ssl project and originally derived
from work by Ben Laurie. This module relies on OpenSSL to provide the cryptography engine.

continued ➔

27_556801-bapp02.indd 41327_556801-bapp02.indd 413 8/31/10 9:26 AM8/31/10 9:26 AM

414

DIRECTIVE DESCRIPTION CONTEXT

SSLProxyCheckPeerExpire On|Off Specifies whether to check if a remote server certificate
is expired

server, virtual

SSLProxyCipherSuite cipher-spec Configures the cipher Suite available for negotiation in
SSL proxy handshake

server, virtual, directory,
.htaccess

SSLProxyEngine On|Off Enables the SSL Proxy engine operation server, virtual

SSLProxyMachineCertificateFile filename Sets the file of concatenated PEM-encoded client
certificates and keys to be used by the proxy

server

SSLProxyMachineCertificatePath directory Sets the directory of PEM-encoded client certificates
and keys to be used by the proxy

server

SSLProxyProtocol [+|-]protocol ... Configures usable SSL protocol flavors for proxy usage server, virtual

SSLProxyVerify level Type of remote server certificate verification server, virtual, directory,
.htaccess

SSLProxyVerifyDepth number Sets the maximum depth of CA Certificates in Remote
Server Certificate verification

server, virtual, directory,
.htaccess

SSLRandomSeed context source [bytes] Assigns a Pseudo Random Number Generator (PRNG)
seeding source

server

SSLRenegBufferSize bytes Sets the size for the SSL renegotiation buffer directory, .htaccess

SSLRequire expression Allows access only when an arbitrarily complex Boolean
expression is true

directory, .htaccess

SSLRequireSSL Denies access when SSL is not used for the HTTP
request

directory, .htaccess

SSLSessionCache type Configures the type of global/inter-process SSL Session
Cache

server

SSLSessionCacheTimeout seconds Sets the number of seconds before an SSL session
expires in the Session Cache

server, virtual

SSLStrictSNIVHostCheck On|Off Specifies whether to allow non-SNI clients to access a
name-based virtual host

server, virtual

SSLUserName varnames Assigns an environment variable name to determine the
“user” field in the Apache request object

server, virtual, .htaccess

SSLVerifyClient level Sets the type of Client Certificate verification server, virtual, directory,
.htaccess

SSLVerifyDepth number Sets the maximum depth of CA Certificates in Client
Certificate verification

server, virtual, directory,
.htaccess

mod_ssl (continued)

Apache Extended Modules
and Directives (continued)

27_556801-bapp02.indd 41427_556801-bapp02.indd 414 8/31/10 9:26 AM8/31/10 9:26 AM

415

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_speling

DIRECTIVE DESCRIPTION CONTEXT

CheckCaseOnly On|Off Limits the action of the module to case corrections server, virtual, directory, .htaccess

CheckSpelling On|Off Enables the spelling module server, virtual, directory, .htaccess

Sometimes the core Apache server cannot serve requests for
documents because the request was misspelled or
incorrectly capitalized. The mod_speling module
addresses this problem by trying to find a matching
document. It does its work by comparing each document

name in the requested directory against the requested
document name without regard to case, and allowing up to
one misspelling (character insertion / omission /
transposition or wrong character). A list is built with all
document names that were matched using this strategy.

mod_substitute

DIRECTIVE DESCRIPTION CONTEXT

Substitute s/pattern/substitution/[flags] Sets a pattern to filter the response content directory, .htaccess

The mod_substitute module provides a mechanism to perform both
regular-expression and fixed-string substitutions on response bodies.

mod_suexec

DIRECTIVE DESCRIPTION CONTEXT

SuexecUserGroup User Group Assigns a user and group for CGI programs server, virtual

The mod_suexec module allows for CGI programs to run as a pre-
determined user and group, with limited privileges, on the Web server.

continued ➔

27_556801-bapp02.indd 41527_556801-bapp02.indd 415 8/31/10 9:26 AM8/31/10 9:26 AM

416

DIRECTIVE DESCRIPTION CONTEXT

CookieDomain domain Sets the domain to which the tracking
cookie applies

server, virtual, directory, .htaccess

CookieExpires expiry-period Sets the expiry time for the tracking
cookie

server, virtual, directory, .htaccess

CookieName token Assigns the name of the tracking cookie server, virtual, directory, .htaccess

CookieStyle Netscape|Cookie|Cookie2|
RFC2109|RFC2965

Configures the format of the cookie
header field

server, virtual, directory, .htaccess

CookieTracking On|Off Enables a tracking cookie server, virtual, directory, .htaccess

mod_usertrack

Apache Extended Modules
and Directives (continued)

Previous releases of Apache have included a module that
generates a clickstream log of user activity on a site using
cookies. This was called the “cookies” module, mod_cookies.

In Apache 1.2 and later, this module has been renamed the
“user tracking” module, mod_usertrack. This module has
been simplified and new directives have been added.

27_556801-bapp02.indd 41627_556801-bapp02.indd 416 8/31/10 9:26 AM8/31/10 9:26 AM

417

A
ppen

dix B
: A

pach
e Con

figu
re an

d M
odu

le R
eferen

ce

mod_vhost_alias

DIRECTIVE DESCRIPTION CONTEXT

VirtualDocumentRoot
interpolated-directory|None

Configures the location of the
document root for a given virtual host

server, virtual

VirtualDocumentRootIP
interpolated-directory|none

Configures the location of the
document root for a given virtual host

server, virtual

<VirtualHost addr[:port] [addr[:port]]
...> ... </VirtualHost>

Contains directives that apply only to a
specific hostname or IP address

server

VirtualScriptAlias
interpolated-directory|None

Configures the location of the CGI
directory for a given virtual host

server, virtual

VirtualScriptAliasIP
interpolated-directory|None

Configures the location of the CGI
directory for a given virtual host

server, virtual

The mod_vhost_alias module creates dynamically
configured virtual hosts, by allowing the IP address and/or
the Host: header of the HTTP request to be used as part of

the pathname to determine what files to serve. This allows
for easy use of a huge number of virtual hosts with similar
configurations.

27_556801-bapp02.indd 41727_556801-bapp02.indd 417 8/31/10 9:26 AM8/31/10 9:26 AM

418

Useful Perl
Modules

O ne of the strengths of Perl is its extensive list
of add-on modules that you can import into
any Perl script. Perl has enjoyed several years

of popularity among developers, so much so that many
have contributed back to the Perl community by
publishing their own custom modules onto the CPAN
repository for others to learn and benefit from.
Some of these modules are pre-installed on your
computer alongside the Perl interpreter, while you must

manually install other modules using programs such as
CPAN, ActiveState PPM, or some other packaging system.
For more information on installing and using third-party
modules, see Chapter 9.
You can always confirm whether you have a module
installed by using PerlDoc to view its documentation. Run
the following command in a Terminal window:
perldoc module

Viewing Data

Data::Dumper

The Data::Dumper module displays the
contents of any type of Perl variable as Perl
syntax. When used on a multi-dimensional
array reference or a hash reference variable,
each level is described in the module’s
output. Recursively linked references are
handled in a way that eliminates infinite
loops, but that accurately portrays all the
information in the variable.

You can use this module with a simple,
function-based interface, or with an
extended, object-orientated interface. In
simple mode, the output appears with
generic variable names on the top level,
but all keys and values are accurate. In
extended mode, you can give the dumped
references user-specified names:

use Data::Dumper;

print Dumper($hashref, ...);

Because Data::Dumper outputs literal
Perl syntax, you can use eval to
recreate the original structure as a new
variable in memory:

$VAR1 = {

 ‘key1’ => value1,

 ‘key2’ => value2,

 ...

};

This module is standard in all Perl installations.

FUNCTIONS DESCRIPTION

Dumper(LIST) Returns all keys, values, and references
found in LIST as a string.

CONFIGURATION
VARIABLES

DESCRIPTION

$Data::Dumper::Indent Controls the style of indentation.

$Data::Dumper::Varname Assigns the prefix to use for tagging variable
names in the output. The default is “VAR.”

$Data::Dumper::Useqq Enables the use of double quotes for
representing string values when set.

$Data::Dumper::Terse Allows Data::Dumper to emit single, non-
self-referencing values as atoms and terms,
rather than statements.

$Data::Dumper::Deepcopy Allows deep copies of structures; cross-
referencing will then only be done when
absolutely essential.

$Data::Dumper::Quotekeys Enables controling whether hash keys are
quoted.

$Data::Dumper::Pair Can be set to a string that specifies the
separator between hash keys and values.
The default is “ => ”.

$Data::Dumper::Maxdepth Set to a positive integer that specifies the
depth beyond which we do not venture into
a structure.

$Data::Dumper::Sortkeys Set to a Boolean value to control whether
hash keys are dumped in sorted order.

$Data::Dumper::Deparse Set to a Boolean value to control whether
code references are turned into Perl source
code.

Depending on your variable types, you will find that viewing their data values is not always consistent. You can easily view scalars
with print, but arrays require print and join, and hashes require a while loop with each. You cannot view multi-
dimensional array or hash references without complex logic, unless you use some help.

28_556801-bapp03.indd 41828_556801-bapp03.indd 418 8/31/10 9:27 AM8/31/10 9:27 AM

419

A
ppen

dix C: U
sefu

l Perl M
odu

les

Securing Data

Digest::MD5

The Digest::MD5 module allows you to use the RSA Data
Security Inc. MD5 algorithm from within Perl programs.
The algorithm takes as input a string of arbitrary length and
produces as output a 128-bit “fingerprint,” or message
digest, of the input. You can use this fingerprint later to
validate that the original input string has not been
compromised. This module provides the same functionality
as the md5sum command-line program on Unix systems.

The Digest::MD5 module provides a function interface and
an object-orientated interface. None of these functions are
exported by default, so you must specify them when
importing the module:

use Digest::MD5 qw(md5 md5_hex md5_base64);

$md5sum = md5_hex($data);

This module is standard in all Perl installations.

FUNCTIONS DESCRIPTION

md5(data) Calculates the MD5 message
digest of the data, and
returns it in binary form

md5_hex(data) Same as md5, but returns the
digest in hexadecimal form

md5_base64(data) Same as md5, but returns the
digest as a base64 encoded
string

Note that the MD5 algorithm is not as strong as it used to
be. Since 2005, it has been easy to generate different
messages that produce the same MD5 digest. Stronger
digest modules include Digest::SHA1 and Digest::HMAC.
Read the PerlDoc Digest page for more information on
alternatives to Digest::MD5.

Crypt::CBC

The Crypt::CBC module is a Perl-only implementation of the
cryptographic cipher block chaining (CBC) mode. In
combination with a block cipher such as DES or Blowfish,
you can encrypt and decrypt strings of arbitrary length.

To use this module, you first create a Crypt::CBC cipher
object with new. At the time of cipher creation, you must
specify a shared-secret key to use and, optionally, a block
encryption algorithm. A shared-secret key is a string that
you use to encrypt and decrypt using a cipher algorithm.
Both the encrypting and decrypting programs require this
key in order to create and access the original data:

use Crypt::CBC;

my $cipher = Crypt::CBC->new(

 -key => SECRET,

 -cipher => ‘Blowfish’,

);

$ciphertext = $cipher->encrypt($data);

$plaintext = $cipher->decrypt($ciphertext) ;

The -key argument provides either a passphrase to use
to generate the encryption key, or the literal value of the
block cipher key. If used in passphrase mode, which is the
default, -key can be any number of characters; the actual
key is derived by sending the passphrase through a series
of MD5 hash operations.

The -cipher option specifies which block cipher
algorithm to use to encode each section of the message.
This argument is optional and defaults to the DES
algorithm unless you specify otherwise.

You can secure your data within Perl by making a digest fingerprint of the data (ensuring reliability) or encrypting it entirely
(ensuring privacy).

continued ➔

28_556801-bapp03.indd 41928_556801-bapp03.indd 419 8/31/10 9:27 AM8/31/10 9:27 AM

420

I f you only have a single variable of data that requires
encryption or decryption, you can use encrypt or
decrypt. However, if you have several pieces of

data, this can be inefficient and slow because the CBC

algorithm constantly rebuilds itself for each method call.
Instead, you can call start once, call crypt as many
times as needed, and then call finish.

Useful Perl
Modules (continued)

METHODS DESCRIPTION

new(args) Creates a new Crypt::CBC object; you can use arguments to assign the key, cipher, and other options.

start(process) Prepares the cipher for a series of encryption or decryption steps, resetting the internal state of the
cipher if necessary; the process field must literally be “encrypting” or “decrypting.”

crypt(data) Encrypts or decrypts the desired data.

finish() Flushes the internal buffer and returns any leftover ciphertext.

encrypt(data) Runs the entire sequence of start, crypt, and finish for you, processing the provided plaintext
and returning the corresponding ciphertext.

decrypt(data) Runs the entire sequence of start, crypt, and finish for you, processing the provided plaintext
and returning the corresponding plaintext.

encrypt-hex(data) Runs encrypt, but returns the ciphertext in hexadecimal characters.

decrypt_hex(data) Runs decrypt, but accepts hexadecimal ciphertext as input.

This type of encryption becomes useless if your shared-secret key becomes exposed. A more secure form of encryption is
called public-private key cryptography. This involves encrypting data with your private key, and decrypting it with your public
key. For more information, see the Perl module Crypt::OpenSSL::RSA.

Storing Data

Storable

The Storable package brings persistence to
your Perl data structures that contain any
combination of scalar, array, hash, or reference
objects. It allows you to serialize the structure
and save it to disk, and recreate the original
structure in memory when reading from disk.

You can use it in the regular procedural way by
calling store with a reference to the object to
be stored, along with the filename where the
image should be written. To retrieve data stored
to disk, use retrieve with a filename:

use Storable;

store($ref, ‘filename’);

$ref = retrieve(‘filename’);

FUNCTIONS DESCRIPTION

store(REF,
file)

Serializes the reference variable into a data stream
and writes it to disk as file.

nstore(REF,
file)

Serializes the reference variable, but writes it to disk as
big-endian data, also known as network-order.

retrieve
(file)

Retrieves the serialized data from file and
reconstructs the original reference variable. This
function works with both store and nstore.

freeze (REF) Serializes the reference variable into memory only.

thaw(VAR) Retrieves serialized data from a variable created with
freeze.

Additional file locking is available with the methods lock_store, lock_
nstore, and lock_retrieve. These functions are not exported by default.
To use them, you must provide the function name as an argument when
importing Storable into your Perl script.

Perl allows you to store and retrieve data using various methods and formats. This is useful if you need to write data to disk, and
access it later from a separate Perl process.

28_556801-bapp03.indd 42028_556801-bapp03.indd 420 8/31/10 9:27 AM8/31/10 9:27 AM

421

A
ppen

dix C: U
sefu

l Perl M
odu

les

Storing Data (continued)

Compress::ZLib

The Compress::ZLib module provides a Perl interface to the
zlib compression library. This module can be split into
two general areas of functionality: a simple read/write
interface to gzip files and a low-level in-memory
compression/decompression interface:

use Compress::ZLib;

$zdata = compress($data);

$data = uncompress($zdata);

FUNCTIONS DESCRIPTION

compress
(VAR,
level)

Compresses the input data with zlib,
and sets the optional level parameter to
0 through 9 for no-compression to
best-compression

uncompress
(VAR)

Uncompresses data that has been
compressed using zlib

If you are interested in compressing a stream of data using
zlib, see the Compress::ZLib PerlDoc page for syntax and
examples.

Manipulating Data

Finance::Currency::Convert

You can use Finance::Currency::Convert to retrieve live
exchange rates provided by Finance::Quote and calculate
the conversion rate of an amount from one monetary
currency into another. This module uses the standardized
three-character ISO currency codes as currency symbols,
such as EUR for euros, USD for United States dollars, and
CAD for Canadian dollars.

After you initialize the module, you can use either
updateRate or updateRates with a list of symbols to
retrieve the latest prices from Yahoo! Finance.
updateRate only retrieves the exchange rates between
the specified symbols; updateRates retrieves all rate
combinations that have a quote available involving the
specified symbols:

use Finance::Currency::Convert;

my $conv = new Finance::Currency::Convert;

$conv->updateRate($fromSymbol, $toSymbol);

print $conv->convert($amount, $fromSymbol,
$toSymbol);

You can cache the retrieved rates by storing them to disk.

You do this with setRatesFile and writeRatesFile.
This is helpful because updateRates may take some
time downloading all possible values. You could set up a
cache that automatically expires by comparing the time of
the rates file:

my $file = “.rates”;

my @stat = stat($file);

$conv->setRatesFile($file);

if (time - $stat[9] > 600) {

 $conv->updateRates($fromSymbol, $toSymbol
);

 $conv->writeRatesFile();

}

print $conv->convert($amount, $fromSymbol,
$toSymbol);

This example code uses the stat function to retrieve the file-
system status of the rates file. This function returns an array
of 13 items, each representing a specific piece of information.
In the ninth index is the file’s “last modified” timestamp in
seconds. By comparing that timestamp to the current time,
you can force the rate to be updated; in this example, the
rates are updated every 600 seconds, or ten minutes.

You can manipulate data from one format or unit into another very easily in Perl. Two examples of calculation, currencies and
dates, are demonstrated here.

continued ➔

28_556801-bapp03.indd 42128_556801-bapp03.indd 421 8/31/10 9:27 AM8/31/10 9:27 AM

422

Useful Perl
Modules (continued)

Manipulating Data (continued)

Date::Manip

You can use the Date::Manip module to read a date string
from virtually any format, compose a date string into any
format, or even convert a date between different languages.
This is a robust date calculator allows you to calculate the
difference in time between two dates, or calculate a future
date represented as an offset of time. Date::Manip even
understands exotic and obscure date queries referenced only
by a proper name, like local statutory and religious holidays,
when you use it to specify an absolute date or range.

For example, you can create a program that counts number of
business days — non-holiday weekdays — between today
and three months from now. Date::Manip will give you an
appropriately calculated result regardless of the day of the
week, or the time of the year, you run the program:

use Date::Manip;

my $date = ParseDate(“string”);

print UnixDate($date, “format”);

In this example, Date::Manip provides ParseDate, which
you can use to parse a complex date string such as “2pm,

2nd Tuesday in June 2010” or “06/08/10 14:00:00” and store
it into a special $date variable. You can then display that
date using UnixDate with various formatting macros and
literal characters; for example, “%a, %E of %B %Y @
%H:%M” produces “Tue, 8th of June 2010 @ 14:00.” For
the complete list of format macros, see the Date::Manip
PerlDoc page.

Deltas represent an arbitrary amount of time, not a specific
date. You can use ParseDateDelta to create a $delta
variable that you can use in a calculation:

my $delta = ParseDateDelta(“string”);

my $date2 = DateCalc($date, $delta);

print UnixDate($date2, “format”);

Calculations with DateCalc can combine a date and a delta
to produce a second date, or two dates to produce a delta. For
example, you could parse delta string “+45 hours 15 minutes”
and combine it with the previous example date. Date::Manip is
smart enough to identify values based in one unit and
automatically convert them to larger units. Using the same
UnixDate format as before, your new date would display as
“Thu, 10th of June 2010 @ 11:15.”

Perl Libraries

CGI

The Common Gateway Interface (CGI) library uses Perl objects
to make it easy to create Web fill-out forms and parse their
contents. This library allows you to create a CGI reference
object handle, an entity that contain the values of the current
query string and other CGI state variables. Using a CGI object’s
methods, you can examine keywords and parameters passed
to your script, and create forms whose initial values are taken
from the current query (thereby preserving state information).
The module provides shortcut functions that produce
boilerplate HTML, thus reducing typing and coding errors. It
also provides functionality for some of the more advanced
features of CGI scripting, including support for file uploads,
cookies, cascading style sheets, server push, and frames.

This library is described extensively in Chapter 12, but you
can always read the “CGI” PerlDoc page for more information.

MODULE DESCRIPTION

CGI Handles Common Gateway Interface
requests and responses

CGI::Carp Provides routines for writing to the Apache
error log

CGI::Cookie Provides an interface to Web browser cookies

CGI::Pretty Produces nicely formatted HTML code

CGI::Push Provides a simple interface to Server Push

On CPAN, there are hundreds of additional modules written
by third-party developers that further enhance the CGI library,
providing specialized functionality for your CGI Perl scripts.
Go to search.cpan.org and search for “CGI” to bring up
the complete list.

Many libraries have been written for Perl that you can leverage in your Perl scripts. A library is a collection of modules that, when
used together, provides an easy way to execute complex functionality in Perl.

28_556801-bapp03.indd 42228_556801-bapp03.indd 422 8/31/10 9:27 AM8/31/10 9:27 AM

423

A
ppen

dix C: U
sefu

l Perl M
odu

les

Perl Libraries (continued)

DBI

The Database Independent (DBI) library is an access
module for the Perl programming language. It defines a
set of methods, variables, and conventions that provide a
consistent database interface, independent of the actual
database being used.

It is important to remember that the DBI is just an interface;
it is a layer of “glue” between an application and one or more
database driver modules. It is the driver modules that do
most of the real work. The DBI library provides a standard
interface and framework for the drivers to operate within.

MODULE DESCRIPTION

DBI Provides the main database-
independent interface for Perl

DBI::DBD Reads the Perl DBI database driver
writer’s guide

DBI::FAQ Reads the frequently asked questions
for the Perl5 Database Interface

DBI::Profile Applies performance profiling and
benchmarking for the DBI

DBI::ProxyServer Configures a server for the
DBD::Proxy driver

DBD::DBM Installs a DBI driver for DBM and
multi-level DBM database files

DBD::File Importable base class used for
writing DBI drivers

DBD::Gofer Configures a stateless-proxy driver for
communicating with a remote DBI

DBD::Proxy Configures a proxy driver for the DBI

DBD::Sponge Creates a DBI statement handle from
Perl data

You will require a DBD module specific to your choice of
database server software. For an example of implementing
DBI in your Perl scripts, Chapter 21 demonstrates how to
use DBI and DBD::mysql to connect to a MySQL database
server. For a complete list of DBD modules, go to
http://search.cpan.org and search for “DBD”
to see what is available.

LWP

The libwww-perl (LWP) collection is a set of Perl modules
that provides a simple and consistent programming interface
to the World Wide Web. This library contains modules and
functions that allow you to create HTTP clients to query
Web sites, just like a normal Web browser. You can even
implement a simple HTTP daemon, just like a normal Web
server.

MODULE DESCRIPTION

LWP Provides the main LWP library
interface

LWP::Simple Provides a simplified procedural
interface to LWP

LWP::UserAgent Configures the Web user agent class

Net::HTTP Implements Low-level HTTP
connection (client)

Net::HTTPS Implements Low-level HTTPS
connection (client)

File::Listing Parses a file-system directory listing

HTTP::Config Interacts with for HTTP request and
response objects

HTTP::Cookies Implements HTTP cookie jars

HTTP::Daemon Produces a simple HTTP server

HTTP::Headers Interfaces with encapsulating HTTP
message headers

HTTP::Message Interfaces with HTTP style message

HTTP::Negotiate Interfaces with HTTP content
negotiation algorithm

HTTP::Request Interfaces with HTTP style request
message

HTTP::Response Interfaces with HTTP style response
message

HTTP::Status Interfaces with HTTP status code
processing

28_556801-bapp03.indd 42328_556801-bapp03.indd 423 8/31/10 9:27 AM8/31/10 9:27 AM

INDEX

424

SYMBOLS
+ (add operator), 78
&& (AND command), 55
<> (angle brackets), 54
-> (arrow operator), 54
\ (backslash), 55
> (greater-than), 55
>= (greater-than or equal-to), 55
< (less than), 55
<= (less-than or equal-to), 55
{} (curly brackets), 54
/ (divide operator), 78
== (equal-to), 55
** (exponentiation operator), 78
++,-- (increment, decrement operators), 78
&& (logical operator), 79
// (logical operator), 79
|| (logical operator), 79
% (modulus operator), 78
+ (multiply operator), 78
! (NOT command), 55
!= (not-equal-to), 55
|| (OR command), 55
() (parentheses), 54
'/" (quotes), 56
; (semicolons), 54
[] (square brackets), 54
- (subtract operator), 78

A
Active Server Pages (ASP), 14
ActivePerl, 24, 26–29, 36–39
ActivePerl Enterprise, 24
ActivePerl Perl Package Manager. See Perl Package

Manager (PPM)
ActivePerl Pro Studio, 27
ActiveState Community License, 24
ActiveState Programmer Network, 24
Activity Feed plugin (Facebook), 239
activity logs, 138, 350, 351
add operator (+), 78
Advanced Package Tool (APT), 34
AJAX (Asynchronous JavaScript, and XML)

calling JavaScript through Perl subroutines, 292–293
calling Perl subroutines through JavaScript, 290–291
CGI::Ajax, 286–289, 294–295
overview, 284–285

AND command (&&), 55
angle brackets (<>), 54
@Anywhere APIs, 249, 266–267
Apache. See also specific topics

activity logs, 138, 350, 351
authentication/authorization modules and

directives, 398–403
base modules and directives, 391–397
CGI Handler, 12, 13, 134–137
comparing to other Web servers, 16–17
configuration directives, 128, 337, 386–390
configuring, 44–45, 50–51, 342–345
creating user directories, 130–133
directives, 386–389
documentation, 23
downloading for Windows, 40–41
extended modules and directives, 404–417
history of, 2
installing, 42–43, 48, 49
limiting CGI access in, 348–349
restarting, 128, 363
run-time configuration directives, 386–390
service, 46–47, 52–53
TLS/SSL on, 337
user authentication, 208–215
versions of, 2
Web site, 23

Apache CGI Handler, 12, 13, 128–129
Apache CGI module, 134–135
Apache Configuration GUI for Windows, 51
Apache mod_perl module, 356–363
Apache Server Monitor, 47
Apache Service Control Panel, 47
Apache Software Foundation (Web site), 40
Apache SSI Module, 192–193
APIs (application programming interfaces), 245,

248–249, 266–267
App::Tweet, 251
APT (Advanced Package Tool), 34
array functions, 370
array references, 92–93
arrays

building, 96–97
data, 68–69, 421–422
looping, 82
Perl, 68–71
retrieving data from, 69, 71
storing data into, 68, 69, 70

Arrow operator (->), 54
ASP (Active Server Pages), 14

29_556801-bindex.indd 42429_556801-bindex.indd 424 8/31/10 9:27 AM8/31/10 9:27 AM

425

ASP.NET, 14
assignment operators, 78, 381–382
Asynchronous JavaScript, and XML. See AJAX

(Asynchronous JavaScript, and XML)
Authen::Captcha, 278–279
authentication. See also user authentication

browser-based, 208–209
defined, 398
Facebook application CGI, 245
methods, 209
modules and directives, 398–402
MySQL, 316
password files, 212–213
provider, 209
types of, 208–209

authorization, 398–403
authorized users, requiring only, 214–215
auto-linking feature, 249
auto-rotating Apache logs, 138

B
backslash character (\), 55
binary packages, 115
binary test operators, 382–383
bitwise operators, 79
brackets, 54
browser-based authentication, 208–209
browsers. See Web browsers
built-in functions, 56, 57, 69, 368–375
built-in Perl documentation, 25
Business::PayPal::IPN module, 299
Business::PayPal::NVP module, 299, 304–305

C
C, C++, C# languages, 15
Callback URL, 255
Canvas Callback URL, 244
Canvas Page URL, 244
capitalization, 54
Captcha tests, 278–279
carriage return character, 55
certificate authority, 336, 337, 341
CGI (Common Gateway Interface)

Apache, 12, 13, 128–129, 134–135
from CGI program’s point of view, 12–13
from end-user’s point of view, 6–7
executing programs, 10–11

forwarding data to programs, 11
help with developing programs, 22–23
layering with Perl, SSI, and HTML::Template, 191
module, 128, 422
receiving data from programs, 11
routines, 154
scripts, 196, 216, 232–233, 288–289, 357
source code, 6
from Web browser’s point of view, 8–9
from Web server’s point of view, 10–11

CGI Handler (Apache), 12, 13, 128, 134–137
CGI library

importing, 156–157
module, 422
overview, 154–155, 167
reading HTTP GET/POST parameters with, 158–159
retrieving HTTP cookies with, 162–163
storing HTTP cookies with, 160–161

CGI::Ajax

adding into Perl CGI scripts, 288–289
calling

JavaScript through Perl subroutines, 292–293
Perl subroutines through JavaScript, 290–291

enabling Debug mode in, 294–295
overview, 286–287

CGI::Carp, 164–165
character classes, 384
characters (special), 55
client-side control, 143
cloud hosting, 20
code, 18, 93
command-line, 108, 114, 317, 367
commands. See specific commands
commenting code, 18
comments, 55
Comments plugin (Facebook), 239
Common Gateway Interface. See CGI (Common Gateway

Interface)
community resources, 24
compound data structures, 94–95
Comprehensive Perl Archive Network. See CPAN

(Comprehensive Perl Archive Network)
Compress::ZLib module, 421
conditional expressions, 202–203
conditional operators, 383
conditional tests, 76, 77, 197
configuration (Apache), 128
configuration context, 386
configuration directives, 337, 386–390
Configuration Section Containers, 44, 50–51

29_556801-bindex.indd 42529_556801-bindex.indd 425 8/31/10 9:27 AM8/31/10 9:27 AM

INDEX

426

storing
overview, 420–421
in Perl arrays, 68, 69, 70
in Perl hashes, 72, 73, 74
in Perl scalars, 64, 66

updating in tables, 319
user-specific, 146
user-submitted, 7, 9
viewing, 418
writing to MySQL, 327

Database Driver (DBD), 323
Database Independent library. See Perl DBI library
Data::Dumper module, 94, 101, 418
Date::Manip module, 422
DBD (Database Driver), 323
DBI library. See Perl DBI library
DBM format, 215
Debian/Ubuntu Linux

Apache configuration directives, 337
installing

Apache for, 48
MySQL for, 324
Perl for, 34
Perl modules in, 121

searching for Perl modules in, 120
Debian/Ubuntu operating system, 138
Debug mode, enabling in CGI::Ajax, 294–295
decrement operator (--), 78
dedicated hosting, 21
development environment, 18, 19
digest authentication type, 208, 211
Digest::MD5 module, 419
Digest::SHA model, 229
directives

Apache authentication and authorization, 398–403
Apache base modules and, 391–397
Apache extended modules and, 404–417
configuration, 337, 386–390
core-Apache, 386–389
Multi-Process Module (MPM), 390
user directories, 130–133

directories, 136–137, 194–195
directory paths, securing with Apache, 210–211
disks, saving images to, 275
divide operator (/), 78
DNS (domain name service), 20
documentation

ActivePerl Perl Package Manager, 114
ActiveState, 24
Apache, 23

configuration variables, 418
content-type HTTP response headers, 4, 8–9
continue command, 83
cookie routine, 155
cookies (HTTP)

overview, 8, 146–147
retrieving, 150–151, 162–163
storing, 148–149, 160–161

CPAN (Comprehensive Perl Archive Network)
configuring, 110
installing Perl modules with, 112–113
overview, 108–109
repository, 25
searching for Perl modules with, 111

credit card payments, processing with PayPal, 306–307
Crypt::CBC module, 419
CSR, 340–341
curly brackets ({}), 54
Cygwin environment, 17

D
data

arrays, 68–69, 421–422
compound structures, 94–95
cookie, 146
deleting from tables, 319
displaying with TMPL_VAR, 176–177
form, 351
forwarding to CGI program, 11
inserting into tables, 319
reading, 12
reading from MySQL, 327
receiving

from browsers, 10
from CGI programs, 11
from Web browsers, 10
from Web servers, 9

referenced, 65
retrieving

from Perl arrays, 69, 71
from Perl hashes, 73, 75
from Perl scalars, 65, 67

returned by server, 7
reviewing, 351
securing, 419
selecting from tables, 319
sending, 9, 11, 13
SQL, 330–335

29_556801-bindex.indd 42629_556801-bindex.indd 426 8/31/10 9:27 AM8/31/10 9:27 AM

427

HTML::Template module, 170–171
importing with SSI, 198
module, 102–103
shared subroutine, 87
SSI-enabled HTML, 190
static database, 209
static password, 209
statistics, 197, 204–205
template, 168, 172–173

filter (output), 192–193
Finance::Currency::Convert module, 421
Firebug, 295
flow control keywords, 374
Follow Me button, 249
followers (Twitter), 263
footers, 184, 186–187, 206–207
foreach loop, 82, 84–85
forms (HTML)

building, 7
creating, 142–143
encoding value of, 9
monitoring data, 351
overview, 156

forums, 23
FQL (Facebook Query Language), 245
functions

array, 370
built-in, 56–57, 69, 368–375
Compress::ZLib module, 421
Data::Dumper module, 418
Digest::MD5 module, 419
file, 373
importing

CGI library routines as, 157
methods as, 154

manually accessing array data with, 69
scalar, 369
of scalar references in Perl, 92
Storable package, 420
support for loops, 83

G
galleries (image), 280–283
GET parameters, 144–145, 158–159
Global URI, 128
Gnome graphical interface, 35
GNU General Public License (GPL), 25
Google Chrome, 295

HTML::Template module, 169
MySQL, 317
Perl, 22–23, 25, 364–366
Perl DBI library, 326
Strawberry Perl, 25

domain name service (DNS), 20
domain registrar, 20
dynamic content, 155, 186–187

E
elements (SSI), 191, 196–197
else/elseif, 80–81
e-mail messages, 152–153
Encrypted Web Payments (EWP), 298
encryption. See TLS/SSL encryption
encryption software, 40–41
end tags, 171
end users, 3, 6–7, 11
environment variables, 5, 8, 197
equality operators, 78, 382–383
equal-to (==), 55
error detection, 169
error handling, 327
error logs, 138, 350
error messages, 164–165, 197
EWP (Encrypted Web Payments), 298
exponentiation operator (**), 78

F
Facebook

adding Facebook Social plugins to Web sites, 238–239
creating applications with Perl, 246–247
enabling Facebook Connect on Web sites, 240–243
interaction, 245
plugins, 238–239
registering Web sites as, 236–237

Facebook Canvas API, 244–245, 247
Facebook Graph API, 240–243
Facebook Markup Language (FBML), 245
Facebook Query Language (FQL), 245
fail2ban script, 350
files

accepting for upload, 270–271
authentication password, 212–213
changes in Perl, 363
external, 196
functions, 373

29_556801-bindex.indd 42729_556801-bindex.indd 427 8/31/10 9:27 AM8/31/10 9:27 AM

INDEX

428

HTTPS redirectors, 337
HyperText Markup Language. See HTML (HyperText

Markup Language)

I
IDE (Komodo Integrated Development Environment), 27
if, 80–81
IIS (Internet Information Server), 16
Image::Magick, 272–274
images

dynamic, 276–277
implementing Captcha tests, 278–279
JPEG, 233
manipulating with Image::Magick, 274
opening with Image::Magick, 272
producing image galleries, 280–283
resizing/cropping with Image::Magick, 273
saving to disk, 275

@INC array, 102
increment operator (++), 78
input fields, 155
input/output functions, 371–372
Instant Payment Notification (IPN) API, 299
Internet Developer Toolbar, 295
Internet Explorer (Microsoft), 295
Internet Information Server (IIS), 16
IP address, 21
IPN (Instant Payment Notification) API, 299

J
JavaScript. See also AJAX (Asynchronous JavaScript, and

XML)
@Anywhere JavaScript API, 266–267
calling

Perl subroutines through, 290–291
through Perl subroutines, 292–293

SDK, 236–237
JPEG images, 233
JSON language, 284, 297

K
keys, 72–73
“key - value” statement, 73
Komodo Integrated Development Environment (IDE), 27

goto command, 83
Graph API, 245
Graphical User Interface (GUI), 114, 317
greater-than (>), 55
greater-than or equal-to (>=), 55
greedy quantifiers, 385
GUI (Graphical User Interface), 114, 317

H
hash functions, 371
hash references, 93, 96–97
hashes (Perl), 72–75
header routine, 155
headers

HTML, 4
HTML::Template, 184, 186–187
linking with static HTML content, 206–207
Perl script, 57

high-level programming language, 3
hosting providers, 20–21
Hovercard, 249
How to Ask Questions the SmartWay (Raymond), 23
.htaccess file, 129
HTML (HyperText Markup Language)

benefits of separating from Perl, 166–167
displaying, 169
forms, 5, 7, 142–143
interface, 6
login prompt, 217
routines, 155
source code, 6

HTML::Template module
creating

headers and footers, 184
new template files, 172–173
toolbars, 185

displaying SQL data through, 332–333
extending to non-HTML formats, 188–189
importing, 174–175
layering with CGI, SSI, and Perl, 191
linking headers, toolbars, and footers with dynamic Perl

content, 186–187
overview, 167–169
structure of files in, 170–171

HTTP. See also cookies (HTTP)
GET/POST parameters, 144–145, 158–159
headers, 4, 8–9
server capabilities, 2

29_556801-bindex.indd 42829_556801-bindex.indd 428 8/31/10 9:27 AM8/31/10 9:27 AM

429

mod_alias module, 391
mod_auth_basic module, 398
mod_auth_digest module, 398
mod_authn_alias module, 399
mod_authn_anon module, 399
mod_authn_dbd module, 399
mod_authn_dbm module, 400
mod_authn_default module, 400
mod_authn_file module, 400
mod_authnz_ldap module, 401
mod_authz-dbm module, 402
mod_authz_default module, 402
mod_authz_groupfile module, 402
mod_authz_host module, 403
mod_authz_owner module, 403
mod_authz_user module, 403
mod_autoindex module, 392
mod_cache module, 404
mod_cern_meta module, 405
mod_cgi module, 393
mod_charset_lite module, 405
mod_dav module, 405
mod_dbd module, 406
mod_deflate module, 406
mod_dir module, 393
mod_disk_cache module, 406
mod_env module, 393
mod_expires module, 407
mod_ext_filter module, 407
mod_filter module, 394
mod_headers module, 407
mod_ident module, 408
modifier flags, 385
mod_imagemap module, 394
mod_include module, 408
mod_ldap module, 409
mod_log_config module, 394
mod_log_forensic module, 409
mod_mem_cache module, 410
mod_mime module, 395
mod_mime_magic module, 410
mod_negotiation module, 396
mod_perl module, 356–363
mod_proxy module, 411–412
mod_rewrite module, 412
mod_setenvif module, 396
mod_speling module, 415
mod_ssl module, 413–414
mod_status module, 397
mod_substitute module, 415

L
last command, 83
less than (<), 55
less-than or equal-to (<=), 55
library. See CGI library; Perl DBI library
libwww-perl (LWP) collection, 423
licenses, 24, 25
lighttpd, 17
line feed character, 55
line spacing/formatting, 54
Linux

configuring Apache on, 50–51
creating user directories for Apache in, 132–133
downloading ActivePerl for, 36–37
installing

ActivePerl for, 38–39
Apache mod_perl module for, 359

starting and stopping Apache service on, 52–53
list functions, 371
list operators, 383
Live Stream plugin (Facebook), 239
log directory, 138
logic operators, 55, 79
login prompts, 226–227
logs (Apache), 138–141
loop variable, 82
looping conditions, 77
loops, 82–83

M
Mac OS, 55
macros, 205
Mail Transport Agent (MTA), 152–153
mathematic operators, 78, 381
messages (e-mail), 152–153
meta-character, 384
methods

authentication, 209
CGI, 154
GET, 5
HTML routines, 155
importing as functions, 154
Perl, 420
POST, 5
render, 244

Microsoft Internet Explorer, 295
MIME (Multipurpose Internet Mail Extension) types, 8–9
mod_actions module, 391

29_556801-bindex.indd 42929_556801-bindex.indd 429 8/31/10 9:27 AM8/31/10 9:27 AM

INDEX

430

next command, 83
nginx, 17
non-greedy quantifiers, 385
non-HTML formats, 188–189
NOT command (!), 55
not-equal-to (!=), 55
numeric assignment operators, 381
numeric functions, 370
NVP (Name-Value Pairs) interface, 298

O
OAuth protocol, 248, 254–257
objects, 156
one-liner program, 367
online resources. See Web sites
OpenLDAP SDK, 401
OpenSSL Library, 41
operatives (relational), 55
operator precedence, 78
operators. See specific types
options (command-line), 367
OR command (||), 55
output, printing to screen, 60–61
output filter, 192–193
Overview page, 364

P
package areas, 115
param routine, 155
parameters, 57, 86, 144–145, 171
parentheses (()), 54
PayPal

creating buyer and seller sandbox accounts, 302
overview, 298–299
PayPal Express Checkout API, 308–311
processing credit card payments with, 306–307
refunding transactions, 314–315
retrieving seller’s sandbox API credentials, 303
searching transaction history, 312
signing up for sandbox accounts, 300–301
using Business::PayPal::NVP to connect to, 304–305
viewing transaction details, 313

PayPal API, 298
PayPal Express Checkout API, 308–311
Perl. See also HTML::Template module; specific topics

activity, 141
arrays, 68–71. See also arrays

mod_suexec module, 415
module reference, 106
modules. See also Perl modules; specific modules

authentication and authorization, 398–403
CGI library, 128, 422
compiling, 109
DBI (Database Independent) library, 423
downloading, 109
files, 102–103
installing, 109
keywords, 375
libwww-perl (LWP) collection, 423
Perl, 418–423
searching for, 108
testing, 109
uninstalling, 109
upgrading, 109

modulus operator (%), 78
mod_userdir module, 397
mod_usertrack module, 416
mod_vhost_alias module, 417
Mozilla Firefox, 295
MPM (Multi-Process Module directives, 390
MTA (Mail Transport Agent), 152–153
multi-dimensional references, 95, 100–101
multiply operator (*), 78
Multi-Process Module (MPM) directives, 390
Multipurpose Internet Mail Extension (MIME) types, 8–9
MySQL

authentication, 316
connecting to, 327, 328–329
disconnecting from, 327
downloading MySQL for Windows, 320–321
installing, 322–325
overview, 221, 316–317
server, 326–327
SQL syntax, 318–319

MySQL Cluster, 321
MySQL Connectors, 321
MySQL Workbench, 321
MyTwitter Perl module, 258–259

N
Name-Value Pairs (NVP) interface, 298
nesting conditions, 77
nesting references, 94
.NET, 15
Net::Twitter module, 250–251, 258–259
Net::Twitter::Lite, 251

29_556801-bindex.indd 43029_556801-bindex.indd 430 8/31/10 9:27 AM8/31/10 9:27 AM

431

scripts
adding CGI::Ajax into, 288–289
securing, 216
speeding up, 357

support, 285
validating user content in, 354–355

Perl Database Interface (DBI), 323
Perl DBI library

changing SQL data using, 334–335
connecting to MySQL databases with, 328–329
displaying SQL data through HTML::Template, 332–333
overview, 317, 326–327, 422–423
retrieving SQL data using, 330–331

Perl hashes, 72–75
Perl Interpreter, 12, 129, 137
Perl modules

calling subroutines as methods, 106–107
creating, 104–105, 126–127
downloading manually, 124–125
hierarchical structure of, 105
installing

with ActivePerl Perl Package Manager, 119
with CPAN, 112–113
in Debian/Ubuntu Linux, 121
manually, 126–127
in Red Hat Linux, 123

overview, 87, 102–103
PayPal, 299
preloading, 357
searching

with ActivePerl Perl Package Manager for, 115, 118
with CPAN for, 111
in Debian/Ubuntu Linux for, 120
manually for, 124–125
in Red Hat Linux for, 122

Perl Package Manager (PPM)
configuring, 116–117
installing Perl modules with, 119
overview, 24, 114–115
searching for Perl modules with, 115, 118

Perl scalars, 64–67
Perl subroutines

calling
JavaScript through, 106–107, 292–293
through JavaScript, 290–291

manipulating variables in, 90–91
organizing program code with, 88–89
overview, 86–87

Perl Twitter modules, 250–251
Perl-based authentication, 216–217

benefits of separating HTML from, 166–167
built-in functions, 56, 57, 69, 368–375
code, 362
comparing to other CGI languages, 14–15
creating Facebook applications in, 246–247
documentation, 22–23, 25, 364–366
executing on command-line, 367
files, 129, 363
history of, 3
implementations, 167
installing, 34–35
integrating

with JSON, 297
with XML, 296

layering with SSI, CGI, and HTML::Template, 191
loops, 82–83
modules, 418–423
operations, 78–79
operators, 380–383
output, 129
pre-defined variables, 376–379
references, 92–93
regular expressions, 384–385
script

anatomy of, 57
creating, 58–59
executing, 62–63

syntax, 54–56, 169
user authentication

accessing user databases, 220–222
authorizing user sessions, 230–231
checking for session authorization, 224–225
creating modules, 218–219
displaying login prompts, 226–227
overview, 216–217
restricting access to CGI scripts, 232–233
storing user credentials in user database, 222–223
terminating sessions, 234–235
validating user credentials, 228–229

using for Apache CGI, 129
using to connect to Facebook Canvas API, 244
versions of, 3

Perl Artistic License, 25
Perl Authentication module, 218–219
Perl Authorization module, 216–217
Perl CGI

development, 346–347
relationship with template files, 168
sanitizing user content in, 352–353

29_556801-bindex.indd 43129_556801-bindex.indd 431 8/31/10 9:27 AM8/31/10 9:27 AM

INDEX

432

regular expressions, 384–385
relational operators, 55, 78, 382
render methods, 244
repositories, 115
request headers (HTTP), 4
resources. See Web sites
response headers (HTTP), 4
routines, 154–155, 157. See also specific routines
Ruby on Rails, 15
run-time configuration directives (Apache), 386–390

S
Safari Books Online, 27
sandbox accounts, 299–302
Sandbox API credentials, 303
scalar functions, 369
scalar references, 92
scalars (Perl), 64–67
ScanErrLog script, 350
screen, printing output to, 60–61
scripts

anatomy of, 57
content of, 57
defined, 3
fail2ban, 350
Perl CGI, 288–289

Search API, 249
secure sockets layer. See TLS/SSL encryption
security, 346–347. See also TLS/SSL encryption
semicolons (;), 54
servers. See Web servers
Server-Side Includes. See SSI (Server-Side Includes)
Service Control Panel (Apache), 47
session ID cookie, 217
sessions, 147, 217, 224–225, 230–231, 234–235
shared subroutine files, 87
shift assignment operators, 382
shutting down, 13
simple domain hosting, 20
SOAP (Simple Object Access Protocol) interface, 298
software (encryption), 40–41
special characters, 55
SQL data, 330–335
SQL database, 209
square brackets ([]), 54
SSI (Server-Side Includes)

configuring directories to use, 194–195
displaying file statistics with, 204–205

perlcc program, 63
PerlDoc, 25, 364
perldoc program, 25
PHP, comparing Perl to, 14
POST method, 5
POST parameters, 144–145, 158–159
PPM. See Perl Package Manager (PPM)
pre-defined variables, 56, 376–379
private key, 336, 338
production environment, 19
profiler, 295
program code, 88–89
program flow, 80–81, 84–85
programs, executing, 196, 199
progress functions, 375
project deployment, 19
protocols, 248, 254–257, 336

Q
quantifiers, 385
queues, 115
quote operators, 380
quote-lite operators, 380
quotes ('/"), 56

R
Raymond, Eric S. (author)

How to Ask Questions the SmartWay, 23
realm, 211
real-time activity, 268–269
Red Hat Linux

Apache configuration directives, 337
Apache log directory, 138
installing

Apache for, 49
MySQL for, 325
Perl for, 35
Perl modules in, 123

searching for Perl modules in, 122
Reference page, 365–366
referenced arrays, 68
referenced data, 65
referenced hash, 72
references, 92–93. See also specific types
regular expression functions, 369
regular expression operators, 79
regular expression quote-lite operators, 380

29_556801-bindex.indd 43229_556801-bindex.indd 432 8/31/10 9:27 AM8/31/10 9:27 AM

433

files, 168, 172–173
nesting with TMPL_INCLUDE, 182–183
repeating content with TMPL_LOOP, 180–181
syntax, 170, 171

test SSL certificate, 340
testing environment, 19
text formatting, 156
third-generation programming language, 3
third-party modules, 24, 25
third-party PPM repository, 358
third-party utilities, 51
time function, 225, 375
timelines (Twitter), 261
TLS/SSL encryption

configuring Apache to use, 342–345
creating private SSL keys, 338
generating SSL certificate signing requests, 339
overview, 336–337
signing a CSR to create Test SSL Certificates, 340
submitting CSR to be signed by certificate authority, 341

TMPL_ELSE element, 170, 178–179
TMPL_IF element, 170, 178–179
TMPL_INCLUDE element, 171, 182–183
TMPL_LOOP element, 171, 180–181
TMPL_UNLESS element, 170
TMPL_VAR element, 170, 176–177
toolbars, 185–187, 206–207
transactions (PayPal), 312–315
transport layer security. See TLS/SSL encryption
Tutorial page, 364–365
TweetBox, 249
Twitter

authenticating using OAuth, 254257
creating MyTwitter Perl modules that inherit
Net::Twitter, 258–259

following real-time activity with Twitter Streaming API,
268–269

modules, 250–251
posting status updates, 260
registering applications, 252–253
retrieving

list of followers, 263
lists of users you follow, 262
timelines, 261

searching for content using Twitter Search API, 264–265
Twitter @Anywhere JavaScript API, 266–267

Twitter API, 248–249
Twitter Search API, 264–265
Twitter Streaming API, 268–269

elements, 196–197
enabling

Apache SSI module, 192–193
output filter, 192–193

executing programs with, 199
importing files with, 198
layering with Perl, CGI, and HTML::Template, 191
overview, 190–191
retrieving variables with, 201
setting variables within, 200
using conditional expressions with, 202–203

SSI-enabled HTML file, 190
SSI-enabled Server directory, 190
SSL Certificate Signing Request, 339
statement modifiers, 76
static database files, 209
static HTML content, 206–207
static IP address, 21
static password files, 209
statistics (file), 197, 204–205
status updates (Twitter), 260
Storable module, 221
Storable package, 420
Strawberry Perl for Windows, 25, 30–33
Streaming API, 249
string assignment operators, 381
string operators, 79
Submit buttons (forms), 7
subquery statements, 319
subroutines. See Perl subroutines
subtract operator (-), 78
support. See documentation
syntax

conditional tests, 76, 77
foreach loop, 82
Perl, 54–56, 169
SQL, 318–319
subroutines, 86–87
synonyms in variation, 94–95
template, 170, 171

T
tab character, 55
tables, 155, 318–319
tag names, 171
Template library, 167
templates

caching, 169
controlling content, 176–177

29_556801-bindex.indd 43329_556801-bindex.indd 433 8/31/10 9:27 AM8/31/10 9:27 AM

INDEX

434

retrieving with SSI, 201
setting, 197, 200
user-defined, 56

VBScript language, 14
Vim text editor, 18
virtual hosting, 20

W
Web browsers

defined, 2
displaying dynamic images to, 276–277
point of view on CGI, 8–9
receiving data from, 10
support for, 285

Web servers
comparing Apache to other, 16–17
defined, 2
leasing, 21
MySQL, 316–317
point of view on CGI, 10–11
receiving data from, 9
sending data to, 9
support for, 285
viewing data returned by, 7

Web sites
ActiveState Downloads, 26
ActiveState Programmer Network, 24
adding Facebook Social plugin to, 238–239
Apache, 23
Apache Software Foundation, 40
Artistic License, 24
CPAN, 108
developing, 18–19
enabling Facebook Connect on, 240–243
Facebook Developer’s documentation, 241
Facebook privacy policy, 243
forums, 23
identifying unusual activity on, 350–351
lighttpd, 17
nginx, 17
PerlDoc library, 364
registering as Facebook applications, 236–237
Strawberry Perl, 25, 30

while loop, 83–85
Windows

ActivePerl for, 24, 26–29
Apache configuration directives, 337

U
Ubuntu Linux. See Debian/Ubuntu Linux
Unix

carriage return character, 55
downloading ActivePerl for, 36–37
installing ActivePerl for, 38–39
line feed character, 55

user authentication
Apache

authentication password files, 212–213
overview, 208–209
requiring only authorized users, 214–215
securing directory paths with Apache, 210–211

Perl
accessing user databases, 220–222
authorizing user sessions, 230–231
checking for session authorization, 224–225
creating modules, 218–219
displaying login prompts, 226–227
overview, 216–217
restricting access to CGI scripts, 232–233
storing user credentials in user database, 222–223
terminating sessions, 234–235
validating user credentials, 228–229

user content, 352–355
user credentials, 217, 222–223, 228–229
user databases, 220–223
user directories, creating for Apache, 130–133
user sessions, 230–231, 234–235
user-defined subroutines, 56, 57
user-defined variables, 56
users, 146–147, 262
user-submitted data, 7, 9

V
validation, 245, 351
values, 73
variables

conditional tests on, 197
configuration, 418
environment, 5, 8, 197
loop, 82
manipulating in subroutines, 90–91
nesting with references, 100–101
Perl, 56
pre-defined (Perl), 56, 376–379

29_556801-bindex.indd 43429_556801-bindex.indd 434 8/31/10 9:27 AM8/31/10 9:27 AM

435

line feed character, 55
starting and stopping Apache service on, 46–47
Strawberry Perl for, 25, 30–33

Windows Server, 348–349
Windows XP, 348
workflow, 208, 216, 287

X
XML, 296. See also AJAX (Asynchronous JavaScript, and

XML)
XML::Simple module, 296

Apache Configuration GUI for, 51
Apache service, 46–47
carriage return character, 55
configuring Apache on, 44–45
creating user directories for Apache in, 130–131
downloading

Apache for, 40–41
MySQL for, 320–321

installing
Apache for, 42–43
Apache mod_perl module for, 358
MySQL for, 322–323

29_556801-bindex.indd 43529_556801-bindex.indd 435 8/31/10 9:27 AM8/31/10 9:27 AM

For more professional
instruction in a visual

format, try these.

For a complete listing of Visual Blueprint™ titles and other
Visual books, go to wiley.com/go/visual
Wiley, the Wiley logo, the Visual logo, Read Less-Learn More, and Visual Blueprint are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates.
All other trademarks are the property of their respective owners.

All designed for visual learners—just like you!

978-0-470-59161-1 978-0-470-55651-1

978-0-470-34520-7

Read Less–Learn More®

30_556801-badvert01.indd 43630_556801-badvert01.indd 436 8/31/10 9:27 AM8/31/10 9:27 AM

Perl and A
pache

Visual
Blueprint

Software Development/General

$34.99 USA
$41.99 CAN
£24.99 UK www.wiley.com/go/visual

Perl and Apache

• High-resolution screen shots
demonstrate each task

• Succinct explanations walk you
through step by step

• Two-page lessons break big topics
into bite-sized modules

• “Apply It” and “Extra” sidebars
highlight useful tips

Your visual blueprint™ for
developing dynamic Web contentMcDaniel

Welcome to the only guidebook series that takes a visual approach to professional-level computer
topics. Open the book and you’ll discover step-by-step screen shots that demonstrate over 190
key techniques using Perl and Apache, including:

• Installing Perl and Apache on Linux®

• Building interactive Perl scripts

• Configuring Apache to execute Perl

• Separating HTML code from Perl code

• Processing credit card transactions

• Interfacing a Web site with Facebook®

• Posting status updates to Twitter®

• Creating dynamic images with Perl

• Accessing a back-end MySQL® database

• Securing dynamic Web sites

Perl and Apache

Adam McDaniel

spine=1.03"

“I have
several

books from
the Visual

series and have
always found

them to be
valuable resources.”

— Stephen P. Miller
(Ballston Spa, NY)

Sample code available on
the companion Web site

	Perl and Apache: Your visual blueprint for dynamic Web content
	About the Author
	How to Use This Book
	Table of Contents
	Chapter 1: Introducing Perl and Apache Web Site Development
	Introducing Apache and Perl
	Introducing the Common Gateway Interface
	Understanding CGI from the End-User’s Point of View
	Understanding CGI from the Web Browser’s Point of View
	Understanding CGI from the Web Server’s Point of View
	Understanding CGI from the CGI Program’s Point of View
	Compare Perl to Other CGI Languages
	Compare Apache to Other Web Servers
	Developing Your Web Site
	Find Perl-and Apache-Friendly Hosting Providers
	Find Help Developing CGI Programs

	Chapter 2:Installing Perl on Windows
	Introducing ActivePerl for Windows
	Introducing Strawberry Perl for Windows
	Download ActivePerl for Windows
	Install ActivePerl for Windows
	Download Strawberry Perl for Windows
	Install Strawberry Perl for Windows

	Chapter 3: Installing Perl on Linux
	Install Perl for Debian/Ubuntu Linux
	Install Perl for Red Hat Linux
	Download ActivePerl for Linux or Unix
	Install ActivePerl for Linux or Unix

	Chapter 4: Installing Apache on Windows
	Download Apache for Windows
	Install Apache for Windows
	Configure Apache on Windows
	Start and Stop the Apache Service on Windows

	Chapter 5: Installing Apach on Linux
	Install Apache for Debian/Ubuntu Linux
	Install Apache for Red Hat Linux
	Configure Apache on Linux
	Start and Stop the Apache Service on Linux

	Chapter 6: Introducing the Fundamentals of Perl
	Understanding Perl Syntax
	Understanding Perl Syntax
	Understanding the Anatomy of a Perl Script
	Create a New Perl Script
	Print Output to the Screen
	Execute a Perl Script
	Introducing Perl Scalars
	Store Data into Scalars
	Retrieve Data from Scalars
	Introducing Perl Arrays
	Store Data into Arrays
	Retrieve Data from Arrays
	Introducing Perl Hashes
	Store Data into Hashes
	Retrieve Data from Hashes

	Chapter 7: Building an Interactive Perl Script
	Introducing Perl Conditions
	Introducing Perl Operators
	Control Program Flow with if, elsif, else
	Introducing Perl Loops
	Loop Program Flow with foreach, while
	Introducing Perl Subroutines
	Organize Program Code with Subroutines
	Manipulate Variables in Subroutines

	Chapter 8: Using Perl References and Modules
	Introducing References
	Understanding Compound Data Structures
	Build an Array or Hash Reference
	Deconstruct a Reference
	Nest Variable Types with References
	Introducing Perl Modules
	Create a New Module
	Call a Module’s Subroutines as Methods

	Chapter 9: Installing Third-Party Perl Modules
	Introducing CPAN
	Configure CPAN
	Search for Perl Modules with CPAN
	Install Perl Modules with CPAN
	Introducing ActivePerl Perl Package Manager
	Configure ActivePerl PPM
	Search for Perl Modules with ActivePerl PPM
	Install Perl Modules with ActivePerl PPM
	Search for Perl Modules in Debian/Ubuntu Linux
	Install Perl Modules in Debian/Ubuntu Linux
	Search for Perl Modules in Red Hat Linux
	Install Perl Modules in Red Hat Linux
	Search for and Download Perl Modules Manually
	Build and Install Perl Modules Manually

	Chapter 10: Configuring Apache to Execute Perl
	Introducing the Apache CGI Handler
	Create a User Directory for Apache in Windows
	Create a User Directory for Apache in Linux
	Enable the Apache CGI Module and Handler
	Configure a Directory to Use the CGI Handler
	Understanding the Apache Logs
	Configure the Apache Logs
	Read the Apache Logs
	Forward Perl Activity into the Apache Logs

	Chapter 11: Introducing Do-It-Yourself Perl/CGI Interaction
	Create an HTML Form
	Read HTTP GET/POST Parameters
	Introducing Cookies
	Store HTTP Cookies
	Retrieve HTTP Cookies
	Send an E-Mail Message

	Chapter 12: Using Perl's Built in CGI Library
	Introducing the Built-In CGI Library
	Import the CGI Library as an Object
	Import the CGI Library’s Routines as Functions
	Read HTTP GET/POST Parameters with the CGI Library
	Store HTTP Cookies with the CGI Library
	Retrieve HTTP Cookies with the CGI Library
	Return Useful Error Messages with CGI:: Carp

	Chapter 13: Seperating HTML Code from Perl Code
	Understanding the Benefits of Separating HTML from Perl
	Introducing the Perl HTML:: Template Module
	Understanding the Structure of an HTML:: Template File
	Create a New Template File
	Import the HTML:: Template Module
	Display Data with TMPL_ VAR
	Control Template Content with TMPL_ IF, TMPL_ ELSE
	Repeat Template Content with TMPL_ LOOP
	Nest Templates with TMPL_ INCLUDE
	Create an HTML:: Template Header and Footer
	Create an HTML:: Template Toolbar
	Link the Header, Toolbar, and Footer with Dynamic Perl Content
	Extend HTML:: Template to Non-HTML Formats

	Chapter 14: Adding Dynamic Content with Server-Side Includes (SSI)
	Introducing Server-Side Includes
	Enable the Apache SSI Module and Output Filter
	Configure a Directory to Use SSI
	Understanding SSI Elements
	Import Files with SSI
	Execute Programs with SSI
	Set Variables within SSI
	Retrieve Variables with SSI
	Use Conditional Expressions with SSI
	Display File Statistics with SSI
	Link the Header, Toolbar, and Footer with Static HTML Content

	Chapter 15: Authenticating A User Session
	Understanding Apache User Authentication
	Secure a Directory Path with Apache
	Use an Authentication Password File
	Require Only Authorized Users
	Understanding User Authentication in Perl
	Create a Perl Authentication Module
	Access a User’s Database
	Store User Credentials in a User’s Database
	Check for Session Authorization (Step 1)
	Display a Login Prompt (Step 2)
	Validate a User’s Credentials (Step 3)
	Authorize a User’s Session (Step 4)
	Restrict Access to a CGI Script
	Terminate a User Session

	Chapter 16: Interfacing Your Web Site with Facebook
	Register Your Web Site as a Facebook Application
	Add a Facebook Social Plugin to Your Web Site
	Enable Facebook Connect on Your Web Site
	Enable Facebook Connect on Your Web Site
	Understanding the Facebook Canvas Feature for Applications
	Create a Facebook Application with Perl

	Chapter 17: Interfacing with the Twitter API Using Perl
	Introducing the Twitter APIs
	Introducing the Perl Twitter Modules
	Register a New Twitter Application
	Authenticate to Twitter Using OAuth
	Authenticate to Twitter Using OAuth
	Create a MyTwitter Perl Module That Inherits Net:: Twitter
	Post a Twitter Status Update
	Retrieve a Twitter Timeline
	Retrieve a List of Twitter Users You Follow
	Retrieve a List of Twitter Followers
	Search for Content Using the Twitter Search API
	Use the Twitter @ Anywhere JavaScript API
	Follow Real-Time Activity with the Twitter Streaming API

	Chapter 18: Creating Dynamic Images With Perl
	Accept a File for Upload
	Open an Image with Image::Magick
	Resize or Crop an Image with Image::Magick
	Manipulate an Image with Image::Magick
	Save an Image to Disk
	Display a Dynamic Image to the Browser
	Implement an Image Captcha Test
	Produce an Image Gallery

	Chapter 19: Facilitating Dynamic AJAX Calls with Perl
	Introducing AJAX
	Introducing CGI::Ajax
	Add CGI::Ajax into Your Perl CGI Scripts
	Call Perl Subroutines Through JavaScript
	Call JavaScript Through Perl Subroutines
	Enable Debug Mode in CGI::Ajax
	Integrate Perl and XML
	Integrate Perl and JSON

	Chapter 20: Processing Credit Card Transactions with Perl
	Introducing PayPal
	Sign Up for a PayPal Sandbox Account
	Create Buyer and Seller Sandbox Accounts
	Retrieve Your Seller’s Sandbox API Credentials
	Use Business:: PayPal:: NVP to Connect to PayPal
	Process a Credit Card Payment with PayPal
	Use the PayPal Express Checkout API
	Use the PayPal Express Checkout API
	Search Your PayPal Transaction History
	View a PayPal Transaction’s Details
	Refund a PayPal Transaction

	Chapter 21: Accessing a Back-End MySQL Database with Perl
	Introducing the MySQL Database
	Understanding the SQL Syntax
	Download MySQL for Windows
	Install MySQL for Windows
	Install MySQL for Debian/Ubuntu Linux
	Install MySQL for Red Hat Linux
	Introducing the Perl DBI Library
	Connect to a MySQL Database with the DBI Library
	Retrieve SQL Data Using the DBI Library
	Display SQL Data Through HTML:: Template
	Change SQL Data Using the DBI Library

	Chapter 22: Securing Dynamic Web Sites
	Understanding TLS/SSL Encryption
	Create a Private SSL Key
	Generate an SSL Certificate Signing Request
	Sign Your Own CSR to Create a Test SSL Certificate
	Submit Your CSR to Be Signed by a Certificate Authority
	Configure Apache to Use TLS/SSL
	Configure Apache to Use TLS/SSL
	Understanding Security in Perl CGI Development
	Limit CGI Access in Apache
	Identify Unusual Activity on Your Web Site
	Sanitize User Content in Perl CGI
	Validate User Content in Perl CGI

	Chapter 23: Speeding Up Dynamic Web Sites
	Introducing the Apache mod_ perl Module
	Install the Apache mod_ perl Module for Windows
	Install the Apache mod_ perl Module for Linux
	Configure the Apache mod_ perl Module
	Understanding mod_ perl’s Caveats

	Appendix A: Perl Reference
	Access Perl Documentation
	Execute Perl on the Command-Line
	Available Built-In Perl Functions
	Using Perl Pre-Defined Variables
	Perl Operators
	Perl Regular Expressions

	Appendix B: Apache Configure and Module Reference
	Apache Run-Time Configuration Directives
	Apache Base Modules and Directives
	Apache Authentication and Authorization Modules and Directives
	Apache Extended Modules and Directives

	Appendix C: Useful Perl Modules
	Useful Perl Modules

	Index

