
Using memcached
How to scale your website easily

Josef Finsel

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Trieu Nguyen

Many of the designations used by manufacturers and sellers to distin-

guish their products are claimed as trademarks. Where those designations

appear in this book, and The Pragmatic Programmers, LLC was aware of

a trademark claim, the designations have been printed in initial capital

letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Pro-

grammer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Useful Friday Links

• Source code from this book and

other resources.

• Free updates to this PDF

• Errata and suggestions. To report

an erratum on a page, click the

link in the footer.

Every precaution was taken in the preparation of this book. However, the

publisher assumes no responsibility for errors or omissions, or for dam-

ages that may result from the use of information (including program list-

ings) contained herein.

To see what we’re up to, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2008 Josef Finsel.

All rights reserved.

This PDF publication is intended for the personal use of the individual

whose name appears at the bottom of each page. This publication may not

be disseminated to others by any means without the prior consent of the

publisher. In particular, the publication must not be made available on the

Internet (via a web server, file sharing network, or any other means).

Produced in the United States of America.

Bookshelf
Pragmatic Lovingly created by gerbil #19 on 2009-4-20

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragmaticprogrammer.com/titles/memcd
http://books.pragprog.com/titles/memcd/reorder
http://books.pragprog.com/titles/memcd/errata
http://www.pragmaticprogrammer.com

F ridays

Contents

1 Introduction 1

1.1 What is memcached? 2

1.2 What memcached Isn’t 3

1.3 What Components Make Up memcached? 3

1.4 How do I Install the memcached Server? 4

1.5 How Do I Configure memcached? 7

1.6 How Do I Manipulate Data? 8

1.7 What Options Do I Have for Storing Data? 13

1.8 What Other Commands Can I Use? 15

1.9 Review . 17

2 Using a memcached Client Library 18

2.1 How Do I Install a Windows Client? 19

2.2 Where do I get the memcached Linux client? 22

2.3 What are the benefits of Using a Client? 25

2.4 Review . 29

3 The Basics of Implementing memcached 30

3.1 How Does memcached Fit in the Cache System? . . 30

3.2 What is the Basic Coding Pattern for Using mem-

cached? . 31

3.3 How Do I Update memcached When the Data Changes? 39

3.4 How Do I Prevent Multiple Clients Updating One NVP? 42

3.5 How Do I Determine the Optimal Expiration Time? . 46

3.6 Can I Eliminate Caching Duplicate Data? 51

3.7 How do I Gauge Cache Efficiency? 56

3.8 Review . 57

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=iii

F ridays

CONTENTS CONTENTS iv

4 Best Practices 58

4.1 How Can I Secure memcached? 58

4.2 How Do I Determine What Gets Cached? 59

4.3 How Do I Name Keys? 60

4.4 Which Storage Command is Best? 60

4.5 How Do I Fill the Cache? 62

4.6 How Can I Minimize memcached Server Outages? . 63

4.7 What’s the Future of memcached? 64

5 memcached Add Ons 66

6 Additional Resources 68

6.1 memcached Resources 68

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=iv

F ridays

Chapter 1

Introduction

What we’re working on lately (this past week) is a hard-core dis-

tributed memory caching system. Basically, we’re putting up a bunch

of servers that do nothing but keep frequently-used LiveJournal objects

in memory. Objects can be users, logins, colors, styles, journal entries,

comments, site text, anything...

It was with these words in a post to the lj_maintenance community

that memcached was first introduced into the general world. mem-
memcached

cached, which stands for Memory Cache Daemon, was ready for its

first big test. LiveJournal, one of the first large social blogging sites,

had been going through a period of rapid growth and in the spring

of 2003 users were complaining about things being very slow. In

a post that outlined LiveJournal’s infrastructure, Brad Fitzgerald,

founder of LiveJournal and developer of memcached, pointed out

that one of the big bottlenecks was the reading from the database.

And so the creative developers of LiveJournal started work on mem-

cached. When it was fully implemented in October, the statistics

were phenomenal: almost 95% of the data reads were served up

from memcached and the largest bottleneck in the system had been

eliminated.

Today memcached is in use by many major sites; including Flickr,

Slashdot, Wikipedia and Facebook, just to name a few. But what

is it and how can a website benefit from it? We’re going to explore

those questions in these pages.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=1

F ridays

CHAPTER 1. INTRODUCTION WHAT IS MEMCACHED? 2

1.1 What is memcached?

memcached is a server that caches Name Value Pairs (NVPs) in

memory. The value in the NVP can be anything that fits in mem-

cached: rows of data, HTML fragments, binary objects. Retrieving

the cached value from memory is more efficient than having to get it

from disk, so applications implementing memcached are more scal-

able. For a demonstration of why this is so, let’s take a look at a

calendar of events web page and how implementing memcached can

improve efficience.

Without memcached, every time the web server gets a request for

a list of upcoming events, it queries the database server for infor-

mation. The database server retrieves the data from the disk and

hands it back to the web server to format and finally send back to

the web browser for display. With memcached, the web page check

memcached first and returns the data from there if it exists. If it

doesn’t, the web server queries the database and then stores the

results in memcached so they are there for the next request. This

adds a bit of extra overhead but the difference between the time it

takes to read from memory and the time it takes to read from disk

more than makes up for it, allowing the web server to deliver more

pages than if it had to query the database every time.

cache: a temporary storage of values for more
efficient retrieval than retrieving the value from
its original location.

Caches should never be used as persistent
data stores.

In its most basic form, that is how memcached is used and imple-

menting it is almost that easy. But this simplicity is frequently mis-

understood by people when they first start thinking about mem-

cached and how they can use it in their site. So, before we get into

the technical details, best practices, and examples of implementing

memcached, let’s take a quick look at what memcached isn’t.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=2

F ridays

CHAPTER 1. INTRODUCTION WHAT MEMCACHED ISN’T 3

1.2 What memcached Isn’t

First, memcached is not a persistent data store. You cannot query

memcached and get a list of all the values it holds, nor can you

dump all of the values in memcached to disk. The only way to know

if something is in memcached is to query the server and find out.

This is by design since memcached was optimized to be a caching

server, not a persistent data storage server.

Second, there is no security mechanism built into memcached, but

You may be tempted to find some way to use
memcached for something other than a
cache. I recently found myself in this very
situation. We designed a project that used
memcached as a cheap way to handle
expiration of logins. Whenever a login needed
to be validated we would check memcached,
see if the login had expired and update the
current value to reflect the last time the login
was validated. It was quick, easy, and not the
way to use a memory cache, as I found out
the first time we flushed the cache and
everyone was forced to log back in because
their session authentication had been lost! I
had been treating memcached as a
high-availability data store rather than a
caching system. So we rewrote the application
to use a rolling update to the database like we
implement in Section 3.4, How Do I Prevent
Multiple Clients Updating One NVP?, on
page 42, checking memcached first.

The Moral of the Story: Any time you find
yourself trying to use memcached as a data
store, you probably should rethink your design.

we will explore ways to secure the caches through other means in

Section 4.1, How Can I Secure memcached?, on page 58

The final point to make is that memcached does not support any

fail-over/high-availability mechanisms. If a memcached server goes

down, all of that data is gone. But that’s ok because memcached is

a cache, not the original source of the data. The code will simply fail

to find the data in memcached and get it out of the database. There

are ways to minimize the problem if a memcached server goes down

and we’ll cover those in Section 4.6, How Can I Minimize memcached

Server Outages?, on page 63.

1.3 What Components Make Up memcached?

memcached is made up of two components: the server and the

client. In this chapter we’ll focus on the server and in the next we’ll

focus on the client. The memcached server is best thought of as a

Name-Value Pair (NVP) server, storing values by a lookup key (name)

Name-Value Pair

in memory. That’s all the server does: store and retrieve data stored

with a key. It is a very simple, very fast program with two limitations:

the size of the key cannot exceed 250 characters and the size of any

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=3

F ridays

CHAPTER 1. INTRODUCTION HOW DO I INSTALL THE MEMCACHED SERVER? 4

chunk of data you can store is 1 MB. Also, each memcached server

is atomic. It neither knows nor cares about any other memcached

server; knowing which server contains the NVP is the responsibility

of the client. So you can add as many memcached servers as you’d

like.

1.4 How do I Install the memcached Server?

The memcached server can be installed on either Windows or Linux

and this section will show how to do both. While the steps to install

memcached on both platforms are specific, once it’s installed, there

is no reason that you cannot use both Windows and Linux servers

in a shared pool of memcached servers.

How Do I Install memcached on a Linux Server?

The best way to install the memcached server on a Linux distri-

bution is to download and compile the source code. The following

instructions should help you install and configure the server. You

will need to have a developer box with gcc installed and you’ll need

root privileges to properly compile and install memcached.

There is a supported install package for Debian
that can be retrieved with apt-get install

memcached. The current packaged release is
1.1.12, which is quite a bit older than the
current 1.2.5 version.

Dependency: Getting libevent

memcached uses the libevent API. libevent provides a mechanism to

execute a callback function when a specific event occurs. A copy of

it may already be installed on your computer but you will need the

1.3 version. The following steps should download the 1.3 version of

libevent and create it:

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=4

F ridays

CHAPTER 1. INTRODUCTION HOW DO I INSTALL THE MEMCACHED SERVER? 5

Download Introduction/LibEventInstall.txt

cd /usr/local/src

wget http://monkey.org/~provos/libevent-1.3b.tar.gz

tar zxvf libevent-1.3b.tar.gz

cd libevent-1.3b

./configure

make && make install

Now we need to update /etc/ld.so.conf.d/libevent-i386.conf to add

the path information for libevent. Use your favorite editor to edit

/etc/ld.so.conf.d/libevent-i386.conf and add the following line if it

doesn’t exist: /usr/local/lib/

The last step is to run ldconfig. Now we’re ready to get and build

memcached.

Getting memcached

Now that we have libevent created, we can download and build

memcached. You can check the memcached distribution page (see

Resources) to find the latest version. The latest version currently

available at the time of this writing is 1.2.5. So go ahead and run

the following steps:

Download Introduction/memcachedInstall.txt

cd /usr/local/src

wget http://danga.com/memcached/dist/memcached-1.2.5.tar.gz

tar zxvf memcached-1.2.5.tar.gz

cd memcached-1.2.5

./configure

make && make install

Now you should have a working copy of the latest memcached server.

The install should provide you with a memcached shell script in

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/Introduction/LibEventInstall.txt
http://media.pragprog.com/titles/memcd/code/Introduction/memcachedInstall.txt
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=5

F ridays

CHAPTER 1. INTRODUCTION HOW DO I INSTALL THE MEMCACHED SERVER? 6

/etc/init.d. You can modify this script to run memcached using the

runtime options so it will automatically start whenever your server

reboots.

Installing memcached Server on Windows

Installing memcached on Windows is as easy as downloading the

binaries from the link in the Resources section. You can also down-

load and compile the source, but either way, the end result is mem-

cached.exe. When you run memcached -d install, it will install the pro-

gram as a service. You can start and stop the service by running

memcached -d followed by start, stop, shutdown or restart; or from Ser-

vices in the Administrative Tools.

To modify any of the parameters for memcached you will need to

Making a compiled version of memcached
under windows is best left to people with lots of
C++ experience. But, if you want to compile a
version, you’ll need to download a copy of the
source code from http://code.sixapart.com/
svn/memcached/branches/
memcached-win32 using a SubVersion tool like
TortoiseSVN.

You will also need a copy of libevent. Links for
that can be found in the resources section. The
details of compiling the Windows version are
more complex than those of the Linux version
in the Linux installation in the following section
but, if you regularly use C++ you should be
able to follow the directions given in that
section to build a copy here.

use regedit. Drill down to HKEY_LOCAL_MACHINE\Software\System\Services\

memcached and modify the ImagePath entry (see Figure 1.1, on the

next page).

Running the server under Windows as a service only allows one one

instance. If you want to run multiple instances you will need to actu-

ally run memcached multiple times with different port addresses.

This can be done by adding keys to the Registry or by using a tool

such as AutoRuns1 to do that for you. We’ll look at the how to spec-

ify a different port in Section 1.5, How Do I Configure memcached?,

on the following page.

1http://www.microsoft.com/technet/sysinternals/Security/Autoruns.mspx

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://code.sixapart.com/svn/memcached/branches/memcached-win32
http://code.sixapart.com/svn/memcached/branches/memcached-win32
http://code.sixapart.com/svn/memcached/branches/memcached-win32
http://www.microsoft.com/technet/sysinternals/Security/Autoruns.mspx
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=6

F ridays

CHAPTER 1. INTRODUCTION HOW DO I CONFIGURE MEMCACHED? 7

Figure 1.1: Use Regedit to change the service’s parameters in

Windows

1.5 How Do I Configure memcached?

Both the Windows and Linux versions of the memcached server use

command line arguments to customize the server instance. Three

key arguments are -p, -m and -d. By default, memcached listens in

on port 11211. You can change the port it listens on with -p followed

by the port number. The amount of memory memcached will use is

set with -m, defaulting to 64MB. Finally, -d will run memcached as a

daemon. If you have a multi-processor machine or a lot of memory,

you may want to set up multiple instances of memcached running

with large chunks of memory.

You can see a complete listing of the arguments available by run-

ning memcached -h (see Figure 1.2, on the next page for an example).

For more information on how to use other arguments, see the mem-

cached website (http://www.danga.com/memcached/).

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.danga.com/memcached/
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=7

F ridays

CHAPTER 1. INTRODUCTION HOW DO I MANIPULATE DATA? 8

Figure 1.2: memcached options

1.6 How Do I Manipulate Data?

memcached only has four basic commands related to storing and

retrieving data; in this section we are going to explore each of them

to see how they work. These commands are outlined in the Protocol

document.2 Interaction with the server normally takes place over

a TCP or UDP connection. We can actually interact with a server

using telnet, which is exactly what we’re going to do now as we

explore the basic commands available to us. Let’s look at using tel-

net to store and retrieve data using these four simple commands.

When you attempt to put something into the cache, you’ll get either

a confirmation that it was STORED or told that it was NOT_STORED.

2http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt?

rev=HEAD

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt?rev=HEAD
http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt?rev=HEAD
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=8

F ridays

CHAPTER 1. INTRODUCTION HOW DO I MANIPULATE DATA? 9

SET: add a new item to memcached or replace an existing one with

Connecting to a memcached server using
telnet is as simple as executing telnet servername

port. So, if you are running memcached on your
machine and it’s using the default port you
could use telnet 127.0.0.1 11211.

new data

⇒ set test1 0 0 10

testing001

STORED

ADD: only store the data if the key doesn’t exist. If the key exists,

we get NOT_STORED, as the test1 shows below. Otherwise we get STORED.

⇒ add test1 0 0 10

testing002

NOT_STORED

add test2 0 0 10

testing002

STORED

REPLACE: only store the data if the key already exists. If the key

does not exists, we get NOT_STORED, as the test3 shows below. Other-

wise we get STORED.

⇒ replace test1 0 0 10

testing003

STORED

replace test3 0 0 10

testing003

NOT_STORED

GET: return the data. When you get data out of the cache it tells

you the name of the key, the value of the flag that you can pass in

and the number of bytes on one line, the actual data on the next

line and finally returns END on a line of its own. If the key doesn’t

exist, it returns END on the first line.

⇒ get test1

VALUE test1 0 10

testing003

END

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=9

F ridays

CHAPTER 1. INTRODUCTION HOW DO I MANIPULATE DATA? 10

get test4

END

get test1 test2

VALUE test1 0 10

testing003

END

The first command, using set, stored the value testing001 under the

key test1. That’s because set either creates a new NVP if the key

doesn’t exist or replaces the value if the key exists. Then, when

we try to use add with the key test1, the server returns NOT_STORED

because add requires that the key not exist. Finally, we use replace

to store data to the key test1 and the key test2. Since the key test1

exists, the server stores the data but it doesn’t store anything for

the key test2 because the key doesn’t exist and replace requires it to

exist.

When we use the get command, memcached returns two lines of

data. First is the line that starts with VALUE, to indicate that it is

returning data. This is followed by the name of the key that was

requested, the flag value (that we will cover in Section 1.7, What

Options Do I Have for Storing Data?, on page 13) and the number of

bytes memcached will be returning. Next comes the requested data

followed by END on a line by itself. If there is no data then all that

gets returned is END on a line by itself, as you see when we try to get

the value for the key test2. Finally, you can include multiple keys in a

request by seperating them with spaces. When you ask for multiple

keys, you only get confirmation of the keys that have data. If an NVP

exists on the server, it will return the name and value. memcached

won’t, however, return an empty name for NVPs it doesn’t contain.

If you ask for multiple keys and there is no data, all you will get is

the END.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=10

F ridays

CHAPTER 1. INTRODUCTION HOW DO I MANIPULATE DATA? 11

More Advanced Data Manipulation

There are two additional, related data command: gets and cas, which

stands for Check And Set. gets has the same command format as

get but returns an extra bit of data, a 64 bit integer that uniquely

identifies this data. As you can see in the following example, the first

gets returns a CAS value of 5. Then, when the NVP is updated using

set, the next gets returns a different value. Where this is useful is

in using the CAS value along with cas. The first attempt to save the

data, using the original CAS value of 5 returns an EXISTS message,

indicating we didn’t successfully store the data because the CAS

value was different then the one that currently exists. When we used

the correct CAS value with the cas, we are told that the data was

successfully STORED.

⇒ gets test1

VALUE test1 0 10 5

testtest01

END

set test1 0 0 10

test01test

STORED

gets test1

VALUE test1 0 10 6

test01test

END

cas test1 0 0 10 5

test02test

EXISTS

cas test1 0 0 10 6

test03test

STORED

get test1

VALUE test1 0 10

test03test

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=11

F ridays

CHAPTER 1. INTRODUCTION HOW DO I MANIPULATE DATA? 12

END

Removing Data From memcached

One way to remove date from memcached is to delete it. The format

of the delete command is simple: delete key You can type the com-

mands below in telnet while connected to memcached for a demon-

stration.

set test1 0 0 10

testing001

get test1

delete test1

get test1

When an object expires or is removed using the delete command, all

memcached really does is invalidate the key. In order to make mem-

cached as fast as possible, items are not deleted from the memory

until the memory they occupy is needed. This is much more efficient

than trundling through all of the items in the cache to physically

delete them all the time.

Items are also deleted from the cache when memcached needs mem-

ory and determines that an item hasn’t been used in a while and

probably serves no purpose remaining in cache. When memcached

needs memory and there are no expired or deleted areas that can

be reused, it uses a Least Recently Used (LRU) algorithm to remove
Least Recently Used (LRU)

items that are the oldest things in memory that it determines are no

longer worth caching.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=12

F ridays

CHAPTER 1. INTRODUCTION WHAT OPTIONS DO I HAVE FOR STORING DATA? 13

1.7 What Options Do I Have for Storing Data?

Now let’s take a moment and look at the parameters of the stor-

age commands, which we’ve used so far in this chapter. set,add,

replace and cas all have four required parameters, outlined in the

table below.

keyname the name of the name value pair

flags an integer that is passed through with the key and is

transparent to memcached. This is used by the client

if it wants to store some information about the key

and generally access to this parameter is not exposed

through the client.

expiration time 0 means never delete, 1-2,592,0003 is the number of

seconds to keep, > 2,592,000 equals the Unix time.

bytes The number of bytes to be stored.

So far, we’ve been passing in 0 for the flag and the expiration time,

but let’s set a key that will expire by passing in an expiration value.

We will set something to expire in 10 seconds by passing in 10 as

the second option. An example can be found in the sample code

below. After storing the data you can do get test1 and it will return

data until the 10 seconds have passed.

set test1 0 10 10

testing001

In addition to these required options, there is an optional one: nore-

Interestingly enough, cas supports noreply. Which
seems to defeat the purpose of using the
command in the first place.

ply. This option suppresses the STORED or NOT_STORED indicator and is

designed for folks who are really pushing memcached and clients to

3Number of seconds in 30 days: 60*60*24*30

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=13

F ridays

CHAPTER 1. INTRODUCTION WHAT OPTIONS DO I HAVE FOR STORING DATA? 14

the limit because it means the client doesn’t need to wait around

for an answer and the server doesn’t need to use cycles to return

one. This makes sense if you think about the original design behind

memcached, as a memory based cache. One of two things can hap-

pen when you request data from the cache: it will be there or it

won’t. It may not be there because it expired out of the cache, it

may not be there because memcached needed the memory location

that was being used, it may not be there because it was deleted on

purpose, or it may not be there because it was never put there. Any

program using memcached doesn’t really care why the data isn’t

there, only that it has to look somewhere else to get the data. And

if that’s the case, why does the program need to know that the data

was successfully stored? So no return code is provided.

Increment/Decrement

memcached has two handy commands for using numeric counters:

INCR (increment) and DECR (decrement). These two commands add or

subtract values from an NVP in memcached so you can use a value

as a simple counter.

Let’s look at an example of this. On one site that I’ve implemented

memcached on, we’re storing several different types of data in the

cache. When we set a debug flag to true, it starts using INCR on

two keys for each type of data, one for cache hits and one for cache

misses. That enables us to query the cache periodically to see how

specific types of data are being cached and to help us determine

where we might have issues related to what we have defined as

cacheable.

The one downside to INCR and DECR is that they require the NVP

to exist before they can be used. When you attempt to increment

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=14

F ridays

CHAPTER 1. INTRODUCTION WHAT OTHER COMMANDS CAN I USE? 15

a value that doesn’t exist, it will return ERROR. The format of the

command is INCR/DECR key value.4

1.8 What Other Commands Can I Use?

In addition to the commands to manipulate data in the cache, there

If you flush the cache so the system is empty
and store a 1 byte value with a 1 byte key, how
many bytes will that take? Well, that depends.
If you try this on a default memcached server,
odds are that you will find that one key takes
45 bytes. One of the parameters for
memcached (see Figure 1.2, on page 8) is -n,
which determines the minimum number of
bytes that a key, flag and value will take up.
Unless you know that you’re going to be storing
lots of key/flag/values that will total less than
the default, it doesn’t matter. As you can see
from Figure 1.3, on the following page, the
average size of items stored in this cache is
about 160 bytes (bytes / curr_items).

are two commands for helping to manage memcached. The simplest

is flusha_all. This will reset the cache; it’s handy for testing and debug-

ging. stats, on the other hand, is a useful tool for getting information

about the memcached server and is primarily used to determine

your cache’s effectiveness. Let’s take a look at the output of stats in

Figure 1.3, on the next page.

Most of the values are defined in the Protocol.txt file (Section 1.6,

How Do I Manipulate Data?, on page 8) but different implementa-

tions on different machines may have additional statistics returned,

so I’m not going to go through each of them in detail. Instead, I’m

going to look at some of the key statistics and how they can help

determine utilization. The first set of statistics includes curr_items,

total_items, and bytes. These tell something about what’s in the cache.

total_items defines the total number of items in the cache, includ-

ing active, expired, and deleted items. Deleted items are only those

marked as deleted. When an item is actually physically deleted so

that the memory can be reused, the total_items value is decremented.

curr_items is the number of active items in the cache. bytes is the total

number of bytes being used by active items.

4The latest version of memcached, 1.2.4, allows INCR and DECR to use a 64 bit

counter rather than the 32 bit counter used in earlier versions.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=15

F ridays

CHAPTER 1. INTRODUCTION WHAT OTHER COMMANDS CAN I USE? 16

Figure 1.3: Sample Stats

The one statistic that everyone wants to know about their mem-

cached usage is their cache hit ratio, defined as how often mem-
cache hit ratio

cached delivers something from cache compared to how often it was

asked for something. This data is actually derived using cmd_get,

get_hits, and cmd_misses. To determine the cache hit ratio take the

number of get_hits divided by the number of cmd_get. According to

the numbers displayed in Figure 1.3 , the server has been able to

deliver a little more than 83% of the requests from cache. That’s

a low ratio, mostly because the application using this development

instance of memcached is still being optimized for caching.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=16

F ridays

CHAPTER 1. INTRODUCTION REVIEW 17

Another good statistic to look at is percentage of gets to sets. For

a well-tuned application, there should be more gets than sets. In

this development application we can see that we are setting 70%

more objects than we are getting. This indicates that a great deal

of information is being placed in memcached that is never being

accessed, which may mean that we need to take a closer look at

what we are caching. The higher the number of gets compared to the

number of sets, the better utilization is being made of memcached.

And a key item to remember is that you really want to total statistics

across all of your memcached servers to determine your aggregate

cache hit ratio, because multiple servers for an application will be

storing differen sets of data. See Section 2.3, What are the benefits

of Using a Client?, on page 25 for more information about multiple

servers.

1.9 Review

We’ve covered the basics of what the memcached server is, an in-

memory Name Value Pair NVP cache. We’ve also covered how to

install it and the basic commands used to interact with it. You

should be able to interact with an instance of memcached using tel-

net to store, retrieve and delete values. Next we’ll cover clients avail-

able to programatically interact with the server, so to prepare us for

Chapter 3, The Basics of Implementing memcached, on page 30.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=17

F ridays

Every time you reinvent the wheel, you run the risk

of inventing something that doesn’t roll as well.

Josef Finsel

Chapter 2

Using a memcached
Client Library

In the last chapter, we introduced the memcached server and dis-

cussed how to install it and interact with it using a telnet client. In

the real world, however, using a telnet client is an extremely imprac-

tical way to interact with the memcached server. And, while it’s pos-

sible to write your own code to use TCP or UDP to interact with the

server, we are fortunate that much of this has already been done

and there are many different client libraries 1 that we can use to

programmatically interact with the server. The current list includes:

• Perl

• PHP

• Python

• Ruby

• Java

• .NET/C#

• C

• Postgres

• Chicken

We’re going to take a look at two clients, the Enyim .NET client for

Windows and the Perl client for Linux. We’ll talk about installing

each client and look at the basics of how to connect to the server

and store and retrieve data for both of the clients. We’ll finish by

demonstrating some of the benefits built into many of the existing

1There is a fine distinction between the client library that contains the code

that encapsulates our access to the memcached server and the actual client we

write that uses that library. For the rest of the book I will use client to refer to

both.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=18

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY HOW DO I INSTALL A WINDOWS CLIENT? 19

Figure 2.1: Adding memcached to a Project

memcached clients today.

There are a couple of reasons for using Perl for
the sample code throughout most of the book.
The original user of memcached, LiveJournal,
was writing in Perl and the Perl client has been
around since the beginning. So if you want to
do something with memcached that falls
outside the scope of this book, you’ll probably
find a Perl sample showing how to do it. In
addition, Perl is an easy language to follow, is
relatively easy to install and use, even on
Windows, making the examples more
universally accessible.

2.1 How Do I Install a Windows Client?

There are currently two clients available for .NET development. One

is a port of the Java client2 and the other was written for .NET from

the ground up. We’ll be working with that second client for the sam-

ple code within this book. You can download both a compiled DLL

version as well as the source code for the Enyim memcached client

2You can download this client from https://sourceforge.net/projects/

memcacheddotnet/

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

https://sourceforge.net/projects/memcacheddotnet/
https://sourceforge.net/projects/memcacheddotnet/
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=19

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY HOW DO I INSTALL A WINDOWS CLIENT? 20

from http://www.codeplex.com/EnyimMemcached. Once you’ve got-

ten the client downloaded, you’re ready to start using it. The first

thing to do is to create a project and add a reference to the DLL (see

Figure 2.1, on the preceding page). Once you’ve added a reference,

you need to add the configuration information to your App.Config

file.

The Enyim client also uses Log4Net for logging
purposes. This is a .NET version of Apache log4j
tool to make logging simple. http://logging.
apache.org/log4net/

Download WindowsInstall/memcachedHashTest/memcachedHashTest/App.config

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<configSections>

<sectionGroup name="enyim.com">

<section name="memcached"

type="Enyim.Caching.Configuration.MemcachedClientSection,

Enyim.Caching" />

</sectionGroup>

</configSections>

<enyim.com>

<memcached>

<servers>

<!-- put your own server(s) here-->

<add address="127.0.0.1" port="11211" />

<add address="127.0.0.1" port="11212" />

</servers>

<socketPool minPoolSize="10" maxPoolSize="100"

connectionTimeout="00:10:00" deadTimeout="00:02:00" />

</memcached>

</enyim.com>

</configuration>

How Do I Use the Windows Client?

With configuration out of the way, we just need to start using the

client. This client implements the three storage commands as enums

on the first argument of the store method. The second object is any

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.codeplex.com/EnyimMemcached
http://logging.apache.org/log4net/
http://logging.apache.org/log4net/
http://media.pragprog.com/titles/memcd/code/WindowsInstall/memcachedHashTest/memcachedHashTest/App.config
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=20

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY HOW DO I INSTALL A WINDOWS CLIENT? 21

serializable object. For this sample we’re going to use strings.

Download WindowsInstall/memcachedHashTest/memcachedHashTest/memcachedHashTest.cs

using System;

using System.Collections.Generic;

using System.Text;

using Enyim.Caching;

using Enyim.Caching.Memcached;

namespace memcachedHashGet

{

class memcachedHashGet

{

static void Main(string[] args)

{

MemcachedClient mc = new MemcachedClient();

mc.FlushAll(); // Flush the cache for this example

mc.Store(StoreMode.Set, "73EB7DE0-9452-4607-AAFC-8F7B625E75A3",

"BEE9B83A-2A9B-4071-8D1B-90C46D2BDB30");

mc.Store(StoreMode.Set, "D9632738-43C2-4D92-A0D3-A9E8DB2EE6E2",

"B3879EFE-543F-4771-A243-1EA9B29E4B0A");

mc.Store(StoreMode.Set, "74B42DC4-78E6-4649-B511-5D43F0A0E995",

"645A9A2F-3119-4E29-92F1-5653AD3274E4");

mc.Store(StoreMode.Set, "0D75C88B-1FDE-42A2-A7A5-17C7D0D7C03D",

"04448CF0-DA7B-474D-B8D8-B1A3D9416793");

mc.Store(StoreMode.Set, "210618B8-DA69-49C7-9349-16A51721913A",

"8A580C0D-8C75-4260-A268-3D58200A6BA1");

mc.Store(StoreMode.Set, "B31C9348-944D-491B-820A-5A1D055715C0",

"93D53F85-236C-468B-9A0C-EE7848E95DF8");

mc.Store(StoreMode.Set, "D6F90F35-A870-4435-BA8F-939DDB6812C6",

"A8FBAB5E-F23C-4A01-A726-2F47324094E8");

mc.Store(StoreMode.Set, "8682DE07-8EA2-485E-B654-B93281ACA5CA",

"4FF12E32-B523-4DDD-AE23-B8FAACFF0C41");

mc.Store(StoreMode.Set, "69E7D203-4483-4BC8-9912-D0F8FB639989",

"5A01CAA6-EBE3-4628-8C60-005F06037F52");

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/WindowsInstall/memcachedHashTest/memcachedHashTest/memcachedHashTest.cs
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=21

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHERE DO I GET THE MEMCACHED LINUX CLIENT? 22

mc.Store(StoreMode.set, "50D20618-9CE3-44E0-A0D4-B74B6486E04B",

"2EB046FB-D548-4B03-ACEE-A96B8FB67879");

mc.Store(StoreMode.Set, "B51AA1E9-FF4C-400B-A633-C2F2B686B417",

"EDF9D59B-A98F-42D6-8475-58978308E37D");

mc.Store(StoreMode.Set, "63E45F49-63C3-4BA1-81B6-36D6FD5D0E23",

"D2733881-3BFE-4C02-90B9-98A6C87358F9");

mc.Store(StoreMode.Set, "20F3396E-7374-4861-8E52-F81958464F50",

"3EBBABB1-E3EC-48B6-AC62-324A3B75031C");

mc.Store(StoreMode.Set, "A158E28A-EC6F-47EE-9C3C-E38FA0CD88BB",

"A8C6199C-9BF5-4B03-B274-7F7E45C94A8C");

}

}

}

Similarly, getting data out of the cache is done using the Get, which

takes a key and returns an object.

Before we leave the Windows client section, I want to point out that if

While the remaining code samples in the book
are Perl samples, every Perl sample has a
corresponding .NET sample.

you are programming in a Windows environment but using another

programming language such as Perl or PHP for Windows rather than

C# or VB.NET, you can use the appropriate client for your environ-

ment. You aren’t limited to using just the .NET client for Windows

programming.

2.2 Where do I get the memcached Linux

client?

There are a number of clients available for use on Linux systems.

For this book we’re going to install the Perl memcached client,3

available on CPAN, the Comprehensive Perl Archive Network. To

3Links to other clients are available at the memcached resources page. There’s

a link to that in the Resources section

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=22

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHERE DO I GET THE MEMCACHED LINUX CLIENT? 23

install it you will need to be logged in as a super-user and have

Perl installed. Invoke the interface with the following command: perl

-MCPAN -e shell.

Once you are at the CPAN shell, enter install Cache::Memcached. Once

the CPAN interface has finished downloading and making the mod-

ule you can quit and now you’re ready to use memcached.

How do I use the Perl Client?

The first step to using the memcached Perl client is to tell Perl to

IP Addresses Are Faster!

The Perl client can take a hostname, so I could
have used "deb01:11211","laptop:11211" but that’s
not recommended because it takes an extra
step to resolve the hostname to an IP address.

include it with use Cache::Memcached. With that out of the way, we

need to define a list of servers to use. This is handled by defining

a new variable using a hashref of servers. Line 6 of the code below

defines two servers for our Perl program to use, in the format of

Server:PortNumber. Then we load the data.

Download LinuxInstall/memcachedHashTest.pl

Line 1 #memcachedHashTest.pl

- #!/usr/bin/perl

- use Cache::Memcached;

-

5 # Set the server list up

- my $memd = new Cache::Memcached {'servers' => ["deb01:11211",

- "192.168.0.80:11211"],};

-

- #flush the servers to remove any unwanted data before testing.

10 $memd->flush_all();

- $memd->set("73EB7DE0-9452-4607-AAFC-8F7B625E75A3",

- "BEE9B83A-2A9B-4071-8D1B-90C46D2BDB30");

- $memd->set("D9632738-43C2-4D92-A0D3-A9E8DB2EE6E2",

- "B3879EFE-543F-4771-A243-1EA9B29E4B0A");

15 #disconnect from all servers

- $memd->disconnect_all();

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxInstall/memcachedHashTest.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=23

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHERE DO I GET THE MEMCACHED LINUX CLIENT? 24

Now that we have defined the servers, 4 we execute a flush on line 9

to clean the system before loading data. Normally we wouldn’t flush

the cache but, for demonstration purposes we want the cache to be

empty. Now we load the data using:

$memd->set(Name, Value);

In this example I am just showing two of the twelve NVPs I am load-

ing but it shows how it’s done. Now that we’ve stored the data, let’s

retrieve it. There are two methods to retrieve data from memcached

using the Perl client. One is using get. You can test to see if data

was returned by checking the value retrieved:

$val = $memd->get("73EB7DE0-9452-4607-AAFC-8F7B625E75A3");

if ($val)

{ print $val;}

else {print "73EB7DE0-9452-4607-AAFC-8F7B625E75A3 not found!";}

The second way to get data using the Perl Client is to use multi-get.

In Section 1.6, How Do I Manipulate Data?, on page 8 I discussed

the fact that you could submit multiple keys separated by spaces

after the GET command and memcached would return the values for

the keys it had cached. The Perl client allows you to take advantage

of using that multi-get functionality by passing in an array of keys

to look for.

Download LinuxInstall/memcachedHashGetMulti.pl

Line 1 #memcachedHashGetMulti.pl

- #!/usr/bin/perl

- use Cache::Memcached;

-

5 # Set the server list up

- my $memd = new Cache::Memcached {'servers' => ["127.0.0.1:11211",

- "192.168.0.80:11211"],};

4This corresponds to the App.Config in the .NET example.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxInstall/memcachedHashGetMulti.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=24

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHAT ARE THE BENEFITS OF USING A CLIENT? 25

- my @arrayref =("73EB7DE0-9452-4607-AAFC-8F7B625E75A3",

- "D9632738-43C2-4D92-A0D3-A9E8DB2EE6E2",

10 "74B42DC4-78E6-4649-B511-5D43F0A0E995",

- "0D75C88B-1FDE-42A2-A7A5-17C7D0D7C03D",

- "210618B8-DA69-49C7-9349-16A51721913A",

- "B31C9348-944D-491B-820A-5A1D055715C0",

- "D6F90F35-A870-4435-BA8F-939DDB6812C6",

15 "8682DE07-8EA2-485E-B654-B93281ACA5CA",

- "69E7D203-4483-4BC8-9912-D0F8FB639989",

- "50D20618-9CE3-44E0-A0D4-B74B6486E04B",

- "B51AA1E9-FF4C-400B-A633-C2F2B686B417",

- "63E45F49-63C3-4BA1-81B6-36D6FD5D0E23",

20 "20F3396E-7374-4861-8E52-F81958464F50",

- "A158E28A-EC6F-47EE-9C3C-E38FA0CD88BB");

- my $hashref = $memd->get_multi(@arrayref);

- #disconnect from all servers

- $memd->disconnect_all();

25 foreach $arrayref (@arrayref){

- if($hashref->{$arrayref}){

- print $arrayref," = ", $hashref->{$arrayref},"\n";}

- else {print $arrayref," DOES NOT EXIST!\n";}

- }

As you can see in Line 7, we assemble an array of keys and use the

get_multi subroutine to retrieve a hashref of values. Then, in Line 17

we can loop through the hashref and determine if any value was

returned.

2.3 What are the benefits of Using a Client?

With the basics of how to use a client covered, let’s talk a bit about

what the client is doing for us. Aside from encapsulating our access

to memcached for a consistent interface, a client provides the fol-

lowing benefits:

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=25

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHAT ARE THE BENEFITS OF USING A CLIENT? 26

1. It uses a hashing algorithm to determine which server the NVP

should be stored on or retrieved from.

2. It can provide the ability to compress data so that we can store

NVPs with values that exceed 1MB in size.

Server Hashing

Server hashing is the act of determining where to store and retreive

Server hashing is handled by the client so you
may wonder why I’m talking about it at all. The
fact of the matter is that this section will benefit
you when it comes to understanding how the
temporary loss of a memcached server will
affect performance. You can safely skip this
and implement memcached but you should
now it’s here so you can come back to it to
better understand how to get the most from
your memcached implementation.

NVPs. When we first started discussing memcached, we talked about

the fact that every server is atomic, knowing only about itself and the

data stored in it, totally oblivious to any other memcached servers

that may exist. It’s the job of the client to determine how to use mul-

tiple servers and it does that through server hashing. The best way

server hashing

to explain this is to demonstrate using a simple hashing algorithm

that determines which server to use based on the first character of a

key. This simple example allows only 36 possible values of A-Z and

0-9 and ignores case so the algorithm divides 36 by the number of

servers available to come up with a dividing point for where to allo-

cate and look for keys. The table below shows which server the key

would be hashed on for 4 servers, 3 servers and 2 servers.

Server 4 Server Hash 3 Server Hash 2 Server Hash

S1 0-8 0-B 0-H

S2 9-H C-N I-Z

S3 I-Q O-Z

S4 R-Z

There are two things to consider regarding how a client implements

server hashing. The first is whether or not the order of the servers

matters. In this simple example, if one program is using S1, S2, S3,

S4 and another is using S2, S3, S4, S1 then the two programs will

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=26

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHAT ARE THE BENEFITS OF USING A CLIENT? 27

never be able to share the cache. While we can minimize the impact

this would have on any program we write by making sure we always

use the same list of servers in the same order for any programs that

are designed to share the cache, consider the impact if one of the

servers in the list is no longer available.

If we have a client that uses this hash and we lose a server, taking

us from 4 servers to 3 servers, you can see that all of the values that

had been stored on S2 from 9-B are now going to be looked for, not

found, and stored on S1. The same goes for the values stored on S3

from I-N, they are now going to resolve to S2. All of which will lead

to extra overhead as the servers have to adjust to the new server

hash based on three servers.

Data Compression

There is one other aspect of clients that we’re going to touch upon

Not ever client supports compression. The
Enyim .NET client is one of those but it should
be in the next release.

before we wrap up this chapter: data compression. The memcached

server does nothing except store, retrieve and expire NVPs with

a limit of 1MB for the size of a value it will store. If you want

to be able to store items larger than 1MB in memcached, then

either you need to compress them before passing them to the client

or the client needs to compress and expand them for you, which

the Perl client does. While there are a number of settings you can

change that are defined on the CPAN site,5 we are going to look

at two: set_compress_threshold and enable_comprss. The first setting tells

the client how large a value has to be before it gets compressed

and the second will turn compression on or off. enable_comprss only

works, however, if the compression threshold has been set. For the

5http://search.cpan.org/dist/Cache-Memcached/lib/Cache/Memcached.pm

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://search.cpan.org/dist/Cache-Memcached/lib/Cache/Memcached.pm
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=27

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY WHAT ARE THE BENEFITS OF USING A CLIENT? 28

last example in this chapter, we need a large amount of data. You

can download a copy of Shakespeare’s Tempest, formatted in HTML,

using the following command:

wget http://ih.27south.com/shakespeare/tempest/full.html6

Now we’re ready to test compression in memcached.

Download LinuxInstall/memcachedCompressionExample.pl

#memcachedCompresionExample.pl

#!/usr/bin/perl

use Cache::Memcached;

Set the server list up

my $memd = new Cache::Memcached {'servers' => ["127.0.0.1:11211"],};

#flush the servers to remove any unwanted data before testing.

$memd->flush_all();

#set compression level

$memd->set_compress_threshold(1_000);

$memd->enable_compress(1);

open(HANDLE, "full.html");

undef $/;

$raw_data = <HANDLE>;

close(HANDLE);

$memd->set("Compressed", $raw_data);

$memd->enable_compress(0);

$memd->set("Uncompressed", $raw_data);

#disconnect from all servers

$memd->disconnect_all();

First we load the entire file into a variable and then we turn com-

pression on and store the data in memcached. Next we turn com-

6wget is a tool built into many Linux systems that downloads files from the

web. There are versions of this available for Windows as well, one being wget for

Windows http://gnuwin32.sourceforge.net/packages/wget.htm

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxInstall/memcachedCompressionExample.pl
http://gnuwin32.sourceforge.net/packages/wget.htm
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=28

F ridays

CHAPTER 2. USING A MEMCACHED CLIENT LIBRARY REVIEW 29

pression off and store it under a different name in memcached. If

we telnet into the memcached server to look at the results get Uncom-

pressed we see the plain-text HTML scroll past us. If we try to execute

get Compressed, however, the equivalent of line noise scrolls past us

because the text has been compressed.

2.4 Review

In this chapter we’ve covered downloading and installing the mem-

cached server on both Windows and a Linux distribution, download-

ing and installing a Windows client and the Perl client, and looked at

the basics of using the Perl client to store and retrieve data from the

server. We also looked at how to compress the data to fit more data

in the server. And we talked about the importance of understanding

how client’s hash data across servers and what steps we need to

take if a server doesn’t consistently hash in order to minimize the

impact of hashing on our code.

In the next chapter we’ll talk more in-depth about using memcached

by taking code that starts out querying the database every time and

working through the steps to implement a more scalable system.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=29

F ridays

Chapter 3

The Basics of
Implementing
memcached

Now that we’ve covered the basics of memcached, it’s time to imple-

ment it in an application.

In this chapter, we’re going to take a MySQL based calendar of

events implemented in Perl and walk through implementing mem-

cached in its simplest form. Then, step by step we’ll refine that

implementation, overcoming common obstacles along the way until

we’ve reached our final goal: an implementation that will provide a

pattern you can use to implement memcached in your own appli-

cations. While all of the examples here are in Perl, there are C#

examples available in the downloadable code with the same solution

name as the Perl program. But, before we dig into programming,

let’s talk a bit about where memcached fits in the overall caching

scheme.

3.1 How Does memcached Fit in the Cache

System?

memcached does not exist in a vacuum. And there may be other

caching systems built into your existing application that you don’t

even realize exist. One key to using memcached effectively is under-

standing what other caches may be involved so that you are not

duplicating effort. For example, many web servers implement some

form of caching, perhaps by storing the end result of a dynamically

generated web page in memory and serving it up from there without

you having to do anything at all. Thus it makes no sense to store the

completed web pages in memcached if they are being cached else-

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=30

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 31

where, but creating HTML fragments that are used by multiple web

pages in their creation is a perfect example of utilizing memcached.

Databases may also have a cache element built in. MySQL, for

instance, will cache the results of a SELECT query and will return

them from memory. In a very simple example, if we test getting

data from memcached versus getting the data directly out of MySQL

where nothing else is using the database, it may almost seem like

memcached is extra overhead that is not necessary, since MySQL’s

caching will return the data just as quickly as memcached will. In a

real world scenario, however, MySQL will be handling many data

requests that will be changing what data it is caching, meaning

MySQL is much more likely to have to go to disk to get the data

than to get it from its internal cache. So caching data requests from

MySQL in memcached results in a more scalable site.

3.2 What is the Basic Coding Pattern for Using

memcached?

Before we can implement memcached, we need to have an appli-

cation to work with. The following program builds an HTML table

containing a calendar of events for a website based on data stored

in a database.1

Download LinuxBasics/GetMySqlCalendarOfEvents.pl

Line 1 #!/usr/bin/perl

- use strict;

- use DBI;

- # DBI configuration

1The code to create this MySQL database is available in the downloadable code

examples.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/GetMySqlCalendarOfEvents.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=31

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 32

5 my $dsn = "DBI:mysql:memcachedTesting:localhost";

- my $user = "mcd"; #Notice, not root

- my $pw = "n0pass"; #Notice, password

- my ($id, $password);

- # Connect to server and database

10 my $dbh = DBI->connect($dsn, $user, $pw);

- # Define Select query

- my $myquery = $dbh->prepare(qq{select EventID, EventDate, Description, Details

- from calendarofevents where WebSiteID = 1});

- my $table = "";

15 # Execute the query

- $myquery->execute();

- # Start an HTML Table

- $table = "<table border='1'><tr><th>EventDate</th><th>Details</th></tr>";

- while (my ($EventID, $EventDate, $Description, $Details, $WebSiteID) =

20 $myquery->fetchrow_array()) # keep fetching until there's nothing left

- { $table = $table . "<tr><td>"

- .$Description."</td><td><a href=BookReservation.html?EventID="

- .$EventID.">".$Description."
"

- .$Details."</td></tr>\r\n"; }# End While

25 #Close query table

- $myquery->finish();

- #Close HTML table

- $table = $table . "</table>";

- print $table;

A very simple program, it connects to the database and gets a set

of data containing the EventID, EventDate, Description, and Details

for the WebSiteID 1 and then loops through the data set to create

the table with rows and hyperlinks to pages with more detail for

the event. The problem with this code is that it has to query the

database everytime it gets called, so we’ll begin our implementation

of memcached by storing the requested data in memcached.

The most basic pattern of memcached implementation is to look

in memcached for the data first and, if it isn’t not found, get the

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=32

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 33

data from the database and load it into memcached. How you do

that depends on which client you are using. While it would be nice

to take and just store $myquery from line 16 in the code above in

memcached, the Perl client won’t let us. Instead we need to put the

data in a hashref and store that, something that we can easily do

using selectall_hashref, which returns the data as a hashref. This does

mean we need to make some minor changes to the code that creates

the table in the course of implementing memcached. Let’s look at

the code and then step through the changes.

Download LinuxBasics/memcachedCalendarOfEvents-1.pl

Line 1 #!/usr/bin/perl

- use strict;

- use DBI;

- use Cache::Memcached;

5

- # Set the server list up

- my $memd = new Cache::Memcached {'servers' => ["127.0.0.1:11211"],};

- $memd->set_compress_threshold(1_000);

- $memd->enable_compress(1);

10 # DBI configuration

- my $dsn = "DBI:mysql:memcachedTesting:localhost";

- my $user = "mcd"; #Notice, not root

- my $pw = "n0pass"; #Notice, password

- my $table = "";

15 #Check memcached

- my $data = $memd->get("CalendarOfEvents");

- if (not $data) {

- # Connect to server and database

- my $dbh = DBI->connect($dsn, $user, $pw);

20 my $statement = "select EventID, EventDate, Description, Details

- from calendarofevents where WebSiteID = 1";

- my $key_field = "EventID";

- $data = $dbh->selectall_hashref($statement, $key_field);

- $memd->set("CalendarOfEvents", $data);

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}1.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=33

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 34

25 }

- #Whether from memcached or from the database, I have a hashref to parse

- $table = "<table border=1>";

- while(my ($k, $v) = each %$data) {

- $table = $table . "<tr><td>"

30 .$v->{EventDate}."</td><td><a href=BookReservation.html?EventID="

- .$v->{EventID}.">".$v->{Description}."
"

- .$v->{Details}."</td></tr>\r\n";

- }

- $table = $table . "</table>";

35 print $table

The first change is the addition of memcached, in line 4 and the

The Enyim .NET client requires a serializable
object to store in memcached. For that reason,
all of the .NET examples change the data into
an XML string before storing in memcached.

definition of the servers in lines 7-9. Then, in lines 16-25, we handle

the actual implementation of memcached in this application. First,

we attempt to get data out of the cache in line 16. If the data doesn’t

exist in memcached, then $data will fail to resolve and we will go

to the database to get the information. Here, in lines 22 and 23,

we have to implement changes to set the data into a format that

the memcached client can handle. In line 22 we define the key field

that we can use to retrieve data from the hashref, EventID. Then we

execute selectall_hashsref, passing in that key field and get a hashref

in return, which we store in memcached in line 24.

Whether from memcached or the database, $data now contains a

hashref that represents rows of data from the database. Since this

is in a format different from the array in our original code, we have

had to modify the code that builds the HTML table in lines 28-34.

Rather than loading the values into individual variables, we are pop-

ulating two variables, the key field defined in line 22 and an array of

values associated with that key field. And now we have memcached

in place. And we run into our first problem.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=34

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 35

What do I store?

A couple of fundamental questions come up in every memcached

implementation. The first being "What do I store?" Take another

look at the code above and see if anything jumps out at you as a

further candidate for caching. The goal of using a cache is to limit

the amount of work done somewhere. It’s faster to deliver data from

memory than it is from disk, so that’s an obvious thing to cache. But

everytime we execute this section of code, we are going to process a

half dozen lines of code to build an HTML table from it. Since this

is a fragment of a web page and not the whole thing, it probably

won’t be cached by our webserver, so it makes sense to cache the

HTML fragment and save ourselves the trouble of building it at all.

So the question becomes, should we store the HTML fragment or

the data we use to create the HTML fragment? But it may not be an

either/or question. In a large website, we may format the same data

differently for use in different places. So it makes sense to cache

both the underlying data and the HTML fragment it creates.

With that in mind, we’ll rewrite the code to check for the formatted

table in memcached and deliver that if it exists. If the formatted

table is not there, check for the data in memcached. If it exists,

create and store the formatted table in memcached and deliver it

up. If the data doesn’t exist, query the database, store the data in

memcached, build the formatted table, store the formatted table in

memcached, and deliver the formatted table. But, before we start

changing the code to handle this better strategy, we need to talk

about keys.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=35

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 36

How Should I Name Keys?

It’s been said that there are only two difficult problems to solve in

programing: caching invalidation and naming. And here we get to

deal with both. While CalendarOfEvents is an easy to read name, it’s

a bit limited in terms of usefulness. If we have multiple web sites

running with different WebSiteIDs and each of them uses CalendarO-

fEvents as the key in memcached, it won’t take long before the web

site with ID 1 stores it’s calendar of events in memcached and that’s

the data that gets retrieved and displayed by the web site with ID

2. One way to get around this is to format the name of the key

to reflect not just what the data is but what it contains. One sug-

gestion is a three part key separated with colons, something in the

form of ObjectName:ObjectType:Key. In the example outlined above we

might use CalendarOfEvents:TableOutput:1 for the HTML fragment and

CalendarOfEvents:Data:1 to store the data from the database.

Another useful way to generate a key for data calls is to use the

There are a number of standard algorithms
used for hashing data. The National Security
Agency came up with five crypographic hash
functions whose goal is to take the contents of
a message of any length and come up with a
fixed length digital representation of the data
unique enough that any change in the original
data will result in a new hash. For our purposes,
we don’t necessarily need the encryption as
much as a reliable way to turn some unknown
length of data into a unique and reproducible
value.

More good information on these and more
hashes can be found at http://en.wikipedia.
org/wiki/SHA_hash_functions.

entire SQL request as the key. There are two challenges to overcome

with this plan. The first is that memcached limits they key size to

256 bytes. While our simple SELECT in this example is only 90 bytes,

more complex SQL statements quickly grow beyond that limit. Sec-

ond, even though memcached doesn’t list the keys stored in it, if

someone did connect to your memcached client and knew some

basics of your data structures, they could start making requests

in attempting to get cached data. Fortunately, both of these chal-

lenges can be overcome by using a Secure Hash of our original key

to store the date. Using SHA512, we can convert:

select EventID, EventDate, Description, Details from calendarofevents where Web-

SiteID = 1

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://en.wikipedia.org/wiki/SHA_hash_functions
http://en.wikipedia.org/wiki/SHA_hash_functions
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=36

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 37

into:

+AxCIPywhgxGcdUbIa0eTYYxKomKu/z9856dnr0tLqB

LUzdBBmQCKs4/8AZ6lLgd1Fe5tA4fIY305HhVkKb7SQ

The main point of key names is to be consistent, regardless of the

scheme you settle on. For the rest of the demonstrations, I’m going

to use the actual SQL as the key for any data objects I store and I’ll

use the ObjectName:ObjectType:Key format for anything else. Addition-

ally, I’ll hash the key for general security purposes.

Implementing Better Keys and Caching

Now that we’ve talked about what we should cache and come up

with a more reasonable naming convention, let’s implement that in

code.

Download LinuxBasics/memcachedCalendarOfEvents-2.pl

Line 1 sub GetCalendarOfEvents

- {

- my $WebSiteID = shift;

- my $tableKey = sha512_base64("CalendarOfEvents:HTMLTable:".$WebSiteID);

5 my $table = $memd->get($tableKey); #Look for the HTML Table

- my $statement = "select EventID, EventDate, Description, Details ".

- "from calendarofevents where WebSiteID = ".$WebSiteID;

- my $dataKey = sha512_base64($statement);

-

10 if (not $table) {

- print "going to memcached for data object\n";

- my $data = $memd->get($dataKey);

- if (not $data) { # Connect to server and database

- print "going to database\n";

15 my $dbh = DBI->connect($dsn, $user, $pw);

- my $key_field = "EventID";

- $data = $dbh->selectall_hashref($statement, $key_field);

- $memd->set($dataKey, $data);

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}2.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=37

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED WHAT IS THE BASIC CODING PATTERN FOR USING MEMCACHED? 38

- } #end not $data

20

- #Whether from memcached or from the database, I have a hashref to parse

- $table = "<table border=1>";

- while(my ($k, $v) = each %$data) {

- $table = $table . "<tr><td>"

25 .$v->{EventDate}."</td><td><a href=BookReservation.html?EventID="

- .$v->{EventID}.">".$v->{Description}."
"

- .$v->{Details}."</td></tr>\r\n";

- } #end while loop through %data

- $table = $table . "</table>";

30 $memd->set($tableKey, $table);

- } #end not $table

- $table;

- }

The first thing you may notice is that I’ve wrapped all of the func-

tionality of building the table of events HTML fragment into a sub-

routine that can be called. Now the code can be called with any valid

website id as a parameter:

Line 1 my $table = "";

- $table = &GetCalendarOfEvents(1);

- print $table;

We put the database id into a variable in Line 3. Then we create a

string to hold the hash of our request—CalendarOfEvents:HTMLTable:1—

and look in memcached to see if the HTML fragment exists. If it

doesn’t, we create a variable that contains the SQL we will use to

query the database and another variable to store the hash of that

SQL so we can first query memcached to see if the data is stored

there. Finally we build the table if we need to and return it. This is a

much more useful implementation of memcached than our first one

because it caches the HTML fragment in addition to the data and it

reduces key name conflicts within memcached.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=38

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I UPDATE MEMCACHED WHEN THE DATA CHANGES? 39

3.3 How Do I Update memcached When the

Data Changes?

So, now we can put data into memcached and we’ve got a reason-

able pattern for getting data out, whether it’s an actual database

result set or formatted HTML, but what do we do when the data

is no longer valid? When someone updates the calendar of events

database table for the website we are caching, our cache is now

stale. There are a couple of ways to handle this. The easiest one

would be to flush the cache, which would guarantee that the fresh-

est data would be delivered but it would also force the reloading of

all cached data, something that should generally be avoided as it

will cause a lot of database activity. A much better solution is to

proactively clear the cache.

Proactively Clearing the Cache

The first method we’re going to explore is proactively clearing the

cache when an update or insert is made. The following subroutine

is a standard update but, once we’ve finished the update we delete

the HTML table and the data rowset from memcached.

Download LinuxBasics/memcachedUpdateCalendarOfEvents-1.pl

Line 1 sub UpdateCalendarOfEvents

- { #load parameters

- my ($EventID, $EventDate, $Description, $Details, $WebSiteID) = @_;

- my $dbh = DBI->connect($dsn, $user, $pw);

5 #update the database

- my $update_handle = $dbh->prepare_cached('UPDATE calendarofevents

- set EventDate=?, Description=?, Details=?

- WHERE EventID=?');

- $update_handle->execute($EventDate, $Description, $Details, $EventID);

10

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}1.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=39

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I UPDATE MEMCACHED WHEN THE DATA CHANGES? 40

- #remove from memcached

- my $tableKey = sha512_base64("CalendarOfEvents:HTMLTable:".$WebSiteID);

- my $statement = "select EventID, EventDate, Description, Details ".

- "from calendarofevents where WebSiteID = ".$WebSiteID;

15 my $dataKey = sha512_base64($statement);

- $memd->delete($tableKey);

- $memd->delete($dataKey);

- }

Lines 1-9 are the basic update routine. Line 3 loads variables with

the arguments passed in, Line 5 defines the SQL command to update

the database and Line 9 actually executes the update. It’s from lines

11 on that we are interested in, however. Line 12 defines the hashed

key for the HTML fragment and Lines 13-15 define the hash key for

the SQL command. Using those keys, we delete the data from mem-

cached in lines 16 and 17.

Since the code in the GetCalendarOfEvents subroutine prints whether

it has to go to memcached or the database we can test that the

update does what we expect. If memcached hasn’t been cleared from

previous runs, the first call to GetCalendarOfEvents in the code below

gets data directly from the cache. Then we update the database and

the next call to get the HTML table has to build the table from the

database. The following section of code demonstrates updating the

database by calling the UpdateCalendarOfEvents routine to update the

database and clear the cache of the now stale data.

Download LinuxBasics/memcachedUpdateCalendarOfEvents-1.pl

$table = &GetCalendarOfEvents(1);

&UpdateCalendarOfEvents(1, "2008-01-01", "New Year's Day 2008",

"Time to start anew!",1);

$table = &GetCalendarOfEvents(1);

print $table;

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}1.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=40

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I UPDATE MEMCACHED WHEN THE DATA CHANGES? 41

Resetting the Cache

The second method we’ll explore is very similar to the first but

rather than just deleting the keys and waiting for the next request

for the data to refresh the cache, we reset the values after our

update/insert. The easiest way to do this is to add a flag to our

existing GetCalendarOfEvents that forces going to the database. The

following code fragment demonstrates the changes in the control

structure:

Download LinuxBasics/memcachedUpdateCalendarOfEvents-2.pl

sub GetCalendarOfEvents

{

my $WebSiteID = shift;

my $ForceOverRide = shift;

if (not $table or ($ForceOverRide)) { # Load the data from source

There is at least one instance where your cached data can go out

of synch with the database even if we have implemented a proactive

cache to keep it from expiring. That would be occasions where you

update the database using direct database calls through a query

browser or any other mechanism that doesn’t know about mem-

cached. In those cases you have several options:

• flush the cache

• have a program that knows how to generate and rebuild the

data in memcached

• not use any mechanism that doesn’t know about memcached

We’ll talk more about this in Section 3.5, How Do I Determine the

Optimal Expiration Time?, on page 46

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}2.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=41

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I PREVENT MULTIPLE CLIENTS UPDATING ONE NVP? 42

3.4 How Do I Prevent Multiple Clients

Updating One NVP?

One advantage that resetting the cache has over clearing the cache

is that it helps avoid Cache Stampedes. A cache stampede is cre-
Cache Stampedes

ated when multiple clients try to update the cache with the same

information. Let’s say that we have just updated something and

that deleted both the data rows and the HTML fragment from mem-

cached. And now, thirty clients are running the GetCalendarOfEvents

code, all at the same time, so each and every one of them looks

in memcached, finds the data missing and queries the database,

stores the results in memcached, builds the HTML fragment and

stores that in memcached. Or, instead of thirty clients, hundreds,

all hitting the database for the same query, which is what we are

trying to avoid by implementing memcached. On our extremely sim-

ple calendar query, that may not be an issue, but a more complex

one that actually requires the database server to devote some seri-

ous resources to fulfilling it can have a detrimental impact on site

performance. Refilling the cache on updates is a valuable way of

helping to minimize cache stampedes, but it has no impact when

the data being requested isn’t in the system.

What we need in this instance is some way to tell our program that

another program is working on fetching the data. The best way to

handle that is by using another memcached entry as a lock. When

our program queries memcached and fails to find data, the first

thing it attempts to do is to write a value to a specific key. In our

example where we are using the actual SQL request for the key

name we can just append ":lock" to the SQL to create our new key.

What we do next depends on whether the client supports return-

ing success messages on memcached storage commands. If it does,

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=42

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I PREVENT MULTIPLE CLIENTS UPDATING ONE NVP? 43

then we attempt to ADD the value. If we are the first one to attempt

this then we’ll get a success message back. If the value exists then

we get a failure indication and we know that another process is try-

ing to update the data and we wait for some predetermined time

before we try to get the data again. When the process that’s updat-

ing the cache is done, it deletes the lock key.

If our client doesn’t support returning status information then we

can query the lock key and, if we get no data back, write some ran-

dom value there to let other processes know we are working on filling

the cache and delete the key when we are done. This version isn’t as

efficient as using ADD to generate a pseudo-lock because there are

two memcached operations (GET and SET) instead of one, but it is still

very efficient code.

The first step in implementing code to avoide cache stampedes is

to separate the section that gets the data from the database into a

subroutine. While not strictly necessary, it does make the code eas-

ier to read. The big change in this routine is the logic for checking to

see if anyone else is attempting to read the data from the database.

Download LinuxBasics/memcachedUpdateCalendarOfEvents-3.pl

Line 1 sub GetCalendarOfEventsDB

- {

- my $statement = shift;

- my $dbh = DBI->connect($dsn, $user, $pw);

5 my $key_field = "EventID";

- my $lockKey = sha512_base64($statement.":lock");

- my $key = sha512_base64($statement);

- my $lockCount = 0;

- my $returnValue = "";

10 while(1 > 0) {

- #Check to see if anyone else is attempting to get data

- if($memd->get($lockKey) && $lockCount < 3) #Someone is making the attempt

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}3.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=43

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I PREVENT MULTIPLE CLIENTS UPDATING ONE NVP? 44

- { $lockCount ++;

- usleep('500_000'); # sleep a half second

15 if($memd->get($key)) #Can get from memcached

- {$returnValue = $memd->get($key);

- print "got value from someone else stuffing it in memcached\n";

- last;}

- }

20 else #we are going to make the attempt

- {

- $memd->set($lockKey, [gettimeofday]);

- $returnValue = $dbh->selectall_hashref($statement, $key_field);

- print "got data from database\nstoring in memcached:\n";

25 $memd->set (sha512_base64($statement), $returnValue);

- $memd->delete($lockKey);

- last;

- }

- }

30 $returnValue;

- }

We create a hashed key of the SQL statement we are looking for

plus :lock, to remain consistent with our naming convention. Then

we do a quick get on the lock key in Line 12. If it returns anything

then we know that someone is trying to get the data so we increment

lockCount on Line 13 and go into a wait state for half a second on Line

14. When done waiting we check memcached to see if the data’s

been placed there yet (Line 15). If it is, we’re done. If not, we go

through the wait state two more times. Finally, if we have gotten

through our loop the maximum number of times and there’s no

data in memcached we go straight to retrieve it from the database

and store the results in memcached. In either case, whether the

data is pulled from memcached because someone else found it or

from the database, we return a rowset.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=44

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I PREVENT MULTIPLE CLIENTS UPDATING ONE NVP? 45

To see how effective this is, I ran twelve versions of the code example

from Section 3.3, Proactively Clearing the Cache, on page 39 simul-

taneously and flushed memcached to see what messages I got. This

resulted in anywhere from 1 to 4 of the programs having to get their

data out of the database, usually 2 of them. With 12 simultaneous

versions of this code running, I got the same number of clients not

finding the data in memcached but only one hit the database, the

other programs waited and got the data from memcached after the

first client put it there.

The only real problem left with this subroutine is that it’s still too

In this example, the longest we would wait
before going to the database is about one
and a half seconds. That’s more than long
enough for the simple query we have. But you
may have more complex, longer running
queries and you should adjust the time and
number of times you wait accordingly. The goal
is to minimize the impact of data queries and if
that means that five clients are attempting to
execute the same data request rather than
fifty, we’ve met that goal.

specialized. We’ll need to repeat this code by cutting, pasting, and

then modifying the SQL for every database call we want to make.

But we can avoid that by adding a couple more arguments to the

subroutine. We’ll pass in the key field, the number of cycles to wait

without the data in memcached before going to retrieve it, and how

long each wait should be. The resulting code makes a good pattern

to use for minimizing cache stampedes.

Download LinuxBasics/memcachedUpdateCalendarOfEvents-4.pl

Line 1 sub GetFromDB

- {

- my ($statement, $keyField, $maxLockCount, $waitTime) = @_;

- my $dbh = DBI->connect($dsn, $user, $pw);

5 my $lockKey = sha512_base64($statement.":lock");

- my $key = sha512_base64($statement);

- my $lockCount = 0;

- my $returnValue = "";

- while(1 > 0) {

10 #Check to see if anyone else is attempting to get data

- if($memd->get($lockKey) && $lockCount < $maxLockCount) #Someone

- # is making the attempt

- { $lockCount ++;

- usleep($waitTime); # sleep a half second

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}4.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=45

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I DETERMINE THE OPTIMAL EXPIRATION TIME? 46

15 if($memd->get($key)) #Can get from memcached

- {$returnValue = $memd->get($key);

- last;}

- }

- else #we are going to make the attempt

20 {

- $memd->set($lockKey, [gettimeofday]);

- $returnValue = $dbh->selectall_hashref($statement, $keyField);

- $memd->set ($key, $returnValue); #Stick in memcached

- $memd->delete($lockKey);

25 last;

- }

- }

- $returnValue;

- }

3.5 How Do I Determine the Optimal

Expiration Time?

memached can expire items from the cache based on either a fixed

duration (the number of seconds up to 30 days) or a date (based on

Unix time). Before you begin to set expiration times, however, you

should ask whether you need to use them at all. One reason to set

an expiration time is to keep items in the cache from getting stale,

that is, representing old data that may no longer be the correct data.

If memcached is implemented in a way that proactively updates the

cache with the data, then this is less of a problem because the data

in memcached should reflect the most current data known to your

program. Still, if you want to use expiration times, there are some

general rules for determining how best to set that expiration period.

The two key pieces of data required for determining expiration times

are how frequently the cached data is requested and how frequently

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=46

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I DETERMINE THE OPTIMAL EXPIRATION TIME? 47

the cached data is updated in the database. The more frequently a

set of data is updated, the shorter the expiration date. Likewise, a

piece of data that’s rarely called may never need an expiration date

because it very likely will get removed from the cache because space

is needed before it ever gets updated. But why do expiration times

matter if we’re updating memcached whenever we update data in

the database?

There are two reasons expiration dates matter. The first is when we

have data that we don’t want to update the cached data every time

the backend data is updated. One example of that might be an RSS

feed of forum topics. Since this may be a volatile list, with additions

made every minute, we might want to just assemble an updated RSS

feed every five minutes. In that case, we can set an expiration time

of five minutes on the feed data and just rebuild it when it expires

(or is deleted by the cache).

We can utilize the same type of scheme with data that is being up-

dated outside of our programs. If we are getting feeds that continu-

ally update the database, it may be more efficient to have the data

displayed on the web site expire and get rebuilt on a regular basis.

How Can I Proactively Fill Expired Items?

In Section 3.4, How Do I Prevent Multiple Clients Updating One NVP?,

on page 42, we addressed one of the problems that can occur when

data is not found in memcached. But even if we minimize cache

stampedes, expiring data from the database can still lead to clients

waiting for data while it gets refreshed. The fact is that whenever

something expires or gets deleted from the cache you run the risk

of having multiple clients try to fill the cache, or at least waiting

around while one of the other clients does. Fortunately, there’s a

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=47

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I DETERMINE THE OPTIMAL EXPIRATION TIME? 48

way around that by implementing a proactive cache refill. What that

does is associate an internal refresh time separate from the expira-

tion time.

In the following example, we’ll store a refresh value of 10 seconds

with a 20 second expiration. The 20 second expiration will be auto-

matically handled by memcached, but we write our code so that the

first client to pull data from the cache, when the current time is

later than the refresh time, takes the following steps:

1. Save the current data with a new expiration and refresh times.

This keeps other clients using the current data while we query

the database for the most current data.

2. Query the database to get the current information.

3. Store that in memcached with a new expiration and refresh

time.

Download LinuxBasics/memcachedRollingCalendarOfEvents.pl

Line 1 sub GetFromDB

- {

- my ($statement, $keyField, $maxLockCount, $waitTime) = @_;

- my $dbh = DBI->connect($dsn, $user, $pw);

5 my $lockKey = sha512_base64($statement.":lock");

- my $refreshKey = sha512_base64($statement."refresh");

- my $key = sha512_base64($statement);

- my $lockCount = 0;

- my $returnValue = "";

10 while(1 > 0) {

- #Check to see if anyone else is attempting to get data

- if($memd->get($lockKey) && $lockCount < $maxLockCount) #Someone

- #is making the attempt

- { $lockCount ++;

15 usleep($waitTime); # sleep a half second

- if($memd->get($key)) #Can get from memcached

- {$returnValue = $memd->get($key);

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedRollingCalendarOfEvents.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=48

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I DETERMINE THE OPTIMAL EXPIRATION TIME? 49

- last;}

- }

20 else #we are going to make the attempt

- {

- $memd->set($lockKey, [gettimeofday]);

- $returnValue = $dbh->selectall_hashref($statement, $keyField);

- $memd->set ($key, $returnValue);

25 $memd->set ($refreshKey, time + 30);

- $memd->delete($lockKey);

- last;

- }

- }

30 $returnValue;

- }

-

- sub GetCalendarOfEvents

- {

35 my $WebSiteID = shift;

- my $ForceOverRide = shift;

- my $statement = "select EventID, EventDate, Description, Details ".

- "from calendarofevents where WebSiteID = ".$WebSiteID;

- my $tableKey = sha512_base64("CalendarOfEvents:HTMLTable:".$WebSiteID);

40 my $tableRefreshKey =

- sha512_base64("CalendarOfEvents:HTMLTable:".$WebSiteID.":Refresh");

- my $hashref = $memd->get_multi(@mcdRequests);

- my $table = $memd->get($tableKey);

- my $refreshTime = $memd->get($tableRefreshKey);

45 if ((not $table) || ($refreshTime < time))

- {

- print "rolling update\n";

- # Update memcached to reflect a new rolling expiration

- $memd->set($tableRefreshKey, time + 30);

50 $memd->set($tableKey, $table);

- # Force over ride

- $ForceOverRide = 1;

- }

- my $dataKey = sha512_base64($statement);

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=49

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I DETERMINE THE OPTIMAL EXPIRATION TIME? 50

55 if (not $table || ($ForceOverRide)) {

- print "going to memcached for data object\n";

- my $data = $memd->get($dataKey);

- if (not $data or ($ForceOverRide)) {

- # Check to see if another process is getting data

60 print "going to database\n";

- my $keyField = "EventID";

- my $maxLockCount = 3;

- my $waitTime = '500_000';

- $data = &GetFromDB($statement, $keyField, $maxLockCount, $waitTime);

65 } #end not $data

- #Whether from memcached or from the database, I have a hashref to parse

- $table = "<table border=1>";

- my $dataStored = @data[0];

- while(my ($k, $v) = each %dataStored) {

70 $table = $table . "<tr><td>"

- .$v->{EventDate}."</td><td><a href=BookReservation.html?EventID="

- .$v->{EventID}.">".$data->{Description}."
"

- .$v->{Details}."</td></tr>\r\n";

- } #end while loop through %data

75 $table = $table . "</table>";

- $memd->set($tableKey, $table);

- $memd->set($tableRefreshKey, time+10);

- } #end not $table

- $table;

80 }

The new functionality in this code sample begins on line 39, where

we define a new hashed key to look for in memcached with the

object type of :refresh. This contains the time value that defines when

we want to refresh the data. Then, in Line 41, we retrieve that

value from memcached. If either the HTML fragment is empty or

the refresh time is past, then we start the process of rebuilding the

data.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=50

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED CAN I ELIMINATE CACHING DUPLICATE DATA? 51

The first thing we do is update memcached with the existing HTML

fragment, using a new expiration time, and update the Refresh value

to be 30 seconds in the future. This prevents memcached from

expiring the HTML fragment while we update it and it prevents

another client from attempting to update the data as well. Then we

go through all the steps necessary to get the data from the database

and update memcached with the update information. Finally, in

Lines 74-75, we update memcached to reflect the updated data and

refresh times. Since this code is added to all of the refinements we’ve

made, we have code that gives us the best pattern for implementing

memcached.

Now that we have all of the basic patterns we can use for implement-

ing memcached at the code level, it’s time to talk about something

more esoteric.

Even if you follow all of the best practices for
utilizing memcached, there’s no guarantee
that the data will be there until the expiration
time passes. If memcached needs the
memory that an NVP is occupying and it
hasn’t been used recently enough that it falls
through the LRU filter, it will not be there and
you’ll need to be ready to reload the data.

3.6 Can I Eliminate Caching Duplicate Data?

In Section 3.2, What do I store?, on page 35, we talked about storing

not just the data but also the HTML fragment the data was being

used to build. In this section we’re going to take a different look

at our data to review another way to cache data, beginning with

another look at data in general.

Most data can be placed into one of two types: a list of data items or

an individual item. Throughout our example we’ve been looking at

retrieving and caching a list of items that include 5 columns of infor-

mation. But there is another way to cache the data that may look

to be less efficient at first glance; however, looks can be deceiving. If

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=51

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED CAN I ELIMINATE CACHING DUPLICATE DATA? 52

you take a closer look at the table we’ve been building throughout

this book, you’ll notice that it builds a link to each individual event’s

detail page. If we cache the data used to build that detail page, we

will probably have duplicate data loaded: individual event data that

makes up the list of dates and individual event data stored as dis-

crete objects used on the detail page. One way to get around that is

to think of lists of data as being little more than pointers and use

that list to get the individual items.

Let’s take a look at putting that into practice and then discuss how

it can be beneficial. To implement this data model, we’re going to

make a couple of changes. First, our GetDataFromDB procedure can be

renamed to GetSetFromDB, more accurately reflecting that it retrieves

lists of data from the database. Now we can add a new procedure

that gets individual rows of data, as shown here:

Download LinuxBasics/memcachedUpdateCalendarOfEvents-5.pl

Line 1 sub GetRowFromDB

- {

- my ($statement, $maxLockCount, $waitTime) = @_;

- my $dbh = DBI->connect($dsn, $user, $pw);

5 my $lockKey = sha512_base64($statement.":lock");

- my $key = sha512_base64($statement);

- my $lockCount = 0;

- my $returnValue = "";

- while(1 > 0) {

10 #Check to see if anyone else is attempting to get data

- if($memd->get($lockKey) && $lockCount < $maxLockCount) #Someone

- #is making the attempt

- { $lockCount ++;

- usleep($waitTime); # sleep a half second

15 if($memd->get($key)) #Can get from memcached

- {$returnValue = $memd->get($key);

- last;}

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}5.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=52

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED CAN I ELIMINATE CACHING DUPLICATE DATA? 53

- }

- else #we are going to make the attempt

20 {

- $memd->set($lockKey, [gettimeofday]);

- $returnValue = $dbh->selectrow_hashref($statement);

- $memd->set ($key, $returnValue); #Stick in memcached

- $memd->delete($lockKey);

25 last;

- }

- }

- return $returnValue

- }

The main difference between GetRowFromDB and GetSetFromDB is that

the latter now returns only a list of keys, while the former returns

a single hashref of values rather than a collection the way that Get-

DataFromDB does. Next we need to modify our GetCalendarOfEvents pro-

cedure to use the list of CalendarEventIDs to drive the getting of

individual calendar events:

Download LinuxBasics/memcachedUpdateCalendarOfEvents-5.pl

Line 1 sub GetCalendarOfEvents

- {

- my $WebSiteID = shift;

- my $ForceOverRide = shift;

5 my $statement = "select EventID from calendarofevents ".

- "where WebSiteID = ".$WebSiteID." order by EventDate";

- my $tableKey = sha512_base64("CalendarOfEvents:HTMLTable:".$WebSiteID);

- my $table = $memd->get($tableKey); #Look for the HTML Table

- my $listDataKey = sha512_base64($statement);

10 if (not $table or ($ForceOverRide)) {

- print "going to memcached for data object\n";

- my $listData = $memd->get($listDataKey);

- if (not $listData or ($ForceOverRide)) {

- # Check to see if another process is getting data

15 print "going to database\n";

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/memcd/code/LinuxBasics/memcachedUpdateCalendarOfEventsunhbox voidb@x kern z@ char `discretionary {-}{}{}5.pl
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=53

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED CAN I ELIMINATE CACHING DUPLICATE DATA? 54

- my $keyField = "EventID";

- my $maxLockCount = 3;

- my $waitTime = '500_000';

- $listData = &GetSetFromDB($statement, $keyField, $maxLockCount, $waitTime);

20 } #end not $listData

- #Whether from memcached or from the database, I have a hashref to parse

- $table = "<table border=1>";

- while(my ($k) = each %$listData) {

- #Need to resolve the individual EventIDs

25 $statement =

- "select EventID, EventDate, Description, Details from calendarofevents ".

- "where EventID=".$k;

- my $dataKey = sha512_base64($statement);

- my $data = $memd->get($dataKey);

30 if (not $data) { $data = GetRowFromDB($statement, 3, "500_000");}

- $table = $table . "<tr><td>"

- .$data->{'EventDate'}."</td><td><a href=BookReservation.html?EventID="

- .$data->{'EventID'}.">".$data->{'Description'}."
"

- .$data->{'Details'}."</td></tr>\r\n";

35 } #end while loop through %dataList

- $table = $table . "</table>";

- $memd->set($tableKey, $table);

- } #end not $table

- $table;

40 }

The big change here can be seen in Lines 23-34, where we build

the table fragment. Rather than looping through the hashref of keys

and values, we now loop through a hashref of keys. We then need

to make calls to get the data to use to build that row of the table. It

seems like it adds extra overhead, but let’s look at what this imple-

mentation buys us.

On objects that are used outside of a list, it brings us the ability to

reuse cached data rather than having duplicate copies of the data

in cache, one in list form and one in detail form. In addition, any

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=54

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED CAN I ELIMINATE CACHING DUPLICATE DATA? 55

program that references the details of one row of the calendar of

events now has a better chance of getting it out of cache. The second

improvement this brings is in limiting the number of items that need

to be expired out of the cache when a calendar item is updated.

In a version that stores the Event data in the list, any change to the

title of an item in the list would require the removing or refreshing of

not only the individual object, if it was stored, but also any lists that

contain the item. If the cached lists are little more than pointers then

they no longer need to be expired just because an item they contain

has had data updated. Instead, they will display the current data

because whenever an event is updated, we can update the individual

item in cache and that’s the data that gets used when the list is

resolved.

Now for this simple application, coding something like this is simply

overkill, so let’s look at a more practical example: a photo sharing

site that contains lists of photographs with links to detail pages.

Many such sites display paged lists, so 100 pictures in a list might

be displayed as thumbnails with basic information, ten per page.

Based on all of the coding we’ve done, it might seem reasonable

to go get a list of one page of data from the database, cache the

resulting list and then get the second page and cache that list and

so on. But there’s another way to handle that.

Start by getting the list of all 100 items that make up the list and

cache that. Build the paged lists from that information, rather than

going back to the database for every page. Now the same list serves

someone who only wants to see 5 items per page as well as some-

one who wants to see 20, which is better than having to query the

database 20 times for one person and another 5 times for the other,

when all we’re doing is showing the same data paged differently.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=55

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED HOW DO I GAUGE CACHE EFFICIENCY? 56

The most important thing to remember is that this is not an all-

or-nothing approach. You may have data that lends itself to stor-

ing nothing except lists of pointers, and then store the individual

data items separately. But you might just as easily have data where

it makes more sense to store lists that contain data. This is one

of those things you need to experiment with and see which makes

more sense for your application.

3.7 How do I Gauge Cache Efficiency?

In Section 1.8, What Other Commands Can I Use?, on page 15 we

looked at using the stats command to be able to look at cache effi-

ciencies, but it is a very broad gauge of effectiveness. When we want

to know how well caching is working on a more granular level, you

need to take a more proactive approach. One way to handle this is to

have a debug flag that you can turn on and off. When it’s on, use the

INCR to track efficiencies. I use this on websites where I cache several

different types of things, such as the name and format of the data

calls as well as the actual data returned. When the debug flag is

turned on, then every attempt to resolve the name and format of the

data increments either DataDefCached or DataDefMissed, and every

attempt to resolve a data request increments either DataCached or

DataMissed. Over the course of time we can query those keys and

see how well or poorly our caching is working.

Sometimes we need to take it a step further and turn on actual

This type of logging is not the kind of thing you
want to be running on a production site. You
might get away with incrementing a counter
but logging every single request to file or
database is always going to introduce a
performance hit.

logging to a file or database, in order to see which individual calls are

being retrieved from cache and which are not, so we can adjust our

caching accordingly. By logging every data request and whether it

is served up from cache or the database, we get enough information

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=56

F ridays

CHAPTER 3. THE BASICS OF IMPLEMENTING MEMCACHED REVIEW 57

to help determine whether there are things that we feel should be

cached that aren’t, or that are falling out of the cache too quickly.

We can use this information to tune what’s being cached. We can

also use that data to determine how caching HTML fragments in

memcached impacts our database selections.

3.8 Review

In this chapter chapter we covered a lot of the practical details of

implementing memcached. We started with a piece of code that

didn’t implement any memcached and worked our way through

implementing memcached in several variations that got progres-

sively better. Along the way we discussed some of the obstacles

encountered in implementing memcached and ended with a good

working pattern for implementing memcached in your own code. In

the next chapter we’re going to step back and look at memcached

from a more architectural level.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=57

F ridays

Chapter 4

Best Practices

In the last chapter we covered a lot of the practical details of imple-

menting memcached, but that was at a very technical level. We

started with a piece of code that didn’t implement any memcached

and worked our way through implementing memcached in several

variations that got progressively better. In this chapter we’re going to

take a broader look at implementing memcached on a more archi-

tectural level and review the best practices associated with mem-

cached. Let’st start with one of the issues that frequently comes up:

Security.

4.1 How Can I Secure memcached?

The memcached server has absolutely no authentication model. Any-

one who can connect to the server via the TCP or UDP port can

get data. That’s by design because authentication would slow down

the processing. But that doesn’t mean that memcached can’t be

secured, and that begins by limiting access to the servers. On a

broad level, your memcached servers shouldn’t be exposed to the

internet. Those servers, or at least the ports memcached is operat-

ing on, should be blocked from outside access. The second way to

secure the servers is to obfuscate your keys. That way, anyone who

might be able to access the servers can’t easily find data by doing

gets and randomly replacing the where clause in SQL commands.

Some clients already handle this by hashing your key and/or com-

pressing data so it’s not easily human readable.

The best practice is to limit access to the memcached server/port

to the machines that require access. This can be done by utilizing

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=58

F ridays

CHAPTER 4. BEST PRACTICES HOW DO I DETERMINE WHAT GETS CACHED? 59

routing and firewalls to allow and disallow access to specific ports by

IP Address or IP Range, a topic beyond the scope of this Friday but

there is a link to some information in Section 6.1, Firewall/Network

Configuration resources, on page 69.

4.2 How Do I Determine What Gets Cached?

If you want to implement memcached in an existing live application,

then you’ve probably already defined the pain points; most often

these are database queries that are being executed in the part of

the system where your users complain the most about performance.

While memcached may not be able to make a poorly designed SQL

statement run any faster, it may be able to cache the results so that

you don’t always have to go to the database every time you want

the information. So the first step is to determine what queries you

have that run the most and longest and put those data results in

memcached, so you can retrieve them from the cache rather than

the database.

And, while data may be where caching starts, don’t forget to look

at the parts that make up the whole. While it doesn’t make sense

to cache the resulting HTML page (since there are other caching

systems probably much closer to the web server that can store that

data) it does make sense to store discrete, composed chunks of data

that are used in multiple places. If you have a set of links containing

updated headlines, it makes sense to deliver that HTML fragment

containing the formatted anchor tags from memcached rather than

recreating it with the data pulled from memcached every time you

need to deliver it.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=59

F ridays

CHAPTER 4. BEST PRACTICES HOW DO I NAME KEYS? 60

Best practices include implementing caching in a way that mini-

mizes cache stampedes, just as we did by using locking and a rolling

expiration time to try to minimize the number of clients trying to fill

the cache with the same data.

4.3 How Do I Name Keys?

When it comes to best practices, you’ll often find what amounts to

almost theological debates related to naming conventions. Proper-

Casing, camelCasing, object:key:type, etc. The two best practices

are to be as granular as reasonable and to be consistent in how you

name keys. Once you’ve determined what your keys are going to

look like, make sure that you implement those names across your

application. This is especially important if you will have more than

one application sharing the cache. If one program stores data under

CalendarOfEvents-HTMLTable-1 and another uses CalendarOfEvents:HTMLTable:1

for the same data then you’ll have duplicate data stored in your

cache, and a less efficient cache.

My recommendations are to store SQL statements using a hash of

the SQL statement the way we did in our examples. If non-SQL items

you are caching already have unique names, use a hash of those

existing names. Otherwise implement an object:key:type convention.

4.4 Which Storage Command is Best?

Back in Section 1.6, How Do I Manipulate Data?, on page 8 we

learned that there are three commands for storing an NVP in mem-

cached: add, set and replace. In the case of add and replace, there’s

some additional overhead you need to worry about. If you attempt to

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=60

F ridays

CHAPTER 4. BEST PRACTICES WHICH STORAGE COMMAND IS BEST? 61

add a key that exists or replace a key that doesn’t, you need to be pre-

pared to get handle an error code and respond to it. This is different

from using the set which will store the data regardless of whether

the key already exists. So, what’s the best command to store data

in memcached?

The best way to answer that is to go back to the reason that noreply

was implemented, suppressing the STORED or NOT_STORED indicator.

memcached is a memory based cache. One of two things can happen

when you request data from the cache: it will be there or it won’t.

It may not be there because it expired out of the cache, it may not

be there because memcached needed the memory location that was

being used, it may not be there because it was deleted on purpose,

or it may not be there because it was never put there. Any program

using memcached doesn’t really care why the data isn’t there, only

that it has to look somewhere else to get the data. And if that’s

the case, why does the program need to know that the data was

successfully stored? So no return code is provided.

Given that rationale, even if not taken to the extreme of using NORE-

In order to implement noreply, you must use a
client that supports it.

PLY, best practices dictate that data storage should be done using

set. There are exceptions to every rule, including this one, and we

explored one situation in Section 3.4, How Do I Prevent Multiple

Clients Updating One NVP?, on page 42 when we used add to set

a lock to indicate that processing was going on.

If you find yourself using add and replace often, you may want to ask

yourself what value you are getting from that code. At one point,

I wrote a lot of code that used add and replace, based on a lack of

understanding of how memcached worked. Once I realized that the

code getting data out of memcached didn’t care why the data wasn’t

in memcached, I cleaned up a lot of code to use set, giving me a

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=61

F ridays

CHAPTER 4. BEST PRACTICES HOW DO I FILL THE CACHE? 62

leaner, more efficient program.

4.5 How Do I Fill the Cache?

In this book, we’ve covered only one way to put data in the cache,

reacting to requests for data. But there are many other ways to

cache data, depending on what we are attempting to accomplish.

If we have a set of data that is frequently requested by clients and

frequently updated, then we may want to store that data without

specifying an expiration date in memcached or using a rolling expi-

ration. Instead, a separate program that runs on a regular basis is

used to query the database and store information in memcached.

The only time the normal client will go to the database is when the

data isn’t in the cache for some reason.

If you are going to set up a job to refresh the cache separate from the

If you plan on proactively filling the cache,
keep in mind that you still need to make sure
you implement best practices that avoid
cache stampedes. Just because you place
something in the cache, doesn’t mean that it
will be there when you go to get it out.

application that is reading the cache, there are a couple of things

that you have to keep in mind. First, make sure the memcached

server list for both applications is the same. If it’s not, it’s possible

that the reader application will update the cache from the database

and that set of data will get delivered for a long time, even though it

may have gone stale.

The second is to make sure the two client programs used by the

reader and writer applications are either the same or compatible.

A good example of why this is important can be found with the

two clients used in this book. The Perl client stores data in mem-

cached using the key provided to it. The C# client, on the other

hand, hashes the key and uses that hash as the key for memcached.

This doesn’t affect our code since the C# client always knows what

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=62

F ridays

CHAPTER 4. BEST PRACTICES HOW CAN I MINIMIZE MEMCACHED SERVER OUTAGES? 63

it is looking for, but it does mean that any data stored by the Perl

client will never be found by the C# client and vice versa.

4.6 How Can I Minimize memcached Server

Outages?

memcached is a very stable tool. There are some folks who have said

they consider their memcached servers to be like dial tone, it’s just

there and working. Be that as it may, however, one should always

be prepared just in case something happens to one or more of your

memcached servers. The beauty of having a distributed application

like memcached is that losing a machine is not all that detrimental.

There are, however, a couple of actions that can be taken to make

life easier in the case of an outage, whether it’s one memcached

instance, half of your memcached instances, or all of them.

The first thing is to realize that even if you lose connectivity to all

of your memcached servers, your program should still run, as long

as it’s using memcached as nothing more than a memory cache.

That’s not to say it won’t impact the application. If one instance out

of several goes down, there will be a temporary larger load on the

database server while data that was in the lost instance is reloaded

as the clients make requests. If you’re code has been written to

minimize cache stampedes then this should be a minimal impact.

Another way to handle this is to bring up an instance of memcached

on a new machine using the lost machine’s IP address so it can fill

in.

Another option, and definitely a best practice, is to code so that you

can easily change your memcached server list with minimal work.

In the C# client, this is handled in the App.Config. In Perl you could

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=63

F ridays

CHAPTER 4. BEST PRACTICES WHAT’S THE FUTURE OF MEMCACHED? 64

use a file that defines all of the servers and use do to include it.

That way, should you lose some instances you can easily change

your server list. You should also code so that you could turn off

memcached if you needed to. Why would you need to do that?

Some memcached clients implement a timeout value. While this

won’t be an issue when everything is running smoothly, if all of

your memcached servers go down, the client will keep trying until

that time out limit is reached. If the timeout is one second and all of

the memcached servers go down then your application will take that

second every time it tries to connect to the servers. Having a con-

vienent way to stop using memcached in those instances is the best

way to survive the outage and still keep the application running.

4.7 What’s the Future of memcached?

memcached has a fervent following and developers are still adding

new features to it. Some of the features currently under discussion

that are worth looking at include:

Binary Protocol

One of the most expensive pieces of code in memcached is the part

that parses the text request. To help cut down on this expense

there’s a new Binary Protocol that’s being implemented. If it is imple-

mented in the client, you can use it and probably will not need to

change your code at all, other than setting a flag to tell the client to

use the binary protocol.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=64

F ridays

CHAPTER 4. BEST PRACTICES WHAT’S THE FUTURE OF MEMCACHED? 65

Tags

One of the complaints most often voiced by memcached users is the

inability to invalidate a set of NVPs unless you know what all of

their keys are. Tags will provide a way to identify a key as a part of a

larger set. So, in our calendar of events sample we’ve been working

on, we could tag the list of dates with each of the individual items.

One example of this would be to add our hashed keys as tags to

related items. So we might tag CalendarOfEvents:HTMLTable:1 with the

each of the $dataKey that we generated in Section 3.6, Can I Eliminate

Caching Duplicate Data?, on page 51.

Then, when we update one of those individual items, we could inval-

idate the $dataKey which would invalidate all of the NVPs associated

with that tag, both the individual data item and lists that contain

that item.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/memcd/errata/add?pdf_page=65

F ridays

Chapter 5

memcached Add Ons

Not only is memcached popular as a memory cache you can imple-

ment into your application, but a number of ways to extend its func-

tionality exist as well. This list will introduce you to some of these

and offer a link to where to get more information. Before we get to

listing applications and other uses of memcached, I want to reit-

erate, one more time, that memcached was designed as a memory

cache, not a data store nor a high availability memory repository.

Some of these links are to applications that work to add that func-

tionality into memcached, either by starting with the memcached

code to make their own program or by incorporating memcached

into their application. I’m not using any of these applications so I

can’t judge how effective they are but if you find yourself thinking

"wouldn’t it be nice if I could modify memcached to do fill-in-the-

blank" then you should research to see if anyone has already done

it first.

memcached Storage Engine for MySQL

This project is designed to allow you to query memcached with a

MySQL backend using standard SQL calls.

http://tangent.org/index.pl?node_id=506

Apache memcached Session

If you have a website, you’ve had to deal with session data. This

application integrates memcached with Apache to enable storing

session data in memcached.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://tangent.org/index.pl?node_id=506
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=66

F ridays

CHAPTER 5. MEMCACHED ADD ONS CHAPTER 5. MEMCACHED ADD ONS 67

http://search.cpan.org/~enrys/Apache-Session-Memcached-0.03/

repcached

While memcached isn’t designed to be a high-availability applica-

tion, repcached is a set of patches that is designed to make it one,

complete with redundancy between a master and slave system with

failover.

http://repcached.lab.klab.org/

memcachefs

The memcached file system. Allows you to view your cached data as

though it were files on disk.

http://memcachefs.sourceforge.net/

memcachedb

That’s a b at the end, making it memcached database; a persistent,

distributed storage system that’s a cross between memcached and

Tugela.

http://code.google.com/p/memcachedb/

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://search.cpan.org/~enrys/Apache-Session-Memcached-0.03/
http://repcached.lab.klab.org/
http://memcachefs.sourceforge.net/
http://code.google.com/p/memcachedb/
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=67

F ridays

Chapter 6

Additional Resources

This chapter contains links to resources mentioned throughout the

book, interesting items that may help you as you implement mem-

cached, and some resources for general information.

6.1 memcached Resources

The most important resource is, of course, the official memcached

site, hosted by Danga Interactive at http://www.danga.com/memcached/.

That’s where you can find links to all of the current builds. It’s also

where you can join the memcached mailing list (http://lists.danga.

com/mailman/listinfo/memcached), a handy resource for asking

questions and getting answers from the folks who maintain and use

memcached on a daily basis.

The most current Windows version of memcached (1.2.4) can be

found at http://www.splinedancer.com/memcached-win32/. While

it is a beta-release, it appears stable and is in production use in

several places.

One critical component of memcached is libevent, the API that mem-

cached uses for its event handling. The source code and more infor-

mation can be found at http://monkey.org/~provos/libevent/

While you don’t need to actually understand consistent hashing

unless you plan on writing a client that interfaces directly with

the memcached server rather than using one of the many available,

it’s still an interesting subject. You can check out http://www.last.

fm/user/RJ/journal/2007/04/10/392555/ to get a good general

overview of the data or check out the links from that page to get into

the nuts and bolts of the mathematics behind consistent hashing.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.danga.com/memcached/
http://lists.danga.com/mailman/listinfo/memcached
http://lists.danga.com/mailman/listinfo/memcached
http://www.splinedancer.com/memcached-win32/
http://monkey.org/~provos/libevent/
http://www.last.fm/user/RJ/journal/2007/04/10/392555/
http://www.last.fm/user/RJ/journal/2007/04/10/392555/
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=68

F ridays

CHAPTER 6. ADDITIONAL RESOURCES MEMCACHED RESOURCES 69

The following link is to the results of a study Jay Pipes did testing

various caching mechanisms, including MySQL’s cache compared

to memcached: http://www.mysqlperformanceblog.com/2006/08/

09/cache-performance-comparison/

Firewall/Network Configuration resources

How network security is implemented is dependent upon the hard-

ware that makes up your network, but for a good general intro-

duction to the subject check out http://www.interhack.net/pubs/

network-security/.

Report erratumPrepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.mysqlperformanceblog.com/2006/08/09/cache-performance-comparison/
http://www.mysqlperformanceblog.com/2006/08/09/cache-performance-comparison/
http://www.interhack.net/pubs/network-security/
http://www.interhack.net/pubs/network-security/
http://books.pragprog.com/titles/memcd/errata/add?pdf_page=69

Pragmatic Fridays
Timely and focused PDF-only books. Written by experts for people who need infor-

mation in a hurry. No DRM restrictions. Free updates. Immediate download. Visit

our web site to see what’s happening on Friday!

More Online Goodness
Using memcached’s Home Page

Source code from this book and other resources. Come give us feedback, too!

Free Updates

Visit the link, identify your book, and we’ll create a new PDF containing the latest

content.

Errata and Suggestions

See suggestions and known problems. Add your own. (The easiest way to report an

errata is to click on the link at the bottom of the page.

Join the Community

Read our weblogs, join our online discussions, participate in our mailing list, inter-

act with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

Check out the latest pragmatic developments in the news.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragmaticprogrammer.com/fridays
http://pragmaticprogrammer.com/titles/memcd
http://books.pragprog.com/titles/memcd/reorder
http://books.pragprog.com/titles/memcd/errata
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
www.pragmaticprogrammer.com/catalog

	Introduction
	What is memcached?
	What memcached Isn't
	What Components Make Up memcached?
	How do I Install the memcached Server?
	How Do I Configure memcached?
	How Do I Manipulate Data?
	What Options Do I Have for Storing Data?
	What Other Commands Can I Use?
	Review

	Using a memcached Client Library
	How Do I Install a Windows Client?
	Where do I get the memcached Linux client?
	What are the benefits of Using a Client?
	Review

	The Basics of Implementing memcached
	How Does memcached Fit in the Cache System?
	What is the Basic Coding Pattern for Using memcached?
	How Do I Update memcached When the Data Changes?
	How Do I Prevent Multiple Clients Updating One NVP?
	How Do I Determine the Optimal Expiration Time?
	Can I Eliminate Caching Duplicate Data?
	How do I Gauge Cache Efficiency?
	Review

	Best Practices
	How Can I Secure memcached?
	How Do I Determine What Gets Cached?
	How Do I Name Keys?
	Which Storage Command is Best?
	How Do I Fill the Cache?
	How Can I Minimize memcached Server Outages?
	What's the Future of memcached?

	memcached Add Ons
	Additional Resources
	memcached Resources

