RS of 3

» - . . . > ’
o -~) . ~ (et 3
A T R e R A e et o o 5 g T S
Gy P e G M S o, S 2 . Bl v N Pt S .
g e P AR | T EN o
~p v e " PPN - -
L 3 " > ..,:; S -f’A:

Ok

¥y

WA, -

‘-

_with HBase afid Hadoop

o % 8

BeJUG - 17/6/2010 4

v
v - .
o g Y -
-,
A e

o

< - : http://www.flickr.com/photos/wolfgangstaudt/22 | 5246206/

Who am |

» Steven Noels - stevenn@outerthought.org

» OQuterthought : scalable content applications

» makers of Daisy, Lily and Kauri : open source
internet/Java/REST/content apps

1. Intro
2. Theory

3. Technology
4 . Experiences

An evolution
driven by pain.

History

hierarchical databases

IMS
XMLDB

OODBMS

| . standardization

2. simplification

-
NET

ssssssssss

| net Rebecca Riordan

® HIBERNATE

oooooooooo

django

pEEI‘

History

4. rethinking
caching

denormalisation
sharding
replication ...

Four Trends

» Trend | : Data Size
» Trend 2 : Connectedness

» Trend 3 : Semi-structure

» Trend 4 : Architecture

e neotechnology

Trend |: Data size

ExaBytes (10'%) of data stored per year
988

1000

Each year more and

wore digital data is
| created. Qver two
75 O years we create more

digital data than all
the data created in
history before that.

500 - 4

397
253
b - . l
, |

2006 2007 2008 2009 2010
Data source: IDC 2007 3

®®
‘e neotechnology

Trend 2: Connectedness

Giant /
A

Global
Graph (GGG)
7
Over time data has evolved to Ontologies
be more and wmore interlinked /
and connected. —
Hypertext has links,
Blogs have pingback, /
> Tagging groups all related data Folksonomies
> Tagging
g d
C Wikis User-generated
g content
@)
- Blogs
O
o RSS
-
S
“'_E / Hypertext
Text d t
S SEEEEE web |.0 web 2.0 “web 3.0"
- >

1990 2000 2010 2020 4

‘e neotechnology

Trend 3: Semi-structure

@ Individualization of content

® |n the salary lists of the 1970s, all elements had exactly one job

® |n the salary lists of the 2000s, we need 5 job columns! Or 8!
Or I5?

@ All encompassing “entire world views”

® Store more data about each entity

@ Trend accelerated by the decentralization of content generation

that is the hallmark of the age of participation (“web 2.0”)

Trend 4: Architecture

1980s: Mainframe applications

DB

Trend 4: Architecture

1990s: Database as integration hub

Trend 4: Architecture

2000s: (moving towards) Decoupled services
with their own backend

DB DB DB

700,000.00

600,000.00

500,000.00

400,000.00 | | I | | services

300,000.00 W supportyrl

m software
200,000.00

® hardware
100,000.00

0.00
database database disk array
clustering, v1 clustering, v2

IIC TECHNOLOGIEPARK 3 B-9052 ZWIJNAARDE (GENT) www.outerthought.org 14

Enter NoSQL

It>s a Cambrian Explosion

Cassandra

s

ColichDB

Redis

100%

ORI XUNDRED PERCEND

COMPREHENSIVE

AUTHORITATIVE
WHAT YOU NEED :
- '," e i S e N)

W 0 AWy 1 el e oe ey
writ b heed wewrg anfieg

Create exciting, : gk T S S e s
dynamic Web sites L ~ o | CE— -
without becoming Nl : ' ;

a programmer .' . o IR AN /A | i
Focus on technologies PR, iable Raw /A

you will use most, such
as schemas, XHTML,
SVG, and RDDL

SEANS Sty (dpntand| “Shaes)
PREAR_MADE Batare (Cantant; “Made "} 4)

Build your knowledge
of the leading data
format technology
for the Web

COMPANION
WEB SITE
Features code examples,

XML 1.1 specification, valuable

information from previous editions, A
and useful XML reference material "

Elliotte Rusty Harold

THOUGHT

FE

o1 / ;:n/n n /Lt)(‘-: //
*% Brian A.White

-

P

Pt
3 \ ,‘/(
. Vi

A ninry the Ve not a databacep
W CO | QUETY UNC (o NOLa Calabase
J
~
dabahas s . P
calabase’ RCY Ve C o C

OUTER i iTHOUGHT

»

»

Image credit: http://browsertoolkit.com/fault-tolerance.png

»

Common themes

» SCALE SCALE SCALE

» new datamodels
» devops
» N-O-SQL

» The Cloud :
is of

New Data

» sparse structures

» weak schemas

» graphs

» semi-structured

» document-oriented

NoSQL

» Not a movement.
» Not ANSI NoSQL-2010.
» Not one-size-fits-all.

» Not (necessarily) anti-RDBMS.

» No silver bullet.

NoSQL = pro Choice

3 770 ot

" of anti-abortion

L

leaders are men.|

100% !_, F o

of them will never , :

toolbox

NoSQL

T
I
(@)
'
o
X
—

NOSQL, if you need ...

» horizontal scaling (out rather than up)
» unusually common data (aka free-structured)

» speed (especially for writes)

» the bleeding edge

SQL/RDBMS, if you need ...

» SQL
» ACID

» normalisation

» a defined liability

Some RDBMS bashing

» sparse and dynamic tables

id content fieldl field2 field3 fieldd fields fields |

Some RDBMS bashing

» solution

Pl

mysql> desc thefields;

Juajuod

TPIRY

bigint (20)

fieldtype_ id bigint (20)

PRy

stringvalue varchar (255)
datevalue datetime
datetimevalue datetime
integervalue bigint(20)
floatvalue double
decimalvalue decimal (10,5)
booleanvalue

SPi_Y yPIeY EPRY

9PIRY

25 rows in set (0.00 sec)

THOUGHT
[S

More RDBMS bashing

» replication and failure recovery
» (when working on a budget)

» application-level partitioning logic

L

3. Tec
. Expe

THOUGHT

Intro
Theoj

<sT? - T
R bl

ﬂ Thass M5 s
fa fat nazomn.Ccl -t rg_es e
even v s\'\?z_ﬁest

‘l

WO,
cO seque‘n_—ﬁhd

platform, which provices serviC

is implcmcmcd on top of an

servers and netw ork components
around the W orld. At this scale, small and large

continuously and the way

of these fatlures drives the T

software sysiems.

This paper presents the design ar
\ - 13 available Key-V alue storage

persister

A

infrastructure

eligbility an

< the biggest challenges W€

commerce operations 10

w¢ has significant financial

f many web

trust. The Amazon.com

sites w orldwide,

of tens of thousands of

located in many datacenters

\ state is man

components fail
aged in the face

d scalability of the

d imp\cmcmmion of Dynamo, a
gystem that some of Amazon's

7 avson” experience. To

Academic background

» Amazon Dynamo

» Google BigTable

» Eric Brewer CAP theorem

ameless plug

papers_

Amsterdam
Berlin
Boston
Bucharest
Budapest
Cheltenham
Chicago
Denver
Ghent
Groningen
London
Los Angeles
Madrid
Malmo
Memphis

Currently featuring cities on 5 continents,

studying & discussing

participants in
papers!

A NOSQL Summer is a network of local reading groups, that will decipher &
discuss NOSQL-related articles, from late June to early September 2010. Each
group sets its own meeting pace (usually once a week or once every two
weeks) and select which papers are up for discussion.

At every cycle, members read the selected paper at home and then meet up for
an hour or so to discuss, debate and answer their own questions.

We then encourage you to produce an annotated version of the paper, or short
summary that we can then publish here for the rest of world to peruse.

nosqgilsummer.or

ameless plug

San Francisco (53)
Ghent (36)
Seattle (30)
_Paris (27)

Lonaon (25)

Bucharest (23)
New York (22)
Vancouver (21)
Berlin (21)
Wellington (20)
Saint Louis (19)
Los Angeles (19)
Madrid (17)
Toronto (16)
Rome (16)
Stuttgart (15)
Malmo (15)
Budapest (13)
Boston (11)
Chicago (8)
Philadelphia (7)
Cheltenham (7)
Denver (5)

Sdo Paulo (4)
Groningen (2)
Amsterdam (2)
Memphis (1)

\Currently featuring
studying & discussing

participants in cities on 5 continents,

papers!

A NOSQL Summer is a network of local reading groups, that will decipher &
discuss NOSQL-related articles, from late June to early September 2010. Each
group sets its own meeting pace (usually once a week or once every two
weeks) and select which papers are up for discussion.

At every cycle, members read the selected paper at home and then meet up
for an hour or so to discuss, debate and answer their own questions.

We then encourage you to produce an annotated version of the paper, or
short summary that we can then publish here for the rest of world to peruse.

Please note that, in most cities, you do not need to sign up to attend NOSQL
Summer meetings. You just need to have read the paper planned for the week
by your local chapter and show up at the designated meeting place!

Feel free to skip a meeting or jump in at any time. We're trying to make this
low-maintenance and flexible, for everybody to get a chance to learn more
about a fuzzy concept that's here to stay.

Propose a Paper Follow us on Twitter

Propose a City or Contact us

nosqgilsummer.or

Amazon Dynamo

» coined the term ‘eventual consistency’

» consistent hashing

Table 1: Summary of techniques used in Dynamo and their advantages.

‘ Problem ‘ Technique ‘ Advantage
‘ Partitioning ‘ Consistent Hashing Incremental Scalability

High Availability for Vector clocks with : i
: At . Version size is decoupled from update rates.
writes reconciliation during reads

Handling temporary Sloppy Quorum and hinted Provides high availability and durability guarantee when
failures handoff some of the replicas are not available.

Recovering from

permanent failures Anti-entropy using Merkle trees| Synchronizes divergent replicas in the background.

Preserves symmetry and avoids having a centralized
registry for storing membership and node liveness
information.

Membership and Gossip-based membership
failure detection protocol and failure detection.

THOUGHT
[S

Eventual Consistency Gone Wilid

What happens
on Spring Break

STAYS

on Spring Break

replica

server |
server 2

|. update ACL: disallow
from folder ‘spri

2. upload spri

how is my boy
doing on his
spring break?

OUTERi iTHOUGHT » » »

Consistent hashing

» a solution for naive mod n distributions
» specifically in the case of adding or deleting nodes

% Nodes B. C
¢ and D store
- keysin
. range (A.B)

including

Consistent hashing

AN

hash(<<"artist">>,<<"REM">>)

(c) Basho/Riak

OUTER i iTHOUGHT

Google BigTable

» multi-dimensional column-oriented database
» on top of GoogleFileSystem
» object versioning

"contents:” "anchor.cnnsi.com” "anchor:my.look.ca"

Y

n n ' n n !
"com.cnn.www" | | ' "CNN.com" = tg

CAP theorem

CAP

» Strong Consistency: all clients see the
same view, even in the presence of updates

» High Availability: all clients can find some
replica of the data, even in the presence of
failures

» Partition-tolerance: the system
properties hold even when the system is
partitioned

Culture Clash

» ACID » BASE
» highest priority: strong » availability and scaling
consistency for highest priorities

transaction :
tions » weak consistency

» availability less important > optimistic

5 -
PESSImIStIC » best effort

» i ' '
rigorous analysis » simple and fast

» complex mechanisms

spectrum

Availability #

total async !

The Enterprise Service Bus

il !

Bus systems

» objects don’t fit in a pipe
» object => message
» serialization / de-serialization cost

» message Size

» queuing = cost

Use a mixture of both

»async + sync ‘?,QBUO%
@ "
* *

COI.- F?f"

2 .1 Interlude

2 .1 Interlude

2 .1 Interlude

Processing large datasets :

Hadoop + Map/Reduce

Hadoop: HDFS + MapReduce

» single filesystem + single execution-space

ﬁ 12

i
ﬁ“l”, W ﬁ'.‘("(h' \

Execution

Storage

7 AT,

OUTER i iTHOUGHT

M/R Execution

Intermediate | kl:v kl:v k2:v k3:v kd:v k4:v k5:v

'

Input

[[G.m.p oy ey)

Grouped |kl:v,v,v,v |k2:

Output

OUTER E THOUGHT IIC TECHNOLOGIEPARK 3 B-9052 ZWIJNAARDE (GENT) www.outerthought.org

MapReduce example: WordCount

e Read a line of text, output every word

[0, "when in the course of .
[human events"] j Map > [["when",ﬂj[["in",1] j[["the",1] j[Gl j
|

e Group all the values with each unique word

-
A\

["when",?Tj 7 Group> 6"when",{1 b 185 1 ,1}]]

e Addup the values associated with each unique word

[["when",{1 1,1,1,1 }]j @{:} [["when"ﬁ]]

OUTER i iTHOUGHT » » »

Hadoop ecosystem

» Hadoop Common

» Subprojects

»

»

»

»

»

»

Chukwa: A data collection system for managing large distributed systemes.

HBase: A scalable, distributed database that supports structured data storage for
large tables.

HDFS: A distributed file system that provides high throughput access to application
data.

Hive: A data warehouse infrastructure that provides data summarization and ad hoc
querying.

MapReduce: A software framework for distributed processing of large data sets on
compute clusters.

Pig: A high-level data-flow language and execution framework for parallel
computation.

ZooKeeper:A high-performance coordination service for distributed applications.

Mahout: machine learning libraries

http://hadoop.apache.org/chukwa/
http://hadoop.apache.org/chukwa/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hive/
http://hadoop.apache.org/hive/
http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/zookeeper/
http://hadoop.apache.org/zookeeper/

Processing large datasets with MR

» Benefit from parallellisation
» Less modelling upfront (ad-hoc processing)

» Compartmentalized approach reduces
operational risks

» AsterData et al. have SQL/MR hybrids for
huge-scale Bl

1. Intro
2. Theory

3. Technology
4 . Experiences

VWe welcome
the Polyglot
Persistence

overlords.

The NOSQL footprint

free-structured or sparse data

MongoDB
CouchDB

neo4j

Cassandra
HBase

ACID,
simple operational
constraints
(Axa|dwod) s|qge|ieAe
pue 3|qe[eds A|ysiy

referential integrity,
typed data

OUTERi iTHOUGHT » » »

Categories

» key-value stores
» column stores

» document stores

» graph databases

Key-value stores

» Focus on scaling to huge amounts of data
» Designed to handle big loads

» Often: cfr. Amazon Dynamo

» ring partitioning and replication

» Data model: key/value pairs

Key-value stores

» Redis

» Voldemort

» Tokyo Cabinet

Redis

» REmote Dlctionary Server

» http://code.google.com/p/redis/

»vmware

Redis Features

» persisted memcache, ‘awesome’
» RAM-based + persistable

» key => values: string, list, set

» higher-level ops

» i.e. push/pop and sort for lists

» fast (very)

» configurable durability

» client-managed sharding

Voldemort

» http://project-voldemort.com/

» LinkedIn

Voldemort

» persistent
» distributed

» fault-tolerant

» hash table

Voldemort

Logical Architecture

Conflict Resolution

Serialization
Requests Responses

Routing & Read Repair Network Client & Server

(HTTP/Sockets/NIO)

(Optional)
Faiover (Hinted handoff)

Storage Engine
(BDB/MySQL/Memory)

| OUTER | L THOUGHT

Voldemort

Physical Architecture Options

Load Bal.

Load Bal.
Backend
Service

Backend
Service
Panition-aIare\ Routing

sl (T[N
oldemort Cluster Voldemort Cluster

Partition-aware Routing
-

3-Tier, Server-Routed 3-Tier, Client-Routed

Best-effort Partition-aware Routing

Backend Service

/'

Additional routing

2-Tier, Frontend-Routed

routing logic moving up the stack,

smaller latency

Column stores

» BigTable clones
» Sparseness!

» Data model: columns = column families = cells

» Datums keyed by: row, column, time, index

» Row-range => tablet => distribution

Column stores

» BigTable
» HBase

» Cassandra

BigTable

» http://labs.google.com/papers/bigtable.html
» Google

» layered on top of GFS

HBase

» http://hadoop.apache.org/hbase/
» StumbleUpon / Adobe / Cloudera

HBase

» sorted

» distributed

» column-oriented
» multi-dimensional
» highly-available

» high-performance

» persisted

» storage system

» adds random access

reads and writes atop
HDFS

HBase data model

» Distributed multi-dimensional sparse map

» Multi-dimensional keys:

Row Key Time Stamp Column “contents:" Column “anchor:” Column "“mime:"

"com.cnn.www" t9 "anchor:.cnnsi.com" "CNN"
t8 "anchor:my.look.ca" "CNN.com"
t6 "text/ntml"
t5
t3

» Keys are arbitrary strings

» Access to row data is atomic

Sample schema

Card Number

1233.45.33-2

Card Number

1233.45.33-2

registerCode=<_ =
model=<maodel=
pinHash=<md5{pin}>
ValidFrom=<md5{f)>
VaidTo==<__=

=Deglerld>= pinAttempts==<>

<amount=
Location=<_>

operator=<__>

Email=
=mdS5(email)=
sre=web

ragﬁturﬂuda—c =
model==modei=
pinHash=<md5{pin >
ValidFrom=<md5{f)>
ValidTos=<.._»

<Dealerld== pinAttempis=<>

<amount>
Location=«<_.>

Supporter=<>

A new card was
issued tothe
customer

A Transaction was
made

Support Request
from Customer

Address-Change by

'."-..IJFIF;l:jr‘[

Email-Change from
WebSite

A Transaction was
made

(c) eCircle

Storage architecture

HRegionServer HRegionServer

HRegion HRegion

Store Store

DFS
Client

.
HiNnE .

DataNode

HiNNNNEE N
o) g oo

.
HiNNE .

DataNode DataNode

DataNode DataNode

© lars george

Cassandra

» http://cassandra.apache.org/

» Rackspace / Facebook

Cassandra

» Key-value store (with added structure)
» Reliability (identical nodes)
» Eventual consistent

» Distributed

» Tunable

» Partitioning

» Replication

Cassandra applicability

FIT

» Scalable reliability
(through identical
nodes)

» Linear scaling

» Write throughput

» Large Data Sets

NO FIT

» Flexible indexing

» Only PK-based
querying
» Big Binary Data

» | Row must fit in
RAM entirely

* Mahalo-:,

Main real-ime
User profiles data store

@‘ Inbox search,

0ssibly more
cassandra PO S

o Persistent cache
,\'.L.\ o
7 reddit
Cloud service,

moritoring&log storage Van real-time
data store

@ digg

°UT‘-RE@ IC TECHNOLOGIEPARK 3 B-9052 ZWIJNAARDE (GENT) www.outerthought.org

Q)

User pro filing system

Real-ime data storage
and analytics platform

YaHOO! 5 NING

Near-duplicate document dacwow. Near-real tune analytics
© and reporting

HEBASE

Versioned cddfiegic search, analytics
storage and retneval

* Mahalo-

OUTER

H
()
i

THOUGHT IIC TECHNOLOGIEPARK 3 B-9052 ZWIJNAARDE (GENT) www.outerthought.org

Document databases

» = K/V stores, but DB knows what the Value is
» Lotus Notes heritage

» Data model: collections of K/V collections

» Documents often versioned

Document stores

» CouchDB
» MongoDB

3 F1 4

CouchDB

» http://couchdb.apache.org/

» couch.io

CouchDB

» fault-tolerant
» schema-free

» document-oriented

HITP CLIENT

6 e
ERANG gt

JcU .S&%&'ﬂ‘

| ¢ |
Lg&fv | INERE sk

CouchDB documents

“ 1d"”: "BCCD1l2CBB”,

“ rev”: "AB764C",
“type”: "person”,
“name” : "Darth Vader”,

“agedis 668
“headware”: [“Helmet”, *“Sombrero”],
“dark side”: true

CouchDB REST API

»HTTP

» PUT /db/docid

» GET /db/docid

» POST /db/docid

» DELETE /db/docid

CouchDB Views
» MapReduce-based

» Filter, Collate, Aggregate

» Javascript

map reduce
function (doc) { function (Key, Values) {
for(var i in doc.tags) var sum = O;
emit (doc.tags[i], 1); for(var i in Values)
} sum += Values[i];

return sum;

}

CouchDB

» be careful on semantics

» replication # partioning/sharding !

» distributed database = distributable database

» sharded / distributed deployment
requires proxy layer

MongoDB

» http://www.mongodb.org/

» | Ogen

MongoDB

» cfr. CouchDB, really

» except for:
» C++

» performance focus
» runtime queries (mapreduce still available)

» native drivers (no REST/HTTP layering)
» no MVCC: update-in-place

» auto sharding (alpha)

Graph databases

» Focus on modeling structure of data -
Interconnectivity

» Scale, but only to the complexity of data

» Data model: property graphs

Graph databases

» Neo4j
» AllegroGraph (RDF)

Neod)

» http://neo4j.org/

» Neo Technology

Neodj

» data = nodes + relationships + key/value properties

2§ name: Morpheus

age: 29 — koS- I occupation: Total badass
name: Thomas Andersson ’ rank: Captain

H.I L) , Mo language: C++
KNOWS KNOWS .~ / ‘ name: Agent Smith
age: il days agg,:,.'l'z years = version: 1.0b

| ’ Fd
I| L~ _,-,-"" KN OW’S "I'I' P '
¥ o disclosyfe: public e

/ knows 7
name: Trinity / age: 6 mdnths
discle$ure: secret

COD [:I_E; Y

last name: Reagan | name: The Architect
name: Cypher :

Neodj

» many language bindings, little remoting
» ‘whiteboard’ friendly
» scaling to complexity (rather than volume?)

» lots of focus on domain modelling

» SPARQL/SAIL impl for triple geeks

» mostly RAM centric (with disk swapping &
persistence)

Bandwagonjumpers

» JCR / Jackrabbit
» GT/IM

» RDF stores

MEVRIGD
maturization

Rise of integrators

» Cloudera (H-stack)

» Riptano (Cassandra)
» Cloudant (hosted CouchDB)

» (Outerthought: HBase)

VC capital

» Cloudera
» couch.io
» Neo

» | Ogen

» many others

1. Intro
2. Theory

3. Technology
4

Experiences

i /\ I
: ° ° ' ;"' " : \ ‘ // ,
the fireside conversations { r/ 1)/

NOSQL applicability

» Horizontal scaling
» Multi-Master

» Data representation

» search of simplicity

» data that doesn’t fit the E-R model
(graphs, trees, versions)

» Speed

Tool selection

» be careful with the marketeese:
smoke and mirrors beware!

» monitor dev list, IRC, Twitter, blogs

» monitor project ‘sponsors’

» mix-and-match: polyglot persistency

» DON'T NOSQL WITHOUT INTERNAL SYS
ARCHS & DEV(OP)S !

Our Context: Lily

» cloud-scalable content store and search
repository

» successor (in many ways) of Daisy

Complexity

complexity

software architecture

age

Complexity

complexity

Business Development 101

user interest

budget

Solution

sophistication
ability to cope

We Prefer Sophistication

» the challenge for us was to scale ...
without dropping features

The typical CMS ‘architecture’

database (+opt. filesystem) (+ opt. full-text indexes)

The typical CMS ‘architecture’

application cache
database (+opt. filesystem) (+ opt. full-text indexes)

The typical CMS ‘architecture’

more cache

database (+opt. filesystem) (+ opt. full-text indexes)

The typical CMS ‘architecture’

‘ . | #‘ : < - .

OUTER

The typical CMS ‘architecture’

client

even more cache

more cache

application

database (+opt. filesystem) (+ opt. full-text indexes)

D THOUGHT

OUTER

D THOUGHT

The typical CMS ‘architecture’

client (+cache)

even more cache

more cache M

application

database (+opt. filesystem) (+ opt. full-text indexes)

What we found hard to scale

» access control
» facet browsing

»all the nifty stuff people were using our
software for

» ... anything that required random access
to in-memory-cache data for computations

Beyond the ‘scaling’ problem

» three-prong data layer

» result set merging (between MySQL & Lucene)
» happened in appcode/memory

» ‘transactions’, set operations = hard

Requirements, phase |

» automatic scaling to large data sets

» fault-tolerance: replication, automatic handling of failing nodes

)

v

a flexible data model supporting sparse data
» runs on commodity hardware
» efficient random access to data

» open source, ability to participate in the development thus
drive the direction of the project

» some preference for a Java-based solution

Requirements, phase Il

» After careful consideration, we realized the
important choices were also:

» consistency: no chance of having two conflicting
versions of a row

» atomic updates of a single row, single-row
transactions

» bonus points for MapReduce integration

» e.g. full-text index rebuilding

That brought us to HBase, which bought us:

» a datamodel where you can have column
families which keep all versions and others
which do not, which fits very well on our
CMS document model

» ordered tables with the ability to do range
scans on them, which allows to build
scalable indexes on top of it

» HDFS, a convenient place to store large blobs

» Apache license and community, a familiar
environment for us

» OK, so now we had a data store !

» However, content repository =
store + search o8

) -
J e
) -
N
R N
. .
v Q
N A & -~
A - J
- -\
- . ~ b J
()
’/ ~ .\"/
afl €, -
. o
ol N
e |
- r
N\ o 3
-
—
\\/

OUTER | L THOUGHT

Search ponderings

» CMS = two types of search

» structured search
» numbers, strings
» based on logic oL, anyone?)
» information retrieval (or: full-text search)

” text

» based on statistics

Search ponderings

scalability

A

» True Distribution availability

» All of that, at scale ¢,

performance

Structured Search

» HBase Indexing Library

» idea from Google App Engine datastore indexes

» http://code.google.com/appengine/articles/
index_ building.html

|
L
)
:

v
s |
I

index table A

Full-text / IR search

» Lucene!

» no sharding (for scale)

» no replication (for availability)

» batched index updates (not real-time)

Beyond Lucene

» Katta

» scalable architecture, however only search, no indexing

» Elastic Search

» very young (sorry)

» hbasene et al.

» stores inverted index in HBase, might not scale all features

» SOLR

» widely used, schema, facets, query syntax, cloud branch

More info: http://lilycms.org/lily/prerelease/technology.html

IIC TECHNOLOGIEPARK 3 B-9052 ZWIJNAARDE (GENT) www.outerthought.org 125

Remember distribution ?
Remember secondary indexes ?

» True Distribution availability

“'a

performance

Connecting things

» we needed a reliable bridge between our

main storage (HBase) and our index/search
server(s) (SOLR)

» indexing, reindexing, mass reindexing (M/R)

» we need a reliable method of updating
HBase secondary indexes

» all of that eventually to run distributed

» distribution means coping with failure

Solution

» ACMEMessageQueue !
We wanted fault-safe HBase persistence for

the queues.
Also for ease of administration.

»=> WAL & Queue implemented on top of
HBase tables

WAL / Queue

» WAL

» guaranteed execution

»

»

»

»

of synchronous actions

call doesn’t return before
secondary action finishes

e.g. update secondary actions

if all goes well,
size = #concurrent ops

will be useful/made available
outside of Lily context as
well!

» Queue

» triggering of async
actions

» e.g. (re)index (updated)
record with SOLR back-end

» size depends on speed of
back-end process

The Sum
» Lily model (records & fields)

» mapped onto HBase (=storage)

» indexed and searchable through
SOLR

» using a WAL/Queue mechanism
implemented in HBase

» runtime based on Kauri

» with client/server comms via
Avro

HBASE
MASTER NODE

OUTER ETHOUGHT

A
[1 |
HBASE HBASE HBASE
REGION NODE| |REGION NODE| [REGION NODE
1 f1 X
R
CLIENT [0Syl i1y NODE HDFS [=
NAME NODE SECONDARY
L——| NAME NODE
CLIENT —{ LILY NODE HDFS HDFS HDFS
DATA NODE DATA NODE DATA NODE
blob access ’ 4 * 4 + T
| |
CLIENT —» LILY NODE
>
— SOLR SOLR SOLR
ublis
st NODE NODE NODE
nodes T + distributed query + * + T
perform query on 1
any SOLR node
consult available nodes : ZOOKEEPER ZOOKEEPER ZOOKEEPER
NODE NODE NODE

[

TECHNOLOGIEPARK 3

B-9052 ZWIJNAARDE (GENT)

Architecture

www.outerthought.org

perform queries CLIENT consult

available
nodes
= perform CRUD ops
= Avro serialization
* clients connect to
arbitrary node ZOOKEEPER
I BEFORE-UPDATE INTERCEPTOR?
» *publish
LILY REPOSITORY available
4 - » nodes
notify | [verify [POST-UPDATEACTIONS |
before & finish i
record expired
operation opelrations ; OSSO
push
HADOOP
WRITE AHEAD LOG /VI records table | Y
» schema table | > HDFS
\I blobs table | MAP-REDUCE
MESSAGE QUEUE — »{ write ahead log table(s) |
message queue table(s)
|forward linkindex table |«
|packward linkindex tablele
dat
s fcustom secondary indexes] LINKINDEX
notify event
OTHER ™ | HBASE INDEXING LIB.
I(.)ILSJTE%JSERS o It rel b
event consult relations between
records to update LINK EXTRACTOR
denormalized index data
— INDEXER
|UPDATE DENORMALIZED DATA}I‘ INDEXER CONFIG ﬁ
Y
SOLR SHARD ROUTER
Y
-
> SOLR SHARD SCHEMA.XML |
l inter-SOLR requests

for distributed queries o
rcniceccure

OUTER a THOUGHT IIC TECHNOLOGIEPARK 3 B-9052 ZWIJNAARDE (GENT) www.outerthought.org

‘)\}\.\ »

Roadmap

» June 7-8: release of learning material
(architecture, model, API, Javadoc)
- www.lilycms.org
= bit.ly/lilyprerelease

» Tomorrow: WAL/queue

» Mid July =‘proof of architecture’ release

» from there on, ca. 3-monthly releases
leading up to Lily |.0

bit.ly/lilyprerelease

lilycms.org

We're shooting for a first runnable Lily Content Repository release by mid July. That release will be a ‘proof of architecture’ and still have many rough edges. However, what
will be available by then is:

a runnable Lily setup
the basic client/server infrastructure

the content repository model implemented in HBase
a mapping between HBase-stored Lily records and SOLR indexing/schema configuration
a WAL/queue implementation, backed by HBase, that serves as a robust mechanism to pass information between HBase and SOLR

In the mean time, we hope you can still be a bit patient, or start leaming about Lily by reading this prerelease documentation:

The technology cholces we made
The Lily architecture

The repository model Lily provides
AP1 Tutorlal

HBase mapping

Javadoc

In case you have any questions, get in touch with us via Twitter or mall.

VYL VAVYEY,

Vo VAVEY A WAY.

THOUGHT

License

» Apache

Business model

» Consulting, mentoring, turn-key projects

» audience: developers

» Strong focus on partner relations

» targeting vertical markets
» geographic coverage

» SaaS offerings

» Markets: media, finance, insurance, govt, heritage ...
LOTS of semi-structured data

» Not: OLAP

Reading material

» Amazon Dynamo, Google BigTable, CAP
» http://nosql.mypopescu.com/
» http://nosqgl-database.org/

» http://twitter.com/nosqlupdate

» http://highscalability.com/

Questions? - |

Not all questions
can be answered

DY
Google

3t Nic’s Church, Nottingham

You are warmly
invited to our

Sunday worship at 1 -
9.00and 10.30am
and 7.00 pm

There are groups for chidven

and young people as part of
our 10.30am worship

http://www.flickr.com/photos/leehaywood/4237636853/

Thanks for your
attention !

» stevenn@outerthought.org

» . @stevenn

