
Perl One-liners

Jeff Bay, jlb0170@yahoo.com

Abstract

This article introduces some of the more common perl options found in command line programs, also
known as one-liners. I cover the -e, -n, -p, -M, and -w switches, along with BEGIN and END blocks.

1 Creating a one-liner

Most talented unix Perl programmers I have met have a dirty little secret. They cannot resist the allure of
the gnarly Perl one-liner for accomplishing short tasks that do not need a complete script.

The -e switch allows me to write Perl scripts directly on the command line. Code listing 1 shows a simple
“Hello world”.

Code Listing 1: Hello World

prompt$ perl -e ’print "hello world!\n"’
hello world!

In code listing 2, something a bit more complex, I take the output from ls, parse it for the file size, and sum
the sizes for all files which are not directories.

Code Listing 2: File size sum

prompt$ ls -lAF | perl -e ’while (<>) { next if /^dt/; $sum += (split)[4] } print "$sum\n"’
1185

I use several tricks in code listing 2. Normally, I do not write something like this all at once. I build it up a
bit at a time to make sure I get the correct output at each step. In code listing 3 I check the output of the
command.

Code Listing 3: ls output

prompt$ ls -lAF
total 32
drwxrwsr-x 2 jbay staff 512 Feb 21 09:34 adir/
-rw-rw-r-- 1 jbay staff 395 Feb 21 09:29 afile1
-rw-rw-r-- 1 jbay staff 423 Feb 21 09:29 afile2
-rw-rw-r-- 1 jbay staff 120 Feb 21 09:29 afile3

1

One-liners

In code listing 4 the output from ls becomes the standard input to my script, which simply prints each line.
I can see that I get the output I expect, the same thing from code listing 3.

Code Listing 4: ls piped to perl

prompt$ ls -lAF | perl -e ’while (<>) { print $_ }’
total 32
drwxrwsr-x 2 jbay staff 512 Feb 21 09:34 adir/
-rw-rw-r-- 1 jbay staff 395 Feb 21 09:29 afile1
-rw-rw-r-- 1 jbay staff 423 Feb 21 09:29 afile2
-rw-rw-r-- 1 jbay staff 120 Feb 21 09:29 afile3

In code listing 5 I want to skip the initial total line and directories, so I want to ignore lines that begin with
a “d” or “‘t”. I add a next before the print statements to skip lines that begin with a “d” or a “t”, so my
program does not print them.

Code Listing 5: Skip lines

prompt$ ls -lAF | perl -e ’while (<>) { next if /^[dt]/; print $_; }’
-rw-rw-r-- 1 jbay staff 395 Feb 21 09:29 afile1
-rw-rw-r-- 1 jbay staff 423 Feb 21 09:29 afile2
-rw-rw-r-- 1 jbay staff 120 Feb 21 09:29 afile3

Once I know that my script skips the right lines, I split the remaining lines and print the value in column 5,
the file size. At this point my program, in code listing 6, prints out the same number I see in the ls output,
which is the correct size for each file.

Code Listing 6: Print file sizes

prompt$ ls -lAF | perl -e ’while (<>) { next if /^[dt]/; print +(split)[4], "\n" } ’
395
423
120

Finally, I want to sum the file sizes. Code listing 7 accumulates the sum in $sum, then prints it at the end
of the program.

Code Listing 7: Sum file sizes

prompt$ ls -lAF | perl -e ’while (<>) { next if /^[dt]/; $sum += (split)[4] } print "$sum\n"’
938

Now I have the complex perl one-liner that I showed in code listing 2.

2 One-liner input

Perl programs can receive data from standard input or the command line arguments in @ARGV.

The Perl Review (0, 1 b 112) · 2

One-liners

2.1 Standard input

Code Listing 8: Skipping comments

prompt$ cat afile | perl -e ’while (<>) { print unless /\s+#/ }’

The “|” (pipe) symbol takes the output of cat and makes it the standard input of my Perl program. The
diamond operator, <>, reads lines from standard input, so this one-liner reads the lines from afile and then
prints the lines that do not match the regular expression \s+#.

I can also redirect file contents to perl’s standard input using the shell redirection operator, <. Code listing
9 produces the same output as the previous example.

Code Listing 9: Input by redirection

prompt$ perl -e ’while (<>) { print unless /\s+#/ }’ < afile

However, the diamond operator can open and directly read the contents of the file specified on the command
line so I do not need to redirect the file contents myself. Code listing 10 does not use file redirection, and
does the same thing as code listing 9.

Code Listing 10: Input

prompt$ perl -e ’while (<>) { print unless /\s+#/ }’ afile

2.2 Command line arguments

I can access command line arguments using @ARGV. Code listing 11 simply prints whatever is in @ARGV.

Code Listing 11: Print the command line arguments

prompt$ perl -e ’print "@ARGV\n"’ Foo Bar Bletch
Foo Bar Bletch

Suppose I have a file that contains a list of files, one filename per line, that I want to manipulate. I can see
the file names when I list the files in code listing 12.

Code Listing 12: The filenames in files.txt

prompt$ cat files.txt
afile1
afile2
afile3

The unix utility xargs can transpose its standard input into arguments for another command. I want to take
this list of filenames and make them the arguments of the wc command so I can count the number of lines

The Perl Review (0, 1 b 112) · 3

One-liners

in each file. In code listing 13 the xargs command takes its standard input, the list of filenames, and makes
them the arguments for wc.

Code Listing 13: Count lines in files

prompt$ cat files.txt | xargs wc -l
54 afile1
54 afile2
54 afile3
162 total

Code listing 13 is the same as if I typed this directly, as in code listing 14.

Code Listing 14: Count lines in files

prompt$ wc -l afile1 afile2 afile3

2.3 Playing with find

In code listing 15 I reimplement the find command option “-type d” using a perl one-liner and xargs. The
find command recursively outputs a list of filenames starting from a specified directory and matching certain
criteria. In this case, the criteria, “-type d”, lists only directories.

Code Listing 15: Using find

prompt$ find . | xargs perl -e ’@ARGV = grep(-d $_ , @ARGV); print "@ARGV"’

The xargs command takes the list of filenames and makes them the arguments to the one-liner in code listing
15. The one-liner then uses a grep expression to filter @ARGV for filenames that are directories using the
-d file test operator and then prints the results.

3 Useful command line switches

Perl command line options shorten one-liners by adding automatic processing to the small script I create
using the -e option. Perl has many other useful options besides the ones I show. See the perlrun manual
page for the details.

3.1 The -e switch

The perl interpreter takes each -e argument as a fragment of Perl code and executes it. Each -e switch on
the command line is taken as a line in a script. If I paste the contents of each -e switch into a file, and run
Perl on that file, I have the exact same effect as the -e switch. Code listing 16 rewrites code listing 1 with
two -e switches.

The Perl Review (0, 1 b 112) · 4

One-liners

Code Listing 16: Multiple -e switches

prompt$ perl -e ’print "Hello ";’ -e ’print "world\n";’
Hello world

Each code bit (in the outer single quotes) is a single string that the shell parses as a separate token, so the
shell sees the four tokens in code listing 17.

Code Listing 17: Multiple -e switches, as tokens

-e
print "Hello ";
-e
print "world\n";

3.2 The -n switch

The -n switch wraps a while loop around your program. In code listing 18, the loop reads lines of input with
the diamond operator, sets $ to the contents of each line, then executes the code bits I specify with the -e
switch.

Code Listing 18: Using -n

while (<>) {
<-e argument>
<-e argument>

}

In code listing 19 I create my own cat program.

Code Listing 19: Reimplementing cat

prompt$ perl -ne ’print $_’ afile

3.3 The -p switch

The -p switch does the same thing and prints the value of $ at the end of each iteration.

Code Listing 20: Using -p

while (<>) {
<-e argument>
<-e argument>
print;

}

The Perl Review (0, 1 b 112) · 5

One-liners

In code listing 20 the loop reads lines in standard input, sets $ to the contents of each line, executes the -e
args, and then prints $. I can use this to modify lines from an output listing.

For example, I can remove the permissions column on a “ls -l” output file listing. In code listing 21 I
substitute the first group of non-whitespace and the space after it with nothing.

Code Listing 21: Remove the first column

prompt$ ls -l | perl -pe ’s/\S+ //’

3.4 Using modules

I can use modules on the command line with the -M switch. The -M<module> switch is the equivalent of
including “use <module>;” in the virtual scripts I create. In code listing 22, I use the IO::Handle module
to set the standard output autoflush option.

Code Listing 22: Using modules

prompt$ cat afile | perl -MIO::Handle -e ’STDOUT->autoflush(1); while (<>) { print }’

Normally, I use strict and turn on warnings in my scripts and I can do this in one-liners as well. In code
listing 23 I include the strict module with -Mstrict, and turn on warnings by adding -w.

Code Listing 23: Using strict

prompt$ cat afile | perl -w -Mstrict -e ’my $var = 17; print $var’

If I do not declare $var, the strict module catches it as it does in code listing 24.

Code Listing 24: Undeclared variables

prompt$ cat afile | perl -w -Mstrict -e ’$var = 17; print $var’
Global symbol "$var" requires explicit package name at -e line 1.
Execution of -e aborted due to compilation errors.

In code listing 25, Perl warns about $var which I used without initializing it.

Code Listing 25: Uninitialized variables

cat afile | perl -w -Mstrict -e ’my $var; print $var’
Use of uninitialized value at -e line 1.

4 Wrestling with the shell

Quote marks, double and single, as well as the dollar sign, are part of the shell syntax. If I need to use
these characters in my string, I must escape them. Each shell has a slightly different syntax for its special

The Perl Review (0, 1 b 112) · 6

One-liners

characters, and different platforms may handle escaping them differently. Code listing 26 shows several
examples of escaping shell metacharacters.

Code Listing 26: Escaping shell metacharacters

prompt$ echo "the variable \$USER is "\""$USER"\"" "
the variable $USER is "jbay"

I can do several things to avoid shell quoting problems. In code listing 27, the program outputs a malformed
SQL statement because the literal a3 is not quoted. The single quotes disappear because I used single quotes
for my -e code bit, but I need quotes around ’a3’ so the SQL parser knows that a3 is a literal string and not
a column name.

Code Listing 27: Misquoted SQL

prompt$ perl -e ’print "select * from foo where bar=’a3’\n"’
select * from foo where bar = a3

In code lisitng 28 I use Perl’s chr() function to add any literal character (including quotes) using its ordinal
ascii value. I can concatenate chr(39), the single quote, with the rest of the SQL string.

Code Listing 28: Using chr() to get literal values

prompt$ perl -e ’print "select * from foo where bar=" . chr(39) . "a3" . chr(39) . "\n"’
select * from foo where bar=’a3’

In code listing 29 I use the generalized quote operators, q and qq, instead of single and double quotes. I can
use single or double ticks inside the resulting perl string because they are no longer delimiters.

Code Listing 29: Generalized quotes

prompt$ perl -e ’print qq#select * from foo where bar="a3"\n#’
select * from foo where bar="a3"

Code listing 30 uses the back-whack character,“\”, to escape the quote marks, but the syntax is rather
unwieldy – ’\’’. In most shells, I have to close the prior string with the first tick, then put in the literal
tick with a back-whack , and then start the next string with a third tick. The shell then concatenates those
strings into a single string before it executes them.

Code Listing 30: Escaping quote characters

prompt$ perl -e ’print "select count(*) from foo where bar =’\’’a3’\’’\n"’
select * from foo where bar =’a3’

5 Start and End tricks

I can execute code before or after my -e program with the BEGIN or END keyword respectively. The END
block in code listing 31 prints the sum after the while loop finishes.

The Perl Review (0, 1 b 112) · 7

One-liners

Code Listing 31: END block

ls -lAF | perl -ne ’next if /^d/; $sum += (split)[4]; END{ print "$sum\n" }’

In code listing 32 the BEGIN executes its block before an implicit loop starts. I can initialize the variable
$sum to 1024 before the loop begins if I use a BEGIN block.

Code Listing 32: BEGIN block

ls -lAF | perl -ne ’BEGIN{$sum=1024} next if /^d/; $sum += (split)[4]; END{ print "$sum\n" }’

6 References

Chapter 6, “Social Engineering, Cooperating with Command Interpreters”, Programming Perl - Larry Wall,
Tom Christiansen, & Jon Orwant.

The following perl manual pages come with the standard Perl distribution and can be found online at
Perldoc.com, http://www.perldoc.com, or from the command line with “perldoc pagename”.

• perlrun - perl interpreter options

• perlfaq3 “Why don’t Perl one-liners work on my DOS/Mac/VMS system?”

The following unix manual pages may be found online at several sites, including http://www.bsdi.com/bsdi-
man/, or from the command line with “man pagename”.

• find

• wc

• xargs

The Perl Review (0, 1 b 112) · 8

