
Programming Perl

Programming Perl
Third Edition

Larry Wall, Tom Christiansen & Jon Orwant

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Programming Perl, Third Edition
by Larry Wall, Tom Christiansen, and Jon Orwant

Copyright © 2000, 1996, 1991 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor, First Edition: Tim O’Reilly

Editor, Second Edition: Steve Talbott

Editor, Third Edition: Linda Mui

Technical Editor: Nathan Torkington

Production Editor: Melanie Wang

Cover Designer: Edie Freedman

Printing History:

January 1991: First Edition.

September 1996: Second Edition.

July 2000: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of
a camel and the Perl language is a trademark of O’Reilly & Associates, Inc. Permission may
be granted for non-commercial use; please inquire by sending mail to camel@oreilly.com.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Wall, Larry.
Programming Perl/Larry Wall, Tom Christiansen & Jon Orwant.--3rd ed. p. cm.
ISBN 0-596-00027-8
1. Perl (Computer program language) I. Christiansen, Tom. II. Orwant, Jon. III. Title.

QA76.73.P22 W35 2000
005.13'3--dc21 00-055799

ISBN: 0-596-00027-8

[M]

Ta ble of Contents

Preface ... xvii

I : Overview .. 1

1: An Over view of Perl .. 3

Getting Started .. 3

Natural and Artificial Languages .. 4

An Average Example .. 17

Filehandles .. 20

Operators .. 22

Contr ol Structur es ... 29

Regular Expressions ... 35

List Processing .. 41

What You Don’t Know Won’t Hurt You (Much) ... 43

II : The Gor y Details ... 45

2: Bits and Pieces ... 47

Atoms .. 47

Molecules .. 49

Built-in Data Types ... 50

Variables .. 52

Names ... 53

Scalar Values ... 58

Context .. 69

v

vi Table of Contents

List Values and Arrays .. 72

Hashes ... 76

Typeglobs and Filehandles .. 78

Input Operators .. 79

3: Unary and Binary Operator s .. 86

Terms and List Operators (Leftward) .. 89

The Arrow Operator ... 90

Autoincr ement and Autodecrement .. 91

Exponentiation ... 92

Ideographic Unary Operators .. 92

Binding Operators .. 93

Multiplicative Operators ... 94

Additive Operators ... 95

Shift Operators .. 95

Named Unary and File Test Operators .. 95

Relational Operators ... 100

Equality Operators ... 101

Bitwise Operators ... 101

C-Style Logical (Short-Circuit) Operators .. 102

Range Operator .. 103

Conditional Operator ... 105

Assignment Operators .. 107

Comma Operators .. 108

List Operators (Rightward) ... 109

Logical and, or, not, and xor ... 109

C Operators Missing from Perl .. 110

4: Statements and Declarations .. 111

Simple Statements .. 111

Compound Statements ... 113

if and unless Statements .. 114

Loop Statements ... 115

Bar e Blocks ... 123

goto ... 126

Global Declarations .. 127

Scoped Declarations ... 129

Pragmas ... 136

Ta ble of Contents vii

5: Patter n Matching .. 139

The Regular Expression Bestiary ... 140

Patter n-Matching Operators ... 143

Metacharacters and Metasymbols .. 158

Character Classes .. 165

Quantifiers .. 176

Positions .. 178

Capturing and Clustering ... 182

Alter nation .. 187

Staying in Control ... 188

Fancy Patterns .. 202

6: Subroutines ... 217

Syntax .. 217

Semantics .. 219

Passing References ... 224

Pr ototypes ... 225

Subr outine Attributes ... 231

7: For mats .. 234

For mat Variables ... 237

Footers .. 240

8: References .. 242

What Is a Reference? .. 242

Cr eating Refer ences .. 245

Using Hard References ... 251

Symbolic References .. 263

Braces, Brackets, and Quoting .. 264

9: Data Str uctures ... 268

Arrays of Arrays .. 268

Hashes of Arrays .. 275

Arrays of Hashes .. 277

Hashes of Hashes ... 279

Hashes of Functions ... 282

Mor e Elaborate Records ... 283

Saving Data Structures ... 286

viii Table of Contents

10: Packages ... 288

Symbol Tables .. 293

Autoloading .. 296

11: Modules .. 299

Using Modules .. 299

Cr eating Modules ... 301

Overriding Built-in Functions .. 306

12: Objects ... 308

Brief Refresher on Object-Oriented Lingo .. 308

Perl’s Object System ... 310

Method Invocation ... 311

Object Construction ... 317

Class Inheritance .. 321

Instance Destructors ... 330

Managing Instance Data ... 331

Managing Class Data .. 343

Summary ... 346

13: Overloading .. 347

The overload Pragma ... 348

Overload Handlers ... 349

Overloadable Operators ... 350

The Copy Constructor (=) .. 357

When an Overload Handler Is Missing (nomethod and fallback) 358

Overloading Constants ... 359

Public Overload Functions .. 360

Inheritance and Overloading ... 361

Run-T ime Overloading ... 361

Overloading Diagnostics .. 362

14: Tied Var iables .. 363

Tying Scalars ... 365

Tying Arrays ... 372

Tying Hashes .. 378

Tying Filehandles ... 384

A Subtle Untying Trap .. 395

Tie Modules on CPAN .. 397

Ta ble of Contents ix

III :Perl as Technolog y .. 399

15: Unicode .. 401

Building Character .. 402

Ef fects of Character Semantics ... 405

Caution, Working .. 409

16: Interprocess Communication .. 411

Signals ... 412

Files ... 418

Pipes .. 426

System V IPC .. 434

Sockets .. 437

17: Threads ... 446

The Process Model ... 447

The Thread Model .. 448

18: Compiling .. 464

The Life Cycle of a Perl Program .. 465

Compiling Your Code .. 467

Executing Your Code ... 473

Compiler Backends .. 476

Code Generators .. 477

Code Development Tools .. 479

Avant-Garde Compiler, Retr o Interpr eter .. 480

19: The Command-Line Interface .. 486

Command Processing ... 486

Envir onment Variables ... 503

20: The Perl Debugger .. 506

Using the Debugger ... 507

Debugger Commands .. 509

Debugger Customization ... 518

Unattended Execution .. 521

Debugger Support .. 523

The Perl Profiler ... 525

x Table of Contents

21: Internals and Externals ... 530

How Perl Works ... 531

Inter nal Data Types .. 531

Extending Perl (Using C from Perl) ... 532

Embedding Perl (Using Perl from C) .. 538

The Moral of the Story ... 544

IV :Perl as Culture .. 545

22: CPAN .. 547

The CPAN modules Directory .. 548

Using CPAN Modules ... 551

Cr eating CPAN Modules ... 554

23: Security ... 557

Handling Insecure Data ... 558

Handling Timing Glitches .. 569

Handling Insecure Code .. 576

24: Common Practices ... 585

Common Goofs for Novices .. 585

Ef ficiency .. 593

Pr ogramming with Style ... 603

Fluent Perl .. 607

Pr ogram Generation ... 616

25: Por table Perl ... 621

Newlines ... 622

Endianness and Number Width ... 623

Files and Filesystems .. 624

System Interaction .. 625

Interpr ocess Communication (IPC) ... 626

Exter nal Subr outines (XS) .. 626

Standard Modules ... 627

Dates and Times ... 627

Inter nationalization .. 628

Style ... 628

Ta ble of Contents xi

26: Plain Old Documentation .. 629

Pod in a Nutshell .. 629

Pod Translators and Modules .. 638

Writing Your Own Pod Tools .. 640

Pod Pitfalls .. 643

Documenting Your Perl Programs ... 644

27: Perl Culture ... 645

History Made Practical ... 645

Perl Poetry .. 647

V: Reference Material .. 651

28: Special Names .. 653

Special Names Grouped by Type ... 653

Special Variables in Alphabetical Order .. 656

29: Functions ... 677

Perl Functions by Category .. 680

Perl Functions in Alphabetical Order .. 682

30: The Standard Perl Librar y .. 831

Library Science ... 831

A Tour of the Perl Library .. 833

31: Pragmatic Modules .. 836

use attributes .. 837

use autouse ... 838

use base .. 839

use blib ... 840

use bytes ... 840

use charnames .. 841

use constant .. 842

use diagnostics ... 844

use fields ... 846

use filetest ... 848

use integer .. 849

use less .. 850

use lib ... 850

xii Table of Contents

use locale .. 852

use open ... 852

use overload ... 853

use re .. 854

use sigtrap ... 855

use strict .. 858

use subs .. 860

use vars ... 861

use warnings .. 861

32: Standard Modules .. 865

Listings by Type ... 866

Benchmark .. 875

Carp ... 878

CGI .. 878

CGI::Carp .. 879

Class::Struct ... 879

Config .. 880

CPAN ... 881

Cwd ... 881

Data::Dumper ... 882

DB_File ... 883

Dumpvalue ... 884

English .. 884

Err no ... 885

Exporter .. 885

Fatal ... 886

Fcntl .. 887

File::Basename .. 887

File::Compar e ... 888

File::Copy .. 889

File::Find ... 889

File::Glob .. 890

File::Spec ... 893

File::stat ... 894

File::Temp ... 894

FileHandle ... 895

Getopt::Long ... 898

Getopt::Std .. 899

Ta ble of Contents xiii

IO::Socket ... 899

IPC::Open2 ... 900

IPC::Open3 ... 901

Math::BigInt .. 902

Math::Complex ... 902

Math::Trig .. 903

Net::hostent ... 903

POSIX .. 904

Safe .. 906

Socket .. 907

Symbol .. 908

Sys::Hostname .. 909

Sys::Syslog ... 909

Term::Cap ... 911

Text::Wrap ... 911

Time::Local ... 912

Time::localtime ... 912

User::gr ent .. 913

User::pwent ... 913

33: Diagnostic Messages .. 916

Glossar y .. 979

Index .. 1009

Ta bles

1-1 Logical Operators .. 27

2-1 Backslashed Character Escapes .. 61

2-2 Translation Escapes ... 61

2-3 Quote Constructs .. 63

3-1 Operator Pr ecedence .. 87

3-2 Named Unary Operators .. 96

3-3 Ambiguous Characters .. 97

3-4 File Test Operators .. 98

3-5 Relational Operators ... 100

3-6 Equality Operators .. 101

5-1 m// Modifiers .. 150

5-2 s/// Modifiers .. 153

5-3 tr/// Modifiers .. 156

5-4 General Regex Metacharacters ... 159

5-5 Regex Quantifiers .. 159

5-6 Extended Regex Sequences .. 160

5-7 Alphanumeric Regex Metasymbols .. 161

5-8 Classic Character Classes .. 167

5-9 Composite Unicode Properties ... 168

5-10 Standard Unicode Properties .. 169

5-11 POSIX Character Classes ... 174

5-12 Regex Quantifiers Compared ... 176

13-1 Overloadable Operators ... 350

xiv

Ta bles xv

14-1 Tie Modules on CPAN ... 397

18-1 What Happens When ... 484

19-1 -D Options ... 493

29-1 Modes for open ... 749

29-2 I/O Disciplines .. 754

29-3 Template Characters for pack/unpack ... 758

29-4 Formats for sprintf .. 797

29-5 Fields Retur ned by stat ... 801

I
Over view

Preface

The Pur suit of Happiness
Perl is a language for getting your job done.

Of course, if your job is programming, you can get your job done with any “com-
plete” computer language, theoretically speaking. But we know from experience
that computer languages differ not so much in what they make possible, but in
what they make easy. At one extreme, the so-called fourth-generation languages
make it easy to do some things, but nearly impossible to do other things. At the
other extreme, so-called industrial-strength languages make it equally difficult to
do almost everything.

Perl is differ ent. In a nutshell, Perl is designed to make the easy jobs easy, without
making the hard jobs impossible.

And what are these “easy jobs” that ought to be easy? The ones you do every day,
of course. You want a language that makes it easy to manipulate numbers and
text, files and directories, computers and networks, and especially programs. It
should be easy to run external programs and scan their output for interesting tid-
bits. It should be easy to send those same tidbits off to other programs that can do
special things with them. It should be easy to develop, modify, and debug your
own programs too. And, of course, it should be easy to compile and run your pro-
grams, and do it portably, on any modern operating system.

Perl does all that, and a whole lot more.

Initially designed as a glue language for Unix, Perl has long since spread to most
other operating systems. Because it runs nearly everywhere, Perl is one of the
most portable programming environments available today. To program C or C++

xvii

xviii Preface

portably, you have to put in all those strange #ifdef markings for differ ent operat-
ing systems. To program Java portably, you have to understand the idiosyncrasies
of each new Java implementation. To program a shell script portably, you have to
remember the syntax for each operating system’s version of each command and
somehow find the common factor that (you hope) works everywhere. And to pro-
gram Visual Basic portably, you just need a more flexible definition of the word
“portable”. :-)

Perl happily avoids such problems while retaining many of the benefits of these
other languages, with some additional magic of its own. Perl’s magic comes from
many sources: the utility of its feature set, the inventiveness of the Perl commu-
nity, and the exuberance of the open source movement in general. But much of
this magic is simply hybrid vigor; Perl has a mixed heritage and has always viewed
diversity as a strength rather than a weakness. Perl is a “give me your tired, your
poor” language. If you feel like a huddled mass longing to be free, Perl is for you.

Perl reaches out across cultures. Much of the explosive growth of Perl has been
fueled by the hankerings of former Unix systems programmers who wanted to
take along with them as much of the “old country” as they could. For them, Perl is
the portable distillation of Unix culture, an oasis in the desert of “can’t get there
fr om her e”. On the other hand, it also works in the other direction: Windows-
based web designers are often delighted to discover that they can take their Perl
pr ograms and run them unchanged on the company’s Unix server.

Although Perl is especially popular with systems programmers and web develop-
ers, that’s just because they discovered it first; Perl appeals to a much broader
audience. From its small start as a text-processing language, Perl has grown into a
sophisticated, general-purpose programming language with a rich software devel-
opment environment complete with debuggers, profilers, cross-r efer encers, com-
pilers, libraries, syntax-directed editors, and all the rest of the trappings of a “real”
pr ogramming language — if you want them. But those are all about making hard
things possible, and lots of languages can do that. Perl is unique in that it never
lost its vision for keeping easy things easy.

Because Perl is both powerful and accessible, it is being used daily in every imag-
inable field, from aerospace engineering to molecular biology, from mathematics
to linguistics, from graphics to document processing, from database manipulation
to network management. Perl is used by people who are desperate to analyze or
convert lots of data quickly, whether you’re talking DNA sequences, web pages, or
pork belly futures. Indeed, one of the jokes in the Perl community is that the next
big stock market crash will probably be triggered by a bug in someone’s Perl
script. (On the brighter side, any unemployed stock analysts will still have a
marketable skill, so to speak.)

Ther e ar e many reasons for the success of Perl. Perl was a successful open source
pr oject long before the open source movement got its name. Perl is free, and will
always be free. You can use Perl however you see fit, subject only to a very liberal
licensing policy. If you are in business and want to use Perl, go right ahead. You
can embed Perl in the commercial applications you write without fee or restriction.
And if you have a problem that the Perl community can’t fix, you have the ulti-
mate backstop: the source code itself. The Perl community is not in the business
of renting you their trade secrets in the guise of “upgrades”. The Perl community
will never “go out of business” and leave you with an orphaned product.

It certainly helps that Perl is free software. But that’s not enough to explain the
Perl phenomenon since many freewar e packages fail to thrive. Perl is not just free;
it’s also fun. People feel like they can be creative in Perl because they have free-
dom of expression: they get to choose what to optimize for, whether that’s com-
puter speed or programmer speed, verbosity or conciseness, readability or
maintainability or reusability or portability or learnability or teachability. You can
even optimize for obscurity, if you’re entering an Obfuscated Perl Contest.

Perl can give you all these degrees of freedom because it’s a language with a split
personality. It’s simultaneously a very simple language and a very rich language.
Perl has taken good ideas from nearly everywhere and installed them into an easy-
to-use mental framework. To those who merely like it, Perl is the Practical Extrac-
tion and Report Language. To those who love it, Perl is the Pathologically Eclectic
Rubbish Lister. And to the minimalists in the crowd, Perl seems like a pointless
exercise in redundancy. But that’s okay. The world needs a few reductionists
(mainly as physicists). Reductionists like to take things apart. The rest of us are just
trying to get it together.

Ther e ar e many ways in which Perl is a simple language. You don’t have to know
many special incantations to compile a Perl program — you can just execute it like
a batch file or shell script. The types and structures used by Perl are easy to use
and understand. Perl doesn’t impose arbitrary limitations on your data—your
strings and arrays can grow as large as they like (as long as you have memory),
and they’re designed to scale well as they grow. Instead of forcing you to learn
new syntax and semantics, Perl borrows heavily from other languages you may
alr eady be familiar with (such as C, and awk, and BASIC, and Python, and English,
and Greek). In fact, just about any programmer can read a well-written piece of
Perl code and have some idea of what it does.

Most important, you don’t have to know everything there is to know about Perl
befor e you can write useful programs. You can learn Perl “small end first”. You
can program in Perl Baby-Talk, and we promise not to laugh. Or more precisely,

Preface xix

xx Preface

we promise not to laugh any more than we’d giggle at a child’s creative way of
putting things. Many of the ideas in Perl are borr owed fr om natural language, and
one of the best ideas is that it’s okay to use a subset of the language as long as
you get your point across. Any level of language proficiency is acceptable in Perl
cultur e. We won’t send the language police after you. A Perl script is “correct” if it
gets the job done before your boss fires you.

Though simple in many ways, Perl is also a rich language, and there is much to
lear n about it. That’s the price of making hard things possible. Although it will
take some time for you to absorb all that Perl can do, you will be glad that you
have access to the extensive capabilities of Perl when the time comes that you
need them.

Because of its heritage, Perl was a rich language even when it was “just” a data-
reduction language, designed for navigating files, scanning large amounts of text,
cr eating and obtaining dynamic data, and printing easily formatted reports based
on that data. But somewhere along the line, Perl started to blossom. It also
became a language for filesystem manipulation, process management, database
administration, client-server programming, secure programming, web-based infor-
mation management, and even for object-oriented and functional programming.
These capabilities were not just slapped onto the side of Perl—each new capabil-
ity works synergistically with the others because Perl was designed to be a glue
language from the start.

But Perl can glue together more than its own features. Perl is designed to be mod-
ularly extensible. Perl allows you to rapidly design, program, debug, and deploy
applications, and it also allows you to easily extend the functionality of these
applications as the need arises. You can embed Perl in other languages, and you
can embed other languages in Perl. Through the module importation mechanism,
you can use these external definitions as if they were built-in features of Perl.
Object-oriented external libraries retain their object-orientedness in Perl.

Perl helps you in other ways, too. Unlike strictly interpreted languages such as
command files or shell scripts, which compile and execute a program one com-
mand at a time, Perl first compiles your whole program quickly into an intermedi-
ate format. Like any other compiler, it per forms various optimizations and gives
you instant feedback on everything from syntax and semantic errors to library
binding mishaps. Once Perl’s compiler frontend is happy with your program, it
passes off the intermediate code to the interpreter to execute (or optionally to any
of several modular back ends that can emit C or bytecode). This all sounds com-
plicated, but the compiler and interpreter are quite efficient, and most of us find
that the typical compile-run-fix cycle is measured in mere seconds. Together with

Perl’s many fail-soft characteristics, this quick turnar ound capability makes Perl a
language in which you really can do rapid prototyping. Then later, as your pro-
gram matures, you can tighten the screws on yourself and make yourself program
with less flair but more discipline. Perl helps you with that, too, if you ask nicely.

Perl also helps you to write programs more secur ely. In addition to all the typical
security interfaces provided by other languages, Perl also guards against accidental
security errors through a unique data-tracing mechanism that automatically deter-
mines which data came from insecure sources and prevents dangerous operations
befor e they can happen. Finally, Perl lets you set up specially protected compart-
ments in which you can safely execute Perl code of dubious origin, disallowing
danger ous operations.

But, paradoxically, the way in which Perl helps you the most has almost nothing
to do with Perl and everything to do with the people who use Perl. Perl folks are,
frankly, some of the most helpful folks on earth. If there’s a religious quality to the
Perl movement, then this is at the heart of it. Larry wanted the Perl community to
function like a little bit of heaven, and by and large he seems to have gotten his
wish, so far. Please do your part to keep it that way.

Whether you are lear ning Perl because you want to save the world, or just
because you are curious, or because your boss told you to, this handbook will
lead you through both the basics and the intricacies. And although we don’t
intend to teach you how to program, the perceptive reader will pick up some of
the art, and a little of the science, of programming. We will encourage you to
develop the three great virtues of a programmer: laziness, impatience, and hubris.
Along the way, we hope you find the book mildly amusing in some spots (and
wildly amusing in others). And if none of this is enough to keep you awake, just
keep reminding yourself that learning Perl will increase the value of your resume.
So keep reading.

What’s New in This Edition
Well, almost everything.

Even where we kept the good bits from the previous edition (and there wer e quite
a few good bits, we’ll admit), we’ve heavily revised and reorganized the current
edition with several goals in mind. First, we wanted to increase the accessibility of
the book to people coming from backgrounds other than computer science. We’ve
made fewer assumptions about what the reader will know in advance. At the same
time, we’ve kept the exposition lively in the hope that people who are alr eady
familiar with some of the material will not fall asleep reading it.

Preface xxi

xxii Preface

Second, we wanted to present the very latest developments in Perl itself. To that
end, we have not been shy about presenting the current state of the work, even
wher e we feel that it is still experimental. While the core of Perl has been rock
solid for years, the pace of development for some of the experimental extensions
can be quite torrid at times. We’ll tell you honestly when we think the online doc-
umentation will be more reliable than what we have written here. Perl is a blue-
collar language, so we’re not afraid to call a spade a shovel.

Third, we wanted you to be able to find your way around in the book more eas-
ily, so we’ve broken this edition up into smaller, mor e coher ent chapters and reor-
ganized them into meaningful parts. Here’s how the new edition is laid out:

Part 1, Overview
Getting started is always the hardest part. This part presents the fundamental
ideas of Perl in an informal, curl-up-in-your-favorite-chair fashion. Not a full
tutorial, it merely offers a quick jump-start, which may not serve everyone’s
need. See the section “Offline Documentation” for books that might better suit
your learning style.

Part 2, The Gory Details
This part consists of an in-depth, no-holds-barred discussion of the guts of the
language at every level of abstraction, from data types, variables, and regular
expr essions to subroutines, modules, and objects. You’ll gain a good sense of
how the language works and, in the process, pick up a few hints on good
softwar e design. (And if you’ve never used a language with pattern matching,
you’r e in for a special treat.)

Part 3, Perl as Technology
You can do a lot with Perl all by itself, but this part will take you to a higher
level of wizardry. Here you’ll learn how to make Perl jump through whatever
hoops your computer sets up for it, from dealing with Unicode, interprocess
communication, and multithreading, through compiling, invoking, debugging,
and profiling Perl, on up to writing your own external extensions in C or C++
or interfaces to any existing API you feel like. Perl will be quite happy to talk
to any interface on your computer, or for that matter, on any other computer
on the Internet, weather permitting.

Part 4, Perl as Culture
Everyone understands that a culture must have a language, but the Perl com-
munity has always understood that a language must have a culture. This part
is where we view Perl programming as a human activity, embedded in the
real world of people. We’ll cover how you can improve the way you deal with
both good people and bad people. We’ll also dispense a great deal of advice
on how you can become a better person yourself and on how to make your
pr ograms mor e useful to other people.

Part 5, Reference Material
Her e we’ve put together all the chapters in which you might want to look
something up alphabetically, from special variables and functions to standard
modules and pragmas. The Glossary will be particularly helpful to those who
ar e unfamiliar with the jargon of computer science. For example, if you don’t
know what the meaning of “pragma” is, you could look it up right now. (If
you don’t know what the meaning of “is” is, we can’t help you with that.)

The Standard Distr ibution
Most operating system vendors these days include Perl as a standard component
of their systems. As of this writing, AIX, BeOS, BSDI, Debian, DG/UX, DYNIX/ptx,
Fr eeBSD, IRIX, LynxOS, Mac OS X, OpenBSD, OS390, RedHat, SINIX, Slackware,
Solaris, SuSE, and Tru64 all came with Perl as part of their standard distributions.
Some companies provide Perl on separate CDs of contributed freewar e or through
their customer service groups. Third-party companies like ActiveState offer prebuilt
Perl distributions for a variety of differ ent operating systems, including those from
Micr osoft.

Even if your vendor does ship Perl as standard, you’ll probably eventually want to
compile and install Perl on your own. That way you’ll know you have the latest
version, and you’ll be able to choose where to install your libraries and documen-
tation. You’ll also be able to choose whether to compile Perl with support for
optional extensions such as multithreading, large files, or the many low-level
debugging options available through the -D command-line switch. (The user-level
Perl debugger is always supported.)

The easiest way to download a Perl source kit is probably to point your web
br owser to Perl’s home page at www.perl.com, wher e you’ll find download infor-
mation prominently featured on the start-up page, along with links to precompiled
binaries for platforms that have misplaced their C compilers.

You can also head directly to CPAN (the Comprehensive Perl Archive Network,
described in Chapter 22, CPAN), using http://www.perl.com/CPAN or
http://www.cpan.or g. If those are too slow for you (and they might be because
they’r e very popular), you should find a mirror close to you. The following URLs
ar e just a few of the CPAN mirrors around the world, now numbering over one
hundr ed:

http://www.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.funet.fi/pub/languages/perl/CPAN/

Preface xxiii

xxiv Preface

ftp://ftp.cs.colorado.edu/pub/perl/CPAN/
ftp://ftp.cise.ufl.edu/pub/perl/CPAN/
ftp://ftp.perl.or g/pub/perl/CPAN/
http://www.perl.com/CPAN-local
http://www.cpan.or g/
http://www.perl.or g/CPAN/
http://www.cs.uu.nl/mirr or/CPAN/
http://CPAN.pacific.net.hk/

The first pair in that list, those at the funet.fi site, point to the master CPAN reposi-
tory. The MIRRORED.BY file there contains a list of all other CPAN sites, so you
can just get that file and then pick your favorite mirror. Some of them are available
thr ough FTP, others through HTTP (which makes a differ ence behind some corpo-
rate firewalls). The http://www.perl.com/CPAN multiplexor attempts to make this
selection for you. You can change your selection if you like later.

Once you’ve fetched the source code and unpacked it into a directory, you should
read the README and the INSTALL files to learn how to build Perl. There may also
be an INSTALL.platform file for you to read there, where platform repr esents your
operating system platform.

If your platform happens to be some variety of Unix, then your commands to
fetch, configure, build, and install Perl might resemble what follows. First, you
must choose a command to fetch the source code. You can fetch with ftp :

% ftp ftp://ftp.funet.fi/pub/languages/perl/CPAN/src/latest.tar.gz

(Again, feel free to substitute a nearby CPAN mirror. Of course, if you live in Fin-
land, that is your nearby CPAN mirror.) If you can’t use ftp, you can download via
the Web using a browser or a command-line tool:

% wget http://www.funet.fi/pub/languages/perl/CPAN/src/latest.tar.gz

Now unpack, configure, build, and install:

% tar zxf latest.tar.gz Or gunzip first, then tar xf.
% cd perl-5.6.0 Or 5.* for whatever number.
% sh Configure -des Assumes default answers.
% make test && make install Install typically requir es superuser.

This uses a conventional C development environment, so if you don’t have a C
compiler, you can’t compile Perl. See the CPAN ports dir ectory for up-to-date status
on each platform to lear n whether Perl comes bundled (and if so, what version),
whether you can get by with the standard source kit, or whether you need a spe-
cial port. Download links are given for those systems that typically requir e special
ports or for systems from vendors who normally don’t provide a C compiler (or
rather, who abnormally don’t provide a C compiler).

Online Documentation
Perl’s extensive online documentation comes as part of the standard Perl distribu-
tion. (See the next section for offline documentation.) Additional documentation
shows up whenever you install a module from CPAN.

When we refer to a “Perl manpage” in this book, we’re talking about this set of
online Perl manual pages, sitting on your computer. The term manpage is purely a
convention meaning a file containing documentation—you don’t need a Unix-style
man pr ogram to read one. You may even have the Perl manpages installed as
HTML pages, especially on non-Unix systems.

The online manpages for Perl have been divided into separate sections, so you
can easily find what you are looking for without wading through hundreds of
pages of text. Since the top-level manpage is simply called perl, the Unix com-
mand man perl should take you to it.* That page in turn dir ects you to more spe-
cific pages. For example, man perlre will display the manpage for Perl’s regular
expr essions. The perldoc command often works on systems when the man com-
mand won’t. On Macs, you need to use the Shuck pr ogram. Your port may also
pr ovide the Perl manpages in HTML format or your system’s native help format.
Check with your local sysadmin—unless you’re the local sysadmin.

Navigating the Standard Manpages
In the Beginning (of Perl, that is, back in 1987), the perl manpage was a terse doc-
ument, filling about 24 pages when typeset and printed. For example, its section
on regular expressions was only two paragraphs long. (That was enough, if you
knew egr ep.) In some ways, nearly everything has changed since then. Counting
the standard documentation, the various utilities, the per-platfor m porting informa-
tion, and the scads of standard modules, we’re now up over 1,500 typeset pages
of documentation spread across many separate manpages. (And that’s not even
counting any CPAN modules you install, which is likely to be quite a few.)

But in other ways, nothing has changed: there’s still a perl manpage kicking
ar ound. And it’s still the right place to start when you don’t know where to start.
The differ ence is that once you arrive, you can’t just stop there. Perl documenta-
tion is no longer a cottage industry; it’s a supermall with hundreds of stores. When
you walk in the door, you need to find the YOU ARE HERE to figure out which
shop or department store sells what you’re shopping for. Of course, once you get
familiar with the mall, you’ll usually know right where to go.

* If you still get a truly humongous page when you do that, you’re probably picking up the ancient
release 4 manpage. Check your MANPATH for archeological sites. (Say perldoc perl to find out how to
configur e your MANPATH based on the output of perl -V:man.dir.)

Preface xxv

xxvi Preface

Her e ar e a few of the store signs you’ll see:

Manpa ge Cover s

perl What Perl manpages are available
perldata Data types
perlsyn Syntax
perlop Operators and precedence
perlr e Regular expressions
perlvar Pr edefined variables
perlsub Subr outines
perlfunc Built-in functions
perlmod How to make Perl modules work
perlr ef Refer ences
perlobj Objects
perlipc Interpr ocess communication
perlrun How to run Perl commands, plus switches
perldebug Debugging
perldiag Diagnostic messages

That’s just a small excerpt, but it has the important parts. You can tell that if you
want to learn about an operator, perlop is apt to have what you’re looking for. And
if you want to find something out about predefined variables, you’d check in perl-
var. If you got a diagnostic message you didn’t understand, you’d go to perldiag.
And so on.

Part of the standard Perl manual is the frequently asked questions (FAQ) list. It’s
split up into these nine differ ent pages:

Manpa ge Cover s

perlfaq1 General questions about Perl
perlfaq2 Obtaining and learning about Perl
perlfaq3 Pr ogramming tools
perlfaq4 Data manipulation
perlfaq5 Files and formats
perlfaq6 Regular expressions
perlfaq7 General Perl language issues
perlfaq8 System interaction
perlfaq9 Networking

Some manpages contain platform-specific notes:

Manpa ge Cover s

perlamiga The Amiga port
perlcygwin The Cygwin port
perldos The MS-DOS port
perlhpux The HP-UX port
perlmachten The Power MachTen port
perlos2 The OS/2 port
perlos390 The OS/390 port
perlvms The DEC VMS port
perlwin32 The MS-Windows port

(See also Chapter 25, Portable Perl, and the CPAN ports dir ectory described earlier
for porting information.)

Sear ching the Manpages
Nobody expects you to read through all 1,500 typeset pages just to find a needle
in a haystack. There’s an old saying that you can’t gr ep * dead trees. Besides the
customary search capabilities inherent in most document-viewing programs, as of
the 5.6.1 release of Perl, each main Perl manpage has its own search and display
capability. You can search individual pages by using the name of the manpage as
the command and passing a Perl regular expression (see Chapter 5, Patter n
Matching) as the search pattern:

% perlop comma

% perlfunc split

% perlvar ARGV

% perldiag ’assigned to typeglob’

When you don’t quite know where something is in the documentation, you can
expand your search. For example, to search all the FAQs, use the perlfaq com-
mand (which is also a manpage):

% perlfaq round

* Don’t forget there’s a Glossary if you need it.

Preface xxvii

xxviii Preface

The perltoc command (which is also a manpage) searches all the manpages’ col-
lective tables of contents:

% perltoc typeglob
perl5005delta: Undefined value assigned to typeglob
perldata: Typeglobs and Filehandles
perldiag: Undefined value assigned to typeglob

Or to search the complete online Perl manual, including all headers, descriptions,
and examples, for any instances of the string, use the perlhelp command:

% perlhelp CORE::GLOBAL

See the perldoc manpage for details.

Non-Perl Manpages
When we refer to non-Perl documentation, as in getitimer (2), this refers to the
getitimer manpage from section 2 of the Unix Programmer’s Manual.* Manpages
for syscalls such as getitimer may not be available on non-Unix systems, but that’s
pr obably okay, because you couldn’t use the Unix syscall there anyway. If you
really do need the documentation for a Unix command, syscall, or library function,
many organizations have put their manpages on the web—a quick search of
AltaVista for “+crypt(3) +manual” will find many copies.

Although the top-level Perl manpages are typically installed in section 1 of the
standard man dir ectories, we will omit appending a (1) to those manpage names
in this book. You can recognize them anyway because they are all of the form
“perlmumble”.

Offline Documentation
If you’d like to learn mor e about Perl, here are some related publications that we
recommend:

• Perl 5 Pocket Reference, 3d ed., by Johan Vromans (O’Reilly, 2000). This small
booklet serves as a convenient quick refer ence for Perl.

• Perl Cookbook, by Tom Christiansen and Nathan Torkington (O’Reilly, 1998).
This is the companion volume to the book you have in your hands right now.

* Section 2 is only supposed to contain direct calls into the operating system. (These are often called
“system calls”, but we’ll consistently call them syscalls in this book to avoid confusion with the sys-
tem function, which has nothing to do with syscalls). However, systems vary somewhat in which
calls are implemented as syscalls and which are implemented as C library calls, so you could con-
ceivably find getitimer (2) in section 3 instead.

• Elements of Programming with Perl, by Andr ew L. Johnson (Manning, 1999).
This book aims to teach non-programmers how to program from the ground
up, and to do so using Perl.

• Lear ning Perl, 2d ed., by Randal Schwartz and Tom Christiansen (O’Reilly,
1997). This book teaches Unix sysadmins and Unix programmers the 30% of
basic Perl that they’ll use 70% of the time. Erik Olson retargeted a version of
this book for Perl programmers on Microsoft systems; it is called Lear ning Perl
for Win32 Systems.

• Perl: The Programmer’s Companion, by Nigel Chapman (Wiley, 1997). This
fine book is geared for professional computer scientists and programmers
without regard to platform. It covers Perl quickly but completely.

• Mastering Regular Expressions, by Jef frey Friedl (O’Reilly, 1997). Although it
doesn’t cover the latest additions to Perl regular expressions, this book is an
invaluable refer ence for anyone seeking to learn how regular expressions
really work.

• Object Oriented Perl, by Damian Conway (Manning, 1999). For beginning as
well as advanced OO programmers, this astonishing book explains common
and esoteric techniques for writing powerful object systems in Perl.

• Mastering Algorithms with Perl, by Jon Orwant, Jarkko Hietaniemi, and John
Macdonald (O’Reilly, 1999). All the useful techniques from a computer science
algorithms course, but without the painful proofs. This book covers funda-
mental and useful algorithms in the fields of graphs, text, sets, and much
mor e.

• Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEach-
er n (O’Reilly, 1999). This guide to web programming teaches you how to
extend the capabilities of the Apache web server, especially using the turbo-
charged mod_perl for fast CGI scripts and via the Perl-accessible Apache API.

• The Perl Journal, edited by Jon Orwant. This quarterly magazine by program-
mers and for programmers regularly features programming insights, tech-
niques, the latest news, and more.

Ther e ar e many other Perl books and publications out there, and out of senility,
we have undoubtedly forgotten to mention some good ones. (Out of mercy, we
have neglected to mention some bad ones.)

In addition to the Perl-related publications listed above, we recommend the fol-
lowing books. They aren’t about Perl directly but still come in handy for refer ence,
consultation, and inspiration.

Preface xxix

xxx Preface

• The Art of Computer Programming, by Donald Knuth, vol. 1, Fundamental
Algorithms ; vol. 2, Seminumerical Algorithms ; and vol. 3, Sorting and Search-
ing (Addison-Wesley, 1998).

• Intr oduction to Algorithms, by Cor men, Leiserson, and Rivest (MIT Press and
McGraw-Hill, 1990).

• Algorithms in C: Fundamental Data Structures, Sorting, Searching, 3d ed., by
Robert Sedgewick (Addison-Wesley, 1997).

• The Elements of Programming Style, by Ker nighan and Plauger (Prentiss-Hall,
1988).

• The Unix Programming Environment, by Ker nighan and Pike (Prentiss-Hall,
1984).

• POSIX Programmer’s Guide, by Donald Lewine (O’Reilly, 1991).

• Advanced Programming in the UNIX Environment, by W. Richard Stevens
(Addison-Wesley, 1992).

• TCP/IP Illustrated, vols. 1–3, by W. Richard Stevens, (Addison-Wesley,
1994 –1996).

• The Lord of the Rings by J. R. R. Tolkien (most recent printing: Houghton Mif-
flin, 1999).

Additional Resources
The Internet is a wonderful invention, and we’re all still discovering how to use it
to its full potential. (Of course, some people prefer to “discover” the Internet the
way Tolkien discovered Middle Earth.)

Perl on the Web
Visit the Perl home page at http://www.perl.com/. It tells what’s new in the Perl
world and contains source code and ports, feature articles, documentation, confer-
ence schedules, and a lot more.

Also visit the Perl Mongers’ web page at http://www.perl.or g for a grassroots-level
view of Perl’s, er, grass roots, which grow quite thickly in every part of the world,
except at the South Pole, where they have to be kept indoors. Local PM groups
hold regular small meetings where you can exchange Perl lore with other Perl
hackers who live in your part of the world.

Usenet Newsg roups
The Perl newsgroups are a great, if sometimes cluttered, source of information
about Perl. Your first stop might be comp.lang.perl.moderated, a moderated, low-
traf fic newsgr oup that includes announcements and technical discussions. Because
of the moderation, the newsgroup is quite readable.

The high-traffic comp.lang.perl.misc gr oup discusses everything from technical
issues to Perl philosophy to Perl games and Perl poetry. Like Perl itself,
comp.lang.perl.misc is meant to be useful, and no question is too silly to ask.*

The comp.lang.perl.tk gr oup discusses how to use the popular Tk toolkit from
Perl. The comp.lang.perl.modules gr oup is about the development and use of Perl
modules, which are the best way to get reusable code. There may be other
comp.lang.perl.whatever newsgr oups by the time you read this; look around.

If you aren’t using a regular newsreader to access Usenet, but a web browser
instead, prepend “news:” to the newsgroup name to get at one of these named
newsgr oups. (This only works if you have a news server.) Alternatively, if you use
a Usenet searching service like Alta Vista or Deja, specify “*perl*” as the news-
gr oups to search for.

One other newsgroup you might want to check out, at least if you’re doing CGI
pr ogramming on the Web, is comp.infosystems.www.authoring.cgi. While it isn’t
strictly speaking a Perl group, most of the programs discussed there are written in
Perl. It’s the right place to go for web-related Perl issues, unless you’re using
mod_perl under Apache, in which case you might check out comp.infosys-
tems.www.servers.unix.

Bug Repor ts
In the unlikely event that you should encounter a bug that’s in Perl proper and not
just in your own program, you should try to reduce it to a minimal test case and
then report it with the perlbug pr ogram that comes with Perl. See
http://bugs.perl.or g for more info.

* Of course, some questions are too silly to answer. (Especially those already answered in the online
manpages and FAQs. Why ask for help on a newsgroup when you could find the answer by yourself
in less time than it takes to type in the question?)

Preface xxxi

xxxii Preface

Conventions Used in This Book
Some of our conventions get larger sections of their very own. Coding conventions
ar e discussed in the section “Programming with Style” in Chapter 24, Common
Practices. In a sense, our lexical conventions are given in the Glossary (our lexi-
con).

The following typographic conventions are used in this book:

Italic
is used for URLs, manpages, pathnames, and programs. New terms are also
italicized when they first appear in the text. Many of these terms will have
alter native definitions in the Glossary if the one in the text doesn’t do it for
you.

Constant width

is used in examples and in regular text to show any literal code. Data values
ar e repr esented by constant width in quotes (“ ”), which are not part of the
value.

Constant width bold

is used for command-line switches. This allows one to distinguish for example,
between the -w war nings switch and the -w filetest operator. It is also used in
the examples to indicate the text you type in literally.

Constant width italic

is used for generic code terms for which you must substitute particular values.

We give lots of examples, most of which are pieces of code that should go into a
larger program. Some examples are complete programs, which you can recognize
because they begin with a #! line. We start nearly all of our longer programs with:

#!/usr/bin/perl

Still other examples are things to be typed on a command line. We’ve used % to
indicate a generic shell prompt:

% perl -e ’print "Hello, world.\n"’
Hello, world.

This style is repr esentative of a standard Unix command line, where single quotes
repr esent the “most quoted” form. Quoting and wildcard conventions on other sys-
tems vary. For example, many command-line interpreters under MS-DOS and VMS
requir e double quotes instead of single quotes when you need to group argu-
ments with spaces or wildcards in them.

Acknowledgments
Her e we say nice things in public about our reviewers to make up for all the rude
things we said to them in private: Todd Miller, Shar on Hopkins Rauenzahn, Rich
Rauenzahn, Paul Marquess, Paul Grassie, Nathan Torkington, Johan Vromans, Jeff
Haemer, Gurusamy Sarathy, Gloria Wall, Dan Sugalski, and Abigail.

We’d like to express our special gratitude to Tim O’Reilly (and his Associates) for
encouraging authors to write the sort of books people might enjoy reading.

We’d Like to Hear from You
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on the O’Reilly mailing list
or request a catalog, send mail to info@or eilly.com. To ask technical questions or
comment on this book, send mail to bookquestions@or eilly.com.

We have a web site for the book, where we’ll list any errata and other Camel-
related information:

http://www.or eilly.com/catalog/pperl3

Her e you’ll also find all the example code from the book available for download
so you don’t have to type it all in, like we did.

Preface xxxiii

II
The Gor y Details

1
An Over view of Perl

Getting Started
We think that Perl is an easy language to learn and use, and we hope to convince
you that we’re right. One thing that’s easy about Perl is that you don’t have to say
much before you say what you want to say. In many programming languages, you
have to declare the types, variables, and subroutines you are going to use before
you can write the first statement of executable code. And for complex problems
demanding complex data structures, declarations are a good idea. But for many
simple, everyday problems, you’d like a programming language in which you can
simply say:

print "Howdy, world!\n";

and expect the program to do just that.

Perl is such a language. In fact, this example is a complete program,* and if you
feed it to the Perl interpreter, it will print “Howdy, world!” on your screen. (The \n

in the example produces a newline at the end of the output.)

And that’s that. You don’t have to say much after you say what you want to say,
either. Unlike many languages, Perl thinks that falling off the end of your program
is just a normal way to exit the program. You certainly may call the exit function
explicitly if you wish, just as you may declar e some of your variables, or even
for ce yourself to declare all your variables. But it’s your choice. With Perl you’re
fr ee to do The Right Thing, however you care to define it.

Ther e ar e many other reasons why Perl is easy to use, but it would be pointless to
list them all here, because that’s what the rest of the book is for. The devil may be

* Or script, or application, or executable, or doohickey. Whatever.

3

4 Chapter 1: An Over view of Perl

in the details, as they say, but Perl tries to help you out down there in the hot
place too. At every level, Perl is about helping you get from here to ther e with
minimum fuss and maximum enjoyment. That’s why so many Perl programmers
go around with a silly grin on their face.

This chapter is an overview of Perl, so we’re not trying to present Perl to the ratio-
nal side of your brain. Nor are we trying to be complete, or logical. That’s what
the following chapters are for. Vulcans, androids, and like-minded humans should
skip this overview and go straight to Chapter 2, Bits and Pieces, for maximum
infor mation density. If, on the other hand, you’re looking for a carefully paced
tutorial, you should probably get Randal’s nice book, Lear ning Perl (published by
O’Reilly & Associates). But don’t throw this book out just yet.

This chapter presents Perl to the other side of your brain, whether you prefer to
call it associative, artistic, passionate, or merely spongy. To that end, we’ll be pre-
senting various views of Perl that will give you as clear a picture of Perl as the
blind men had of the elephant. Well, okay, maybe we can do better than that.
We’r e dealing with a camel here (see the cover). Hopefully, at least one of these
views of Perl will help get you over the hump.

Natural and Artificial Languages
Languages were first invented by humans, for the benefit of humans. In the annals
of computer science, this fact has occasionally been forgotten.* Since Perl was
designed (loosely speaking) by an occasional linguist, it was designed to work
smoothly in the same ways that natural language works smoothly. Naturally, there
ar e many aspects to this, since natural language works well at many levels simulta-
neously. We could enumerate many of these linguistic principles here, but the
most important principle of language design is that easy things should be easy,
and hard things should be possible. (Actually, that’s two principles.) They may
seem obvious to you, but many computer languages fail at one or the other.

Natural languages are good at both because people are continually trying to
expr ess both easy things and hard things, so the language evolves to handle both.
Perl was designed first of all to evolve, and indeed it has evolved. Many people
have contributed to the evolution of Perl over the years. We often joke that a
camel is a horse designed by a committee, but if you think about it, the camel is
pr etty well adapted for life in the desert. The camel has evolved to be relatively
self-suf ficient. (On the other hand, the camel has not evolved to smell good. Nei-
ther has Perl.) This is one of the many strange reasons we picked the camel to be
Perl’s mascot, but it doesn’t have much to do with linguistics.

* Mor e pr ecisely, this fact has occasionally been remember ed.

Now when someone utters the word “linguistics”, many folks focus in on one of
two things. Either they think of words, or they think of sentences. But words and
sentences are just two handy ways to “chunk” speech. Either may be broken down
into smaller units of meaning or combined into larger units of meaning. And the
meaning of any unit depends heavily on the syntactic, semantic, and pragmatic
context in which the unit is located. Natural language has words of various sorts:
nouns and verbs and such. If someone says “dog” in isolation, you think of it as a
noun, but you can also use the word in other ways. That is, a noun can function
as a verb, an adjective, or an adverb when the context demands it. If you dog a
dog during the dog days of summer, you’ll be a dog tired dogcatcher.*

Perl also evaluates words differ ently in various contexts. We will see how it does
that later. Just remember that Perl is trying to understand what you’re saying, like
any good listener does. Perl works pretty hard to try to keep up its end of the bar-
gain. Just say what you mean, and Perl will usually “get it”. (Unless you’re talking
nonsense, of course—the Perl parser understands Perl a lot better than either
English or Swahili.)

But back to nouns. A noun can name a particular object, or it can name a class of
objects generically without specifying which one is currently being referr ed to.
Most computer languages make this distinction, only we call the particular one a
value and the generic one a variable. A value just exists somewhere, who knows
wher e, but a variable gets associated with one or more values over its lifetime. So
whoever is interpreting the variable has to keep track of that association. That
interpr eter may be in your brain or in your computer.

Variable Syntax
A variable is just a handy place to keep something, a place with a name, so you
know where to find your special something when you come back looking for it
later. As in real life, there are various kinds of places to store things, some of them
rather private, and some of them out in public. Some places are temporary, and
other places are mor e per manent. Computer scientists love to talk about the
“scope” of variables, but that’s all they mean by it. Perl has various handy ways of
dealing with scoping issues, which you’ll be happy to learn later when the time is
right. Which is not yet. (Look up the adjectives local, my, and our in Chapter 29,
Functions, when you get curious, or see “Scoped Declarations” in Chapter 4, State-
ments and Declarations.)

But a more immediately useful way of classifying variables is by what sort of data
they can hold. As in English, Perl’s primary type distinction is between singular

* And you’re probably dog tired of all this linguistics claptrap. But we’d like you to understand why
Perl is differ ent fr om the typical computer language, doggone it!

Natural and Artificial Languages 5

6 Chapter 1: An Over view of Perl

and plural data. Strings and numbers are singular pieces of data, while lists of
strings or numbers are plural. (And when we get to object-oriented programming,
you’ll find that the typical object looks singular from the outside but plural from
the inside, like a class of students.) We call a singular variable a scalar, and a plu-
ral variable an array. Since a string can be stored in a scalar variable, we might
write a slightly longer (and commented) version of our first example like this:

$phrase = "Howdy, world!\n"; # Set a variable.
print $phrase; # Print the variable.

Note that we did not have to predefine what kind of variable $phrase is. The $

character tells Perl that phrase is a scalar variable, that is, one containing a singular
value. An array variable, by contrast, would start with an @ character. (It may help
you to remember that a $ is a stylized “s”, for “scalar”, while @ is a stylized “a”, for
“array”.)

Perl has some other variable types, with unlikely names like “hash”, “handle”, and
“typeglob”. Like scalars and arrays, these types of variables are also preceded by
funny characters. For completeness, here are all the funny characters you’ll
encounter:

Type Character Example Is a name for:

Scalar $ $cents An individual value (number or string)
Array @ @large A list of values, keyed by number
Hash % %interest A group of values, keyed by string
Subr outine & &how A callable chunk of Perl code
Typeglob * *struck Everything named struck

Some language purists point to these funny characters as a reason to abhor Perl.
This is superficial. These characters have many benefits, not least of which is that
variables can be interpolated into strings with no additional syntax. Perl scripts are
also easy to read (for people who have bothered to learn Perl!) because the nouns
stand out from verbs. And new verbs can be added to the language without break-
ing old scripts. (We told you Perl was designed to evolve.) And the noun analogy
is not frivolous—ther e is ample precedent in English and other languages for
requiring grammatical noun markers. It’s how we think! (We think.)

Singular ities

Fr om our earlier example, you can see that scalars may be assigned a new value
with the = operator, just as in many other computer languages. Scalar variables can
be assigned any form of scalar value: integers, floating-point numbers, strings, and
even esoteric things like refer ences to other variables, or to objects. There are
many ways of generating these values for assignment.

As in the Unix* shell, you can use differ ent quoting mechanisms to make differ ent
kinds of values. Double quotation marks (double quotes) do variable
interpolation † and backslash interpolation (such as turning \n into a newline)
while single quotes suppress interpolation. And backquotes (the ones leaning to
the left) will execute an external program and retur n the output of the program, so
you can capture it as a single string containing all the lines of output.

$answer = 42; # an integer
$pi = 3.14159265; # a "real" number
$avocados = 6.02e23; # scientific notation
$pet = "Camel"; # string
$sign = "I love my $pet"; # string with interpolation
$cost = ’It costs $100’; # string without interpolation
$thence = $whence; # another variable’s value
$salsa = $moles * $avocados; # a gastrochemical expression
$exit = system("vi $file"); # numeric status of a command
$cwd = ‘pwd‘; # string output from a command

And while we haven’t covered fancy values yet, we should point out that scalars
may also hold refer ences to other data structures, including subroutines and
objects.

$ary = \@myarray; # reference to a named array
$hsh = \%myhash; # reference to a named hash
$sub = \&mysub; # reference to a named subroutine

$ary = [1,2,3,4,5]; # reference to an unnamed array
$hsh = {Na => 19, Cl => 35}; # reference to an unnamed hash
$sub = sub { print $state }; # reference to an unnamed subroutine

$fido = new Camel "Amelia"; # reference to an object

If you use a variable that has never been assigned a value, the uninitialized vari-
able automatically springs into existence as needed. Following the principle of
least surprise, the variable is created with a null value, either "" or 0. Depending
on where you use them, variables will be interpreted automatically as strings, as
numbers, or as “true” and “false” values (commonly called Boolean values).
Remember how important context is in human languages. In Perl, various opera-
tors expect certain kinds of singular values as parameters, so we will speak of
those operators as “providing” or “supplying” a scalar context to those parameters.
Sometimes we’ll be more specific, and say it supplies a numeric context, a string
context, or a Boolean context to those parameters. (Later we’ll also talk about list

* Her e and elsewhere, when we say Unix, we mean any operating system resembling Unix, including
BSD, Linux, and, of course, Unix.

† Sometimes called “substitution” by shell programmers, but we prefer to reserve that word for some-
thing else in Perl. So please call it interpolation. We’r e using the term in the textual sense (“this pas-
sage is a Gnostic interpolation”) rather than in the mathematical sense (“this point on the graph is an
interpolation between two other points”).

Natural and Artificial Languages 7

8 Chapter 1: An Over view of Perl

context, which is the opposite of scalar context.) Perl will automatically convert
the data into the form requir ed by the current context, within reason. For example,
suppose you said this:

$camels = ’123’;
print $camels + 1, "\n";

The original value of $camels is a string, but it is converted to a number to add 1

to it, and then converted back to a string to be printed out as 124. The newline,
repr esented by "\n", is also in string context, but since it’s already a string, no
conversion is necessary. But notice that we had to use double quotes there—using
single quotes to say ’\n’ would result in a two-character string consisting of a
backslash followed by an “n”, which is not a newline by anybody’s definition.

So, in a sense, double quotes and single quotes are yet another way of specifying
context. The interpretation of the innards of a quoted string depends on which
quotes you use. (Later, we’ll see some other operators that work like quotes syn-
tactically but use the string in some special way, such as for pattern matching or
substitution. These all work like double-quoted strings too. The double-quote con-
text is the “interpolative” context of Perl, and is supplied by many operators that
don’t happen to resemble double quotes.)

Similarly, a refer ence behaves as a refer ence when you give it a “derefer ence” con-
text, but otherwise acts like a simple scalar value. For example, we might say:

$fido = new Camel "Amelia";
if (not $fido) { die "dead camel"; }
$fido->saddle();

Her e we create a refer ence to a Camel object and put it into the variable $fido.
On the next line, we test $fido as a scalar Boolean to see if it is “true”, and we
thr ow an exception (that is, we complain) if it is not true, which in this case
would mean that the new Camel constructor failed to make a proper Camel object.
But on the last line, we treat $fido as a refer ence by asking it to look up the sad-

dle() method for the object held in $fido, which happens to be a Camel, so Perl
looks up the saddle() method for Camel objects. More about that later. For now,
just remember that context is important in Perl because that’s how Perl knows
what you want without your having to say it explicitly, as many other computer
languages force you to do.

Pluralities

Some kinds of variables hold multiple values that are logically tied together. Perl
has two types of multivalued variables: arrays and hashes. In many ways, these

behave like scalars—they spring into existence with nothing in them when
needed, for instance. But they are dif ferent from scalars in that, when you assign
to them, they supply a list context to the right side of the assignment rather than a
scalar context.

Arrays and hashes also differ from each other. You’d use an array when you want
to look something up by number. You’d use a hash when you want to look some-
thing up by name. The two concepts are complementary. You’ll often see people
using an array to translate month numbers into month names, and a correspond-
ing hash to translate month names back into month numbers. (Though hashes
ar en’t limited to holding only numbers. You could have a hash that translates
month names to birthstone names, for instance.)

Ar rays. An array is an ordered list of scalars, accessed* by the scalar’s position in
the list. The list may contain numbers, or strings, or a mixture of both. (It might
also contain refer ences to subarrays or subhashes.) To assign a list value to an
array, you simply group the values together (with a set of parentheses):

@home = ("couch", "chair", "table", "stove");

Conversely, if you use @home in a list context, such as on the right side of a list
assignment, you get back out the same list you put in. So you could set four scalar
variables from the array like this:

($potato, $lift, $tennis, $pipe) = @home;

These are called list assignments. They logically happen in parallel, so you can
swap two variables by saying:

($alpha,$omega) = ($omega,$alpha);

As in C, arrays are zer o-based, so while you would talk about the first through
fourth elements of the array, you would get to them with subscripts 0 through 3.†

Array subscripts are enclosed in square brackets [like this], so if you want to select
an individual array element, you would refer to it as $home[n], wher e n is the
subscript (one less than the element number) you want. See the example that
follows. Since the element you are dealing with is a scalar, you always precede it
with a $.

* Or keyed, or indexed, or subscripted, or looked up. Take your pick.

† If this seems odd to you, just think of the subscript as an offset, that is, the count of how many array
elements come before it. Obviously, the first element doesn’t have any elements before it, and so has
an offset of 0. This is how computers think. (We think.)

Natural and Artificial Languages 9

10 Chapter 1: An Over view of Perl

If you want to assign to one array element at a time, you could write the earlier
assignment as:

$home[0] = "couch";
$home[1] = "chair";
$home[2] = "table";
$home[3] = "stove";

Since arrays are order ed, you can do various useful operations on them, such as
the stack operations push and pop. A stack is, after all, just an ordered list, with a
beginning and an end. Especially an end. Perl regards the end of your array as the
top of a stack. (Although most Perl programmers think of an array as horizontal,
with the top of the stack on the right.)

Hashes. A hash is an unordered set of scalars, accessed* by some string value
that is associated with each scalar. For this reason hashes are often called
associative arrays. But that’s too long for lazy typists to type, and we talk about
them so often that we decided to name them something short and snappy. The
other reason we picked the name “hash” is to emphasize the fact that they’re
disorder ed. (They are, coincidentally, implemented internally using a hash-table
lookup, which is why hashes are so fast, and stay so fast no matter how many
values you put into them.) You can’t push or pop a hash though, because it doesn’t
make sense. A hash has no beginning or end. Nevertheless, hashes are extr emely
power ful and useful. Until you start thinking in terms of hashes, you aren’t really
thinking in Perl. Figure 1-1 shows the ordered elements of an array and the
unorder ed (but named) elements of a hash.

Since the keys to a hash are not automatically implied by their position, you must
supply the key as well as the value when populating a hash. You can still assign a
list to it like an ordinary array, but each pair of items in the list will be interpreted
as a key and a value. Since we’re dealing with pairs of items, hashes use the funny
character % to mark hash names. (If you look carefully at the % character, you can
see the key and the value with a slash between them. It may help to squint.)

Suppose you wanted to translate abbreviated day names to the corresponding full
names. You could write the following list assignment:

%longday = ("Sun", "Sunday", "Mon", "Monday", "Tue", "Tuesday",
"Wed", "Wednesday", "Thu", "Thursday", "Fri",
"Friday", "Sat", "Saturday");

But that’s rather difficult to read, so Perl provides the => (equals sign, greater-than
sign) sequence as an alternative separator to the comma. Using this syntactic sugar

* Or keyed, or indexed, or subscripted, or looked up. Take your pick.

0

couch

1

chair

2

table

3

stove

Thu

Thursday

Fri

Friday

Sat

Saturday
Mon

MondaySun

Sunday

Tue

Tuesday

Wed

Wednesday

@home

%longday

Figur e 1-1. An array and a hash

(and some creative formatting), it is much easier to see which strings are the keys
and which strings are the associated values.

%longday = (
"Sun" => "Sunday",
"Mon" => "Monday",
"Tue" => "Tuesday",
"Wed" => "Wednesday",
"Thu" => "Thursday",
"Fri" => "Friday",
"Sat" => "Saturday",

);

Not only can you assign a list to a hash, as we did above, but if you mention a
hash in list context, it’ll convert the hash back to a list of key/value pairs, in a
weird order. This is occasionally useful. More often people extract a list of just the
keys, using the (aptly named) keys function. The key list is also unordered, but
can easily be sorted if desired, using the (aptly named) sort function. Then you
can use the ordered keys to pull out the corresponding values in the order you
want.

Natural and Artificial Languages 11

12 Chapter 1: An Over view of Perl

Because hashes are a fancy kind of array, you select an individual hash element
by enclosing the key in braces (those fancy brackets also known as “curlies”). So,
for example, if you want to find out the value associated with Wed in the hash
above, you would use $longday{"Wed"}. Note again that you are dealing with a
scalar value, so you use $ on the front, not %, which would indicate the entire
hash.

Linguistically, the relationship encoded in a hash is genitive or possessive, like the
word “of” in English, or like “’s”. The wife of Adam is Eve, so we write:

$wife{"Adam"} = "Eve";

Complexities

Arrays and hashes are lovely, simple, flat data structures. Unfortunately, the world
does not always cooperate with our attempts to oversimplify. Sometimes you need
to build not-so-lovely, not-so-simple, not-so-flat data structures. Perl lets you do
this by pretending that complicated values are really simple ones. To put it the
other way around, Perl lets you manipulate simple scalar refer ences that happen
to refer to complicated arrays and hashes. We do this all the time in natural lan-
guage when we use a simple singular noun like “government” to repr esent an
entity that is completely convoluted and inscrutable. Among other things.

To extend our previous example, suppose we want to switch from talking about
Adam’s wife to Jacob’s wife. Now, as it happens, Jacob had four wives. (Don’t try
this at home.) In trying to repr esent this in Perl, we find ourselves in the odd situa-
tion where we’d like to pretend that Jacob’s four wives were really one wife.
(Don’t try this at home, either.) You might think you could write it like this:

$wife{"Jacob"} = ("Leah", "Rachel", "Bilhah", "Zilpah"); # WRONG

But that wouldn’t do what you want, because even parentheses and commas are
not powerful enough to turn a list into a scalar in Perl. (Parentheses are used for
syntactic grouping, and commas for syntactic separation.) Rather, you need to tell
Perl explicitly that you want to pretend that a list is a scalar. It tur ns out that
squar e brackets are power ful enough to do that:

$wife{"Jacob"} = ["Leah", "Rachel", "Bilhah", "Zilpah"]; # ok

That statement creates an unnamed array and puts a refer ence to it into the hash
element $wife{"Jacob"}. So we have a named hash containing an unnamed array.
This is how Perl deals with both multidimensional arrays and nested data struc-
tur es. As with ordinary arrays and hashes, you can also assign individual elements,
like this:

$wife{"Jacob"}[0] = "Leah";
$wife{"Jacob"}[1] = "Rachel";
$wife{"Jacob"}[2] = "Bilhah";
$wife{"Jacob"}[3] = "Zilpah";

You can see how that looks like a multidimensional array with one string subscript
and one numeric subscript. To see something that looks more tree-structur ed, like
a nested data structure, suppose we wanted to list not only Jacob’s wives but all
the sons of each of his wives. In this case we want to treat a hash as a scalar. We
can use braces for that. (Inside each hash value we’ll use square brackets to repr e-
sent arrays, just as we did earlier. But now we have an array in a hash in a hash.)

$kids_of_wife{"Jacob"} = {
"Leah" => ["Reuben", "Simeon", "Levi", "Judah", "Issachar", "Zebulun"],
"Rachel" => ["Joseph", "Benjamin"],
"Bilhah" => ["Dan", "Naphtali"],
"Zilpah" => ["Gad", "Asher"],

};

That would be more or less equivalent to saying:

$kids_of_wife{"Jacob"}{"Leah"}[0] = "Reuben";
$kids_of_wife{"Jacob"}{"Leah"}[1] = "Simeon";
$kids_of_wife{"Jacob"}{"Leah"}[2] = "Levi";
$kids_of_wife{"Jacob"}{"Leah"}[3] = "Judah";
$kids_of_wife{"Jacob"}{"Leah"}[4] = "Issachar";
$kids_of_wife{"Jacob"}{"Leah"}[5] = "Zebulun";
$kids_of_wife{"Jacob"}{"Rachel"}[0] = "Joseph";
$kids_of_wife{"Jacob"}{"Rachel"}[1] = "Benjamin";
$kids_of_wife{"Jacob"}{"Bilhah"}[0] = "Dan";
$kids_of_wife{"Jacob"}{"Bilhah"}[1] = "Naphtali";
$kids_of_wife{"Jacob"}{"Zilpah"}[0] = "Gad";
$kids_of_wife{"Jacob"}{"Zilpah"}[1] = "Asher";

You can see from this that adding a level to a nested data structure it is like adding
another dimension to a multidimensional array. Perl lets you think of it either way,
but the internal repr esentation is the same.

The important point here is that Perl lets you pretend that a complex data struc-
tur e is a simple scalar. On this simple kind of encapsulation, Perl’s entire object-
oriented structure is built. When we earlier invoked the Camel constructor like this:

$fido = new Camel "Amelia";

we created a Camel object that is repr esented by the scalar $fido. But the inside of
the Camel is more complicated. As well-behaved object-oriented programmers,
we’r e not supposed to care about the insides of Camels (unless we happen to be
the people implementing the methods of the Camel class). But generally, an object
like a Camel would consist of a hash containing the particular Camel’s attributes,
such as its name (“Amelia” in this case, not “fido”), and the number of humps
(which we didn’t specify, but probably defaults to 1; check the front cover).

Natural and Artificial Languages 13

14 Chapter 1: An Over view of Perl

Simplicities

If your head isn’t spinning a bit from reading that last section, then you have an
unusual head. People don’t generally like to deal with complex data structures,
whether governmental or genealogical. So in our natural languages, we have many
ways of sweeping complexity under the carpet. Many of these fall into the cate-
gory of topicalization, which is just a fancy linguistics term for agreeing with
someone about what you’re going to talk about (and by exclusion, what you’re
pr obably not going to talk about). This happens on many levels in language. On a
high level, we divide ourselves up into various subcultures that are inter ested in
various subtopics and establish sublanguages that talk primarily about those
subtopics. The lingo of the doctor’s office (“indissoluable asphyxiant”) is differ ent
fr om the lingo of the chocolate factory (“everlasting gobstopper”). Most of us auto-
matically switch contexts as we go from one lingo to another.

On a conversational level, the context switch has to be more explicit, so our lan-
guage gives us many ways of saying what we’re about to say. We put titles on our
books and headers on our sections. On our sentences, we put quaint phrases like
“In regard to your recent query” or “For all X”. Usually, though, we just say things
like, “You know that dangley thingy that hangs down in the back of your throat?”

Perl also has several ways of topicalizing. One important topicalizer is the package

declaration. Suppose you want to talk about Camels in Perl. You’d likely start off
your Camel module by saying:

package Camel;

This has several notable effects. One of them is that Perl will assume from this
point on that any unspecified verbs or nouns are about Camels. It does this by
automatically prefixing any global name with the module name “Camel::”. So if
you say:

package Camel;
$fido = &fetch();

then the real name of $fido is $Camel::fido (and the real name of &fetch is
&Camel::fetch, but we’re not talking about verbs yet). This means that if some
other module says:

package Dog;
$fido = &fetch();

Perl won’t get confused, because the real name of this $fido is $Dog::fido, not
$Camel::fido. A computer scientist would say that a package establishes a name-
space. You can have as many namespaces as you like, but since you’re only in one
of them at a time, you can pretend that the other namespaces don’t exist. That’s

how namespaces simplify reality for you. Simplification is based on pretending.
(Of course, so is oversimplification, which is what we’re doing in this chapter.)

Now it’s important to keep your nouns straight, but it’s just as important to keep
your verbs straight. It’s nice that &Camel::fetch is not confused with &Dog::fetch

within the Camel and Dog namespaces, but the really nice thing about packages is
that they classify your verbs so that other packages can use them. When we said:

$fido = new Camel "Amelia";

we were actually invoking the &new verb in the Camel package, which has the full
name of &Camel::new. And when we said:

$fido->saddle();

we were invoking the &Camel::saddle routine, because $fido remembers that it is
pointing to a Camel. This is how object-oriented programming works.

When you say package Camel, you’r e starting a new package. But sometimes you
just want to borrow the nouns and verbs of an existing package. Perl lets you do
that with a use declaration, which not only borrows verbs from another package,
but also checks that the module you name is loaded in from disk. In fact, you
must say something like:

use Camel;

befor e you say:

$fido = new Camel "Amelia";

because otherwise Perl wouldn’t know what a Camel is.

The interesting thing is that you yourself don’t really need to know what a Camel

is, provided you can get someone else to write the Camel module for you. Even
better would be if someone had alr eady written the Camel module for you. It
could be argued that the most powerful thing about Perl is not Perl itself, but
CPAN (Comprehensive Perl Archive Network), which contains myriads of modules
that accomplish many differ ent tasks that you don’t have to know how to do. You
just have to download it and know how to say:

use Some::Cool::Module;

and then use the verbs from that module in a manner appropriate to the topic
under discussion.

So, like topicalization in a natural language, topicalization in Perl “warps” the lan-
guage that you’ll use from there to the end of the program. In fact, some of the
built-in modules don’t actually introduce verbs at all, but simply warp the Perl

Natural and Artificial Languages 15

16 Chapter 1: An Over view of Perl

language in various useful ways. These special modules we call pragmas. For
instance, you’ll often see people use the pragma strict, like this:

use strict;

What the strict module does is tighten up some of the rules so that you have to
be more explicit about various things that Perl would otherwise guess about, such
as how you want your variables to be scoped. Making things explicit is helpful
when you’re working on large projects. By default Perl is optimized for small pro-
jects, but with the strict pragma, Perl is also good for large projects that need to
be more maintainable. Since you can add the strict pragma at any time, Perl is
also good for evolving small projects into large ones, even when you didn’t expect
that to happen. Which is usually.

Verbs
As is typical of your typical imperative computer language, many of the verbs in
Perl are commands: they tell the Perl interpreter to do something. On the other
hand, as is typical of a natural language, the meanings of Perl verbs tend to mush
of f in various directions depending on the context. A statement starting with a
verb is generally purely imperative and evaluated entirely for its side effects. (We
sometimes call these verbs pr ocedures, especially when they’re user-defined.) A
fr equently seen built-in command (in fact, you’ve seen it already) is the print

command:

print "Adam’s wife is $wife{’Adam’}.\n";

This has the side effect of producing the desired output:

Adam’s wife is Eve.

But there are other “moods” besides the imperative mood. Some verbs are for ask-
ing questions and are useful in conditionals such as if statements. Other verbs
translate their input parameters into retur n values, just as a recipe tells you how to
tur n raw ingredients into something (hopefully) edible. We tend to call these verbs
functions, in defer ence to generations of mathematicians who don’t know what
the word “functional” means in normal English.

An example of a built-in function would be the exponential function:

$e = exp(1); # 2.718281828459 or thereabouts

But Perl doesn’t make a hard distinction between procedur es and functions. You’ll
find the terms used interchangeably. Verbs are also sometimes called operators

(when built-in), or subroutines (when user-defined).* But call them whatever you
like — they all retur n a value, which may or may not be a meaningful value, which
you may or may not choose to ignore.

As we go on, you’ll see additional examples of how Perl behaves like a natural
language. But there are other ways to look at Perl too. We’ve already sneakily
intr oduced some notions from mathematical language, such as subscripts, addition,
and the exponential function. But Perl is also a control language, a glue language,
a prototyping language, a text-processing language, a list-processing language, and
an object-oriented language. Among other things.

But Perl is also just a plain old computer language. And that’s how we’ll look at it
next.

An Average Example
Suppose you’ve been teaching a Perl class, and you’re trying to figure out how to
grade your students. You have a set of exam scores for each member of a class, in
random order. You’d like a combined list of all the grades for each student, plus
their average score. You have a text file (imaginatively named grades) that looks
like this:

Noël 25
Ben 76
Clementine 49
Norm 66
Chris 92
Doug 42
Carol 25
Ben 12
Clementine 0
Norm 66
...

You can use the following script to gather all their scores together, deter mine each
student’s average, and print them all out in alphabetical order. This program
assumes rather naively that you don’t have two Carols in your class. That is, if
ther e is a second entry for Carol, the program will assume it’s just another score
for the first Carol (not to be confused with the first Noël).

* Historically, Perl requir ed you to put an ampersand character (&) on any calls to user-defined sub-
routines (see $fido = &fetch(); earlier). But with Perl version 5, the ampersand became optional, so
that user-defined verbs can now be called with the same syntax as built-in verbs ($fido = fetch();).
We still use the ampersand when talking about the name of the routine, such as when we take a ref-
er ence to it ($fetcher = \&fetch;). Linguistically speaking, you can think of the ampersand form
&fetch as an infinitive, “to fetch”, or the similar form “do fetch”. But we rarely say “do fetch” when
we can just say “fetch”. That’s the real reason we dropped the mandatory ampersand in Perl 5.

An Average Example 17

18 Chapter 1: An Over view of Perl

By the way, the line numbers are not part of the program, any other resemblances
to BASIC notwithstanding.

1 #!/usr/bin/perl
2
3 open(GRADES, "grades") or die "Can’t open grades: $!\n";
4 while ($line = <GRADES>) {
5 ($student, $grade) = split(" ", $line);
6 $grades{$student} .= $grade . " ";
7 }
8
9 foreach $student (sort keys %grades) {
10 $scores = 0;
11 $total = 0;
12 @grades = split(" ", $grades{$student});
13 foreach $grade (@grades) {
14 $total += $grade;
15 $scores++;
16 }
17 $average = $total / $scores;
18 print "$student: $grades{$student}\tAverage: $average\n";
19 }

Now before your eyes cross permanently, we’d better point out that this example
demonstrates a lot of what we’ve covered so far, plus quite a bit more that we’ll
explain presently. But if you let your eyes go just a little out of focus, you may
start to see some interesting patterns. Take some wild guesses now as to what’s
going on, and then later on we’ll tell you if you’re right.

We’d tell you to try running it, but you may not know how yet.

How to Do It
Gee, right about now you’re probably wondering how to run a Perl program. The
short answer is that you feed it to the Perl language interpreter program, which
coincidentally happens to be named perl. The long answer starts out like this:
Ther e’s Mor e Than One Way To Do It.*

The first way to invoke perl (and the way most likely to work on any operating
system) is to simply call perl explicitly from the command line.† If you are doing

* That’s the Perl Slogan, and you’ll get tired of hearing it, unless you’re the Local Expert, in which case
you’ll get tired of saying it. Sometimes it’s shortened to TMTOWTDI, pronounced “tim-toady”. But
you can pronounce it however you like. After all, TMTOWTDI.

† Assuming that your operating system provides a command-line interface. If you’re running an older
Mac, you might need to upgrade to a version of BSD such as Mac OS X.

something fairly simple, you can use the -e switch (% in the following example
repr esents a standard shell prompt, so don’t type it). On Unix, you might type:

% perl -e ’print "Hello, world!\n";’

On other operating systems, you may have to fiddle with the quotes some. But the
basic principle is the same: you’re trying to cram everything Perl needs to know
into 80 columns or so.*

For longer scripts, you can use your favorite text editor (or any other text editor)
to put all your commands into a file and then, presuming you named the script
gradation (not to be confused with graduation), you’d say:

% perl gradation

You’r e still invoking the Perl interpreter explicitly, but at least you don’t have to
put everything on the command line every time. And you no longer have to fiddle
with quotes to keep the shell happy.

The most convenient way to invoke a script is just to name it directly (or click on
it), and let the operating system find the interpreter for you. On some systems,
ther e may be ways of associating various file extensions or directories with a par-
ticular application. On those systems, you should do whatever it is you do to asso-
ciate the Perl script with the perl interpr eter. On Unix systems that support the #!

“shebang” notation (and most Unix systems do, nowadays), you can make the first
line of your script be magical, so the operating system will know which program
to run. Put a line resembling line 1 of our example into your program:

#!/usr/bin/perl

(If perl isn’t in /usr/bin, you’ll have to change the #! line accordingly.) Then all
you have to say is:

% gradation

Of course, this didn’t work because you forgot to make sure the script was exe-
cutable (see the manpage for chmod (1)) and in your PATH. If it isn’t in your
PA TH, you’ll have to provide a complete filename so that the operating system
knows how to find your script. Something like:

% /home/sharon/bin/gradation

Finally, if you are unfortunate enough to be on an ancient Unix system that
doesn’t support the magic #! line, or if the path to your interpreter is longer than

* These types of scripts are often referr ed to as “one-liners”. If you ever end up hanging out with other
Perl programmers, you’ll find that some of us are quite fond of creating intricate one-liners. Perl has
occasionally been maligned as a write-only language because of these shenanigans.

An Average Example 19

20 Chapter 1: An Over view of Perl

32 characters (a built-in limit on many systems), you may be able to work around
it like this:

#!/bin/sh -- # perl, to stop looping
eval ’exec /usr/bin/perl -S $0 ${1+"$@"}’

if 0;

Some operating systems may requir e variants of this to deal with /bin/csh, DCL,
COMMAND.COM, or whatever happens to be your default command interpreter.
Ask your Local Expert.

Thr oughout this book, we’ll just use #!/usr/bin/perl to repr esent all these notions
and notations, but you’ll know what we really mean by it.

A random clue: when you write a test script, don’t call your script test. Unix sys-
tems have a built-in test command, which will likely be executed instead of your
script. Try try instead.

A not-so-random clue: while learning Perl, and even after you think you know
what you’re doing, we suggest using the -w switch, especially during development.
This option will turn on all sorts of useful and interesting warning messages, not
necessarily in that order. You can put the -w switch on the shebang line, like this:

#!/usr/bin/perl -w

Now that you know how to run your own Perl program (not to be confused with
the perl pr ogram), let’s get back to our example.

Filehandles
Unless you’re using artificial intelligence to model a solipsistic philosopher, your
pr ogram needs some way to communicate with the outside world. In lines 3 and 4
of our Average Example you’ll see the word GRADES, which exemplifies another of
Perl’s data types, the filehandle. A filehandle is just a name you give to a file,
device, socket, or pipe to help you remember which one you’re talking about, and
to hide some of the complexities of buffering and such. (Internally, filehandles are
similar to streams from a language like C++ or I/O channels from BASIC.)

Filehandles make it easier for you to get input from and send output to many dif-
fer ent places. Part of what makes Perl a good glue language is that it can talk to
many files and processes at once. Having nice symbolic names for various external
objects is just part of being a good glue language.*

* Some of the other things that make Perl a good glue language are: it’s 8-bit clean, it’s embeddable,
and you can embed other things in it via extension modules. It’s concise, and it “networks” easily.
It’s environmentally conscious, so to speak. You can invoke it in many differ ent ways (as we saw
earlier). But most of all, the language itself is not so rigidly structured that you can’t get it to “flow”
ar ound your problem. It comes back to that TMTOWTDI thing again.

You create a filehandle and attach it to a file by using open. The open function
takes at least two parameters: the filehandle and filename you want to associate it
with. Perl also gives you some predefined (and preopened) filehandles. STDIN is
your program’s normal input channel, while STDOUT is your program’s normal out-
put channel. And STDERR is an additional output channel that allows your program
to make snide remarks off to the side while it transforms (or attempts to trans-
for m) your input into your output.*

Since you can use the open function to create filehandles for various purposes
(input, output, piping), you need to be able to specify which behavior you want.
As you might do on the command line, you simply add characters to the filename.

open(SESAME, "filename") # read from existing file
open(SESAME, "<filename") # (same thing, explicitly)
open(SESAME, ">filename") # create file and write to it
open(SESAME, ">>filename") # append to existing file
open(SESAME, "| output-pipe-command") # set up an output filter
open(SESAME, "input-pipe-command |") # set up an input filter

As you can see, the name you pick for the filehandle is arbitrary. Once opened,
the filehandle SESAME can be used to access the file or pipe until it is explicitly
closed (with, you guessed it, close(SESAME)), or until the filehandle is attached to
another file by a subsequent open on the same filehandle.†

Once you’ve opened a filehandle for input, you can read a line using the line
reading operator, <>. This is also known as the angle operator because it’s made of
angle brackets. The angle operator encloses the filehandle (<SESAME>) you want to
read lines from. The empty angle operator, <>, will read lines from all the files
specified on the command line, or STDIN, if none were specified. (This is standard
behavior for many filter programs.) An example using the STDIN filehandle to read
an answer supplied by the user would look something like this:

print STDOUT "Enter a number: "; # ask for a number
$number = <STDIN>; # input the number
print STDOUT "The number is $number.\n"; # print the number

* These filehandles are typically attached to your terminal, so you can type to your program and see
its output, but they may also be attached to files (and such). Perl can give you these predefined han-
dles because your operating system already provides them, one way or another. Under Unix, pro-
cesses inherit standard input, output, and error from their parent process, typically a shell. One of
the duties of a shell is to set up these I/O streams so that the child process doesn’t need to worry
about them.

† Opening an already opened filehandle implicitly closes the first file, making it inaccessible to the
filehandle, and opens a differ ent file. You must be careful that this is what you really want to do.
Sometimes it happens accidentally, like when you say open($handle,$file), and $handle happens to
contain a constant string. Be sure to set $handle to something unique, or you’ll just open a new file
on the same filehandle. Or you can leave $handle undefined, and Perl will fill it in for you.

Filehandles 21

22 Chapter 1: An Over view of Perl

Did you see what we just slipped by you? What’s that STDOUT doing there in those
print statements? Well, that’s just one of the ways you can use an output filehan-
dle. A filehandle may be supplied as the first argument to the print statement, and
if present, tells the output where to go. In this case, the filehandle is redundant,
because the output would have gone to STDOUT anyway. Much as STDIN is the
default for input, STDOUT is the default for output. (In line 18 of our Average Exam-
ple, we left it out to avoid confusing you up till now.)

If you try the previous example, you may notice that you get an extra blank line.
This happens because the line-reading operation does not automatically remove
the newline from your input line (your input would be, for example, “9\n”). For
those times when you do want to remove the newline, Perl provides the chop and
chomp functions. chop will indiscriminately remove (and retur n) the last character of
the string, while chomp will only remove the end of record marker (generally, “\n”)
and retur n the number of characters so removed. You’ll often see this idiom for
inputting a single line:

chop($number = <STDIN>); # input number and remove newline

which means the same thing as:

$number = <STDIN>; # input number
chop($number); # remove newline

Operator s
As we alluded to earlier, Perl is also a mathematical language. This is true at sev-
eral levels, from low-level bitwise logical operations, up through number and set
manipulation, on up to larger predicates and abstractions of various sorts. And as
we all know from studying math in school, mathematicians love strange symbols.
What’s worse, computer scientists have come up with their own versions of these
strange symbols. Perl has a number of these strange symbols too, but take heart,
most are borr owed dir ectly fr om C, FORTRAN, sed (1) or awk (1), so they’ll at least
be familiar to users of those languages.

The rest of you can take comfort in knowing that, by learning all these strange
symbols in Perl, you’ve given yourself a head start on all those other strange lan-
guages.

Perl’s built-in operators may be classified by number of operands into unary,
binary, and trinary (or ternary) operators. They may be classified by whether
they’r e pr efix operators (which go in front of their operands) or infix operators
(which go in between their operands). They may also be classified by the kinds of
objects they work with, such as numbers, strings, or files. Later, we’ll give you a
table of all the operators, but first here are some handy ones to get you started.

Some Binary Arithmetic Operator s
Arithmetic operators do what you would expect from learning them in school.
They perfor m some sort of mathematical function on numbers. For example:

Example Name Result

$a + $b Addition Sum of $a and $b

$a * $b Multiplication Product of $a and $b

$a % $b Modulus Remainder of $a divided by $b

$a ** $b Exponentiation $a to the power of $b

Yes, we left out subtraction and division—we suspect you can figure out how they
should work. Try them and see if you’re right. (Or cheat and look in Chapter 3,
Unary and Binary Operators.) Arithmetic operators are evaluated in the order your
math teacher taught you (exponentiation before multiplication; multiplication
befor e addition). You can always use parentheses to make it come out differ ently.

Str ing Operator s
Ther e is also an “addition” operator for strings that perfor ms concatenation (that is,
joining strings end to end). Unlike some languages that confuse this with numeric
addition, Perl defines a separate operator (.) for string concatenation:

$a = 123;
$b = 456;
print $a + $b; # prints 579
print $a . $b; # prints 123456

Ther e’s also a “multiply” operator for strings, called the repeat operator. Again, it’s
a separate operator (x) to keep it distinct from numeric multiplication:

$a = 123;
$b = 3;
print $a * $b; # prints 369
print $a x $b; # prints 123123123

These string operators bind as tightly as their corresponding arithmetic operators.
The repeat operator is a bit unusual in taking a string for its left argument but a
number for its right argument. Note also how Perl is automatically converting from
numbers to strings. You could have put all the literal numbers above in quotes,
and it would still have produced the same output. Internally though, it would have
been converting in the opposite direction (that is, from strings to numbers).

A couple more things to think about. String concatenation is also implied by the
interpolation that happens in double-quoted strings. And when you print out a list

Operator s 23

24 Chapter 1: An Over view of Perl

of values, you’re also effectively concatenating strings. So the following three state-
ments produce the same output:

print $a . ’ is equal to ’ . $b . ".\n"; # dot operator
print $a, ’ is equal to ’, $b, ".\n"; # list
print "$a is equal to $b.\n"; # interpolation

Which of these you use in any particular situation is entirely up to you. (But bear
in mind that interpolation is often the most readable.)

The x operator may seem relatively worthless at first glance, but it is quite useful
at times, especially for things like this:

print "-" x $scrwid, "\n";

which draws a line across your screen, presuming $scrwid contains your screen
width, and not your screw identifier.

Assignment Operator s
Although it’s not exactly a mathematical operator, we’ve already made extensive
use of the simple assignment operator, =. Try to remember that = means “gets set
to” rather than “equals”. (There is also a mathematical equality operator == that
means “equals”, and if you start out thinking about the differ ence between them
now, you’ll save yourself a lot of headache later. The == operator is like a function
that retur ns a Boolean value, while = is more like a procedur e that is evaluated for
the side effect of modifying a variable.)

Like the operators described earlier, assignment operators are binary infix opera-
tors, which means they have an operand on either side of the operator. The right
operand can be any expression you like, but the left operand must be a valid
lvalue (which, when translated to English, means a valid storage location like a
variable, or a location in an array). The most common assignment operator is sim-
ple assignment. It determines the value of the expression on its right side, and
then sets the variable on the left side to that value:

$a = $b;
$a = $b + 5;
$a = $a * 3;

Notice the last assignment refers to the same variable twice; once for the computa-
tion, once for the assignment. There’s nothing wrong with that, but it’s a common
enough operation that there’s a shortcut for it (borrowed from C). If you say:

lvalue operator= expression

it is evaluated as if it were:

lvalue = lvalue operator expression

except that the lvalue is not computed twice. (This only makes a differ ence if eval-
uation of the lvalue has side effects. But when it does make a differ ence, it usually
does what you want. So don’t sweat it.)

So, for example, you could write the previous example as:

$a *= 3;

which reads “multiply $a by 3”. You can do this with almost any binary operator in
Perl, even some that you can’t do it with in C:

$line .= "\n"; # Append newline to $line.
$fill x= 80; # Make string $fill into 80 repeats of itself.
$val ||= "2"; # Set $val to 2 if it isn’t already "true".

Line 6 of our Average Example* contains two string concatenations, one of which
is an assignment operator. And line 14 contains a +=.

Regardless of which kind of assignment operator you use, the final value of the
variable on the left is retur ned as the value of the assignment as a whole.† This
will not surprise C programmers, who will already know how to use this idiom to
zer o out variables:

$a = $b = $c = 0;

You’ll also frequently see assignment used as the condition of a while loop, as in
line 4 of our average example.

What will surprise C programmers is that assignment in Perl retur ns the actual vari-
able as an lvalue, so that you can modify the same variable more than once in a
statement. For instance, you could say:

($temp -= 32) *= 5/9;

to do an in-place conversion from Fahrenheit to Celsius. This is also why earlier in
this chapter we could say:

chop($number = <STDIN>);

and have it chop the final value of $number. Generally speaking, you can use this
featur e whenever you want to copy something and at the same time do something
else with it.

* Thought we’d forgotten it, didn’t you?

† This is unlike, say, Pascal, in which assignment is a statement and retur ns no value. We said earlier
that assignment is like a procedur e, but remember that in Perl, even procedur es retur n values.

Operator s 25

26 Chapter 1: An Over view of Perl

Unar y Ar ithmetic Operator s
As if $variable += 1 wer en’t short enough, Perl borrows from C an even shorter
way to increment a variable. The autoincrement (and autodecrement) operators
simply add (or subtract) one from the value of the variable. They can be placed on
either side of the variable, depending on when you want them to be evaluated:

Example Name Result

++$a, $a++ Autoincr ement Add 1 to $a

--$a, $a-- Autodecr ement Subtract 1 from $a

If you place one of these “auto” operators before the variable, it is known as a
pr e-incr emented (pr e-decr emented) variable. Its value will be changed before it is
refer enced. If it is placed after the variable, it is known as a post-incremented
(post-decr emented) variable, and its value is changed after it is used. For example:

$a = 5; # $a is assigned 5
$b = ++$a; # $b is assigned the incremented value of $a, 6
$c = $a--; # $c is assigned 6, then $a is decremented to 5

Line 15 of our Average Example increments the number of scores by one, so that
we’ll know how many scores we’re averaging. It uses a post-increment operator
($scores++), but in this case it doesn’t matter, since the expression is in a void
context, which is just a funny way of saying that the expression is being evaluated
only for the side effect of incrementing the variable. The value retur ned is being
thr own away.*

Log ical Operator s
Logical operators, also known as “short-circuit” operators, allow the program to
make decisions based on multiple criteria without using nested if statements.
They are known as short-circuit operators because they skip (short circuit) the
evaluation of their right argument if they decide the left argument has already sup-
plied enough information to decide the overall value. This is not just for efficiency.
You are explicitly allowed to depend on this short-circuiting behavior to avoid
evaluating code in the right argument that you know would blow up if the left
argument were not “guarding” it. You can say “California or bust!” in Perl without
busting (presuming you do get to California).

Perl actually has two sets of logical operators, a traditional set borrowed from C
and a newer (but even more traditional) set of ultralow-precedence operators bor-
rowed from BASIC. Both sets contribute to readability when used appropriately.

* The optimizer will notice this and optimize the post-increment into a pre-incr ement, because that’s a
bit faster to execute. (You didn’t need to know that, but we hoped it would cheer you up.)

C’s punctuational operators work well when you want your logical operators to
bind more tightly than commas, while BASIC’s word-based operators work well
when you want your commas to bind more tightly than your logical operators.
Often they work the same, and which set you use is a matter of personal prefer-
ence. (For contrastive examples, see the section “Logical and, or, not, and xor” in
Chapter 3.) Although the two sets of operators are not interchangeable due to
pr ecedence, once they’re parsed, the operators themselves behave identically;
pr ecedence mer ely gover ns the extent of their arguments. Table 1-1 lists logical
operators.

Table 1-1. Logical Operators

Example Name Result

$a && $b And $a if $a is false, $b otherwise

$a || $b Or $a if $a is true, $b otherwise

! $a Not True if $a is not true

$a and $b And $a if $a is false, $b otherwise

$a or $b Or $a if $a is true, $b otherwise

not $a Not True if $a is not true

$a xor $b Xor True if $a or $b is true, but not both

Since the logical operators “short-circuit” the way they do, they’re often used in
Perl to conditionally execute code. The following line (line 3 from our Average
Example) tries to open the file grades :

open(GRADES, "grades") or die "Can’t open file grades: $!\n";

If it opens the file, it will jump to the next line of the program. If it can’t open the
file, it will provide us with an error message and then stop execution.

Literally, this line means “Open grades or bust!” Besides being another example of
natural language, the short-circuit operators preserve the visual flow. Important
actions are listed down the left side of the screen, and secondary actions are hid-
den off to the right. (The $! variable contains the error message retur ned by the
operating system—see Chapter 28, Special Names.) Of course, these logical opera-
tors can also be used within the more traditional kinds of conditional constructs,
such as the if and while statements.

Some Numeric and String Comparison Operator s
Comparison, or relational, operators tell us how two scalar values (numbers or
strings) relate to each other. Ther e ar e two sets of operators; one does numeric

Operator s 27

28 Chapter 1: An Over view of Perl

comparison and the other does string comparison. (In either case, the arguments
will be “coerced” to have the appropriate type first.) Assuming left and right argu-
ments of $a and $b, we have:

Compar ison Numer ic Str ing Retur n Value

Equal == eq True if $a is equal to $b

Not equal != ne True if $a is not equal to $b

Less than < lt True if $a is less than $b

Gr eater than > gt True if $a is greater than $b

Less than or equal <= le True if $a not greater than $b

Comparison <=> cmp 0 if equal, 1 if $a gr eater, –1 if $b gr eater

The last pair of operators (<=> and cmp) are entir ely redundant. However, they’r e
incr edibly useful in sort subr outines (see Chapter 29).*

Some File Test Operator s
The file test operators allow you to test whether certain file attributes are set
befor e you go and blindly muck about with the files. The most basic file attribute
is, of course, whether the file exists. For example, it would be very nice to know
whether your mail aliases file already exists before you go and open it as a new
file, wiping out everything that was in there befor e. Her e ar e a few of the file test
operators:

Example Name Result

-e $a Exists True if file named in $a exists
-r $a Readable True if file named in $a is readable
-w $a Writable True if file named in $a is writable
-d $a Dir ectory True if file named in $a is a directory
-f $a File True if file named in $a is a regular file
-T $a Text File True if file named in $a is a text file

You might use them like this:

-e "/usr/bin/perl" or warn "Perl is improperly installed\n";
-f "/vmlinuz" and print "I see you are a friend of Linus\n";

* Some folks feel that such redundancy is evil because it keeps a language from being minimalistic, or
orthogonal. But Perl isn’t an orthogonal language; it’s a diagonal language. By this we mean that Perl
doesn’t force you to always go at right angles. Sometimes you just want to follow the hypotenuse of
the triangle to get where you’r e going. TMTOWTDI is about shortcuts. Shortcuts are about efficiency.

Note that a regular file is not the same thing as a text file. Binary files like
/vmlinuz ar e regular files, but they aren’t text files. Text files are the opposite of
binary files, while regular files are the opposite of “irregular” files like directories
and devices.

Ther e ar e a lot of file test operators, many of which we didn’t list. Most of the file
tests are unary Boolean operators, which is to say they take only one operand (a
scalar that evaluates to a filename or a filehandle), and they retur n either a true or
false value. A few of them retur n something fancier, like the file’s size or age, but
you can look those up when you need them in the section “Named Unary and File
Test Operators” in Chapter 3.

Control Structures
So far, except for our one large example, all of our examples have been com-
pletely linear; we executed each command in order. We’ve seen a few examples of
using the short-circuit operators to cause a single command to be (or not to be)
executed. While you can write some very useful linear programs (a lot of CGI
scripts fall into this category), you can write much more power ful pr ograms if you
have conditional expressions and looping mechanisms. Collectively, these are
known as control structures. So you can also think of Perl as a control language.

But to have control, you have to be able to decide things, and to decide things,
you have to know the differ ence between what’s true and what’s false.

What Is Truth?
We’ve bandied about the term truth,* and we’ve mentioned that certain operators
retur n a true or a false value. Before we go any further, we really ought to explain
exactly what we mean by that. Perl treats truth a little differ ently than most com-
puter languages, but after you’ve worked with it a while, it will make a lot of
sense. (Actually, we hope it’ll make a lot of sense after you’ve read the following.)

Basically, Perl holds truths to be self-evident. That’s a glib way of saying that you
can evaluate almost anything for its truth value. Perl uses practical definitions of
truth that depend on the type of thing you’re evaluating. As it happens, there are
many more kinds of truth than there are of nontruth.

* Strictly speaking, this is not true.

Control Structures 29

30 Chapter 1: An Over view of Perl

Truth in Perl is always evaluated in a scalar context. Other than that, no type coer-
cion is done. So here are the rules for the various kinds of values a scalar can
hold:

1. Any string is true except for "" and "0".

2. Any number is true except for 0.

3. Any refer ence is true.

4. Any undefined value is false.

Actually, the last two rules can be derived from the first two. Any refer ence
(rule 3) would point to something with an address and would evaluate to a num-
ber or string containing that address, which is never 0 because it’s always defined.
And any undefined value (rule 4) would always evaluate to 0 or the null string.

And in a way, you can derive rule 2 from rule 1 if you pretend that everything is a
string. Again, no string coercion is actually done to evaluate truth, but if the string
coercion wer e done, then any numeric value of 0 would simply turn into the string
"0" and be false. Any other number would not turn into the string "0", and so
would be true. Let’s look at some examples so we can understand this better:

0 # would become the string "0", so false.
1 # would become the string "1", so true.
10 - 10 # 10 minus 10 is 0, would convert to string "0", so false.
0.00 # equals 0, would convert to string "0", so false.
"0" # is the string "0", so false.
"" # is a null string, so false.
"0.00" # is the string "0.00", neither "" nor "0", so true!
"0.00" + 0 # would become the number 0 (coerced by the +), so false.
\$a # is a reference to $a, so true, even if $a is false.
undef() # is a function returning the undefined value, so false.

Since we mumbled something earlier about truth being evaluated in a scalar con-
text, you might be wondering what the truth value of a list is. Well, the simple fact
is, none of the operations in Perl will retur n a list in a scalar context. They’ll all
notice they’re in a scalar context and retur n a scalar value instead, and then you
apply the rules of truth to that scalar. So ther e’s no problem, as long as you can
figur e out what any given operator will retur n in a scalar context. As it happens,
both arrays and hashes retur n scalar values that conveniently happen to be true if
the array or hash contains any elements. More on that later.

The if and unless statements

We saw earlier how a logical operator could function as a conditional. A slightly
mor e complex form of the logical operators is the if statement. The if statement
evaluates a truth condition (that is, a Boolean expression) and executes a block if
the condition is true:

if ($debug_level > 0) {
Something has gone wrong. Tell the user.
print "Debug: Danger, Will Robinson, danger!\n";
print "Debug: Answer was ’54’, expected ’42’.\n";

}

A block is one or more statements grouped together by a set of braces. Since the
if statement executes a block, the braces are requir ed by definition. If you know a
language like C, you’ll notice that this is differ ent. Braces are optional in C if you
have a single statement, but the braces are not optional in Perl.

Sometimes, just executing a block when a condition is met isn’t enough. You may
also want to execute a differ ent block if that condition isn’t met. While you could
certainly use two if statements, one the negation of the other, Perl provides a
mor e elegant solution. After the block, if can take an optional second condition,
called else, to be executed only if the truth condition is false. (Veteran computer
pr ogrammers will not be surprised at this point.)

At times you may even have more than two possible choices. In this case, you’ll
want to add an elsif truth condition for the other possible choices. (Veteran com-
puter programmers may well be surprised by the spelling of “elsif”, for which
nobody here is going to apologize. Sorry.)

if ($city eq "New York") {
print "New York is northeast of Washington, D.C.\n";

}
elsif ($city eq "Chicago") {

print "Chicago is northwest of Washington, D.C.\n";
}
elsif ($city eq "Miami") {

print "Miami is south of Washington, D.C. And much warmer!\n";
}
else {

print "I don’t know where $city is, sorry.\n";
}

The if and elsif clauses are each computed in turn, until one is found to be true
or the else condition is reached. When one of the conditions is found to be true,
its block is executed and all remaining branches are skipped. Sometimes, you
don’t want to do anything if the condition is true, only if it is false. Using an empty
if with an else may be messy, and a negated if may be illegible; it sounds weird
in English to say “if not this is true, do something”. In these situations, you would
use the unless statement:

unless ($destination eq $home) {
print "I’m not going home.\n";

}

Ther e is no elsunless though. This is generally construed as a feature.

Control Structures 31

32 Chapter 1: An Over view of Perl

Iterative (Looping) Constructs
Perl has four main iterative statement types: while, until, for, and foreach. These
statements allow a Perl program to repeatedly execute the same code.

The while and until statements

The while and until statements behave just like the if and unless statements,
except that they’ll execute the block repeatedly. That is, they loop. First, the condi-
tional part of the statement is checked. If the condition is met (if it is true for a
while or false for an until), the block of the statement is executed.

while ($tickets_sold < 10000) {
$available = 10000 - $tickets_sold;
print "$available tickets are available. How many would you like: ";
$purchase = <STDIN>;
chomp($purchase);
$tickets_sold += $purchase;

}

Note that if the original condition is never met, the loop will never be entered at
all. For example, if we’ve already sold 10,000 tickets, we might want to have the
next line of the program say something like:

print "This show is sold out, please come back later.\n";

In our Average Example earlier, line 4 reads:

while ($line = <GRADES>) {

This assigns the next line to the variable $line and, as we explained earlier,
retur ns the value of $line so that the condition of the while statement can evalu-
ate $line for truth. You might wonder whether Perl will get a false negative on
blank lines and exit the loop prematur ely. The answer is that it won’t. The reason
is clear if you think about everything we’ve said. The line input operator leaves
the newline on the end of the string, so a blank line has the value "\n". And you
know that "\n" is not one of the canonical false values. So the condition is true,
and the loop continues even on blank lines.

On the other hand, when we finally do reach the end of the file, the line input
operator retur ns the undefined value, which always evaluates to false. And the
loop terminates, just when we wanted it to. There’s no need for an explicit test of
the eof function in Perl, because the input operators are designed to work
smoothly in a conditional context.

In fact, almost everything is designed to work smoothly in a conditional (Boolean)
context. If you mention an array in a scalar context, the length of the array is
retur ned. So you often see command-line arguments processed like this:

while (@ARGV) {
process(shift @ARGV);

}

The shift operator removes one element from the argument list each time
thr ough the loop (and retur ns that element). The loop automatically exits when
array @ARGV is exhausted, that is, when its length goes to 0. And 0 is already false
in Perl. In a sense, the array itself has become “false”.*

The for statement

Another iterative statement is the for loop. The for loop runs exactly like the
while loop, but looks a good deal differ ent. (C programmers will find it very famil-
iar though.)

for ($sold = 0; $sold < 10000; $sold += $purchase) {
$available = 10000 - $sold;
print "$available tickets are available. How many would you like: ";
$purchase = <STDIN>;
chomp($purchase);

}

This for loop takes three expressions within the loop’s parentheses: an expression
to set the initial state of the loop variable, a condition to test the loop variable, and
an expression to modify the state of the loop variable. When a for loop starts, the
initial state is set and the truth condition is checked. If the condition is true, the
block is executed. When the block finishes, the modification expression is exe-
cuted, the truth condition is again checked, and if true, the block is rerun with the
next value. As long as the truth condition remains true, the block and the modifi-
cation expression will continue to be executed. (Note that only the middle expres-
sion is evaluated for its value. The first and third expressions are evaluated only
for their side effects, and the resulting values are thr own away!)

The foreach statement

The last of Perl’s iterative statements is the foreach statement, which is used to
execute the same code for each of a known set of scalars, such as an array:

foreach $user (@users) {
if (-f "$home{$user}/.nexrc") {

print "$user is cool... they use a perl-aware vi!\n";
}

}

* This is how Perl programmers think. So there’s no need to compare 0 to 0 to see if it’s false. Despite
the fact that other languages force you to, don’t go out of your way to write explicit comparisons
like while (@ARGV != 0). That’s just inefficient for both you and the computer. And anyone who has
to maintain your code.

Control Structures 33

34 Chapter 1: An Over view of Perl

Unlike the if and while statements, which provide scalar context to a conditional
expr ession, the foreach statement provides a list context to the expression in
par entheses. So the expression is evaluated to produce a list (not a scalar, even if
ther e’s only one scalar in the list). Then each element of the list is aliased to the
loop variable in turn, and the block of code is executed once for each list element.
Note that the loop variable refers to the element itself, rather than a copy of the
element. Hence, modifying the loop variable also modifies the original array.

You’ll find many more foreach loops in the typical Perl program than for loops,
because it’s very easy in Perl to generate the kinds of lists that foreach wants to
iterate over. One idiom you’ll often see is a loop to iterate over the sorted keys of
a hash:

foreach $key (sort keys %hash) {

In fact, line 9 of our Average Example does precisely that.

Breaking out: next and last

The next and last operators allow you to modify the flow of your loop. It is not
at all uncommon to have a special case; you may want to skip it, or you may want
to quit when you encounter it. For example, if you are dealing with Unix
accounts, you may want to skip the system accounts (like root or lp). The next

operator would allow you to skip to the end of your current loop iteration, and
start the next iteration. The last operator would allow you to skip to the end of
your block, as if your loop’s test condition had retur ned false. This might be useful
if, for example, you are looking for a specific account and want to quit as soon as
you find it.

foreach $user (@users) {
if ($user eq "root" or $user eq "lp") {

next;
}
if ($user eq "special") {

print "Found the special account.\n";
do some processing
last;

}
}

It’s possible to break out of multilevel loops by labeling your loops and specifying
which loop you want to break out of. Together with statement modifiers (another
for m of conditional which we’ll talk about later), this can make for extremely read-
able loop exits (if you happen to think English is readable):

LINE: while ($line = <ARTICLE>) {
last LINE if $line eq "\n"; # stop on first blank line
next LINE if $line =˜ /ˆ#/; # skip comment lines

your ad here
}

You may be saying, “Wait a minute, what’s that funny ˆ# thing there inside the
leaning toothpicks? That doesn’t look much like English.” And you’re right. That’s
a patter n match containing a regular expression (albeit a rather simple one). And
that’s what the next section is about. Perl is the best text processing language in
the world, and regular expressions are at the heart of Perl’s text processing.

Regular Expressions
Regular expressions (a.k.a. regexes, regexps, or REs) are used by many search pro-
grams such as gr ep and findstr, text-munging programs like sed and awk, and edi-
tors like vi and emacs. A regular expression is a way of describing a set of strings
without having to list all the strings in your set.*

Many other computer languages incorporate regular expressions (some of them
even advertise “Perl5 regular expressions”!), but none of these languages integrates
regular expressions into the language the way Perl does. Regular expressions are
used several ways in Perl. First and foremost, they’re used in conditionals to deter-
mine whether a string matches a particular pattern, because in a Boolean context
they retur n true and false. So when you see something that looks like /foo/ in a
conditional, you know you’re looking at an ordinary patter n-matching operator:

if (/Windows 95/) { print "Time to upgrade?\n" }

Second, if you can locate patterns within a string, you can replace them with
something else. So when you see something that looks like s/foo/bar/, you know
it’s asking Perl to substitute “bar” for “foo”, if possible. We call that the substitution
operator. It also happens to retur n true or false depending on whether it suc-
ceeded, but usually it’s evaluated for its side effect:

s/Windows/Linux/;

Finally, patterns can specify not only where something is, but also where it isn’t.
So the split operator uses a regular expression to specify where the data isn’t.
That is, the regular expression defines the separators that delimit the fields of data.
Our Average Example has a couple of trivial examples of this. Lines 5 and 12 each
split strings on the space character in order to retur n a list of words. But you can
split on any separator you can specify with a regular expression:

($good, $bad, $ugly) = split(/,/, "vi,emacs,teco");

* A good source of information on regular expression concepts is Jeffr ey Friedl’s book, Mastering Reg-
ular Expressions (O’Reilly & Associates).

Regular Expressions 35

36 Chapter 1: An Over view of Perl

(Ther e ar e various modifiers you can use in each of these situations to do exotic
things like ignore case when matching alphabetic characters, but these are the
sorts of gory details that we’ll cover later when we get to the gory details.)

The simplest use of regular expressions is to match a literal expression. In the case
of the split above, we matched on a single comma character. But if you match on
several characters in a row, they all have to match sequentially. That is, the pattern
looks for a substring, much as you’d expect. Let’s say we want to show all the
lines of an HTML file that contain HTTP links (as opposed to FTP links). Let’s
imagine we’re working with HTML for the first time, and we’re being a little naïve.
We know that these links will always have “http:” in them somewhere. We could
loop through our file with this:

while ($line = <FILE>) {
if ($line =˜ /http:/) {

print $line;
}

}

Her e, the =˜ (patter n-binding operator) is telling Perl to look for a match of the
regular expression “http:” in the variable $line. If it finds the expression, the
operator retur ns a true value and the block (a print statement) is executed.*

By the way, if you don’t use the =˜ binding operator, Perl will search a default
string instead of $line. It’s like when you say, “Eek! Help me find my contact
lens!” People automatically know to look around near you without your actually
having to tell them that. Likewise, Perl knows that there is a default place to
search for things when you don’t say where to search for them. This default string
is actually a special scalar variable that goes by the odd name of $_. In fact, it’s not
the default just for pattern matching; many operators in Perl default to using the $_

variable, so a veteran Perl programmer would likely write the last example as:

while (<FILE>) {
print if /http:/;

}

(Hmm, another one of those statement modifiers seems to have snuck in there.
Insidious little beasties.)

This stuff is pretty handy, but what if we wanted to find all of the link types, not
just the HTTP links? We could give a list of link types, like “http:”, “ftp:”,
“mailto:”, and so on. But that list could get long, and what would we do when a
new kind of link was added?

* This is very similar to what the Unix command grep ’http:’ file would do. On MS-DOS you could
use the find command, but it doesn’t know how to do more complicated regular expressions. (How-
ever, the misnamed findstr pr ogram of Windows NT does know about regular expressions.)

while (<FILE>) {
print if /http:/;
print if /ftp:/;
print if /mailto:/;
What next?

}

Since regular expressions are descriptive of a set of strings, we can just describe
what we are looking for: a number of alphabetic characters followed by a colon.
In regular expression talk (Regexese?), that would be /[a-zA-Z]+:/, wher e the
brackets define a character class. The a-z and A-Z repr esent all alphabetic charac-
ters (the dash means the range of all characters between the starting and ending
character, inclusive). And the + is a special character that says “one or more of
whatever was before me”. It’s what we call a quantifier, meaning a gizmo that
says how many times something is allowed to repeat. (The slashes aren’t really
part of the regular expression, but rather part of the pattern-match operator. The
slashes are acting like quotes that just happen to contain a regular expression.)

Because certain classes like the alphabetics are so commonly used, Perl defines
shortcuts for them:

Name ASCII Definition Code

Whitespace [\t\n\r\f] \s

Word character [a-zA-Z_0-9] \w

Digit [0-9] \d

Note that these match single characters. A \w will match any single word character,
not an entire word. (Remember that + quantifier? You can say \w+ to match a
word.) Perl also provides the negation of these classes by using the uppercased
character, such as \D for a nondigit character.

We should note that \w is not always equivalent to [a-zA-Z_0-9] (and \d is not
always [0-9]). Some locales define additional alphabetic characters outside the
ASCII sequence, and \w respects them. Newer versions of Perl also know about
Unicode letter and digit properties and treat Unicode characters with those proper-
ties accordingly. (Perl also considers ideographs to be \w characters.)

Ther e is one other very special character class, written with a “.”, that will match
any character whatsoever.* For example, /a./ will match any string containing an
“a” that is not the last character in the string. Thus it will match “at” or “am” or
even “a!”, but not “a”, since there’s nothing after the “a” for the dot to match.
Since it’s searching for the pattern anywher e in the string, it’ll match “oasis” and
“camel”, but not “sheba”. It matches “caravan” on the first “a”. It could match on

* Except that it won’t normally match a newline. When you think about it, a “.” doesn’t normally
match a newline in gr ep (1) either.

Regular Expressions 37

38 Chapter 1: An Over view of Perl

the second “a”, but it stops after it finds the first suitable match, searching from left
to right.

Quantifier s
The characters and character classes we’ve talked about all match single charac-
ters. We mentioned that you could match multiple “word” characters with \w+. The
+ is one kind of quantifier, but there are others. All of them are placed after the
item being quantified.

The most general form of quantifier specifies both the minimum and maximum
number of times an item can match. You put the two numbers in braces, separated
by a comma. For example, if you were trying to match North American phone
numbers, the sequence \d{7,11} would match at least seven digits, but no more
than eleven digits. If you put a single number in the braces, the number specifies
both the minimum and the maximum; that is, the number specifies the exact num-
ber of times the item can match. (All unquantified items have an implicit {1} quan-
tifier.)

If you put the minimum and the comma but omit the maximum, then the maxi-
mum is taken to be infinity. In other words, it will match at least the minimum
number of times, plus as many as it can get after that. For example, \d{7} will
match only the first seven digits (a local North American phone number, for
instance, or the first seven digits of a longer number), while \d{7,} will match any
phone number, even an international one (unless it happens to be shorter than
seven digits). There is no special way of saying “at most” a certain number of
times. Just say .{0,5}, for example, to find at most five arbitrary characters.

Certain combinations of minimum and maximum occur frequently, so Perl defines
special quantifiers for them. We’ve already seen +, which is the same as {1,}, or
“at least one of the preceding item”. There is also *, which is the same as {0,}, or
“zer o or more of the preceding item”, and ?, which is the same as {0,1}, or “zer o
or one of the preceding item” (that is, the preceding item is optional).

You need to be careful of a couple things about quantification. First of all, Perl
quantifiers are by default gr eedy. This means that they will attempt to match as
much as they can as long as the whole pattern still matches. For example, if you
ar e matching /\d+/ against “1234567890”, it will match the entire string. This is
something to watch out for especially when you are using “.”, any character.
Often, someone will have a string like:

larry:JYHtPh0./NJTU:100:10:Larry Wall:/home/larry:/bin/tcsh

and will try to match “larry:” with /.+:/. However, since the + quantifier is
gr eedy, this pattern will match everything up to and including “/home/larry:”,

because it matches as much as possible before the last colon, including all the
other colons. Sometimes you can avoid this by using a negated character class,
that is, by saying /[ˆ:]+:/, which says to match one or more noncolon characters
(as many as possible), up to the first colon. It’s that little caret in there that negates
the Boolean sense of the character class.* The other point to be careful about is
that regular expressions will try to match as early as possible. This even takes
pr ecedence over being greedy. Since scanning happens left-to-right, this means
that the pattern will match as far left as possible, even if there is some other place
wher e it could match longer. (Regular expressions may be greedy, but they aren’t
into delayed gratification.) For example, suppose you’re using the substitution
command (s///) on the default string (variable $_, that is), and you want to
remove a string of x’s from the middle of the string. If you say:

$_ = "fred xxxxxxx barney";
s/x*//;

it will have absolutely no effect! This is because the x* (meaning zero or mor e “x”
characters) will be able to match the “nothing” at the beginning of the string, since
the null string happens to be zero characters wide and there’s a null string just sit-
ting there plain as day before the “f” of “fred”.†

Ther e’s one other thing you need to know. By default, quantifiers apply to a single
pr eceding character, so /bam{2}/ will match “bamm” but not “bambam”. To apply a
quantifier to more than one character, use parentheses. So to match “bambam”, use
the pattern /(bam){2}/.

Minimal Matching
If you were using an ancient version of Perl and you didn’t want greedy matching,
you had to use a negated character class. (And really, you were still getting greedy
matching of a constrained variety.)

In modern versions of Perl, you can force nongreedy, minimal matching by plac-
ing a question mark after any quantifier. Our same username match would now be
/.*?:/. That .*? will now try to match as few characters as possible, rather than as
many as possible, so it stops at the first colon rather than at the last.

* Sorry, we didn’t pick that notation, so don’t blame us. That’s just how negated character classes are
customarily written in Unix culture.

† Don’t feel bad. Even the authors get caught by this from time to time.

Regular Expressions 39

40 Chapter 1: An Over view of Perl

Nailing Things Down
Whenever you try to match a pattern, it’s going to try to match in every location
till it finds a match. An anchor allows you to restrict where the pattern can match.
Essentially, an anchor is something that matches a “nothing”, but a special kind of
nothing that depends on its surroundings. You could also call it a rule, or a con-
straint, or an assertion. Whatever you care to call it, it tries to match something of
zer o width, and either succeeds or fails. (Failure mer ely means that the pattern
can’t match that particular way. The pattern will go on trying to match some other
way, if there are any other ways left to try.)

The special symbol \b matches at a word boundary, which is defined as the “noth-
ing” between a word character (\w) and a nonword character (\W), in either order.
(The characters that don’t exist off the beginning and end of your string are con-
sider ed to be nonword characters.) For example,

/\bFred\b/

would match “Fred” in both “The Great Fred” and “Fred the Great”, but not in
“Frederick the Great” because the “d” in “Frederick” is not followed by a non-
word character.

In a similar vein, there are also anchors for the beginning of the string and the end
of the string. If it is the first character of a pattern, the caret (ˆ) matches the “noth-
ing” at the beginning of the string. Therefor e, the pattern /ˆFred/ would match
“Fred” in “Fr ederick the Great” but not in “The Great Fred”, whereas /Fredˆ/

wouldn’t match either. (In fact, it doesn’t even make much sense.) The dollar sign
($) works like the caret, except that it matches the “nothing” at the end of the
string instead of the beginning.*

So now you can probably figure out that when we said:

next LINE if $line =˜ /ˆ#/;

we meant “Go to the next iteration of LINE loop if this line happens to begin with
a # character.”

Earlier we said that the sequence \d{7,11} would match a number from seven to
eleven digits long. While strictly true, the statement is misleading: when you use
that sequence within a real pattern match operator such as /\d{7,11}/, it does not
pr eclude ther e being extra unmatched digits after the 11 matched digits! You often
need to anchor quantified patterns on either or both ends to get what you expect.

* This is a bit oversimplified, since we’re assuming here that your string contains no newlines; ˆ and $
ar e actually anchors for the beginnings and endings of lines rather than strings. We’ll try to straighten
this all out in Chapter 5, Patter n Matching (to the extent that it can be straightened out).

Backreferences
We mentioned earlier that you can use parentheses to group things for quantifiers,
but you can also use parentheses to remember bits and pieces of what you
matched. A pair of parentheses around a part of a regular expression causes what-
ever was matched by that part to be remember ed for later use. It doesn’t change
what the part matches, so /\d+/ and /(\d+)/ will still match as many digits as pos-
sible, but in the latter case they will be remember ed in a special variable to be
backr efer enced later.

How you refer back to the remember ed part of the string depends on where you
want to do it from. Within the same regular expression, you use a backslash fol-
lowed by an integer. The integer corresponding to a given pair of parentheses is
deter mined by counting left parentheses from the beginning of the pattern, starting
with one. So for example, to match something similar to an HTML tag like
“Bold”, you might use /<(.*?)>.*?<\/\1>/. This forces the two parts of the
patter n to match the exact same string, such as the “B” in this example.

Outside the regular expression itself, such as in the replacement part of a substitu-
tion, you use a $ followed by an integer, that is, a normal scalar variable named by
the integer. So, if you wanted to swap the first two words of a string, for example,
you could use:

s/(\S+)\s+(\S+)/$2 $1/

The right side of the substitution (between the second and third slashes) is mostly
just a funny kind of double-quoted string, which is why you can interpolate vari-
ables there, including backrefer ence variables. This is a powerful concept: interpo-
lation (under controlled circumstances) is one of the reasons Perl is a good text-
pr ocessing language. The other reason is the pattern matching, of course. Regular
expr essions ar e good for picking things apart, and interpolation is good for putting
things back together again. Perhaps there’s hope for Humpty Dumpty after all.

List Processing
Much earlier in this chapter, we mentioned that Perl has two main contexts, scalar
context (for dealing with singular things) and list context (for dealing with plural
things). Many of the traditional operators we’ve described so far have been strictly
scalar in their operation. They always take singular arguments (or pairs of singular
arguments for binary operators) and always produce a singular result, even in list
context. So if you write this:

@array = (1 + 2, 3 - 4, 5 * 6, 7 / 8);

List Processing 41

42 Chapter 1: An Over view of Perl

you know that the list on the right side contains exactly four values, because the
ordinary math operators always produce scalar values, even in the list context pro-
vided by the assignment to an array.

However, other Perl operators can produce either a scalar or a list value, depend-
ing on their context. They just “know” whether a scalar or a list is expected of
them. But how will you know that? It turns out to be pretty easy to figure out,
once you get your mind around a few key concepts.

First, list context has to be provided by something in the “surroundings”. In the
pr evious example, the list assignment provides it. Earlier we saw that the list of a
foreach loop provides it. The print operator also provides it. But you don’t have
to learn these one by one.

If you look at the various syntax summaries scattered throughout the rest of the
book, you’ll see various operators that are defined to take a LIST as an argument.
Those are the operators that pr ovide a list context. Throughout this book, LIST is
used as a specific technical term to mean “a syntactic construct that provides a list
context”. For example, if you look up sort, you’ll find the syntax summary:

sort LIST

That means that sort pr ovides a list context to its arguments.

Second, at compile time (that is, while Perl is parsing your program and translating
to internal opcodes), any operator that takes a LIST pr ovides a list context to each
syntactic element of that LIST. So every top-level operator or entity in the LIST

knows at compile time that it’s supposed to produce the best list it knows how to
pr oduce. This means that if you say:

sort @dudes, @chicks, other();

then each of @dudes, @chicks, and other() knows at compile time that it’s sup-
posed to produce a list value rather than a scalar value. So the compiler generates
inter nal opcodes that reflect this.

Later, at run time (when the internal opcodes are actually interpreted), each of
those LIST elements produces its list in turn, and then (this is important) all the
separate lists are joined together, end to end, into a single list. And that squashed-
flat, one-dimensional list is what is finally handed off to the function that wanted
the LIST in the first place. So if @dudes contains (Fred,Barney), @chicks contains
(Wilma,Betty), and the other() function retur ns the single-element list (Dino),
then the LIST that sort sees is:

(Fred,Barney,Wilma,Betty,Dino)

and the LIST that sort retur ns is:

(Barney,Betty,Dino,Fred,Wilma)

Some operators produce lists (like keys), while some consume them (like print),
and others transform lists into other lists (like sort). Operators in the last category
can be considered filters, except that, unlike in the shell, the flow of data is from
right to left, since list operators operate on arguments passed in from the right.
You can stack up several list operators in a row:

print reverse sort map {lc} keys %hash;

That takes the keys of %hash and retur ns them to the map function, which lower-
cases all the keys by applying the lc operator to each of them, and passes them to
the sort function, which sorts them, and passes them to the reverse function,
which reverses the order of the list elements, and passes them to the print func-
tion, which prints them.

As you can see, that’s much easier to describe in Perl than in English.

Ther e ar e many other ways in which list processing produces more natural code.
We can’t enumerate all the ways here, but for an example, let’s go back to regular
expr essions for a moment. We talked about using a pattern in a scalar context to
see whether it matched, but if instead you use a pattern in a list context, it does
something else: it pulls out all the backrefer ences as a list. Suppose you’re search-
ing through a log file or a mailbox, and you want to parse a string containing a
time of the form “12:59:59 am”. You might say this:

($hour, $min, $sec, $ampm) = /(\d+):(\d+):(\d+) *(\w+)/;

That’s a convenient way to set several variables simultaneously. But you could just
as easily say

@hmsa = /(\d+):(\d+):(\d+) *(\w+)/;

and put all four values into one array. Oddly, by decoupling the power of regular
expr essions fr om the power of Perl expressions, list context increases the power
of the language. We don’t often admit it, but Perl is actually an orthogonal lan-
guage in addition to being a diagonal language. Have your cake, and eat it too.

What You Don’t Know Won’t Hur t You
(Much)
Finally, allow us to retur n once more to the concept of Perl as a natural language.
Speakers of a natural language are allowed to have differing skill levels, to speak

What You Don’t Know Won’t Hur t You (Much) 43

44 Chapter 1: An Over view of Perl

dif ferent subsets of the language, to learn as they go, and generally, to put the lan-
guage to good use before they know the whole language. You don’t know all of
Perl yet, just as you don’t know all of English. But that’s Officially Okay in Perl
cultur e. You can work with Perl usefully, even though we haven’t even told you
how to write your own subroutines yet. We’ve scarcely begun to explain how to
view Perl as a system management language, or a rapid prototyping language, or a
networking language, or an object-oriented language. We could write entire chap-
ters about some of these things. (Come to think of it, we already did.)

But in the end, you must create your own view of Perl. It’s your privilege as an
artist to inflict the pain of creativity on yourself. We can teach you how we paint,
but we can’t teach you how you paint. There’s More Than One Way To Do It.

Have the appropriate amount of fun.

2
Bits and Pieces

We’r e going to start small, so this chapter is about the elements of Perl.

Since we’re starting small, the progr ession thr ough the next several chapters is
necessarily from small to large. That is, we take a bottom-up approach, beginning
with the smallest components of Perl programs and building them into more elab-
orate structures, much like molecules are built out of atoms. The disadvantage of
this approach is that you don’t necessarily get the Big Picture befor e getting lost in
a welter of details. The advantage is that you can understand the examples as we
go along. (If you’re a top-down person, just turn the book over and read the chap-
ters backward.)

Each chapter does build on the preceding chapter (or the subsequent chapter, if
you’r e reading backward), so you’ll need to be careful if you’re the sort of person
who skips around.

You’r e certainly welcome to peek at the refer ence materials toward the end of the
book as we go along. (That doesn’t count as skipping around.) In particular, any
isolated word in typewriter font is likely to be found in Chapter 29, Functions.
And although we’ve tried to stay operating-system neutral, if you are unfamiliar
with Unix terminology and run into a word that doesn’t seem to mean what you
think it ought to mean, you should check whether the word is in the Glossary. If
the Glossary doesn’t work, the index probably will.

Atoms
Although there are various invisible things going on behind the scenes that we’ll
explain presently, the smallest things you generally work with in Perl are

47

48 Chapter 2: Bits and Pieces

individual characters. And we do mean characters; historically, Perl freely confused
bytes with characters and characters with bytes, but in this new era of global net-
working, we must be careful to distinguish the two.

Perl may, of course, be written entirely in the 7-bit ASCII character set. Perl also
allows you to write in any 8-bit or 16-bit character set, whether it’s a national char-
acter set or some other legacy character set. However, if you choose to write in
one of these older, non-ASCII character sets, you may use non-ASCII characters
only within string literals. You are responsible for making sure that the semantics
of your program are consistent with the particular national character set you’ve
chosen. For instance, if you’re using a 16-bit encoding for an Asian national char-
acter set, keep in mind that Perl will generally think of each of your characters as
two bytes, not as one character.

As described in Chapter 15, Unicode, we’ve recently added support for Unicode to
Perl.* This support is pervasive throughout the language: you can use Unicode
characters in identifiers (variable names and such) as well as within literal strings.
When you are using Unicode, you don’t need to worry about how many bits or
bytes it takes to repr esent a character. Perl just pretends all Unicode characters are
the same size (that is, size 1), even though any given character might be repr e-
sented by multiple bytes internally. Perl normally repr esents Unicode internally as
UTF-8, a variable-length encoding. (For instance, a Unicode smiley character,
U-263A, would be repr esented inter nally as a three-byte sequence.)

If you’ll let us drive our analogy of the physical elements a bit further, characters
ar e atomic in the same sense as the individual atoms of the various elements. Yes,
they’r e composed of smaller particles known as bits and bytes, but if you break a
character apart (in a character accelerator, no doubt), the individual bits and bytes
lose the distinguishing chemical properties of the character as a whole. Just as
neutr ons ar e an implementation detail of the U-238 atom, so too bytes are an
implementation detail of the U-263A character.

So we’ll be careful to say “characters” when we mean characters, and “bytes”
when we mean bytes. But we don’t mean to scare you — you can still do the good
old-fashioned byte processing easily enough. All you have to do is tell Perl that
you still want to think of bytes as characters. You can do that with a use bytes

pragma (see Chapter 31, Pragmatic Modules). But even if you don’t do that, Perl
will still do a pretty good job of keeping small characters in 8 bits when you
expect it to.

So don’t sweat the small stuff. Let’s move on to bigger and better things.

* As excited as we are about Unicode support, most of our examples will be in ASCII, since not every-
one has a decent Unicode editor yet.

Molecules
Perl is a fr ee-form language, but that doesn’t mean that Perl is totally free of form.
As computer folks usually use the term, a free-for m language is one in which you
can put spaces, tabs, and newlines anywhere you like—except where you can’t.

One obvious place you can’t put a whitespace character is in the middle of a
token. A token is what we call a sequence of characters with a unit of meaning,
much like a simple word in natural language. But unlike the typical word, a token
might contain other characters besides letters, just as long as they hang together to
for m a unit of meaning. (In that sense, they’re mor e like molecules, which don’t
have to be composed of only one particular kind of atom.) For example, numbers
and mathematical operators are consider ed tokens. An identifier is a token that
starts with a letter or underscore and contains only letters, digits, and underscores.
A token may not contain whitespace characters because this would split the token
into two tokens, just as a space in an English word turns it into two words.*

Although whitespace is allowed between any two tokens, whitespace is requir ed
only between tokens that would otherwise be confused as a single token. All
whitespace is equivalent for this purpose. Newlines are distinguished from spaces
and tabs only within quoted strings, formats, and certain line-oriented forms of
quoting. Specifically, newlines do not terminate statements as they do in certain
other languages (such as FORTRAN or Python). Statements in Perl are ter minated
with semicolons, just as they are in C and its various derivatives.

Unicode whitespace characters are allowed in a Unicode Perl program, but you
need to be careful. If you use the special Unicode paragraph and line separators,
be aware that Perl may count line numbers differ ently than your text editor does,
so error messages may be more dif ficult to interpret. It’s best to stick with good
old-fashioned newlines.

Tokens are recognized greedily; if at a particular point the Perl parser has a choice
between recognizing a short token or a long token, it will choose the long one. If
you meant it to be two tokens, just insert some whitespace between the tokens.
(We tend to put extra space around most operators anyway, just for readability.)

Comments are indicated by the # character and extend from there thr ough the end
of the line. A comment counts as whitespace for separating tokens. The Perl lan-
guage attaches no special meaning to anything you might put into a comment.†

* The astute reader will point out that literal strings may contain whitespace characters. But strings can
get away with it only because they have quotes on both ends to keep the spaces from leaking out.

† Actually, that’s a small fib. The Perl parser does look for command-line switches on an initial #! line
(see Chapter 19, The Command-Line Interface). It can also interpret the line number directives that
various prepr ocessors pr oduce (see the section “Generating Perl in Other Languages” in Chapter 24,
Common Practices).

Molecules 49

50 Chapter 2: Bits and Pieces

One other oddity is that if a line begins with = anywher e a statement would be
legal, Perl ignores everything from that line down to the next line that begins with
=cut. The ignored text is assumed to be pod, or “plain old documentation”. The
Perl distribution has programs that will extract pod commentary from Perl modules
and turn it into flat text, manpages, LATEX, HTML, or (someday soon) XML docu-
ments. In a complementary fashion, the Perl parser extracts the Perl code from
Perl modules and ignores the pod. So you may consider this an alternate, multiline
for m of commenting. You may also consider it completely nuts, but Perl modules
documented this way never lose track of their documentation. See Chapter 26,
Plain Old Documentation, for details on pod, including a description of how to
ef fect multiline comments in Perl.

But don’t look down on the normal comment character. Ther e’s something com-
forting about the visual effect of a nice row of # characters down the left side of a
multiline comment. It immediately tells your eyes: “This is not code.” You’ll note
that even in languages with a multiline quoting mechanisms like C, people often
put a row of * characters down the left side of their comments anyway. Appear-
ances are often more important than they appear.

In Perl, just as in chemistry and in language, you can build larger and larger struc-
tur es out of the smaller ones. We alr eady mentioned the statement ; it’s just a
sequence of tokens that make up a command, that is, a sentence in the imperative
mood. You can combine a sequence of statements into a block that is delimited by
braces (also known affectionately as “curlies” by people who confuse braces with
suspenders.) Blocks can in turn be combined into larger blocks. Some blocks func-
tion as subr outines, which can be combined into modules, which can be com-
bined into pr ograms. But we’re getting ahead of ourselves—those are subjects for
coming chapters. Let’s build some more tokens out of characters.

Built-in Data Types
Befor e we start talking about various kinds of tokens you can build from charac-
ters, we need a few more abstractions. To be specific, we need three data types.

Computer languages vary in how many and what kinds of data types they provide.
Unlike some commonly used languages that provide many confusing types for
similar kinds of values, Perl provides just a few built-in data types. Consider C, in
which you might run into char, short, int, long, long long, bool, wchar_t, size_t,
off_t, regex_t, uid_t, u_longlong_t, pthread_key_t, fp_exception_field_type, and
so on. That’s just some of the integer types! Then there are floating-point numbers,
and pointers, and strings.

All these complicated types correspond to just one type in Perl: the scalar. (Usually
Perl’s simple data types are all you need, but if not, you’re free to define fancy
dynamic types using Perl’s object-oriented features — see Chapter 12, Objects.)
Perl’s three basic data types are: scalars, arrays of scalars, and hashes of scalars
(also known as associative arrays). Some people may prefer to call these data
structur es rather than types. That’s okay.

Scalars are the fundamental type from which more complicated structures are
built. A scalar stores a single, simple value—typically a string or a number. Ele-
ments of this simple type may be combined into either of the two aggregate types.
An array is an ordered list of scalars that you access with an integer subscript (or
index). All indexing in Perl starts at 0. Unlike many programming languages, how-
ever, Perl treats negative subscripts as valid: instead of counting from the begin-
ning, negative subscripts count back from the end of whatever it is you’re
indexing into. (This applies to various substring and sublist operations as well as
to regular subscripting.) A hash, on the other hand, is an unordered set of
key/value pairs that you access using strings (the keys) as subscripts to look up the
scalars (the values) corr esponding to a given key. Variables are always one of
these three types. (Other than variables, Perl also has other abstractions that you
can think of as data types, such as filehandles, directory handles, formats, subrou-
tines, symbol tables, and symbol table entries.)

Abstractions are wonder ful, and we’ll collect more of them as we go along, but
they’r e also useless in a way. You can’t do anything with an abstraction directly.
That’s why computer languages have syntax. We need to introduce you to the var-
ious kinds of syntactic terms you can use to pull your abstract data into expres-
sions. We like to use the technical term ter m when we want to talk in terms of
these syntactic units. (Hmm, this could get terminally confusing. Just remember
how your math teacher used to talk about the ter ms of an equation, and you
won’t go terribly wrong.)

Just like the terms in a math equation, the purpose of most terms in Perl is to pro-
duce values for operators like addition and multiplication to operate on. Unlike in
a math equation, however, Perl has to do something with the values it calculates,
not just think with a pencil in its hand about whether the two sides of the equa-
tion are equal. One of the most common things to do with a value is to store it
somewher e:

$x = $y;

That’s an example of the assignment operator (not the numeric equality operator,
which is spelled == in Perl). The assignment gets the value from $y and puts it into
$x. Notice that we aren’t using the term $x for its value; we’re using it for its

Built-in Data Types 51

52 Chapter 2: Bits and Pieces

location. (The old value of $x gets clobbered by the assignment.) We say that $x is
an lvalue, meaning it’s the sort of storage location we can use on the left side of
an assignment. We say that $y is an rvalue because it’s used on the right side.

Ther e’s also a third kind of value, called a temporary value, that you need to
understand if you want to know what Perl is really doing with your lvalues and
rvalues. If we do some actual math and say:

$x = $y + 1;

Perl takes the rvalue $y and adds the rvalue 1 to it, which produces a temporary
value that is eventually assigned to the lvalue $x. It may help you to visualize what
is going on if we tell you that Perl stores these temporary values in an internal
structur e called a stack.* The terms of an expression (the ones we’re talking about
in this chapter) tend to push values onto the stack, while the operators of the
expr ession (which we’ll discuss in the next chapter) tend to pop them back off the
stack, perhaps leaving another temporary result on the stack for the next operator
to work with. The pushes and pops all balance out—by the time the expression is
done, the stack is entirely empty (or as empty as it was when we started). More
about temporary values later.

Some terms can only be rvalues, such as the 1 above, while others can serve as
either lvalues or rvalues. In particular, as the assignments above illustrate, a vari-
able may function as either. And that’s what our next section is about.

Variables
Not surprisingly, there are thr ee variable types corresponding to the three abstract
data types we mentioned earlier. Each of these is prefixed by what we call a
funny character.† Scalar variables are always named with an initial $, even when
referring to a scalar that is part of an array or hash. It works a bit like the English
word “the”. Thus, we have:

Constr uct Meaning

$days Simple scalar value $days

$days[28] 29th element of array @days

$days{’Feb’} “Feb” value from hash %days

Note that we can use the same name for $days, @days, and %days without Perl get-
ting confused.

* A stack works just like one of those spring-loaded plate dispensers you see in a buffet restaurant —
you can push plates onto the top of the stack, or you can pop them off again (to use the Comp. Sci.
ver nacular).

† That’s another technical term in computer science. (And if it wasn’t before, it is now.)

Ther e ar e other, fancier scalar terms, useful in specialized situations that we won’t
go into yet. They look like this:

Constr uct Meaning

${days} Same as $days but unambiguous before alphanumerics
$Dog::days Dif ferent $days variable, in the Dog package
$#days Last index of array @days

$days->[28] 29th element of array pointed to by refer ence $days

$days[0][2] Multidimensional array
$days{2000}{’Feb’} Multidimensional hash
$days{2000,’Feb’} Multidimensional hash emulation

Entir e arrays (or slices of arrays and hashes) are named with the funny character @,
which works much like the words “these” or “those”:

Constr uct Meaning

@days Array containing ($days[0], $days[1],... $days[n])

@days[3, 4, 5] Array slice containing ($days[3], $days[4], $days[5])

@days[3..5] Array slice containing ($days[3], $days[4], $days[5])

@days{’Jan’,’Feb’} Hash slice containing ($days{’Jan’},$days{’Feb’})

Entir e hashes are named by %:

Constr uct Meaning

%days (Jan => 31, Feb => $leap ? 29 : 28, ...)

Any of these constructs may also serve as an lvalue, specifying a location you
could assign a value to. With arrays, hashes, and slices of arrays or hashes, the
lvalue provides multiple locations to assign to, so you can assign multiple values
to them all at once:

@days = 1 .. 7;

Names
We’ve talked about storing values in variables, but the variables themselves (their
names and their associated definitions) also need to be stored somewhere. In the
abstract, these places are known as namespaces. Perl provides two kinds of
namespaces, which are often called symbol tables and lexical scopes.* You may
have an arbitrary number of symbol tables or lexical scopes, but every name you

* We also call them packages and pads when we’re talking about Perl’s specific implementations, but
those longer monikers are the generic industry terms, so we’re pretty much stuck with them. Sorry.

Names 53

54 Chapter 2: Bits and Pieces

define gets stored in one or the other. We’ll explain both kinds of namespaces as
we go along. For now we’ll just say that symbol tables are global hashes that hap-
pen to contain symbol table entries for global variables (including the hashes for
other symbol tables). In contrast, lexical scopes are unnamed scratchpads that
don’t live in any symbol table, but are attached to a block of code in your pro-
gram. They contain variables that can only be seen by the block. (That’s what we
mean by a scope). The lexical part just means, “having to do with text”, which is
not at all what a lexicographer would mean by it. Don’t blame us.)

Within any given namespace (whether global or lexical), every variable type has
its own subnamespace, determined by the funny character. You can, without fear
of conflict, use the same name for a scalar variable, an array, or a hash (or, for that
matter, a filehandle, a subroutine name, a label, or your pet llama). This means
that $foo and @foo ar e two differ ent variables. Together with the previous rules, it
also means that $foo[1] is an element of @foo totally unrelated to the scalar vari-
able $foo. This may seem a bit weird, but that’s okay, because it is weird.

Subr outines may be named with an initial &, although the funny character is
optional when calling the subroutine. Subroutines aren’t generally considered lval-
ues, though recent versions of Perl allow you to retur n an lvalue from a subrou-
tine and assign to that, so it can look as though you’re assigning to the subroutine.

Sometimes you just want a name for “everything named foo” regardless of its
funny character. So symbol table entries can be named with an initial *, wher e the
asterisk stands for all the other funny characters. These are called typeglobs, and
they have several uses. They can also function as lvalues. Assignment to typeglobs
is how Perl implements importing of symbols from one symbol table to another.
Mor e about that later too.

Like most computer languages, Perl has a list of reserved words that it recognizes
as special keywords. However, because variable names always start with a funny
character, reserved words don’t actually conflict with variable names. Certain other
kinds of names don’t have funny characters, though, such as labels and filehan-
dles. With these, you do have to worry (a little) about conflicting with reserved
words. Since most reserved words are entir ely lowercase, we recommend that you
pick label and filehandle names that contain uppercase letters. For example, if you
say open(LOG, logfile) rather than the regr ettable open(log, "logfile"), you
won’t confuse Perl into thinking you’re talking about the built-in log operator
(which does logarithms, not tree trunks). Using uppercase filehandles also
impr oves readability* and protects you from conflict with reserved words we might
add in the future. For similar reasons, user-defined modules are typically named

* One of the design principles of Perl is that differ ent things should look differ ent. Contrast this with
languages that try to force differ ent things to look the same, to the detriment of readability.

with initial capitals so that they’ll look differ ent fr om the built-in modules known
as pragmas, which are named in all lowercase. And when we get to object-
oriented programming, you’ll notice that class names are usually capitalized for the
same reason.

As you might deduce from the preceding paragraph, case is significant in identi-
fiers —FOO, Foo, and foo ar e all differ ent names in Perl. Identifiers start with a letter
or underscore and may be of any length (for values of “any” ranging between 1
and 251, inclusive) and may contain letters, digits, and underscores. This includes
Unicode letters and digits. Unicode ideographs also count as letters, but we don’t
recommend you use them unless you can read them. See Chapter 15.

Names that follow funny characters don’t have to be identifiers, strictly speaking.
They can start with a digit, in which case they may only contain more digits, as in
$123. Names that start with anything other than a letter, digit, or underscore are
(usually) limited to that one character (like $? or $$), and generally have a prede-
fined significance to Perl. For example, just as in the Bourne shell, $$ is the cur-
rent process ID and $? the exit status of your last child process.

As of version 5.6, Perl also has an extensible syntax for internal variables names.
Any variable of the form ${ˆNAME} is a special variable reserved for use by Perl. All
these non-identifier names are forced to be in the main symbol table. See
Chapter 28, Special Names, for some examples.

It’s tempting to think of identifiers and names as the same thing, but when we say
name, we usually mean a fully qualified name, that is, a name that says which
symbol table it lives in. Such names may be formed of a sequence of identifiers
separated by the :: token:

$Santa::Helper::Reindeer::Rudolph::nose

That works just like the directories and filenames in a pathname:

/Santa/Helper/Reindeer/Rudolph/nose

In the Perl version of that notion, all the leading identifiers are the names of
nested symbol tables, and the last identifier is the name of the variable within the
most deeply nested symbol table. For instance, in the variable above, the symbol
table is named Santa::Helper::Reindeer::Rudolph::, and the actual variable
within that symbol table is $nose. (The value of that variable is, of course, “red”.)

A symbol table in Perl is also known as a package, so these are often called pack-
age variables. Package variables are nominally private to the package in which
they exist, but are global in the sense that the packages themselves are global.
That is, anyone can name the package to get at the variable; it’s just hard to do

Names 55

56 Chapter 2: Bits and Pieces

this by accident. For instance, any program that mentions $Dog::bert is asking for
the $bert variable within the Dog:: package. That is an entirely separate variable
fr om $Cat::bert. See Chapter 10, Packages.

Variables attached to a lexical scope are not in any package, so lexically scoped
variable names may not contain the :: sequence. (Lexically scoped variables are
declar ed with a my declaration.)

Name Lookups
So the question is, what’s in a name? How does Perl figure out what you mean if
you just say $bert? Glad you asked. Here are the rules the Perl parser uses while
trying to understand an unqualified name in context:

1. First, Perl looks earlier in the immediately enclosing block to see whether the
variable is declared in that same block with a my (or our) declaration (see
those entries in Chapter 29, as well as the section “Scoped Declarations” in
Chapter 4, Statements and Declarations). If there is a my declaration, the vari-
able is lexically scoped and doesn’t exist in any package—it exists only in that
lexical scope (that is, in the block’s scratchpad). Because lexical scopes are
unnamed, nobody outside that chunk of program can even name your
variable.*

2. If that doesn’t work, Perl looks for the block enclosing that block and tries
again for a lexically scoped variable in the larger block. Again, if Perl finds
one, the variable belongs only to the lexical scope from the point of declara-
tion through the end of the block in which it is declared — including any
nested blocks, like the one we just came from in step 1. If Perl doesn’t find a
declaration, it repeats step 2 until it runs out of enclosing blocks.

3. When Perl runs out of enclosing blocks, it examines the whole compilation
unit for declarations as if it were a block. (A compilation unit is just the entire
curr ent file, or the string currently being compiled by an eval STRING opera-
tor.) If the compilation unit is a file, that’s the largest possible lexical scope,
and Perl will look no further for lexically scoped variables, so we go to step 4.
If the compilation unit is a string, however, things get fancier. A string com-
piled as Perl code at run time pretends that it’s a block within the lexical
scope from which the eval STRING is running, even though the actual bound-
aries of the lexical scope are the limits of the string containing the code rather

* If you use an our declaration instead of a my declaration, this only declares a lexically scoped alias (a
nickname) for a package variable, rather than declaring a true lexically scoped variable the way my
does. Outside code can still get at the real variable through its package, but in all other respects an
our declaration behaves like a my declaration. This is handy when you’re trying to limit your own use
of globals with the use strict pragma (see the strict pragma in Chapter 31). But you should always
pr efer my if you don’t need a global.

than any real braces. So if Perl doesn’t find the variable in the lexical scope of
the string, we pretend that the eval STRING is a block and go back to step 2,
only this time starting with the lexical scope of the eval STRING operator
instead of the lexical scope inside its string.

4. If we get here, it means Perl didn’t find any declaration (either my or our) for
your variable. Perl now gives up on lexically scoped variables and assumes
that your variable is a package variable. If the strict pragma is in effect, you
will now get an error, unless the variable is one of Perl’s predefined variables
or has been imported into the current package. This is because that pragma
disallows the use of unqualified global names. However, we aren’t done with
lexical scopes just yet. Perl does the same search of lexical scopes as it did in
steps 1 through 3, only this time it searches for package declarations instead of
variable declarations. If it finds such a package declaration, it knows that the
curr ent code is being compiled for the package in question and prepends the
declar ed package name to the front of the variable.

5. If ther e is no package declaration in any surrounding lexical scope, Perl looks
for the variable name in the unnamed top-level package, which happens to
have the name main when it isn’t going around without a name tag. So in the
absence of any declarations to the contrary, $bert means the same as $::bert,
which means the same as $main::bert. (But because main is just another pack-
age in the top-level unnamed package, it’s also $::main::bert, and
$main::main::bert, $::main::main::bert and so on. This could be construed
as a useless fact. But see “Symbol Tables” in Chapter 10.)

Ther e ar e several implications to these search rules that might not be obvious, so
we’ll make them explicit.

• Because the file is the largest possible lexical scope, a lexically scoped vari-
able can never be visible outside the file in which it’s declared. File scopes do
not nest.

• Any particular bit of Perl is compiled in at least one lexical scope and exactly
one package scope. The mandatory lexical scope is, of course, the file itself.
Additional lexical scopes are provided by each enclosing block. All Perl code
is also compiled in the scope of exactly one package, and although the decla-
ration of which package you’re in is lexically scoped, packages themselves are
not lexically constrained. That is, they’re global.

• An unqualified variable name may therefor e be searched for in many lexical
scopes, but only one package scope, whichever one is currently in effect
(which is lexically determined).

Names 57

58 Chapter 2: Bits and Pieces

• A variable name may only attach to one scope. Although at least two differ ent
scopes (lexical and package) are active everywhere in your program, a vari-
able can only exist in one of those scopes.

• An unqualified variable name can therefor e resolve to only a single storage
location, either in the first enclosing lexical scope in which it is declared, or
else in the current package—but not both. The search stops as soon as that
storage location is resolved, and any storage location that it would have found
had the search continued is effectively hidden.

• The location of the typical variable name can be completely determined at
compile time.

Now that you know all about how the Perl compiler deals with names, you some-
times have the problem that you don’t know the name of what you want at com-
pile time. Sometimes you want to name something indirectly; we call this the
pr oblem of indir ection. So Perl provides a mechanism: you can always replace an
alphanumeric variable name with a block containing an expression that retur ns a
refer ence to the real data. For instance, instead of saying:

$bert

you might say:

${ some_expression() }

and if the some_expression() function retur ns a refer ence to variable $bert (or
even the string, "bert"), it will work just as if you’d said $bert in the first place.
On the other hand, if the function retur ns a refer ence to $ernie, you’ll get his vari-
able instead. The syntax shown is the most general (and least legible) form of indi-
rection, but we’ll cover several convenient variations in Chapter 8, Refer ences.

Scalar Values
Whether it’s named directly or indirectly, and whether it’s in a variable, or an array
element, or is just a temporary value, a scalar always contains a single value. This
value may be a number, a string, or a refer ence to another piece of data. Or, ther e
might even be no value at all, in which case the scalar is said to be undefined.
Although we might speak of a scalar as “containing” a number or a string, scalars
ar e typeless: you are not requir ed to declare your scalars to be of type integer or
floating-point or string or whatever.*

* Futur e versions of Perl will allow you to insert int, num, and str type declarations, not to enforce
str ong typing, but only to give the optimizer hints about things that it might not figure out for itself.
Generally, you’d only consider doing this in tight code that must run very fast, so we’re not going to
tell you how to do it yet. Optional types are also used by the pseudohash mechanism, in which case
they can function as types do in a more str ongly typed language. See Chapter 8 for more.

Perl stores strings as sequences of characters, with no arbitrary constraints on
length or content. In human terms, you don’t have to decide in advance how long
your strings are going to get, and you can include any characters including null
bytes within your string. Perl stores numbers as signed integers if possible, or as
double-pr ecision floating-point values in the machine’s native format otherwise.
Floating-point values are not infinitely precise. This is important to remember
because comparisons like (10/3 == 1/3*10) tend to fail mysteriously.

Perl converts between the various subtypes as needed, so you can treat a number
as a string or a string as a number, and Perl will do the Right Thing. To convert
fr om string to number, Perl internally uses something like the C library’s atof (3)
function. To convert from number to string, it does the equivalent of an sprintf (3)
with a format of "%.14g" on most machines. Improper conversions of a non-
numeric string like foo to a number count as numeric 0; these trigger warnings if
you have them enabled, but are silent otherwise. See Chapter 5, Patter n Matching,
for examples of detecting what sort of data a string holds.

Although strings and numbers are interchangeable for nearly all intents, refer ences
ar e a bit differ ent. They’r e str ongly typed, uncastable pointers with built-in refer-
ence-counting and destructor invocation. That is, you can use them to create com-
plex data types, including user-defined objects. But they’re still scalars, for all that,
because no matter how complicated a data structure gets, you often want to treat
it as a single value.

By uncastable, we mean that you can’t, for instance, convert a refer ence to an
array into a refer ence to a hash. References are not castable to other pointer types.
However, if you use a refer ence as a number or a string, you will get a numeric or
string value, which is guaranteed to retain the uniqueness of the refer ence even
though the “refer enceness” of the value is lost when the value is copied from the
real refer ence. You can compare such values or extract their type. But you can’t do
much else with the values, since there’s no way to convert numbers or strings
back into refer ences. Usually, this is not a problem, because Perl doesn’t force you
to do pointer arithmetic—or even allow it. See Chapter 8 for more on refer ences.

Numer ic Literals
Numeric literals are specified in any of several customary* floating-point or integer
for mats:

$x = 12345; # integer
$x = 12345.67; # floating point
$x = 6.02e23; # scientific notation
$x = 4_294_967_296; # underline for legibility

* Customary in Unix culture, that is. If you’re from a dif ferent culture, welcome to ours!

Scalar Values 59

60 Chapter 2: Bits and Pieces

$x = 0377; # octal
$x = 0xffff; # hexadecimal
$x = 0b1100_0000; # binary

Because Perl uses the comma as a list separator, you cannot use it to separate the
thousands in a large number. Perl does allow you to use an underscore character
instead. The underscore only works within literal numbers specified in your pro-
gram, not for strings functioning as numbers or data read from somewhere else.
Similarly, the leading 0x for hexadecimal, 0b for binary, and 0 for octal work only
for literals. The automatic conversion of a string to a number does not recognize
these prefixes — you must do an explicit conversion* with the oct function — which
works for hex and binary numbers, too, as it happens, provided you supply the 0x

or 0b on the front.

Str ing Literals
String literals are usually surrounded by either single or double quotes. They work
much like Unix shell quotes: double-quoted string literals are subject to backslash
and variable interpolation, but single-quoted strings are not (except for \’ and \\,
so that you can embed single quotes and backslashes into single-quoted strings).
If you want to embed any other backslash sequences such as \n (newline), you
must use the double-quoted form. (Backslash sequences are also known as
escape sequences, because you “escape” the normal interpretation of characters
temporarily.)

A single-quoted string must be separated from a preceding word by a space
because a single quote is a valid—though archaic — character in an identifier. Its
use has been replaced by the more visually distinct :: sequence. That means that
$main’var and $main::var ar e the same thing, but the second is generally consid-
er ed easier to read for people and programs.

Double-quoted strings are subject to various forms of character interpolation,
many of which will be familiar to programmers of other languages. These are
listed in Table 2-1.

* Sometimes people think Perl should convert all incoming data for them. But there are far too many
decimal numbers with leading zeros in the world to make Perl do this automatically. For example,
the Zip Code for the O’Reilly & Associates office in Cambridge, MA, is 02140. The postmaster would
get confused if your mailing label program turned 02140 into 1120 decimal.

Table 2-1. Backslashed Character Escapes

Code Meaning

\n Newline (usually LF)

\r Carriage retur n (usually CR)

\t Horizontal tab

\f For m feed

\b Backspace

\a Alert (bell)

\e ESC character

\033 ESC in octal

\x7f DEL in hexadecimal

\cC Contr ol-C

\x{263a} Unicode (smiley)

\N{NAME} Named character

The \N{NAME} notation is usable only in conjunction with the use charnames

pragma described in Chapter 31. This allows you to specify character names sym-
bolically, as in \N{GREEK SMALL LETTER SIGMA}, \N{greek:Sigma}, or
\N{sigma}—depending on how you call the pragma. See also Chapter 15.

Ther e ar e also escape sequences to modify the case or “meta-ness” of subsequent
characters. See Table 2-2.

Table 2-2. Translation Escapes

Code Meaning

\u Force next character to uppercase (“titlecase” in Unicode).

\l Force next character to lowercase.

\U Force all following characters to uppercase.

\L Force all following characters to lowercase.

\Q Backslash all following nonalphanumeric characters.

\E End \U, \L, or \Q.

You may also embed newlines directly in your strings; that is, they can begin and
end on differ ent lines. This is often useful, but it also means that if you forget a
trailing quote, the error will not be reported until Perl finds another line containing
the quote character, which may be much further on in the script. Fortunately, this
usually causes an immediate syntax error on the same line, and Perl is then smart
enough to warn you that you might have a runaway string where it thought the
string started.

Scalar Values 61

62 Chapter 2: Bits and Pieces

Besides the backslash escapes listed above, double-quoted strings are subject to
variable interpolation of scalar and list values. This means that you can insert the
values of certain variables directly into a string literal. It’s really just a handy form
of string concatenation.* Variable interpolation may be done for scalar variables,
entir e arrays (but not hashes), single elements from an array or hash, or slices
(multiple subscripts) of an array or hash. Nothing else interpolates. In other words,
you may only interpolate expressions that begin with $ or @, because those are the
two characters (along with backslash) that the string parser looks for. Inside
strings, a literal @ that is not part of an array or slice identifier but is followed by
an alphanumeric character must be escaped with a backslash (\@), or else a com-
pilation error will result. Although a complete hash specified with a % may not be
interpolated into the string, single hash values or hash slices are okay, because
they begin with $ and @ respectively.

The following code segment prints out “The price is $100.”:

$Price = ’$100’; # not interpolated
print "The price is $Price.\n"; # interpolated

As in some shells, you can put braces around the identifier to distinguish it from
following alphanumerics: "How ${verb}able!". An identifier within such braces is
forced to be a string, as is any single identifier within a hash subscript. For
example:

$days{’Feb’}

can be written as:

$days{Feb}

and the quotes will be assumed. Anything more complicated in the subscript is
interpr eted as an expression, and then you’d have to put in the quotes:

$days{’February 29th’} # Ok.
$days{"February 29th"} # Also ok. "" doesn’t have to interpolate.
$days{ February 29th } # WRONG, produces parse error.

In particular, you should always use quotes in slices such as:

@days{’Jan’,’Feb’} # Ok.
@days{"Jan","Feb"} # Also ok.
@days{ Jan, Feb } # Kinda wrong (breaks under use strict)

Apart from the subscripts of interpolated array and hash variables, there are no
multiple levels of interpolation. Contrary to the expectations of shell programmers,

* With warnings enabled, Perl may report undefined values interpolated into strings as using the con-
catenation or join operations, even though you don’t actually use those operators there. The com-
piler created them for you anyway.

backticks do not interpolate within double quotes, nor do single quotes impede
evaluation of variables when used within double quotes. Interpolation is extremely
power ful but strictly controlled in Perl. It happens only inside double quotes, and
in certain other “double-quotish” operations that we’ll describe in the next section:

print "\n"; # Ok, print a newline.
print \n ; # WRONG, no interpolative context.

Pick Your Own Quotes
Although we usually think of quotes as literal values, in Perl they function more
like operators, providing various kinds of interpolating and pattern-matching capa-
bilities. Perl provides the customary quote characters for these behaviors, but also
pr ovides a mor e general way for you to choose your quote character for any of
them. In Table 2-3, any nonalphanumeric, nonwhitespace delimiter may be used
in place of /. (The newline and space characters are no longer allowed as delim-
iters, although ancient versions of Perl once allowed this.)

Table 2-3. Quote Constructs

Customar y Gener ic Meaning Interpolates

’’ q// Literal string No

"" qq// Literal string Yes

‘‘ qx// Command execution Yes

() qw// Word list No

// m// Patter n match Yes

s/// s/// Patter n substitution Yes

y/// tr/// Character translation No

"" qr// Regular expression Yes

Some of these are simply forms of “syntactic sugar” to let you avoid putting too
many backslashes into quoted strings, particularly into pattern matches where your
regular slashes and backslashes tend to get all tangled.

If you choose single quotes for delimiters, no variable interpolation is done even
on those forms that ordinarily interpolate. If the opening delimiter is an opening
par enthesis, bracket, brace, or angle bracket, the closing delimiter will be the cor-
responding closing character. (Embedded occurrences of the delimiters must
match in pairs.) Examples:

$single = q!I said, "You said, ’She said it.’"!;

$double = qq(Can’t we get some "good" $variable?);

Scalar Values 63

64 Chapter 2: Bits and Pieces

$chunk_of_code = q {
if ($condition) {

print "Gotcha!";
}

};

The last example demonstrates that you can use whitespace between the quote
specifier and its initial bracketing character. For two-element constructs like s///

and tr///, if the first pair of quotes is a bracketing pair, the second part gets its
own starting quote character. In fact, the second pair needn’t be the same as the
first pair. So you can write things like s<foo>(bar) or tr(a-f)[A-F]. Because
whitespace is also allowed between the two inner quote characters, you could
even write that last one as:

tr (a-f)
[A-F];

Whitespace is not allowed, however, when # is being used as the quoting charac-
ter. q#foo# is parsed as the string ’foo’, while q #foo# is parsed as the quote oper-
ator q followed by a comment. Its delimiter will be taken from the next line.
Comments can also be placed in the middle of two-element constructs, which
allows you to write:

s {foo} # Replace foo
{bar}; # with bar.

tr [a-f] # Transliterate lowercase hex
[A-F]; # to uppercase hex

Or Leave the Quotes Out Entirely
A name that has no other interpretation in the grammar will be treated as if it were
a quoted string. These are known as bar ewords.* As with filehandles and labels, a
bar eword that consists entirely of lowercase letters risks conflict with future
reserved words. If you have warnings enabled, Perl will warn you about bare-
words. For example:

@days = (Mon,Tue,Wed,Thu,Fri);
print STDOUT hello, ’ ’, world, "\n";

sets the array @days to the short form of the weekdays and prints “hello world”
followed by a newline on STDOUT. If you leave the filehandle out, Perl tries to
interpr et hello as a filehandle, resulting in a syntax error. Because this is so error-
pr one, some people may wish to avoid barewords entirely. The quoting operators

* Variable names, filehandles, labels, and the like are not considered barewords because they have a
meaning forced by a preceding token or a following token (or both). Predeclar ed names such as
subr outines ar en’t bar ewords either. It’s only a bareword when the parser has no clue.

listed earlier provide many convenient forms, including the qw// “quote words”
construct which nicely quotes a list of space-separated words:

@days = qw(Mon Tue Wed Thu Fri);
print STDOUT "hello world\n";

You can go as far as to outlaw barewords entirely. If you say:

use strict ’subs’;

then any bareword will produce a compile-time error. The restriction lasts through
the end of the enclosing scope. An inner scope may countermand this by saying:

no strict ’subs’;

Note that the bare identifiers in constructs like:

"${verb}able"
$days{Feb}

ar e not considered barewords since they’re allowed by explicit rule rather than by
having “no other interpretation in the grammar”.

An unquoted name with a trailing double colon, such as main:: or Dog::, is always
tr eated as the package name. Perl turns the would-be bareword Camel:: into the
string “Camel” at compile time, so this usage is not subject to rebuke by use

strict.

Interpolating Arra y Values
Array variables are interpolated into double-quoted strings by joining all elements
of the array with the separator specified in the $" variable* (which contains a
space by default). The following are equivalent:

$temp = join($", @ARGV);
print $temp;

print "@ARGV";

Within search patterns, which also undergo double-quotish interpolation, there is
an unfortunate ambiguity: is /$foo[bar]/ to be interpreted as /${foo}[bar]/

(wher e [bar] is a character class for the regular expression) or as /${foo[bar]}/

(wher e [bar] is the subscript to array @foo)? If @foo doesn’t otherwise exist, it’s
obviously a character class. If @foo exists, Perl takes a good guess about [bar],
and is almost always right.† If it does guess wrong, or if you’re just plain paranoid,

* $LIST_SEPARATOR if you use the English module bundled with Perl.

† The guesser is too boring to describe in full, but basically takes a weighted average of all the things
that look like character classes (a-z, \w, initial ˆ) versus things that look like expressions (variables or
reserved words).

Scalar Values 65

66 Chapter 2: Bits and Pieces

you can force the correct interpretation with braces as shown earlier. Even if
you’r e mer ely prudent, it’s probably not a bad idea.

“Here” Documents
A line-oriented form of quoting is based on the Unix shell’s her e-document syntax.
It’s line-oriented in the sense that the delimiters are lines rather than characters.
The starting delimiter is the current line, and the terminating delimiter is a line
consisting of the string you specify. Following a <<, you specify the string to termi-
nate the quoted material, and all lines following the current line down to but not
including the terminating line are part of the string. The terminating string may be
either an identifier (a word) or some quoted text. If quoted, the type of quote
deter mines the treatment of the text, just as it does in regular quoting. An
unquoted identifier works as though it were in double quotes. A backslashed iden-
tifier works as though it were in single quotes (for compatibility with shell syntax).
Ther e must be no space between the << and an unquoted identifier, although
whitespace is permitted if you specify a quoted string instead of the bare identifier.
(If you insert a space, it will be treated as a null identifier, which is valid but dep-
recated, and matches the first blank line—see the first Hurrah! example below.)
The terminating string must appear by itself, unquoted and with no extra white-
space on either side, on the terminating line.

print <<EOF; # same as earlier example
The price is $Price.
EOF

print <<"EOF"; # same as above, with explicit quotes
The price is $Price.
EOF

print <<’EOF’; # single-quoted quote
All things (e.g. a camel’s journey through
A needle’s eye) are possible, it’s true.
But picture how the camel feels, squeezed out
In one long bloody thread, from tail to snout.

-- C.S. Lewis
EOF

print << x 10; # print next line 10 times
The camels are coming! Hurrah! Hurrah!

print <<"" x 10; # the preferred way to write that
The camels are coming! Hurrah! Hurrah!

print <<‘EOC‘; # execute commands
echo hi there
echo lo there
EOC

print <<"dromedary", <<"camelid"; # you can stack them
I said bactrian.
dromedary
She said llama.
camelid

funkshun(<<"THIS", 23, <<’THAT’); # doesn’t matter if they’re in parens
Here’s a line
or two.
THIS
And here’s another.
THAT

Just don’t forget that you have to put a semicolon on the end to finish the state-
ment, because Perl doesn’t know you’re not going to try to do this:

print <<’odd’
2345
odd

+ 10000; # prints 12345

If you want your here docs to be indented with the rest of the code, you’ll need to
remove leading whitespace from each line manually:

($quote = <<’QUOTE’) =˜ s/ˆ\s+//gm;
The Road goes ever on and on,
down from the door where it began.

QUOTE

You could even populate an array with the lines of a here document as follows:

@sauces = <<End_Lines =˜ m/(\S.*\S)/g;
normal tomato
spicy tomato
green chile
pesto
white wine

End_Lines

V-Str ing Literals
A literal that begins with a v and is followed by one or more dot-separated inte-
gers is treated as a string literal composed of characters with the specified ordinal
values:

$crlf = v13.10; # ASCII carriage return, line feed

These are called v-strings, short for “vector strings” or “version strings” or anything
else you can think of that starts with “v” and deals with lists of integers. They pro-
vide an alternate and more legible way to construct strings when you want to
specify the numeric values of each character. Thus, v1.20.300.4000 is a more win-
some way to produce the same string value as any of:

Scalar Values 67

68 Chapter 2: Bits and Pieces

"\x{1}\x{14}\x{12c}\x{fa0}"
pack("U*", 1, 20, 300, 4000)
chr(1) . chr(20) . chr(300) . chr(4000)

If such a literal has two or more dots (three or more integers), the leading v may
be omitted.

print v9786; # prints UTF-8 encoded SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same thing

use 5.6.0; # require a particular Perl version (or later)

$ipaddr = 204.148.40.9; # the IPv4 address of oreilly.com

V-strings are useful for repr esenting IP address and version numbers. In particular,
since characters can have an ordinal value larger than 255 these days, v-strings
pr ovide a way to repr esent version numbers of any size that can be correctly com-
par ed with a simple string comparison.

Version numbers and IP addresses stored in v-strings are not human readable,
since the individual integers are stor ed as arbitrary characters. To produce some-
thing legible, use the v flag in a printf mask, like "%vd", as described under
sprintf in Chapter 29. For more on Unicode strings, see Chapter 15 and the use

bytes pragma in Chapter 31; for comparing version strings using string comparison
operators, see $ˆV in Chapter 28; and for repr esenting IPv4 addresses, see geth-

ostbyaddr in Chapter 29.

Other Literal Tokens
You should consider any identifier that both begins and ends with a double under-
scor e to be reserved for special syntactic use by Perl. Two such special literals are
__LINE_ _ and __FILE_ _, which repr esent the current line number and filename at
that point in your program. They may only be used as separate tokens; they will
not be interpolated into strings. Likewise, __PACKAGE_ _ is the name of the package
the current code is being compiled into. If there is no curr ent package (due to an
empty package; dir ective), __PACKAGE_ _ is the undefined value. The token
__END_ _ (or alternatively, a Control-D or Control-Z character) may be used to indi-
cate the logical end of the script before the real end-of-file. Any following text is
ignor ed, but may be read via the DATA filehandle.

The __DATA_ _ token functions similarly to the __END_ _ token, but opens the DATA

filehandle within the current package’s namespace, so that files you require can
each have their own DATA filehandles open simultaneously. For more infor mation,
see DATA in Chapter 28.

Context
Until now we’ve seen several terms that can produce scalar values. Before we can
discuss terms further, though, we must come to terms with the notion of context.

Scalar and List Context
Every operation* that you invoke in a Perl script is evaluated in a specific context,
and how that operation behaves may depend on the requir ements of that context.
Ther e ar e two major contexts: scalar and list. For example, assignment to a scalar
variable, or to a scalar element of an array or hash, evaluates the righthand side in
a scalar context:

$x = funkshun(); # scalar context
$x[1] = funkshun(); # scalar context
$x{"ray"} = funkshun(); # scalar context

But assignment to an array or a hash, or to a slice of either, evaluates the right-
hand side in a list context, even if the slice picks out only one element:

@x = funkshun(); # list context
@x[1] = funkshun(); # list context
@x{"ray"} = funkshun(); # list context
%x = funkshun(); # list context

Assignment to a list of scalars also provides a list context to the righthand side,
even if there’s only one element in the list:

($x,$y,$z) = funkshun(); # list context
($x) = funkshun(); # list context

These rules do not change at all when you declare a variable by modifying the
ter m with my or our, so we have:

my $x = funkshun(); # scalar context
my @x = funkshun(); # list context
my %x = funkshun(); # list context
my ($x) = funkshun(); # list context

You will be miserable until you learn the differ ence between scalar and list con-
text, because certain operators (such as our mythical funkshun() function above)
know which context they are in, and retur n a list in contexts wanting a list but a
scalar value in contexts wanting a scalar. (If this is true of an operation, it will be
mentioned in the documentation for that operation.) In computer lingo, the opera-
tions are overloaded on their retur n type. But it’s a very simple kind of

* Her e we use the term “operation” loosely to mean either an operator or a term. The two concepts
fuzz into each other when you start talking about functions that parse like terms but look like unary
operators.

Context 69

70 Chapter 2: Bits and Pieces

overloading, based only on the distinction between singular and plural values, and
nothing else.

If some operators respond to context, then obviously something around them has
to supply the context. We’ve shown that assignment can supply a context to its
right operand, but that’s not terribly surprising, since all operators supply some
kind of context to each of their operands. What you really want to know is which
operators supply which context to their operands. As it happens, you can easily
tell which ones supply a list context because they all have LIST in their syntactic
descriptions. Everything else supplies a scalar context. Generally, it’s quite
intuitive.* If necessary, you can force a scalar context onto an argument in the
middle of a LIST by using the scalar pseudofunction. Perl provides no way to
force a list context in a scalar context, because anywhere you would want a list
context it’s already provided by the LIST of some controlling function.

Scalar context can be further classified into string context, numeric context, and
don’t-car e context. Unlike the scalar versus list distinction we just made, opera-
tions never know or care which scalar context they’re in. They simply retur n what-
ever kind of scalar value they want to and let Perl translate numbers to strings in
string context, and strings to numbers in numeric context. Some scalar contexts
don’t care whether a string or a number or a refer ence is retur ned, so no conver-
sion will happen. This happens, for example, when you are assigning the value to
another variable. The new variable just takes on the same subtype as the old
value.

Boolean Context
Another special don’t-care scalar context is called Boolean context. Boolean con-
text is simply any place where an expr ession is being evaluated to see whether it’s
true or false. When we say “true” and “false” in this book, we mean the technical
definition that Perl uses: a scalar value is true if it is not the null string "" or the
number 0 (or its string equivalent, "0"). A refer ence is always true because it rep-
resents an address which is never 0. An undefined value (often called undef) is
always false because it looks like either "" or 0, depending on whether you treat it
as a string or a number. (List values have no Boolean value because list values are
never produced in a scalar context!)

Because Boolean context is a don’t-care context, it never causes any scalar conver-
sions to happen, though of course the scalar context itself is imposed on any
operand that cares. And for many operands that care, the scalar they produce in

* Note, however, that the list context of a LIST can propagate down through subroutine calls, so it’s
not always obvious from inspection whether a given statement is going to be evaluated in a scalar or
list context. The program can find out its context within a subroutine by using the wantarray func-
tion.

scalar context repr esents a reasonable Boolean value. That is, many operators that
would produce a list in list context can be used for a true/false test in Boolean
context. For instance, in list context such as that provided by the unlink operator,
an array name produces the list of its values:

unlink @files; # Delete all files, ignoring errors.

But if you use the array in a conditional (that is, in a Boolean context), the array
knows it’s in a scalar context and retur ns the number of elements in the array,
which conveniently is true as long as there are any elements left. So supposing
you wanted to get warnings on each file that wasn’t deleted properly, you might
write a loop like this:

while (@files) {
my $file = shift @files;
unlink $file or warn "Can’t delete $file: $!\n";

}

Her e @files is evaluated in the Boolean context supplied by the while statement,
so Perl evaluates the array itself to see whether it’s a “true array” or a “false array”.
It’s a true array as long as there are filenames in it, but it becomes a false array as
soon as the last filename is shifted out. Note that what we earlier said still holds.
Despite the fact that an array contains (and can produce) a list value, we are not
evaluating a list value in scalar context. We are telling the array it’s a scalar and
asking what it thinks of itself.

Do not be tempted to use defined @files for this. It doesn’t work because the
defined function is asking whether a scalar is equal to undef, but an array is not a
scalar. The simple Boolean test suffices.

Void Context
Another peculiar kind of scalar context is the void context. This context not only
doesn’t care what the retur n value’s type is, it doesn’t even want a retur n value.
Fr om the standpoint of how functions work, it’s no differ ent fr om an ordinary
scalar context. But if you have warnings enabled, the Perl compiler will warn you
if you use an expression with no side effects in a place that doesn’t want a value,
such as in a statement that doesn’t retur n a value. For example, if you use a string
as a statement:

"Camel Lot";

you may get a warning like this:

Useless use of a constant in void context in myprog line 123;

Context 71

72 Chapter 2: Bits and Pieces

Interpolative Context
We mentioned earlier that double-quoted literal strings do backslash interpretation
and variable interpolation, but that the interpolative context (often called “double-
quote context” because nobody can pronounce “interpolative”) applies to more
than just double-quoted strings. Some other double-quotish constructs are the gen-
eralized backtick operator qx//, the pattern match operator m//, the substitution
operator s///, and the quote regex operator, qr//. The substitution operator does
interpolation on its left side before doing a pattern match, and then does interpo-
lation on its right side each time the left side matches.

The interpolative context only happens inside quotes, or things that work like
quotes, so perhaps it’s not fair to call it a context in the same sense as scalar and
list contexts. (Then again, maybe it is.)

List Values and Arra ys
Now that we’ve talked about context, we can talk about list literals and how they
behave in context. You’ve already seen some list literals. List literals are denoted
by separating individual values by commas (and enclosing the list in parentheses
wher e pr ecedence requir es it). Because it (almost) never hurts to use extra paren-
theses, the syntax diagram of a list value is usually indicated like this:

(LIST)

Earlier we said that LIST in a syntax description indicates something that supplies
list context to its arguments, but a bare list literal itself is the one partial exception
to that rule, in that it supplies a list context to its arguments only when the list as a
whole is in list context. The value of a list literal in list context is just the values of
the arguments in the order specified. As a fancy sort of term in an expr ession, a
list literal merely pushes a series of temporary values onto Perl’s stack, to be col-
lected off the stack later by whatever operator wants the list.

In a scalar context, however, the list literal doesn’t really behave like a LIST, in
that it doesn’t supply list context to its values. Instead, it merely evaluates each of
its arguments in scalar context, and retur ns the value of the final element. That’s
because it’s really just the C comma operator in disguise, which is a binary opera-
tor that always throws away the value on the left and retur ns the value on the
right. In terms of what we discussed earlier, the left side of the comma operator
really provides a void context. Because the comma operator is left associative, if
you have a series of comma-separated values, you always end up with the last
value because the final comma throws away whatever any previous commas
pr oduced. So, to contrast the two, the list assignment:

@stuff = ("one", "two", "three");

assigns the entire list value to array @stuff, but the scalar assignment:

$stuff = ("one", "two", "three");

assigns only the value “three” to variable $stuff. Like the @files array we men-
tioned earlier the comma operator knows whether it is in a scalar or list context,
and chooses its behavior accordingly.

It bears repeating that a list value is differ ent fr om an array. A real array variable
also knows its context, and in a list context, it would retur n its internal list of val-
ues just like a list literal. But in a scalar context it retur ns only the length of the
array. The following assigns to $stuff the value 3:

@stuff = ("one", "two", "three");
$stuff = @stuff;

If you expected it to get the value “three”, you were probably making a false gen-
eralization by assuming that Perl uses the comma operator rule to throw away all
but one of the temporary values that @stuff put on the stack. But that’s not how it
works. The @stuff array never put all its values on the stack. It never put any of
its values on the stack, in fact. It only put one value, the length of the array,
because it knew it was in scalar context. No term or operator in scalar context will
ever put a list on the stack. Instead, it will put one scalar on the stack, whatever it
feels like, which is unlikely to be the last value of the list it would have retur ned
in list context, because the last value is not likely to be the most useful value in
scalar context. Got that? (If not, you’d better rer ead this paragraph, because it’s
important.)

Now back to true LISTs, the ones that do list context. Until now we’ve pretended
that list literals were just lists of literals. But just as a string literal might interpolate
other substrings, a list literal can interpolate other sublists. Any expression that
retur ns values may be used within a list. The values so used may be either scalar
values or list values, but they all become part of the new list value because LISTs
do automatic interpolation of sublists. That is, when a LIST is evaluated, each ele-
ment of the list is evaluated in a list context, and the resulting list value is interpo-
lated into LIST just as if each individual element were a member of LIST. Thus
arrays lose their identity in a LIST.* The list:

(@stuff,@nonsense,funkshun())

contains the elements of @stuff, followed by the elements of @nonsense, followed
by whatever values the subroutine &funkshun decides to retur n when called in list

* Some people seem to think this is a problem, but it’s not. You can always interpolate a refer ence to
an array if you do not want it to lose its identity. See Chapter 8.

List Values and Arra ys 73

74 Chapter 2: Bits and Pieces

context. Note that any or all of these might have interpolated a null (empty) list, in
which case it’s as if no array or function call had been interpolated at that point.
The null list itself is repr esented by the literal (). As with a null array, which inter-
polates as a null list and is therefor e ef fectively ignor ed, interpolating the null list
into another list has no effect. Thus, ((),(),()) is equivalent to ().

A cor ollary to this rule is that you may place an optional comma at the end of any
list value. This makes it easy to come back later and add more elements after the
last one:

@releases = (
"alpha",
"beta",
"gamma",

);

Or you can do away with the commas entirely: another way to specify a literal list
is with the qw (quote words) syntax we mentioned earlier. This construct is equiva-
lent to splitting a single-quoted string on whitespace. For example:

@froots = qw(
apple banana carambola
coconut guava kumquat
mandarin nectarine peach
pear persimmon plum

);

(Note that those parentheses are behaving as quote characters, not ordinary paren-
theses. We could just as easily have picked angle brackets or braces or slashes. But
par ens ar e pr etty.)

A list value may also be subscripted like a normal array. You must put the list in
par entheses (r eal ones) to avoid ambiguity. Though it’s often used to fetch a single
value out of a list, it’s really a slice of the list, so the syntax is:

(LIST)[LIST]

Examples:

Stat returns list value.
$modification_time = (stat($file))[9];

SYNTAX ERROR HERE.
$modification_time = stat($file)[9]; # OOPS, FORGOT PARENS

Find a hex digit.
$hexdigit = (’a’,’b’,’c’,’d’,’e’,’f’)[$digit-10];

A "reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Get multiple values as a slice.
($day, $month, $year) = (localtime)[3,4,5];

List Assignment
A list may be assigned to only if each element of the list is itself legal to assign to:

($a, $b, $c) = (1, 2, 3);

($map{red}, $map{green}, $map{blue}) = (0xff0000, 0x00ff00, 0x0000ff);

You may assign to undef in a list. This is useful for throwing away some of the
retur n values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

The final list element may be an array or a hash:

($a, $b, @rest) = split;
my ($a, $b, %rest) = @arg_list;

You can actually put an array or hash anywhere in the list you assign to, but the
first array or hash in the list will soak up all the remaining values, and anything
after it will be set to the undefined value. This may be useful in a local or my,
wher e you probably want the arrays initialized to be empty anyway.

You can even assign to the empty list:

() = funkshun();

That ends up calling your function in list context, but discarding the retur n values.
If you had just called the function without an assignment, it would have instead
been called in void context, which is a kind of scalar context, and might have
caused the function to behave completely differ ently.

List assignment in scalar context retur ns the number of elements produced by the
expr ession on the right side of the assignment:

$x = (($a, $b) = (7,7,7)); # set $x to 3, not 2
$x = (($a, $b) = funk()); # set $x to funk()’s return count
$x = (() = funk()); # also set $x to funk()’s return count

This is handy when you want to do a list assignment in a Boolean context,
because most list functions retur n a null list when finished, which when assigned
pr oduces a 0, which is interpreted as false. Here’s how you might use it in a while

statement:

while (($login, $password) = getpwent) {
if (crypt($login, $password) eq $password) {

print "$login has an insecure password!\n";
}

}

List Values and Arra ys 75

76 Chapter 2: Bits and Pieces

Ar ray Length
You may find the number of elements in the array @days by evaluating @days in a
scalar context, such as:

@days + 0; # implicitly force @days into a scalar context
scalar(@days) # explicitly force @days into a scalar context

Note that this only works for arrays. It does not work for list values in general. As
we mentioned earlier, a comma-separated list evaluated in scalar context retur ns
the last value, like the C comma operator. But because you almost never actually
need to know the length of a list in Perl, this is not a problem.

Closely related to the scalar evaluation of @days is $#days. This will retur n the sub-
script of the last element of the array, or one less than the length, since there is
(ordinarily) a 0th element. Assigning to $#days changes the length of the array.
Shortening an array by this method destroys intervening values. You can gain
some measure of efficiency by pre-extending an array that is going to get big.
(You can also extend an array by assigning to an element beyond the end of the
array.) You can truncate an array down to nothing by assigning the null list () to
it. The following two statements are equivalent:

@whatever = ();
$#whatever = -1;

And the following is always true:

scalar(@whatever) == $#whatever + 1;

Truncating an array does not recover its memory. You have to undef(@whatever) to
fr ee its memory back to your process’s memory pool. You probably can’t free it all
the way back to your system’s memory pool, because few operating systems sup-
port this.

Hashes
As we said earlier, a hash is just a funny kind of array in which you look values up
using key strings instead of numbers. A hash defines associations between keys
and values, so hashes are often called associative arrays by people who are not
lazy typists.

Ther e really isn’t any such thing as a hash literal in Perl, but if you assign an ordi-
nary list to a hash, each pair of values in the list will be taken to indicate one
key/value association:

%map = (’red’,0xff0000,’green’,0x00ff00,’blue’,0x0000ff);

This has the same effect as:

%map = (); # clear the hash first
$map{red} = 0xff0000;
$map{green} = 0x00ff00;
$map{blue} = 0x0000ff;

It is often more readable to use the => operator between key/value pairs. The =>

operator is just a synonym for a comma, but it’s more visually distinctive and also
quotes any bare identifiers to the left of it (just like the identifiers in braces above),
which makes it convenient for several sorts of operation, including initializing hash
variables:

%map = (
red => 0xff0000,
green => 0x00ff00,
blue => 0x0000ff,

);

or initializing anonymous hash refer ences to be used as records:

$rec = {
NAME => ’John Smith’,
RANK => ’Captain’,
SERNO => ’951413’,

};

or using named parameters to invoke complicated functions:

$field = radio_group(
NAME => ’animals’,
VALUES => [’camel’, ’llama’, ’ram’, ’wolf’],
DEFAULT => ’camel’,
LINEBREAK => ’true’,
LABELS => \%animal_names,

);

But we’re getting ahead of ourselves again. Back to hashes.

You can use a hash variable (%hash) in a list context, in which case it interpolates
all its key/value pairs into the list. But just because the hash was initialized in a
particular order doesn’t mean that the values come back out in that order. Hashes
ar e implemented internally using hash tables for speedy lookup, which means that
the order in which entries are stor ed is dependent on the internal hash function
used to calculate positions in the hash table, and not on anything interesting. So
the entries come back in a seemingly random order. (The two elements of each
key/value pair come out in the right order, of course.) For examples of how to
arrange for an output ordering, see the keys function in Chapter 29.

Hashes 77

78 Chapter 2: Bits and Pieces

When you evaluate a hash variable in a scalar context, it retur ns a true value only
if the hash contains any key/value pairs whatsoever. If ther e ar e any key/value
pairs at all, the value retur ned is a string consisting of the number of used buckets
and the number of allocated buckets, separated by a slash. This is pretty much
only useful to find out whether Perl’s (compiled in) hashing algorithm is perfor m-
ing poorly on your data set. For example, you stick 10,000 things in a hash, but
evaluating %HASH in scalar context reveals “1/8”, which means only one out of
eight buckets has been touched. Presumably that one bucket contains all 10,000 of
your items. This isn’t supposed to happen.

To find the number of keys in a hash, use the keys function in a scalar context:
scalar(keys(%HASH)).

You can emulate a multidimensional hash by specifying more than one key within
the braces, separated by commas. The listed keys are concatenated together, sepa-
rated by the contents of $; ($SUBSCRIPT_SEPARATOR), which has a default value of
chr(28). The resulting string is used as the actual key to the hash. These two lines
do the same thing:

$people{ $state, $county } = $census_results;
$people{ join $; => $state, $county } = $census_results;

This feature was originally implemented to support a2p, the awk-to-Perl translator.
These days, you’d usually just use a real (well, realer) multidimensional array as
described in Chapter 9, Data Structures. One place the old style is still useful is for
hashes tied to DBM files (see DB_File in Chapter 32, Standar d Modules), which
don’t support multidimensional keys.

Don’t confuse multidimensional hash emulations with slices. The one repr esents a
scalar value, and the other repr esents a list value:

$hash{ $x, $y, $z } # a single value
@hash{ $x, $y, $z } # a slice of three values

Typeglobs and Filehandles
Perl uses an special type called a typeglob to hold an entire symbol table entry.
(The symbol table entry *foo contains the values of $foo, @foo, %foo, &foo, and
several interpretations of plain old foo.) The type prefix of a typeglob is a *

because it repr esents all types.

One use of typeglobs (or refer ences ther eto) is for passing or storing filehandles. If
you want to save away a filehandle, do it this way:

$fh = *STDOUT;

or perhaps as a real refer ence, like this:

$fh = *STDOUT;

This is also the way to create a local filehandle. For example:

sub newopen {
my $path = shift;
local *FH; # not my() nor our()
open(FH, $path) or return undef;
return *FH; # not *FH!

}
$fh = newopen(’/etc/passwd’);

See the open function for other ways to generate new filehandles.

The main use of typeglobs nowadays is to alias one symbol table entry to another
symbol table entry. Think of an alias as a nickname. If you say:

*foo = *bar;

it makes everything named “foo” a synonym for every corresponding thing named
“bar”. You can alias just one variable from a typeglob by assigning a refer ence
instead:

*foo = \$bar;

makes $foo an alias for $bar, but doesn’t make @foo an alias for @bar, or %foo an
alias for %bar. All these affect global (package) variables only; lexicals cannot be
accessed through symbol table entries. Aliasing global variables like this may seem
like a silly thing to want to do, but it turns out that the entire module
export/import mechanism is built around this feature, since there’s nothing that
says the symbol you’re aliasing has to be in your namespace. This:

local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn’t make
@Here::blue an alias for @There::green, or %Here::blue an alias for %There::green.
Fortunately, all these complicated typeglob manipulations are hidden away where
you don’t have to look at them. See the sections “Handle References” and “Symbol
Table References” in Chapter 8, the section “Symbol Tables” in Chapter 10, and
Chapter 11, Modules, for more discussion on typeglobs and importation.

Input Operator s
Ther e ar e several input operators we’ll discuss here because they parse as terms.
Sometimes we call them pseudoliterals because they act like quoted strings in
many ways. (Output operators like print parse as list operators and are discussed
in Chapter 29.)

Input Operator s 79

80 Chapter 2: Bits and Pieces

Command Input (Backtick) Operator
First of all, we have the command input operator, also known as the backtick
operator, because it looks like this:

$info = ‘finger $user‘;

A string enclosed by backticks (grave accents, technically) first undergoes variable
interpolation just like a double-quoted string. The result is then interpreted as a
command line by the system, and the output of that command becomes the value
of the pseudoliteral. (This is modeled after a similar operator in Unix shells.) In
scalar context, a single string consisting of all the output is retur ned. In list con-
text, a list of values is retur ned, one for each line of output. (You can set $/ to use
a dif ferent line terminator.)

The command is executed each time the pseudoliteral is evaluated. The numeric
status value of the command is saved in $? (see Chapter 28 for the interpretation
of $?, also known as $CHILD_ERROR). Unlike the csh version of this command, no
translation is done on the retur n data — newlines remain newlines. Unlike in any
of the shells, single quotes in Perl do not hide variable names in the command
fr om interpr etation. To pass a $ thr ough to the shell you need to hide it with a
backslash. The $user in our finger example above is interpolated by Perl, not by
the shell. (Because the command undergoes shell processing, see Chapter 23,
Security, for security concerns.)

The generalized form of backticks is qx// (for “quoted execution”), but the opera-
tor works exactly the same way as ordinary backticks. You just get to pick your
quote characters. As with similar quoting pseudofunctions, if you happen to
choose a single quote as your delimiter, the command string doesn’t undergo dou-
ble-quote interpolation;

$perl_info = qx(ps $$); # that’s Perl’s $$
$shell_info = qx’ps $$’; # that’s the shell’s $$

Line Input (Angle) Operator
The most heavily used input operator is the line input operator, also known as the
angle operator or the readline function (since that’s what it calls internally). Evalu-
ating a filehandle in angle brackets (STDIN, for example) yields the next line from
the associated filehandle. (The newline is included, so according to Perl’s criteria
for truth, a freshly input line is always true, up until end-of-file, at which point an
undefined value is retur ned, which is conveniently false.) Ordinarily, you would
assign the input value to a variable, but there is one situation where an automatic
assignment happens. If and only if the line input operator is the only thing inside
the conditional of a while loop, the value is automatically assigned to the special
variable $_. The assigned value is then tested to see whether it is defined. (This

may seem like an odd thing to you, but you’ll use the construct frequently, so it’s
worth learning.) Anyway, the following lines are equivalent:

while (defined($_ = <STDIN>)) { print $_; } # the longest way
while ($_ = <STDIN>) { print; } # explicitly to $_
while (<STDIN>) { print; } # the short way
for (;<STDIN>;) { print; } # while loop in disguise
print $_ while defined($_ = <STDIN>); # long statement modifier
print while $_ = <STDIN>; # explicitly to $_
print while <STDIN>; # short statement modifier

Remember that this special magic requir es a while loop. If you use the input oper-
ator anywhere else, you must assign the result explicitly if you want to keep the
value:

while (<FH1> && <FH2>) { ... } # WRONG: discards both inputs
if (<STDIN>) { print; } # WRONG: prints old value of $_
if ($_ = <STDIN>) { print; } # suboptimal: doesn’t test defined
if (defined($_ = <STDIN>)) { print; } # best

When you’re implicitly assigning to $_ in a $_ loop, this is the global variable by
that name, not one localized to the while loop. You can protect an existing value
of $_ this way:

while (local $_ = <STDIN>) { print; } # use local $_

Any previous value is restor ed when the loop is done. $_ is still a global variable,
though, so functions called from inside that loop could still access it, intentionally
or otherwise. You can avoid this, too, by declaring a lexical variable:

while (my $line = <STDIN>) { print $line; } # now private

(Both of these while loops still implicitly test for whether the result of the assign-
ment is defined, because my and local don’t change how assignment is seen by
the parser.) The filehandles STDIN, STDOUT, and STDERR ar e pr edefined and pre-
opened. Additional filehandles may be created with the open or sysopen functions.
See those functions’ documentation in Chapter 29 for details on this.

In the while loops above, we were evaluating the line input operator in a scalar
context, so the operator retur ns each line separately. However, if you use the
operator in a list context, a list consisting of all remaining input lines is retur ned,
one line per list element. It’s easy to make a lar ge data space this way, so use this
featur e with care:

$one_line = <MYFILE>; # Get first line.
@all_lines = <MYFILE>; # Get the rest of the lines.

Ther e is no while magic associated with the list form of the input operator,
because the condition of a while loop always provides a scalar context (as does
any conditional).

Input Operator s 81

82 Chapter 2: Bits and Pieces

Using the null filehandle within the angle operator is special; it emulates the com-
mand-line behavior of typical Unix filter programs such as sed and awk. When you
read lines from <>, it magically gives you all the lines from all the files mentioned
on the command line. If no files were mentioned, it gives you standard input
instead, so your program is easy to insert into the middle of a pipeline of pro-
cesses.

Her e’s how it works: the first time <> is evaluated, the @ARGV array is checked, and
if it is null, $ARGV[0] is set to “-”, which when opened gives you standard input.
The @ARGV array is then processed as a list of filenames. More explicitly, the loop:

while (<>) {
... # code for each line

}

is equivalent to the following Perl-like pseudocode:

@ARGV = (’-’) unless @ARGV; # assume STDIN iff empty
while (@ARGV) {

$ARGV = shift @ARGV; # shorten @ARGV each time
if (!open(ARGV, $ARGV)) {

warn "Can’t open $ARGV: $!\n";
next;

}
while (<ARGV>) {

... # code for each line
}

}

except that it isn’t so cumbersome to say, and will actually work. It really does
shift array @ARGV and put the current filename into the global variable $ARGV. It also
uses the special filehandle ARGV inter nally—<> is just a synonym for the more
explicitly written <ARGV>, which is a magical filehandle. (The pseudocode above
doesn’t work because it treats <ARGV> as nonmagical.)

You can modify @ARGV befor e the first <> as long as the array ends up containing
the list of filenames you really want. Because Perl uses its normal open function
her e, a filename of “-” counts as standard input wherever it is encountered, and
the more esoteric features of open ar e automatically available to you (such as
opening a “file” named “gzip -dc < file.gz|”). Line numbers ($.) continue as if
the input were one big happy file. (But see the example under eof in Chapter 29
for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead:

default to README file if no args given
@ARGV = ("README") unless @ARGV;

If you want to pass switches into your script, you can use one of the Getopt::*

modules or put a loop on the front like this:

while (@ARGV and $ARGV[0] =˜ /ˆ-/) {
$_ = shift;
last if /ˆ--$/;
if (/ˆ-D(.*)/) { $debug = $1 }
if (/ˆ-v/) { $verbose++ }
... # other switches

}
while (<>) {

... # code for each line
}

The <> symbol will retur n false only once. If you call it again after this, it will
assume you are processing another @ARGV list, and if you haven’t set @ARGV, it will
input from STDIN.

If the string inside the angle brackets is a scalar variable (for example, <$foo>),
that variable contains an indir ect filehandle, either the name of the filehandle to
input from or a refer ence to such a filehandle. For example:

$fh = *STDIN;
$line = <$fh>;

or:

open($fh, "<data.txt");
$line = <$fh>;

Filename Globbing Operator
You might wonder what happens to a line input operator if you put something
fancier inside the angle brackets. What happens is that it mutates into a differ ent
operator. If the string inside the angle brackets is anything other than a filehandle
name or a scalar variable (even if there are just extra spaces), it is interpreted as a
filename pattern to be “globbed”.* The pattern is matched against the files in the
curr ent dir ectory (or the directory specified as part of the fileglob pattern), and the
filenames so matched are retur ned by the operator. As with line input, names are
retur ned one at a time in scalar context, or all at once in list context. The latter
usage is more common; you often see things like:

@files = <*.xml>;

As with other kinds of pseudoliterals, one level of variable interpolation is done
first, but you can’t say <$foo> because that’s an indirect filehandle as explained
earlier. In older versions of Perl, programmers would insert braces to force

* Fileglobs have nothing to do with the previously mentioned typeglobs, other than that they both use
the * character in a wildcard fashion. The * character has the nickname “glob” when used like this.
With typeglobs, you’re globbing symbols with the same name from the symbol table. With a fileglob,
you’r e doing wildcard matching on the filenames in a directory, just as the various shells do.

Input Operator s 83

84 Chapter 2: Bits and Pieces

interpr etation as a fileglob: <${foo}>. These days, it’s considered cleaner to call the
inter nal function directly as glob($foo), which is probably the right way to have
invented it in the first place. So instead you’d write

@files = glob("*.xml");

if you despise overloading the angle operator for this. Which you’re allowed to do.

Whether you use the glob function or the old angle-bracket form, the fileglob
operator also does while magic like the line input operator, assigning the result to
$_. (That was the rationale for overloading the angle operator in the first place.)
For example, if you wanted to change the permissions on all your C code files,
you might say:

while (glob "*.c") {
chmod 0644, $_;

}

which is equivalent to:

while (<*.c>) {
chmod 0644, $_;

}

The glob function was originally implemented as a shell command in older ver-
sions of Perl (and in even older versions of Unix), which meant it was compara-
tively expensive to execute and, worse still, wouldn’t work exactly the same
everywher e. Nowadays it’s a built-in, so it’s more reliable and a lot faster. See the
description of the File::Glob module in Chapter 32 for how to alter the default
behavior of this operator, such as whether to treat spaces in its operand (argu-
ment) as pathname separators, whether to expand tildes or braces, whether to be
case insensitive, and whether to sort the retur n values — amongst other things.

Of course, the shortest and arguably the most readable way to do the chmod com-
mand above is to use the fileglob as a list operator:

chmod 0644, <*.c>;

A fileglob evaluates its (embedded) operand only when starting a new list. All val-
ues must be read before the operator will start over. In a list context, this isn’t
important because you automatically get them all anyway. In a scalar context,
however, the operator retur ns the next value each time it is called, or a false value
if you’ve just run out. Again, false is retur ned only once. So if you’re expecting a
single value from a fileglob, it is much better to say:

($file) = <blurch*>; # list context

than to say:

$file = <blurch*>; # scalar context

because the former retur ns all matched filenames and resets the operator, wher eas
the latter alternates between retur ning filenames and retur ning false.

If you’re trying to do variable interpolation, it’s definitely better to use the glob

operator because the older notation can cause confusion with the indirect filehan-
dle notation. This is where it becomes apparent that the borderline between terms
and operators is a bit mushy:

@files = <$dir/*.[ch]>; # Works, but avoid.
@files = glob("$dir/*.[ch]"); # Call glob as function.
@files = glob $some_pattern; # Call glob as operator.

We left the parentheses off of the last example to illustrate that glob can be used
either as a function (a term) or as a unary operator; that is, a prefix operator that
takes a single argument. The glob operator is an example of a named unary oper-
ator, which is just one kind of operator we’ll talk about in the next chapter. Later,
we’ll talk about pattern-matching operators, which also parse like terms but
behave like operators.

Input Operator s 85

3
Unar y and Binary Operator s

In the last chapter, we talked about the various kinds of terms you might use in an
expr ession, but to be honest, isolated terms are a bit boring. Many terms are party
animals. They like to have relationships with each other. The typical young term
feels strong urges to identify with and influence other terms in various ways, but
ther e ar e many differ ent kinds of social interaction and many differ ent levels of
commitment. In Perl, these relationships are expr essed using operators.

Sociology has to be good for something.

Fr om a mathematical perspective, operators are just ordinary functions with special
syntax. From a linguistic perspective, operators are just irregular verbs. But as any
linguist will tell you, the irregular verbs in a language tend to be the ones you use
most often. And that’s important from an information theory perspective because
the irregular verbs tend to be shorter and more efficient in both production and
recognition.

In practical terms, operators are handy.

Operators come in various flavors, depending on their arity (how many operands
they take), their pr ecedence (how hard they try to take those operands away from
surr ounding operators), and their associativity (whether they prefer to do things
right to left or left to right when associated with operators of the same prece-
dence).

Perl operators come in three arities: unary, binary, and trinary (or ter nary, if your
native tongue is Shibboleth). Unary operators are always prefix operators (except

86

for the postincrement and postdecrement operators).* The others are all infix oper-
ators — unless you count the list operators, which can prefix any number of argu-
ments. But most people just think of list operators as normal functions that you
can forget to put parentheses around. Here are some examples:

! $x # a unary operator
$x * $y # a binary operator
$x ? $y : $z # a trinary operator
print $x, $y, $z # a list operator

An operator’s precedence controls how tightly it binds. Operators with higher
pr ecedence grab the arguments around them before operators with lower prece-
dence. The archetypal example is straight out of elementary math, where multipli-
cation takes precedence over addition:

2 + 3 * 4 # yields 14, not 20

The order in which two operators of the same precedence are executed depends
on their associativity. These rules also follow math conventions to some extent:

2 * 3 * 4 # means (2 * 3) * 4, left associative
2 ** 3 ** 4 # means 2 ** (3 ** 4), right associative
2 != 3 != 4 # illegal, nonassociative

Table 3-1 lists the associativity and arity of the Perl operators from highest prece-
dence to lowest.

Table 3-1. Operator Precedence

Associativity Arity Precedence Class

None 0 Terms, and list operators (leftward)

Left 2 ->

None 1 ++ --

Right 2 **

Right 1 ! ˜ > and unary + and -

Left 2 =˜ !˜

Left 2 * / % x

Left 2 + - .

Left 2 << >>

Right 0,1 Named unary operators

None 2 < > <= >= lt gt le ge

None 2 == != <=> eq ne cmp

Left 2 &

* Though you can think of various quotes and brackets as circumfix operators that delimit terms.

Introduction 87

88 Chapter 3: Unary and Binary Operator s

Table 3-1. Operator Precedence (continued)

Associativity Arity Precedence Class

Left 2 | ˆ

Left 2 &&

Left 2 ||

None 2

Right 3 ?:

Right 2 = += -= *= and so on

Left 2 , =>

Right 0+ List operators (rightward)

Right 1 not

Left 2 and

Left 2 or xor

It may seem to you that there are too many precedence levels to remember. Well,
you’r e right, there are. Fortunately, you’ve got two things going for you here. First,
the precedence levels as they’re defined usually follow your intuition, presuming
you’r e not psychotic. And second, if you’re mer ely neur otic, you can always put in
extra parentheses to relieve your anxiety.

Another helpful hint is that any operators borrowed from C keep the same prece-
dence relationship with each other, even where C’s precedence is slightly screwy.
(This makes learning Perl easier for C folks and C++ folks. Maybe even Java folks.)

The following sections cover these operators in precedence order. With very few
exceptions, these all operate on scalar values only, not list values. We’ll mention
the exceptions as they come up.

Although refer ences ar e scalar values, using most of these operators on refer ences
doesn’t make much sense, because the numeric value of a refer ence is only mean-
ingful to the internals of Perl. Nevertheless, if a refer ence points to an object of a
class that allows overloading, you can call these operators on such objects, and if
the class has defined an overloading for that particular operator, it will define how
the object is to be treated under that operator. This is how complex numbers are
implemented in Perl, for instance. For more on overloading, see Chapter 13, Over-
loading.

Terms and List Operator s (Leftward)
Any ter m is of highest precedence in Perl. Ter ms include variables, quote and
quotelike operators, most expressions in parentheses, or brackets or braces, and
any function whose arguments are par enthesized. Actually, there aren’t really any
functions in this sense, just list operators and unary operators behaving as func-
tions because you put parentheses around their arguments. Nevertheless, the name
of Chapter 29 is Functions.

Now listen carefully. Here are a couple of rules that are very important and sim-
plify things greatly, but may occasionally produce counterintuitive results for the
unwary. If any list operator (such as print) or any named unary operator (such as
chdir) is followed by a left parenthesis as the next token (ignoring whitespace),
the operator and its parenthesized arguments are given highest precedence, as if it
wer e a nor mal function call. The rule is this: If it looks like a function call, it is a
function call. You can make it look like a nonfunction by prefixing the parenthe-
ses with a unary plus, which does absolutely nothing, semantically speaking—it
doesn’t even coerce the argument to be numeric.

For example, since || has lower precedence than chdir, we get:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but, because * has higher precedence than chdir, we get:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

Likewise for any numeric operator that happens to be a named unary operator,
such as rand:

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)

In the absence of parentheses, the precedence of list operators such as print,
sort, or chmod is either very high or very low depending on whether you look at
the left side or the right side of the operator. (That’s what the “Leftward” is doing
in the title of this section.) For example, in:

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

Terms and List Operator s (Leftward) 89

90 Chapter 3: Unary and Binary Operator s

the commas on the right of the sort ar e evaluated before the sort, but the com-
mas on the left are evaluated after. In other words, a list operator tends to gobble
up all the arguments that follow it, and then act like a simple term with regard to
the preceding expression. You still have to be careful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.
print ($foo), exit; # Or even this.

The easiest place to get burned is where you’r e using parentheses to group mathe-
matical arguments, and you forget that parentheses are also used to group function
arguments:

print ($foo & 255) + 1, "\n"; # prints ($foo & 255)

That probably doesn’t do what you expect at first glance. Fortunately, mistakes of
this nature generally produce warnings like “Useless use of addition in a void
context” when warnings are enabled.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine
and method calls, the anonymous array and hash composers [] and {}, and the
anonymous subroutine composer sub {}.

The Arrow Operator
Just as in C and C++, the binary -> operator is an infix derefer ence operator. If the
right side is a [...] array subscript, a {...} hash subscript, or a (...) subr outine
argument list, the left side must be a refer ence (either hard or symbolic) to an
array, a hash, or a subroutine, respectively. In an lvalue (assignable) context, if the
left side is not a refer ence, it must be a location capable of holding a hard
refer ence, in which case such a refer ence will be autovivified for you. For more on
this (and some warnings about accidental autovivification) see Chapter 8,
Refer ences.

$aref->[42] # an array dereference
$href->{"corned beef"} # a hash dereference
$sref->(1,2,3) # a subroutine dereference

Otherwise, it’s a method call of some kind. The right side must be a method name
(or a simple scalar variable containing the method name), and the left side must

evaluate to either an object (a blessed refer ence) or a class name (that is, a pack-
age name):

$yogi = Bear->new("Yogi"); # a class method call
$yogi->swipe($picnic); # an object method call

The method name may be qualified with a package name to indicate in which
class to start searching for the method, or with the special package name, SUPER::,
to indicate that the search should start in the parent class. See Chapter 12, Objects.

Autoincrement and Autodecrement
The ++ and -- operators work as in C. That is, when placed before a variable, they
incr ement or decrement the variable before retur ning the value, and when placed
after, they increment or decrement the variable after retur ning the value. For
example, $a++ incr ements the value of scalar variable $a, retur ning the value
befor e it perfor ms the increment. Similarly, --$b{(/(\w+)/)[0]} decr ements the
element of the hash %b indexed by the first “word” in the default search variable
($_) and retur ns the value after the decrement.*

The autoincrement operator has a little extra built-in magic. If you increment a
variable that is numeric, or that has ever been used in a numeric context, you get
a nor mal incr ement. If, however, the variable has only been used in string contexts
since it was set, has a value that is not the null string, and matches the pattern
/ˆ[a-zA-Z]*[0-9]*$/, the increment is done as a string, preserving each character
within its range, with carry:

print ++($foo = ’99’); # prints ’100’
print ++($foo = ’a0’); # prints ’b1’
print ++($foo = ’Az’); # prints ’Ba’
print ++($foo = ’zz’); # prints ’aaa’

As of this writing, magical autoincrement has not been extended to Unicode letters
and digits, but it might be in the future.

The autodecrement operator, however, is not magical, and we have no plans to
make it so.

* Okay, so that wasn’t exactly fair. We just wanted to make sure you were paying attention. Here’s
how that expression works. First the pattern match finds the first word in $_ using the regular
expr ession \w+. The parentheses around that cause the word to be retur ned as a single-element list
value because the pattern match is in a list context. The list context is supplied by the list slice oper-
ator, (...)[0], which retur ns the first (and only) element of the list. That value is used as the key for
the hash, and the hash entry (value) is decremented and retur ned. In general, when confronted with
a complex expression, analyze it from the inside out to see what order things happen in.

Autoincrement and Autodecrement 91

92 Chapter 3: Unary and Binary Operator s

Exponentiation
Binary ** is the exponentiation operator. Note that it binds even more tightly than
unary minus, so -2**4 is -(2**4), not (-2)**4. The operator is implemented using
C’s pow (3) function, which works with floating-point numbers internally. It calcu-
lates using logarithms, which means that it works with fractional powers, but you
sometimes get results that aren’t as exact as a straight multiplication would pro-
duce.

Ideog raphic Unary Operator s
Most unary operators just have names (see “Named Unary and File Test Operators”
later in this chapter), but some operators are deemed important enough to merit
their own special symbolic repr esentation. All of these operators seem to have
something to do with negation. Blame the mathematicians.

Unary ! per forms logical negation, that is, “not”. See not for a lower precedence
version of logical negation. The value of a negated operand is true (1) if the
operand is false (numeric 0, string "0", the null string, or undefined) and false ("")
if the operand is true.

Unary - per forms arithmetic negation if the operand is numeric. If the operand is
an identifier, a string consisting of a minus sign concatenated with the identifier is
retur ned. Otherwise, if the string starts with a plus or minus, a string starting with
the opposite sign is retur ned. One effect of these rules is that -bareword is equiva-
lent to "-bareword". This is most useful for Tk programmers.

Unary ˜ per forms bitwise negation, that is, 1’s complement. By definition, this is
somewhat nonportable when limited by the word size of your machine. For exam-
ple, on a 32-bit machine, ˜123 is 4294967172, while on a 64-bit machine, it’s
18446744073709551492. But you knew that already.

What you perhaps didn’t know is that if the argument to ˜ happens to be a string
instead of a number, a string of identical length is retur ned, but with all the bits of
the string complemented. This is a fast way to flip a lot of bits all at once, and it’s
a way to flip those bits portably, since it doesn’t depend on the word size of your
computer. Later we’ll also cover the bitwise logical operators, which have string-
oriented variants as well.

Unary + has no semantic effect whatsoever, even on strings. It is syntactically use-
ful for separating a function name from a parenthesized expression that would
otherwise be interpreted as the complete list of function arguments. (See examples
under the section “Ter ms and List Operators”.) If you think about it sideways, +
negates the effect that parentheses have of turning prefix operators into functions.

Unary \ cr eates a refer ence to whatever follows it. Used on a list, it creates a list of
refer ences. See the section “The Backslash Operator” in Chapter 8 for details. Do
not confuse this behavior with the behavior of backslash within a string, although
both forms do convey the vaguely negational notion of protecting the next thing
fr om interpr etation. This resemblance is not entirely accidental.

Binding Operator s
Binary =˜ binds a string expression to a pattern match, substitution, or translitera-
tion (loosely called translation). These operations would otherwise search or mod-
ify the string contained in $_ (the default variable). The string you want to bind is
put on the left, while the operator itself is put on the right. The retur n value indi-
cates the success or failure of the operator on the right, since the binding operator
doesn’t really do anything on its own.

If the right argument is an expression rather than a pattern match, substitution, or
transliteration, it will be interpreted as a search pattern at run time. That is to say,
$_ =˜ $pat is equivalent to $_ =˜ /$pat/. This is less efficient than an explicit
search, since the pattern must be checked and possibly recompiled every time the
expr ession is evaluated. You can avoid this recompilation by precompiling the
original pattern using the qr// (quote regex) operator.

Binary !˜ is just like =˜ except the retur n value is negated logically. The following
expr essions ar e functionally equivalent:

$string !˜ /pattern/
not $string =˜ /pattern/

We said that the retur n value indicates success, but there are many kinds of suc-
cess. Substitutions retur n the number of successful matches, as do transliterations.
(In fact, the transliteration operator is often used to count characters.) Since any
nonzer o result is true, it all works out. The most spectacular kind of true value is a
list assignment of a pattern: in a list context, pattern matches can retur n substrings
matched by the parentheses in the pattern. But again, according to the rules of list
assignment, the list assignment itself will retur n true if anything matched and was
assigned, and false otherwise. So you sometimes see things like:

if (($k,$v) = $string =˜ m/(\w+)=(\w*)/) {
print "KEY $k VALUE $v\n";

}

Let’s pick that apart. The =˜ has precedence over =, so =˜ happens first. The =˜

binds $string to the pattern match on the right, which is scanning for occurrences
of things that look like KEY=VALUE in your string. It’s in a list context because it’s on
the right side of a list assignment. If the pattern matches, it retur ns a list to be

Binding Operator s 93

94 Chapter 3: Unary and Binary Operator s

assigned to $k and $v. The list assignment itself is in a scalar context, so it retur ns
2, the number of values on the right side of the assignment. And 2 happens to be
true, since our scalar context is also a Boolean context. When the match fails, no
values are assigned, which retur ns 0, which is false.

For more on the politics of patterns, see Chapter 5, Patter n Matching.

Multiplicative Operator s
Perl provides the C-like operators * (multiply), / (divide), and % (modulo). The *

and / work exactly as you would expect, multiplying or dividing their two
operands. Division is done in floating point, unless you’ve used the integer prag-
matic module.

The % operator converts its operands to integers before finding the remainder
according to integer division. (However, it does this integer division in floating
point if necessary, so your operands can be up to 15 digits long on most 32-bit
machines.) Assume that your two operands are called $a and $b. If $b is positive,
then the result of $a % $b is $a minus the largest multiple of $b that is not greater
than $a (which means the result will always be in the range 0 .. $b-1). If $b is
negative, then the result of $a % $b is $a minus the smallest multiple of $b that is
not less than $a (which means the result will be in the range $b +1 .. 0).

When use integer is in scope, % gives you direct access to the modulus operator
as implemented by your C compiler. This operator is not well defined for negative
operands, but will execute faster.

Binary x is the repetition operator. Actually, it’s two operators. In scalar context, it
retur ns a concatenated string consisting of the left operand repeated the number
of times specified by the right operand. (For backward compatibility, it also does
this in list context if the left argument is not in parentheses.)

print ’-’ x 80; # print row of dashes
print "\t" x ($tab/8), ’ ’ x ($tab%8); # tab over

In list context, if the left operand is a list in parentheses, the x works as a list repli-
cator rather than a string replicator. This is useful for initializing all the elements of
an array of indeterminate length to the same value:

@ones = (1) x 80; # a list of 80 1’s
@ones = (5) x @ones; # set all elements to 5

Similarly, you can also use x to initialize array and hash slices:

@keys = qw(perls before swine);
@hash{@keys} = ("") x @keys;

If this mystifies you, note that @keys is being used both as a list on the left side of
the assignment and as a scalar value (retur ning the array length) on the right side
of the assignment. The previous example has the same effect on %hash as:

$hash{perls} = "";
$hash{before} = "";
$hash{swine} = "";

Additive Operator s
Strangely enough, Perl also has the customary + (addition) and – (subtraction)
operators. Both operators convert their arguments from strings to numeric values if
necessary and retur n a numeric result.

Additionally, Perl provides the . operator, which does string concatenation. For
example:

$almost = "Fred" . "Flintstone"; # returns FredFlintstone

Note that Perl does not place a space between the strings being concatenated. If
you want the space, or if you have more than two strings to concatenate, you can
use the join operator, described in Chapter 29, Functions. Most often, though,
people do their concatenation implicitly inside a double-quoted string:

$fullname = "$firstname $lastname";

Shift Operator s
The bit-shift operators (<< and >>) retur n the value of the left argument shifted to
the left (<<) or to the right (>>) by the number of bits specified by the right argu-
ment. The arguments should be integers. For example:

1 << 4; # returns 16
32 >> 4; # returns 2

Be careful, though. Results on large (or negative) numbers may vary depending on
the number of bits your machine uses to repr esent integers.

Named Unary and File Test Operator s
Some of the “functions” described in Chapter 29 are really unary operators.
Table 3-2 lists all the named unary operators.

Named Unary and File Test Operator s 95

96 Chapter 3: Unary and Binary Operator s

Table 3-2. Named Unary Operators

-X (file tests) gethostbyname localtime return

alarm getnetbyname lock rmdir

caller getpgrp log scalar

chdir getprotobyname lstat sin

chroot glob my sleep

cos gmtime oct sqrt

defined goto ord srand

delete hex quotemeta stat

do int rand uc

eval lc readlink ucfirst

exists lcfirst ref umask

exit length require undef

Unary operators have a higher precedence than some of the binary operators. For
example:

sleep 4 | 3;

does not sleep for 7 seconds; it sleeps for 4 seconds and then takes the retur n
value of sleep (typically zero) and bitwise ORs that with 3, as if the expression
wer e par enthesized as:

(sleep 4) | 3;

Compar e this with:

print 4 | 3;

which does take the value of 4 ORed with 3 before printing it (7 in this case), as if
it were written:

print (4 | 3);

This is because print is a list operator, not a simple unary operator. Once you’ve
lear ned which operators are list operators, you’ll have no trouble telling unary
operators and list operators apart. When in doubt, you can always use parentheses
to turn a named unary operator into a function. Remember, if it looks like a func-
tion, it is a function.

Another funny thing about named unary operators is that many of them default to
$_ if you don’t supply an argument. However, if you omit the argument but the
token following the named unary operator looks like it might be the start of an

argument, Perl will get confused because it’s expecting a term. Whenever the Perl
tokener gets to one of the characters listed in Table 3-3, the tokener retur ns dif fer-
ent token types depending on whether it expects a term or operator.

Table 3-3. Ambiguous Characters

Character Operator Ter m

+ Addition Unary plus

- Subtraction Unary minus

* Multiplication *typeglob

/ Division /pattern/

< Less than, left shift <HANDLE>, <<END

. Concatenation .3333

? ?: ?pattern?

% Modulo %assoc

& &, && &subroutine

So a typical boo-boo is:

next if length < 80;

in which the < looks to the parser like the beginning of the <> input symbol (a
ter m) instead of the “less than” (an operator) you were thinking of. There’s really
no way to fix this and still keep Perl pathologically eclectic. If you’re so incr edibly
lazy that you cannot bring yourself to type the two characters $_, then use one of
these instead:

next if length() < 80;
next if (length) < 80;
next if 80 > length;
next unless length >= 80;

When a term is expected, a minus sign followed by a single letter will always be
interpr eted as a file test operator. A file test operator is a unary operator that takes
one argument, either a filename or a filehandle, and tests the associated file to see
whether something is true about it. If the argument is omitted, it tests $_, except
for -t, which tests STDIN. Unless otherwise documented, it retur ns 1 for true and
"" for false, or the undefined value if the file doesn’t exist or is otherwise inacces-
sible. Currently implemented file test operators are listed in Table 3-4.

Named Unary and File Test Operator s 97

98 Chapter 3: Unary and Binary Operator s

Table 3-4. File Test Operators

Operator Meaning

-r File is readable by effective UID/GID.

-w File is writable by effective UID/GID.

-x File is executable by effective UID/GID.

-o File is owned by effective UID.

-R File is readable by real UID/GID.

-W File is writable by real UID/GID.

-X File is executable by real UID/GID.

-O File is owned by real UID.

-e File exists.

-z File has zero size.

-s File has nonzero size (retur ns size).

-f File is a plain file.

-d File is a directory.

-l File is a symbolic link.

-p File is a named pipe (FIFO).

-S File is a socket.

-b File is a block special file.

-c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T File is a text file.

-B File is a binary file (opposite of -T).

-M Age of file (at startup) in days since modification.

-A Age of file (at startup) in days since last access.

-C Age of file (at startup) in days since inode change.

Note that -s/a/b/ does not do a negated substitution. Saying -exp($foo) still
works as expected, however—only single letters following a minus are interpr eted
as file tests.

The interpretation of the file permission operators -r, -R, -w, -W, -x, and -X is
based solely on the mode of the file and the user and group IDs of the user. Ther e
may be other reasons you can’t actually read, write, or execute the file, such as

Andr ew File System (AFS) access control lists.* Also note that for the superuser, -r,
-R, -w, and -W always retur n 1, and -x and -X retur n 1 if any execute bit is set in
the mode. Thus, scripts run by the superuser may need to do a stat in order to
deter mine the actual mode of the file or temporarily set the UID to something else.

The other file test operators don’t care who you are. Anybody can use the test for
“r egular” files:

while (<>) {
chomp;
next unless -f $_; # ignore "special" files
...

}

The -T and -B switches work as follows. The first block or so of the file is exam-
ined for strange characters such as control codes or bytes with the high bit set
(that don’t look like UTF-8). If more than a third of the bytes appear to be strange,
it’s a binary file; otherwise, it’s a text file. Also, any file containing ASCII NUL (\0)
in the first block is considered a binary file. If -T or -B is used on a filehandle, the
curr ent input (standard I/O or “stdio”) buffer is examined rather than the first
block of the file. Both -T and -B retur n true on an empty file, or on a file at EOF
(end-of-file) when testing a filehandle. Because Perl has to read a file to do the -T

test, you don’t want to use -T on special files that might hang or give you other
kinds of grief. So on most occasions you’ll want to test with a -f first, as in:

next unless -f $file && -T $file;

If any of the file tests (or either the stat or lstat operator) are given the special
filehandle consisting of a solitary underline, then the stat structur e of the previous
file test (or stat operator) is used, thereby saving a system call. (This doesn’t work
with -t, and you need to remember that lstat and -l will leave values in the stat
structur e for the symbolic link, not the real file. Likewise, -l _ will always be false
after a normal stat.)

Her e ar e a couple of examples:

print "Can do.\n" if -r $a || -w _ || -x _;

stat($filename);
print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;

* You may, however, override the built-in semantics with the use filetest pragma. See Chapter 31,
Pragmatic Modules.

Named Unary and File Test Operator s 99

100 Chapter 3: Unary and Binary Operator s

print "Sticky\n" if -k _;
print "Text\n" if -T _;
print "Binary\n" if -B _;

File ages for -M, -A, and -C ar e retur ned in days (including fractional days) since
the script started running. This time is stored in the special variable $ˆT ($BASE-
TIME). Thus, if the file changed after the script started, you would get a negative
time. Note that most time values (86,399 out of 86,400, on average) are fractional,
so testing for equality with an integer without using the int function is usually
futile. Examples:

next unless -M $file > .5; # files are older than 12 hours
&newfile if -M $file < 0; # file is newer than process
&mailwarning if int(-A) == 90; # file ($_) was accessed 90 days ago today

To reset the script’s start time to the current time, say this:

$ˆT = time;

Relational Operator s
Perl has two classes of relational operators. One class operates on numeric values,
the other on string values, as shown in Table 3-5.

Table 3-5. Relational Operators

Numer ic Str ing Meaning

> gt Gr eater than

>= ge Gr eater than or equal to

< lt Less than

<= le Less than or equal to

These operators retur n 1 for true and "" for false. Note that relational operators are
nonassociating, which means that $a < $b < $c is a syntax error.

In the absence of locale declarations, string comparisons are based on the
ASCII/Unicode collating sequences, and, unlike in some computer languages,
trailing spaces count in the comparison. With a locale declaration, the collation
order specified by the locale is used. (Locale-based collation mechanisms may or
may not interact well with the Unicode collation mechanisms currently in
development.)

Equality Operator s
The equality operators listed in Table 3-6 are much like the relational operators.

Table 3-6. Equality Operators

Numer ic Str ing Meaning

== eq Equal to

!= ne Not equal to

<=> cmp Comparison, with signed result

The equal and not-equal operators retur n 1 for true and "" for false (just as the
relational operators do). The <=> and cmp operators retur n -1 if the left operand is
less than the right operand, 0 if they are equal, and +1 if the left operand is greater
than the right. Although the equality operators appear to be similar to the rela-
tional operators, they do have a lower precedence level, so $a < $b <=> $c < $d

is syntactically valid.

For reasons that are appar ent to anyone who has seen Star Wars, the <=> operator
is known as the “spaceship” operator.

Bitwise Operator s
Like C, Perl has bitwise AND, OR, and XOR (exclusive OR) operators: &, |, and ˆ.
You’ll have noticed from your painstaking examination of the table at the start of
this chapter that bitwise AND has a higher precedence than the others, but we’ve
cheated and combined them in this discussion.

These operators work differ ently on numeric values than they do on strings. (This
is one of the few places where Perl cares about the differ ence.) If either operand
is a number (or has been used as a number), both operands are converted to inte-
gers, and the bitwise operation is perfor med between the two integers. These inte-
gers are guaranteed to be at least 32 bits long, but can be 64 bits on some
machines. The point is that there’s an arbitrary limit imposed by the machine’s
architectur e.

If both operands are strings (and have not been used as numbers since they were
set), the operators do bitwise operations between corresponding bits from the two
strings. In this case, there’s no arbitrary limit, since strings aren’t arbitrarily limited
in size. If one string is longer than the other, the shorter string is considered to
have a sufficient number of 0 bits on the end to make up the differ ence.

Bitwise Operator s 101

102 Chapter 3: Unary and Binary Operator s

For example, if you AND together two strings:

"123.45" & "234.56"

you get another string:

"020.44"

But if you AND together a string and a number:

"123.45" & 234.56

The string is first converted to a number, giving:

123.45 & 234.56

The numbers are then converted to integers:

123 & 234

which evaluates to 106. Note that all bit strings are true (unless they result in the
string “0”). This means if you want to see whether any byte came out to nonzero,
instead of writing this:

if ("fred" & "\1\2\3\4") { ... }

you need to write this:

if (("fred" & "\1\2\3\4") =˜ /[ˆ\0]/) { ... }

C-Style Logical (Short-Cir cuit) Operator s
Like C, Perl provides the && (logical AND) and || (logical OR) operators. They
evaluate from left to right (with && having slightly higher precedence than ||) test-
ing the truth of the statement. These operators are known as short-circuit opera-
tors because they determine the truth of the statement by evaluating the fewest
number of operands possible. For example, if the left operand of an && operator is
false, the right operand is never evaluated because the result of the operator is
false regardless of the value of the right operand.

Example Name Result

$a && $b And $a if $a is false, $b otherwise
$a || $b Or $a if $a is true, $b otherwise

Such short circuits not only save time, but are frequently used to control the flow
of evaluation. For example, an oft-appearing idiom in Perl programs is:

open(FILE, "somefile") || die "Can’t open somefile: $!\n";

In this case, Perl first evaluates the open function. If the value is true (because
somefile was successfully opened), the execution of the die function is unneces-
sary, and so is skipped. You can read this literally as “Open some file or die!”

The && and || operators differ from C’s in that, rather than retur ning 0 or 1, they
retur n the last value evaluated. In the case of ||, this has the delightful result that
you can select the first of a series of scalar values that happens to be true. Thus, a
reasonably portable way to find out the user’s home directory might be:

$home = $ENV{HOME}
|| $ENV{LOGDIR}
|| (getpwuid($<))[7]
|| die "You’re homeless!\n";

On the other hand, since the left argument is always evaluated in scalar context,
you can’t use || for selecting between two aggregates for assignment:

@a = @b || @c; # This doesn’t do the right thing
@a = scalar(@b) || @c; # because it really means this.
@a = @b ? @b : @c; # This works fine, though.

Perl also provides lower precedence and and or operators that some people find
mor e readable and don’t force you to use parentheses on list operators. They also
short-circuit. See Table 1-1 for a complete list.

Range Operator
The .. range operator is really two differ ent operators depending on the context.

In scalar context, .. retur ns a Boolean value. The operator is bi-stable, like an
electr onic flip-flop, and emulates the line-range (comma) operator of sed, awk,
and various editors. Each scalar .. operator maintains its own Boolean state. It is
false as long as its left operand is false. Once the left operand is true, the range
operator stays true until the right operand is true, after which the range operator
becomes false again. The operator doesn’t become false until the next time it is
evaluated. It can test the right operand and become false on the same evaluation
as the one where it became true (the way awk ’s range operator behaves), but it
still retur ns true once. If you don’t want it to test the right operand until the next
evaluation (which is how sed ’s range operator works), just use three dots (...)
instead of two. With both .. and ..., the right operand is not evaluated while the
operator is in the false state, and the left operand is not evaluated while the opera-
tor is in the true state.

The value retur ned is either the null string for false or a sequence number (begin-
ning with 1) for true. The sequence number is reset for each range encountered.
The final sequence number in a range has the string “E0” appended to it, which
doesn’t affect its numeric value, but gives you something to search for if you want

Range Operator 103

104 Chapter 3: Unary and Binary Operator s

to exclude the endpoint. You can exclude the beginning point by waiting for the
sequence number to be greater than 1. If either operand of scalar .. is a numeric
literal, that operand implicitly compared to the $. variable, which contains the cur-
rent line number for your input file. Examples:

if (101 .. 200) { print; } # print 2nd hundred lines
next line if (1 .. /ˆ$/); # skip header lines
s/ˆ/> / if (/ˆ$/ .. eof()); # quote body

In list context, .. retur ns a list of values counting (by ones) from the left value to
the right value. This is useful for writing for (1..10) loops and for doing slice
operations on arrays:

for (101 .. 200) { print; } # prints 101102...199200
@foo = @foo[0 .. $#foo]; # an expensive no-op
@foo = @foo[-5 .. -1]; # slice last 5 items

If the left value is greater than the right value, a null list is retur ned. (To produce a
list in reverse order, see the reverse operator.)

If its operands are strings, the range operator makes use of the magical autoincre-
ment algorithm discussed earlier.* So you can say:

@alphabet = (’A’ .. ’Z’);

to get all the letters of the (English) alphabet, or:

$hexdigit = (0 .. 9, ’a’ .. ’f’)[$num & 15];

to get a hexadecimal digit, or:

@z2 = (’01’ .. ’31’); print $z2[$mday];

to get dates with leading zeros. You can also say:

@combos = (’aa’ .. ’zz’);

to get all combinations of two lowercase letters. However, be car eful of something
like:

@bigcombos = (’aaaaaa’ .. ’zzzzzz’);

since that will requir e lots of memory. More precisely, it’ll need space to store
308,915,776 scalars. Let’s hope you allocated a very large swap partition. Perhaps
you should consider an iterative approach instead.

* If the final value specified is not in the sequence that the magical increment would produce, the
sequence continues until the next value is longer than the final value specified.

Conditional Operator
As in C, ?: is the only trinary operator. It’s often called the conditional operator
because it works much like an if-then-else, except that, since it’s an expression
and not a statement, it can be safely embedded within other expressions and func-
tions calls. As a trinary operator, its two parts separate three expressions:

COND ? THEN : ELSE

If the condition COND is true, only the THEN expr ession is evaluated, and the value
of that expression becomes the value of the entire expr ession. Otherwise, only the
ELSE expr ession is evaluated, and its value becomes the value of the entire expr es-
sion.

Scalar or list context propagates downward into the second or third argument,
whichever is selected. (The first argument is always in scalar context, since it’s a
conditional.)

$a = $ok ? $b : $c; # get a scalar
@a = $ok ? @b : @c; # get an array
$a = $ok ? @b : @c; # get a count of an array’s elements

You’ll often see the conditional operator embedded in lists of values to format
with printf, since nobody wants to replicate the whole statement just to switch
between two related values.

printf "I have %d camel%s.\n",
$n, $n == 1 ? "" : "s";

Conveniently, the precedence of ?: is higher than a comma but lower than most
operators you’d use inside (such as == in this example), so you don’t usually have
to parenthesize anything. But you can add parentheses for clarity if you like. For
conditional operators nested within the THEN parts of other conditional operators,
we suggest that you put in line breaks and indent as if they were ordinary if state-
ments:

$leapyear =
$year % 4 == 0

? $year % 100 == 0
? $year % 400 == 0

? 1
: 0

: 1
: 0;

Conditional Operator 105

106 Chapter 3: Unary and Binary Operator s

For conditionals nested within the ELSE parts of earlier conditionals, you can do a
similar thing:

$leapyear =
$year % 4

? 0
: $year % 100
? 1
: $year % 400
? 0
: 1;

but it’s usually better to line up all the COND and THEN parts vertically:

$leapyear =
$year % 4 ? 0 :
$year % 100 ? 1 :
$year % 400 ? 0 : 1;

Lining up the question marks and colons can make sense of even fairly cluttered
structur es:

printf "Yes, I like my %s book!\n",
$i18n eq "french" ? "chameau" :
$i18n eq "german" ? "Kamel" :
$i18n eq "japanese" ? "\x{99F1}\x{99DD}" :

"camel"

You can assign to the conditional operator* if both the second and third arguments
ar e legal lvalues (meaning that you can assign to them), and both are scalars or
both are lists (otherwise, Perl won’t know which context to supply to the right
side of the assignment):

($a_or_b ? $a : $b) = $c; # sets either $a or $b to have the value of $c

Bear in mind that the conditional operator binds more tightly than the various
assignment operators. Usually this is what you want (see the $leapyear assign-
ments above, for example), but you can’t have it the other way without using
par entheses. Using embedded assignments without parentheses will get you into
tr ouble, and you might not get a parse error because the conditional operator can
be parsed as an lvalue. For example, you might write this:

$a % 2 ? $a += 10 : $a += 2 # WRONG

But that would be parsed like this:

(($a % 2) ? ($a += 10) : $a) += 2

* This is not necessarily guaranteed to contribute to the readability of your program. But it can be
used to create some cool entries in an Obfuscated Perl contest.

Assignment Operator s
Perl recognizes the C assignment operators, as well as providing some of its own.
Ther e ar e quite a few of them:

= **= += *= &= <<= &&=
-= /= |= >>= ||=
.= %= ˆ=

x=

Each operator requir es a target lvalue (typically a variable or array element) on the
left side and an expression on the right side. For the simple assignment operator:

TARGET = EXPR

the value of the EXPR is stored into the variable or location designated by TARGET.
For the other operators, Perl evaluates the expression:

TARGET OP= EXPR

as if it were written:

TARGET = TARGET OP EXPR

That’s a handy mental rule, but it’s misleading in two ways. First, assignment oper-
ators always parse at the precedence level of ordinary assignment, regardless of
the precedence that OP would have by itself. Second, TARGET is evaluated only
once. Usually that doesn’t matter unless there are side effects, such as an autoin-
cr ement:

$var[$a++] += $value; # $a is incremented once
$var[$a++] = $var[$a++] + $value; # $a is incremented twice

Unlike in C, the assignment operator produces a valid lvalue. Modifying an assign-
ment is equivalent to doing the assignment and then modifying the variable to
which it was assigned. This is useful for modifying a copy of something, like this:

($tmp = $global) += $constant;

which is the equivalent of:

$tmp = $global + $constant;

Likewise:

($a += 2) *= 3;

is equivalent to:

$a += 2;
$a *= 3;

Assignment Operator s 107

108 Chapter 3: Unary and Binary Operator s

That’s not terribly useful, but here’s an idiom you see frequently:

($new = $old) =˜ s/foo/bar/g;

In all cases, the value of the assignment is the new value of the variable. Since
assignment operators associate right-to-left, this can be used to assign many vari-
ables the same value, as in:

$a = $b = $c = 0;

which assigns 0 to $c, and the result of that (still 0) to $b, and the result of that
(still 0) to $a.

List assignment may be done only with the plain assignment operator, =. In list
context, list assignment retur ns the list of new values just as scalar assignment
does. In scalar context, list assignment retur ns the number of values that were
available on the right side of the assignment, as mentioned in Chapter 2, Bits and
Pieces. This makes it useful for testing functions that retur n a null list when unsuc-
cessful (or no longer successful), as in:

while (($key, $value) = each %gloss) { ... }

next unless ($dev, $ino, $mode) = stat $file;

Comma Operator s
Binary “,” is the comma operator. In scalar context it evaluates its left argument in
void context, throws that value away, then evaluates its right argument in scalar
context and retur ns that value. This is just like C’s comma operator. For example:

$a = (1, 3);

assigns 3 to $a. Do not confuse the scalar context use with the list context use. In
list context, a comma is just the list argument separator, and inserts both its argu-
ments into the LIST. It does not throw any values away.

For example, if you change the previous example to:

@a = (1, 3);

you are constructing a two-element list, while:

atan2(1, 3);

is calling the function atan2 with two arguments.

The => digraph is mostly just a synonym for the comma operator. It’s useful for
documenting arguments that come in pairs. It also forces any identifier to its
immediate left to be interpreted as a string.

List Operator s (Rightward)
The right side of a list operator governs all the list operator’s arguments, which are
comma separated, so the precedence of a list operator is lower than a comma if
you’r e looking to the right. Once a list operator starts chewing up comma-sepa-
rated arguments, the only things that will stop it are tokens that stop the entire
expr ession (like semicolons or statement modifiers), or tokens that stop the cur-
rent subexpression (like right parentheses or brackets), or the low precedence log-
ical operators we’ll talk about next.

Log ical and, or, not, and xor
As lower precedence alternatives to &&, ||, and !, Perl provides the and, or, and
not operators. The behavior of these operators is identical—in particular, and and
or short-circuit like their counterparts, which makes them useful not only for logi-
cal expressions but also for control flow.

Since the precedence of these operators is much lower than the ones borrowed
fr om C, you can safely use them after a list operator without the need for paren-
theses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C-style operators you’d have to write it like this:

unlink("alpha", "beta", "gamma")
|| (gripe(), next LINE);

But you can’t just up and replace all instances of || with or. Suppose you change
this:

$xyz = $x || $y || $z;

to this:

$xyz = $x or $y or $z; # WRONG

That wouldn’t do the same thing at all! The precedence of the assignment is higher
than or but lower than ||, so it would always assign $x to $xyz, and then do the
ors. To get the same effect as ||, you’d have to write:

$xyz = ($x or $y or $z);

The moral of the story is that you still must learn precedence (or use parentheses)
no matter which variety of logical operators you use.

Log ical and, or, not, and xor 109

110 Chapter 3: Unary and Binary Operator s

Ther e is also a logical xor operator that has no exact counterpart in C or Perl,
since the only other exclusive-OR operator (^) works on bits. The xor operator
can’t short-circuit, since both sides must be evaluated. The best equivalent for $a
xor $b is perhaps !$a != !$b. One could also write !$a ˆ !$b or even $a ? !$b :

!!$b, of course. The point is that both $a and $b have to evaluate to true or false
in a Boolean context, and the existing bitwise operator doesn’t provide a Boolean
context without help.

C Operator s Missing from Perl
Her e is what C has that Perl doesn’t:

unary &
The address-of operator. Perl’s \ operator (for taking a refer ence) fills the
same ecological niche, however:

$ref_to_var = \$var;

But Perl refer ences ar e much safer than C pointers.

unary *

The derefer ence-addr ess operator. Since Perl doesn’t have addresses, it doesn’t
need to derefer ence addr esses. It does have refer ences though, so Perl’s vari-
able prefix characters serve as derefer ence operators, and indicate type as
well: $, @, %, and &. Oddly enough, there actually is a * der efer ence operator,
but since * is the funny character indicating a typeglob, you wouldn’t use it
the same way.

(TYPE)

The typecasting operator. Nobody likes to be typecast anyway.

4
Statements and Declarations

A Perl program consists of a sequence of declarations and statements. A declara-
tion may be placed anywhere a statement may be placed, but its primary effect
occurs at compile time. A few declarations do double duty as ordinary statements,
but most are totally transparent at run time. After compilation, the main sequence
of statements is executed just once.

Unlike many programming languages, Perl doesn’t requir e variables to be explic-
itly declared; they spring into existence upon their first use, whether you’ve
declar ed them or not. If you try to use a value from a variable that’s never had a
value assigned to it, it’s quietly treated as 0 when used as a number, as "" (the null
string) when used as a string, or simply as false when used as a logical value. If
you prefer to be warned about using undefined values as though they were real
strings or numbers, or even to treat doing so as an error, the use warnings declara-
tion will take care of that; see the section “Pragmas” at the end of this chapter.

You may declar e your variables though, if you like, using either my or our in front
of the variable name. You can even make it an error to use an undeclared vari-
able. This kind of discipline is fine, but you have to declare that you want the dis-
cipline. Normally, Perl minds its own business about your programming habits, but
under the use strict declaration, the use of undeclared variables is apprehended
at compile time. Again, see the “Pragmas” section.

Simple Statements
A simple statement is an expression evaluated for its side effects. Every simple
statement must end in a semicolon, unless it is the final statement in a block. In

111

112 Chapter 4: Statements and Declarations

that case, the semicolon is optional—Perl knows that you must be done with the
statement, since you’ve finished the block. But put the semicolon in anyway if it’s
at the end of a multiline block, because you might eventually add another line.

Even though operators like eval {}, do {}, and sub {} all look like compound
statements, they really aren’t. True, they allow multiple statements on the inside,
but that doesn’t count. From the outside, those operators are just terms in an
expr ession, and thus they need an explicit semicolon if used as the last item in a
statement.

Any simple statement may optionally be followed by a single modifier, just before
the terminating semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
foreach LIST

The if and unless modifiers work pretty much as they do in English:

$trash->take(’out’) if $you_love_me;
shutup() unless $you_want_me_to_leave;

The while and until modifiers evaluate repeatedly. As you might expect, a while

modifier keeps executing the expression as long as its expression remains true,
and an until modifier keeps executing only as long as it remains false:

$expression++ while -e "$file$expression";
kiss(’me’) until $I_die;

The foreach modifier (also spelled for) evaluates once for each element in its
LIST, with $_ aliased to the current element:

s/java/perl/ for @resumes;
print "field: $_\n" foreach split /:/, $dataline;

The while and until modifiers have the usual while-loop semantics (conditional
evaluated first), except when applied to a do BLOCK (or to the now-deprecated do

SUBROUTINE statement), in which case the block executes once before the condi-
tional is evaluated. This allows you to write loops like this:

do {
$line = <STDIN>;
...

} until $line eq ".\n";

See the three differ ent do entries in Chapter 29, Functions. Note also that the loop-
contr ol operators described later will not work in this construct, since modifiers
don’t take loop labels. You can always place an extra block around it to terminate
early, or inside it to iterate early, as described later in the section “Bare Blocks”. Or

you could write a real loop with multiple loop controls inside. Speaking of real
loops, we’ll talk about compound statements next.

Compound Statements
A sequence of statements within a scope* is called a block. Sometimes the scope is
the entire file, such as a required file or the file containing your main program.
Sometimes the scope is a string being evaluated with eval. But generally, a block
is surrounded by braces ({}). When we say scope, we mean any of these three.
When we mean a block with braces, we’ll use the term BLOCK.

Compound statements are built out of expressions and BLOCKs. Expressions are
built out of terms and operators. In our syntax descriptions, we’ll use the word
EXPR to indicate a place where you can use any scalar expression. To indicate an
expr ession evaluated in list context, we’ll say LIST.

The following statements may be used to control conditional and repeated execu-
tion of BLOCKs. (The LABEL portion is optional.)

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ...
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK
unless (EXPR) BLOCK else BLOCK
unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK
LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK
LABEL BLOCK continue BLOCK

Note that unlike in C and Java, these are defined in terms of BLOCKs, not state-
ments. This means that the braces are requir ed—no dangling statements allowed.
If you want to write conditionals without braces there are several ways to do so.

* Scopes and namespaces are described in Chapter 2, Bits and Pieces, in the “Names” section.

Compound Statements 113

114 Chapter 4: Statements and Declarations

The following all do the same thing:

unless (open(FOO, $foo)) { die "Can’t open $foo: $!" }
if (!open(FOO, $foo)) { die "Can’t open $foo: $!" }

die "Can’t open $foo: $!" unless open(FOO, $foo);
die "Can’t open $foo: $!" if !open(FOO, $foo);

open(FOO, $foo) || die "Can’t open $foo: $!";
open FOO, $foo or die "Can’t open $foo: $!";

Under most circumstances, we tend to prefer the last pair. These forms come with
less eye-clutter than the others, especially the “or die” version. With the || for m
you need to get used to using parentheses religiously, but with the or version, it
doesn’t matter if you forget.

But the main reason we like the last versions better is because of how they pull
the important part of the statement right up to the front of the line where you’ll
see it first. The error handling is shoved off to the side so that you don’t have to
pay attention to it unless you want to.* If you tab all your “or die” checks over to
the same column on the right each time, it’s even easier to read:

chdir $dir or die "chdir $dir: $!";
open FOO, $file or die "open $file: $!";
@lines = <FOO> or die "$file is empty?";
close FOO or die "close $file: $!";

if and unless Statements
The if statement is straightforward. Because BLOCKs are always bounded by
braces, there is never any ambiguity regarding which particular if an else or
elsif goes with. In any given sequence of if/elsif/else BLOCKs, only the first one
whose condition evaluates to true is executed. If none of them is true, then the
else BLOCK, if ther e is one, is executed. It’s usually a good idea to put an else at
the end of a chain of elsifs to guard against a missed case.

If you use unless in place of if, the sense of its test is reversed. That is:

unless ($x == 1) ...

is equivalent to:

if ($x != 1) ...

* (Like this footnote.)

or even to the unsightly:

if (!($x == 1)) ...

The scope of a variable declared in the controlling condition extends from its dec-
laration through the rest of that conditional only, including any elsifs and the
final else clause if present, but not beyond:

if ((my $color = <STDIN>) =˜ /red/i) {
$value = 0xff0000;

}
elsif ($color =˜ /green/i) {

$value = 0x00ff00;
}
elsif ($color =˜ /blue/i) {

$value = 0x0000ff;
}
else {

warn "unknown RGB component ‘$color’, using black instead\n";
$value = 0x000000;

}

After the else, the $color variable is no longer in scope. If you want the scope to
extend further, declar e the variable beforehand.

Loop Statements
All loop statements have an optional LABEL in their formal syntax. (You can put a
label on any statement, but it has a special meaning to a loop.) If present, the
label consists of an identifier followed by a colon. It’s customary to make the label
uppercase to avoid potential confusion with reserved words, and so it stands out
better. And although Perl won’t get confused if you use a label that already has a
meaning like if or open, your readers might.

while and until Statements
The while statement repeatedly executes the block as long as EXPR is true. If the
word while is replaced by the word until, the sense of the test is reversed; that is,
it executes the block only as long as EXPR remains false. The conditional is still
tested before the first iteration, though.

The while or until statement can have an optional extra block: the continue

block. This block is executed every time the block is continued, either by falling
of f the end of the first block or by an explicit next (a loop-control operator that
goes to the next iteration). The continue block is not heavily used in practice, but
it’s in here so we can define the for loop rigorously in the next section.

Loop Statements 115

116 Chapter 4: Statements and Declarations

Unlike the foreach loop we’ll see in a moment, a while loop never implicitly local-
izes any variables in its test condition. This can have “interesting” consequences
when while loops use globals for loop variables. In particular, see the section
“Line input (angle) operator” in Chapter 2 for how implicit assignment to the
global $_ can occur in certain while loops, along with an example of how to deal
with the problem by explicitly localizing $_. For other loop variables, however, it’s
best to declare them with my, as in the next example.

A variable declared in the test condition of a while or until statement is visible
only in the block or blocks governed by that test. It is not part of the surrounding
scope. For example:

while (my $line = <STDIN>) {
$line = lc $line;

}
continue {

print $line; # still visible
}
$line now out of scope here

Her e the scope of $line extends from its declaration in the control expression
thr oughout the rest of the loop construct, including the continue block, but not
beyond. If you want the scope to extend further, declar e the variable before the
loop.

for Loops
The three-part for loop has three semicolon-separated expressions within its
par entheses. These expressions function respectively as the initialization, the con-
dition, and the re-initialization expressions of the loop. All three expressions are
optional (but not the semicolons); if omitted, the condition is always true. Thus,
the three-part for loop can be defined in terms of the corresponding while loop.
This:

LABEL:
for (my $i = 1; $i <= 10; $i++) {

...
}

is like this:

{
my $i = 1;

LABEL:
while ($i <= 10) {

...
}

continue {
$i++;

}
}

except that there’s not really an outer block. (We just put one there to show how
the scope of the my is limited.)

If you want to iterate through two variables simultaneously, just separate the paral-
lel expressions with commas:

for ($i = 0, $bit = 0; $i < 32; $i++, $bit <<= 1) {
print "Bit $i is set\n" if $mask & $bit;

}
the values in $i and $bit persist past the loop

Or declare those variables to be visible only inside the for loop:

for (my ($i, $bit) = (0, 1); $i < 32; $i++, $bit <<= 1) {
print "Bit $i is set\n" if $mask & $bit;

}
loop’s versions of $i and $bit now out of scope

Besides the normal looping through array indices, for can lend itself to many
other interesting applications. It doesn’t even need an explicit loop variable. Here’s
one example that avoids the problem you get when you explicitly test for end-of-
file on an interactive file descriptor, causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something
}

Another traditional application for the three-part for loop results from the fact that
all three expressions are optional, and the default condition is true. If you leave
out all three expressions, you have written an infinite loop:

for (;;) {
...

}

This is the same as writing:

while (1) {
...

}

If the notion of infinite loops bothers you, we should point out that you can
always fall out of the loop at any point with an explicit loop-control operator such

Loop Statements 117

118 Chapter 4: Statements and Declarations

as last. Of course, if you’re writing the code to control a cruise missile, you may
not actually need an explicit loop exit. The loop will be terminated automatically
at the appropriate moment.*

foreach Loops
The foreach loop iterates over a list of values by setting the control variable (VAR)
to each successive element of the list:

foreach VAR (LIST) {
...

}

The foreach keyword is just a synonym for the for keyword, so you can use fore-

ach and for interchangeably, whichever you think is more readable in a given situ-
ation. If VAR is omitted, the global $_ is used. (Don’t worry—Perl can easily
distinguish for (@ARGV) fr om for ($i=0; $i<$#ARGV; $i++) because the latter con-
tains semicolons.) Here are some examples:

$sum = 0; foreach $value (@array) { $sum += $value }

for $count (10,9,8,7,6,5,4,3,2,1,’BOOM’) { # do a countdown
print "$count\n"; sleep(1);

}

for (reverse ’BOOM’, 1 .. 10) { # same thing
print "$_\n"; sleep(1);

}

for $field (split /:/, $data) { # any LIST expression
print "Field contains: ‘$field’\n";

}

foreach $key (sort keys %hash) {
print "$key => $hash{$key}\n";

}

That last one is the canonical way to print out the values of a hash in sorted order.
See the keys and sort entries in Chapter 29 for more elaborate examples.

Ther e is no way with foreach to tell where you are in a list. You may compare
adjacent elements by remembering the previous one in a variable, but sometimes
you just have to break down and write a three-part for loop with subscripts.
That’s what the other kind of for loop is there for, after all.

If LIST consists entirely of assignable values (meaning variables, generally, not
enumerated constants), you can modify each of those variables by modifying VAR

* That is, the fallout from the loop tends to occur automatically.

inside the loop. That’s because the foreach loop index variable is an implicit alias
for each item in the list that you’re looping over. Not only can you modify a single
array in place, you can also modify multiple arrays and hashes in a single list:

foreach $pay (@salaries) { # grant 8% raises
$pay *= 1.08;

}

for (@christmas, @easter) { # change menu
s/ham/turkey/;

}
s/ham/turkey/ for @christmas, @easter; # same thing

for ($scalar, @array, values %hash) {
s/ˆ\s+//; # strip leading whitespace
s/\s+$//; # strip trailing whitespace

}

The loop variable is valid only from within the dynamic or lexical scope of the
loop and will be implicitly lexical if the variable was previously declared with my.
This renders it invisible to any function defined outside the lexical scope of the
variable, even if called from within that loop. However, if no lexical declaration is
in scope, the loop variable will be a localized (dynamically scoped) global vari-
able; this allows functions called from within the loop to access that variable. In
either case, any previous value the localized variable had before the loop will be
restor ed automatically upon loop exit.

If you prefer, you may explicitly declare which kind of variable (lexical or global)
to use. This makes it easier for maintainers of your code to know what’s really
going on; otherwise, they’ll need to search back up through enclosing scopes for a
pr evious declaration to figure out which kind of variable it is:

for my $i (1 .. 10) { ... } # $i always lexical
for our $Tick (1 .. 10) { ... } # $Tick always global

When a declaration accompanies the loop variable, the shorter for spelling is pre-
ferr ed over foreach, since it reads better in English.

Her e’s how a C or Java programmer might first think to code up a particular algo-
rithm in Perl:

for ($i = 0; $i < @ary1; $i++) {
for ($j = 0; $j < @ary2; $j++) {

if ($ary1[$i] > $ary2[$j]) {
last; # Can’t go to outer loop. :-(

}
$ary1[$i] += $ary2[$j];

}
this is where that last takes me

}

Loop Statements 119

120 Chapter 4: Statements and Declarations

But here’s how a veteran Perl programmer might do it:

WID: foreach $this (@ary1) {
JET: foreach $that (@ary2) {

next WID if $this > $that;
$this += $that;

}
}

See how much easier that was in idiomatic Perl? It’s cleaner, safer, and faster. It’s
cleaner because it’s less noisy. It’s safer because if code gets added between the
inner and outer loops later on, the new code won’t be accidentally executed, since
next (explained below) explicitly iterates the outer loop rather than merely break-
ing out of the inner one. And it’s faster because Perl executes a foreach statement
mor e rapidly than it would the equivalent for loop, since the elements are
accessed directly instead of through subscripting.

But write it however you like. TMTOWTDI.

Like the while statement, the foreach statement can also take a continue block.
This lets you execute a bit of code at the bottom of each loop iteration no matter
whether you got there in the normal course of events or through a next.

Speaking of which, now we can finally say it: next is next.

Loop Control
We mentioned that you can put a LABEL on a loop to give it a name. The loop’s
LABEL identifies the loop for the loop-control operators next, last, and redo. The
LABEL names the loop as a whole, not just the top of the loop. Hence, a loop-
contr ol operator referring to the loop doesn’t actually “go to” the loop label itself.
As far as the computer is concerned, the label could just as easily have been
placed at the end of the loop. But people like things labeled at the top, for some
reason.

Loops are typically named for the item the loop is processing on each iteration.
This interacts nicely with the loop-control operators, which are designed to read
like English when used with an appropriate label and a statement modifier. The
archetypal loop works on lines, so the archetypal loop label is LINE:, and the
archetypal loop-control operator is something like this:

next LINE if /ˆ#/; # discard comments

The syntax for the loop-control operators is:

last LABEL
next LABEL
redo LABEL

The LABEL is optional; if omitted, the operator refers to the innermost enclosing
loop. But if you want to jump past more than one level, you must use a LABEL to
name the loop you want to affect. That LABEL does not have to be in your lexical
scope, though it probably ought to be. But in fact, the LABEL can be anywhere in
your dynamic scope. If this forces you to jump out of an eval or subroutine, Perl
issues a warning (upon request).

Just as you may have as many return operators in a function as you like, you may
have as many loop-control operators in a loop as you like. This is not to be con-
sider ed wicked or even uncool. During the early days of structured programming,
some people insisted that loops and subroutines have only one entry and one exit.
The one-entry notion is still a good idea, but the one-exit notion has led people to
write a lot of unnatural code. Much of programming consists of traversing decision
tr ees. A decision tree naturally starts with a single trunk but ends with many
leaves. Write your code with the number of loop exits (and function retur ns) that
is natural to the problem you’re trying to solve. If you’ve declared your variables
with reasonable scopes, everything gets automatically cleaned up at the appropri-
ate moment, no matter how you leave the block.

The last operator immediately exits the loop in question. The continue block, if
any, is not executed. The following example bombs out of the loop on the first
blank line:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with mail header
...

}

The next operator skips the rest of the current iteration of the loop and starts the
next one. If there is a continue clause on the loop, it is executed just before the
condition is re-evaluated, just like the third component of a three-part for loop.
Thus it can be used to increment a loop variable, even when a particular iteration
of the loop has been interrupted by a next:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # skip comments
next LINE if /ˆ$/; # skip blank lines
...

} continue {
$count++;

}

The redo operator restarts the loop block without evaluating the conditional again.
The continue block, if any, is not executed. This operator is often used by pro-
grams that want to fib to themselves about what was just input. Suppose you were

Loop Statements 121

122 Chapter 4: Statements and Declarations

pr ocessing a file that sometimes had a backslash at the end of a line to continue
the record on the next line. Here’s how you could use redo for that:

while (<>) {
chomp;
if (s/\\$//) {

$_ .= <>;
redo unless eof; # don’t read past each file’s eof

}
now process $_

}

which is the customary Perl shorthand for the more explicitly (and tediously) writ-
ten version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =˜ s/\\$//) {

$line .= <ARGV>;
redo LINE unless eof(ARGV);

}
now process $line

}

Her e’s an example from a real program that uses all three loop-control operators.
Although this particular strategy of parsing command-line arguments is less com-
mon now that we have the Getopts::* modules bundled with Perl, it’s still a nice
illustration of the use of loop-control operators on named, nested loops:

ARG: while (@ARGV && $ARGV[0] =˜ s/ˆ-(?=.)//) {
OPT: for (shift @ARGV) {

m/ˆ$/ && do { next ARG; };
m/ˆ-$/ && do { last ARG; };
s/ˆd// && do { $Debug_Level++; redo OPT; };
s/ˆl// && do { $Generate_Listing++; redo OPT; };
s/ˆi(.*)// && do { $In_Place = $1 || ".bak"; next ARG; };
say_usage("Unknown option: $_");

}
}

One more point about loop-control operators. You may have noticed that we are
not calling them “statements”. That’s because they aren’t statements—although like
any expression, they can be used as statements. You can almost think of them as
unary operators that just happen to cause a change in control flow. So you can
use them anywhere it makes sense to use them in an expression. In fact, you can
even use them where it doesn’t make sense. One sometimes sees this coding
err or:

open FILE, $file
or warn "Can’t open $file: $!\n", next FILE; # WRONG

The intent is fine, but the next FILE is being parsed as one of the arguments to
warn, which is a list operator. So the next executes before the warn gets a chance
to emit the warning. In this case, it’s easily fixed by turning the warn list operator
into the warn function call with some suitably situated parentheses:

open FILE, $file
or warn("Can’t open $file: $!\n"), next FILE; # okay

However, you might find it easier to read this:

unless (open FILE, $file) {
warn "Can’t open $file: $!\n";
next FILE;

}

Bare Blocks
A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes
once. Thus you can use last to leave the block or redo to restart the block.* Note
that this is not true of the blocks in eval {}, sub {}, or, much to everyone’s sur-
prise, do {}. These three are not loop blocks because they’re not BLOCKs by them-
selves; the keyword in front makes them mere ter ms in an expression that just
happen to include a code block. Since they’re not loop blocks, they cannot be
given a label to apply loop controls to. Loop controls may only be used on true
loops, just as a return may only be used within a subroutine (well, or an eval).

Loop controls don’t work in an if or unless, either, since those aren’t loops. But
you can always introduce an extra set of braces to give yourself a bare block,
which does count as a loop:

if (/pattern/) {{
last if /alpha/;
last if /beta/;
last if /gamma/;
do something here only if still in if()

}}

Her e’s how a block can be used to let loop-control operators work with a do{}

construct. To next or redo a do, put a bare block inside:

do {{
next if $x == $y;
do something here

}} until $x++ > $z;

* For reasons that may (or may not) become clear upon reflection, a next also exits the once-through
block. There is a slight differ ence, however: a next will execute a continue block, but a last won’t.

Bare Blocks 123

124 Chapter 4: Statements and Declarations

For last, you have to be more elaborate:

{
do {

last if $x = $y ** 2;
do something here

} while $x++ <= $z;
}

And if you want both loop controls available, you’ll have put a label on those
blocks so you can tell them apart:

DO_LAST: {
do {

DO_NEXT: {
next DO_NEXT if $x == $y;
last DO_LAST if $x = $y ** 2;
do something here

}
} while $x++ <= $z;

}

But certainly by that point (if not before), you’d be better off using an ordinary
infinite loop with last at the end:

for (;;) {
next if $x == $y;
last if $x = $y ** 2;
do something here
last unless $x++ <= $z;

}

Case Structures
Unlike some other programming languages, Perl has no official switch or case

statement. That’s because Perl doesn’t need one, having many ways to do the
same thing. A bare block is particularly convenient for doing case structures
(multiway switches). Here’s one:

SWITCH: {
if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

and here’s another:

SWITCH: {
/ˆabc/ && do { $abc = 1; last SWITCH; };
/ˆdef/ && do { $def = 1; last SWITCH; };
/ˆxyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;

}

or, for matted so that each case stands out more:

SWITCH: {
/ˆabc/ && do {

$abc = 1;
last SWITCH;

};
/ˆdef/ && do {

$def = 1;
last SWITCH;

};
/ˆxyz/ && do {

$xyz = 1;
last SWITCH;

};
$nothing = 1;

}

or even (horrors!):

if (/ˆabc/) { $abc = 1 }
elsif (/ˆdef/) { $def = 1 }
elsif (/ˆxyz/) { $xyz = 1 }
else { $nothing = 1 }

In this next example, notice how the last operators ignore the do {} blocks,
which aren’t loops, and exit the for loop instead:

for ($very_nasty_long_name[$i++][$j++]->method()) {
/this pattern/ and do { push @flags, ’-e’; last; };
/that one/ and do { push @flags, ’-h’; last; };
/something else/ and do { last; };
die "unknown value: ‘$_’";

}

You might think it odd to loop over a single value, since you’ll only go through
the loop once. But it’s convenient to use for/foreach’s aliasing capability to make
a temporary, localized assignment to $_. On repeated compares against the same
long value, this makes it much easier to type and therefor e harder to mistype. It
avoids possible side effects from evaluating the expression again. And pertinent to
this section, it’s also one of the most commonly seen standard idioms for imple-
menting a switch or case structure.

Cascading use of the ?: operator can also work for simple cases. Here we again
use a for for its aliasing property to make repeated comparisons more legible:

for ($user_color_preference) {
$value = /red/ ? 0xFF0000 :

/green/ ? 0x00FF00 :
/blue/ ? 0x0000FF :

0x000000 ; # black if all fail
}

Bare Blocks 125

126 Chapter 4: Statements and Declarations

For situations like this last one, it’s sometimes better to build yourself a hash and
quickly index into it to pull the answer out. Unlike the cascading conditionals we
just looked at, a hash scales to an unlimited number of entries, and takes no more
time to look up the first one than the last. The disadvantage is that you can only
do an exact lookup, not a pattern match. If you have a hash like this:

%color_map = (
azure => 0xF0FFFF,
chartreuse => 0x7FFF00,
lavender => 0xE6E6FA,
magenta => 0xFF00FF,
turquoise => 0x40E0D0,

);

then exact string lookups run quickly:

$value = $color_map{ lc $user_color_preference } || 0x000000;

Even complicated multiway branching statements (with each case involving the
execution of several differ ent statements) can be turned into fast lookups. You just
need to use a hash of refer ences to functions. See the section “Hashes of Func-
tions” in Chapter 9, Data Structures, for how to handle those.

goto
Although not for the faint of heart (nor for the pure of heart), Perl does support a
goto operator. Ther e ar e thr ee for ms: goto LABEL, goto EXPR, and goto &NAME.

The goto LABEL for m finds the statement labeled with LABEL and resumes execu-
tion there. It cant be used to jump into any construct that requir es initialization,
such as a subroutine or a foreach loop. It also can’t be used to jump into a con-
struct that has been optimized away (see Chapter 18, Compiling). It can be used to
go almost anywhere else within the current block or any block in your dynamic
scope (that is, a block you were called from). You can even goto out of subrou-
tines, but it’s usually better to use some other construct. The author of Perl has
never felt the need to use this form of goto (in Perl, that is—C is another matter).

The goto EXPR for m is just a generalization of goto LABEL. It expects the expression
to produce a label name, whose location obviously has to be resolved dynamically
by the interpreter. This allows for computed gotos per FORTRAN, but isn’t neces-
sarily recommended if you’re optimizing for maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]); # hope 0 <= i < 3

@loop_label = qw/FOO BAR GLARCH/;
goto $loop_label[rand @loop_label]; # random teleport

In almost all cases like this, it’s usually a far, far better idea to use the structured
contr ol flow mechanisms of next, last, or redo instead of resorting to a goto. For
certain applications, a hash of refer ences to functions or the catch-and-throw pair
of eval and die for exception processing can also be prudent approaches.

The goto &NAME for m is highly magical and sufficiently removed from the ordinary
goto to exempt its users from the opprobrium to which goto users are customarily
subjected. It substitutes a call to the named subroutine for the currently running
subr outine. This behavior is used by AUTOLOAD subr outines to load another subrou-
tine and then pretend that the other subroutine was called in the first place. After
the goto, not even caller will be able to tell that this routine was called first. The
autouse, AutoLoader, and SelfLoader modules all use this strategy to define func-
tions the first time they’re called, and then to jump right to them without anyone
ever knowing the functions weren’t there all along.

Global Declarations
Subr outine and format declarations are global declarations. No matter where you
place them, what they declare is global (it’s local to a package, but packages are
global to the program, so everything in a package is visible from anywhere). A
global declaration can be put anywhere a statement can, but it has no effect on
the execution of the primary sequence of statements—the declarations take effect
at compile time.

This means you can’t conditionally declare subr outines or formats by hiding them
fr om the compiler inside a run-time conditional like an if, since only the inter-
pr eter pays attention to those conditions. Subroutine and format declarations (and
use and no declarations) are seen by the compiler no matter where they occur.

Global declarations are typically put at the beginning or the end of your program,
or off in some other file. However, if you’r e declaring any lexically scoped vari-
ables (see the next section), you’ll want to make sure your format or subroutine
definition falls within the scope of the variable declarations if you expect it to be
able to access those private variables.

Note that we sneakily switched from talking about declarations to definitions.
Sometimes it helps to split the definition of the subroutine from its declaration.
The only syntactic differ ence between the two is that the definition supplies a
BLOCK containing the code to be executed, while the declaration doesn’t. (A sub-
routine definition acts as its own declaration if no declaration has been seen.)
Splitting the definition from the declaration allows you to put the subroutine
declaration at the front of the file and the definition at the end (with your lexically
scoped variable declarations happily in the middle):

Global Declarations 127

128 Chapter 4: Statements and Declarations

sub count (@); # Compiler now knows how to call count().
my $x; # Compiler now knows about lexical variable.
$x = count(3,2,1); # Compiler can validate function call.
sub count (@) { @_ } # Compiler now knows what count() means.

As this example shows, subroutines don’t actually have to be defined before calls
to them can be compiled (indeed, the definition can even by delayed until first
use, if you use autoloading), but declaring subroutines helps the compiler in vari-
ous ways and gives you more options in how you can call them.

Declaring a subroutine allows it to be used without parentheses, as if it were a
built-in operator, from that point forward in the compilation. (We used parentheses
to call count in the last example, but we didn’t actually need to.) You can declare
a subr outine without defining it just by saying:

sub myname;
$me = myname $0 or die "can’t get myname";

A bar e declaration like that declares the function to be a list operator, not a unary
operator, so be car eful to use or ther e instead of ||. The || operator binds too
tightly to use after list operators, though you can always use parentheses around
the list operators arguments to turn the list operator back into something that
behaves more like a function call. Alternatively, you can use the prototype ($) to
tur n the subroutine into a unary operator:

sub myname ($);
$me = myname $0 || die "can’t get myname";

That now parses as you’d expect, but you still ought to get in the habit of using or

in that situation. For more on prototypes, see Chapter 6, Subr outines.

You do need to define the subroutine at some point, or you’ll get an error at run
time indicating that you’ve called an undefined subroutine. Other than defining the
subr outine yourself, there are several ways to pull in definitions from elsewhere.

You can load definitions from other files with a simple require statement; this was
the best way to load files in Perl 4, but there are two problems with it. First, the
other file will typically insert subroutine names into a package (a symbol table) of
its own choosing, not your packages. Second, a require happens at run time, so it
occurs too late to serve as a declaration in the file invoking the require. Ther e ar e
times, however, when delayed loading is what you want.

A mor e useful way to pull in declarations and definitions is with the use declara-
tion, which effectively requires the module at compile time (because use counts
as a BEGIN block) and then lets you import some of the module’s declarations into
your own program. Thus use can be considered a kind of global declaration, in

that it imports names at compile time into your own (global) package just as if
you’d declared them yourself. See the section “Symbol Tables” in Chapter 10,
Packages, for low-level mechanics on how importation works between packages;
Chapter 11, Modules, for how to set up a module’s imports and exports; and
Chapter 18 for an explanation of BEGIN and its cousins, CHECK, INIT, and END,
which are also global declarations of a sort because they’re dealt with at compile
time and can have global effects.

Scoped Declarations
Like global declarations, lexically scoped declarations have an effect at the time of
compilation. Unlike global declarations, lexically scoped declarations only apply
fr om the point of the declaration through the end of the innermost enclosing
scope (block, file, or eval—whichever comes first). That’s why we call them lexi-
cally scoped, though perhaps “textually scoped” would be more accurate, since
lexical scoping has little to do with lexicons. But computer scientists the world
over know what “lexically scoped” means, so we perpetuate the usage here.

Perl also supports dynamically scoped declarations. A dynamic scope also extends
to the end of the innermost enclosing block, but in this case “enclosing” is defined
dynamically at run time rather than textually at compile time. To put it another
way, blocks nest dynamically by invoking other blocks, not by including them.
This nesting of dynamic scopes may correlate somewhat to the nesting of lexical
scopes, but the two are generally not identical, especially when any subroutines
have been invoked.

We mentioned that some aspects of use could be considered global declarations,
but other aspects of use ar e lexically scoped. In particular, use not only imports
package symbols but also implements various magical compiler hints, known as
pragmas (or if you’re into classical forms, pragmata). Most pragmas are lexically
scoped, including the use strict ’vars’ pragma which forces you to declare your
variables before you can use them. See the later section, “Pragmas”.

A package declaration, oddly enough, is itself lexically scoped, despite the fact that
a package is a global entity. But a package declaration merely declares the identity
of the default package for the rest of the enclosing block. Undeclared, unqualified
variable names* ar e looked up in that package. In a sense, a package is never
declar ed at all, but springs into existence when you refer to something that
belongs to that package. It’s all very Perlish.

* Also unqualified names of subroutines, filehandles, directory handles, and formats.

Scoped Declarations 129

130 Chapter 4: Statements and Declarations

Scoped Var iable Dec larations
Most of the rest of the chapter is about using global variables. Or rather, it’s about
not using global variables. There are various declarations that help you not use
global variables—or at least, not use them foolishly.

We alr eady mentioned the package declaration, which was introduced into Perl
long ago to allow globals to be split up into separate packages. This works pretty
well for certain kinds of variables. Packages are used by libraries, modules, and
classes to store their interface data (and some of their semi-private data) to avoid
conflicting with variables and functions of the same name in your main program
or in other modules. If you see someone write $Some::stuff,* they’r e using the
$stuff scalar variable from the package Some. See Chapter 10.

If this were all there wer e to the matter, Perl programs would quickly become
unwieldy as they got longer. Fortunately, Perl’s three scoping declarations make it
easy to create completely private variables (using my), to give selective access to
global ones (using our), and to provide temporary values to global variables (using
local):

my $nose;
our $House;
local $TV_channel;

If more than one variable is listed, the list must be placed in parentheses. For my
and our, the elements may only be simple scalar, array, or hash variables. For
local, the constraints are somewhat more relaxed: you may also localize entire
typeglobs and individual elements or slices of arrays and hashes:

my ($nose, @eyes, %teeth);
our ($House, @Autos, %Kids);
local (*Spouse, $phone{HOME});

Each of these modifiers offers a differ ent sort of “confinement” to the variables
they modify. To oversimplify slightly: our confines names to a scope, local con-
fines values to a scope, and my confines both names and values to a scope.

Each of these constructs may be assigned to, though they differ in what they actu-
ally do with the values, since they have differ ent mechanisms for storing values.
They also differ somewhat if you don’t (as we didn’t above) assign any values to
them: my and local cause the variables in question to start out with values of undef
or (), as appr opriate; our, on the other hand, leaves the current value of its associ-
ated global unchanged.

* Or the archaic $Some’stuff, which probably shouldn’t be encouraged outside of Perl poetry.

Syntactically, my, our, and local ar e simply modifiers (like adjectives) on an lvalue
expr ession. When you assign to a modified lvalue, the modifier doesn’t change
whether the lvalue is viewed as a scalar or a list. To figur e how the assignment
will work, just pretend that the modifier isn’t there. So either of:

my ($foo) = <STDIN>;
my @array = <STDIN>;

supplies a list context to the righthand side, while:

my $foo = <STDIN>;

supplies a scalar context.

Modifiers bind more tightly (with higher precedence) than the comma does. The
following example erroneously declares only one variable, not two, because the
list following the modifier is not enclosed in parentheses.

my $foo, $bar = 1; # WRONG

This has the same effect as:

my $foo;
$bar = 1;

You’ll get a warning about the mistake if warnings are enabled, whether via the -w

or -W command-line switches, or, preferably, through the use warnings declaration
explained later in “Pragmas”.

In general, it’s best to declare a variable in the smallest possible scope that suits it.
Since variables declared in a control-flow statement are visible only in the block
gover ned by that statement, their visibility is reduced. It reads better in English this
way, too.

sub check_warehouse {
for my $widget (our @Current_Inventory) {

print "I have a $widget in stock today.\n";
}

}

The most frequently seen form of declaration is my, which declares lexically
scoped variables for which both the names and values are stor ed in the current
scope’s temporary scratchpad and may not be accessed globally. Closely related is
the our declaration, which enters a lexically scoped name in the current scope, just
as my does, but actually refers to a global variable that anyone else could access if
they wished. In other words, it’s a global variable masquerading as a lexical.

The other form of scoping, dynamic scoping, applies to local variables, which
despite the word “local” are really global variables and have nothing to do with
the local scratchpad.

Scoped Declarations 131

132 Chapter 4: Statements and Declarations

Lexically Scoped Var iables: my
To help you avoid the maintenance headaches of global variables, Perl provides
lexically scoped variables, often called lexicals for short. Unlike globals, lexicals
guarantee you privacy. Assuming you don’t hand out refer ences to these private
variables that would let them be fiddled with indirectly, you can be certain that
every possible access to these private variables is restricted to code within one dis-
cr ete and easily identifiable section of your program. That’s why we picked the
keyword my, after all.

A statement sequence may contain declarations of lexically scoped variables. Such
declarations tend to be placed at the front of the statement sequence, but this is
not a requir ement. In addition to declaring variable names at compile time, the
declarations act like ordinary run-time statements: each of them is elaborated
within the sequence of statements as if it were an ordinary statement without the
modifier:

my $name = "fred";
my @stuff = ("car", "house", "club");
my ($vehicle, $home, $tool) = @stuff;

These lexical variables are totally hidden from the world outside their immediately
enclosing scope. Unlike the dynamic scoping effects of local (see the next sec-
tion), lexicals are hidden from any subroutine called from their scope. This is true
even if the same subroutine is called from itself or elsewhere—each instance of
the subroutine gets its own “scratchpad” of lexical variables.

Unlike block scopes, file scopes don’t nest; there’s no “enclosing” going on, at
least not textually. If you load code from a separate file with do, require, or use,
the code in that file cannot access your lexicals, nor can you access lexicals from
that file.

However, any scope within a file (or even the file itself) is fair game. It’s often
useful to have scopes larger than subroutine definitions, because this lets you
shar e private variables among a limited set of subroutines. This is how you create
variables that a C programmer would think of as “static”:

{
my $state = 0;

sub on { $state = 1 }
sub off { $state = 0 }
sub toggle { $state = !$state }

}

The eval STRING operator also works as a nested scope, since the code in the eval

can see its caller’s lexicals (as long as the names aren’t hidden by identical declara-
tions within the eval’s own scope). Anonymous subroutines can likewise access
any lexical variables from their enclosing scopes; if they do so, they’re what are
known as closur es.* Combining those two notions, if a block evals a string that
cr eates an anonymous subroutine, the subroutine becomes a closure with full
access to the lexicals of both the eval and the block, even after the eval and the
block have exited. See the section “Closures” in Chapter 8, Refer ences.

The newly declared variable (or value, in the case of local) does not show up
until the statement after the statement containing the declaration. Thus you could
mirr or a variable this way:

my $x = $x;

That initializes the new inner $x with the current value $x, whether the current
meaning of $x is global or lexical. (If you don’t initialize the new variable, it starts
out with an undefined or empty value.)

Declaring a lexical variable of a particular name hides any previously declared lex-
ical of the same name. It also hides any unqualified global variable of the same
name, but you can always get to the global variable by explicitly qualifying it with
the name of the package the global is in, for example, $PackageName::varname.

Lexically Scoped Global Declarations: our
A better way to access globals, especially for programs and modules running
under the use strict declaration, is the our declaration. This declaration is lexi-
cally scoped in that it applies only through the end of the current scope. But
unlike the lexically scoped my or the dynamically scoped local, our does not iso-
late anything to the current lexical or dynamic scope. Instead, it provides access to
a global variable in the current package, hiding any lexicals of the same name that
would have otherwise hidden that global from you. In this respect, our variables
act just like my variables.

If you place an our declaration outside any brace-delimited block, it lasts through
the end of the current compilation unit. Often, though, people put it just inside the
top of a subroutine definition to indicate that they’re accessing a global variable:

sub check_warehouse {
our @Current_Inventory;
my $widget;

* As a mnemonic, note the common element between “enclos ing scope” and “closur e”. (The actual
definition of closure comes from a mathematical notion concerning the completeness of sets of val-
ues and operations on those values.)

Scoped Declarations 133

134 Chapter 4: Statements and Declarations

foreach $widget (@Current_Inventory) {
print "I have a $widget in stock today.\n";

}
}

Since global variables are longer in life and broader in visibility than private vari-
ables, we like to use longer and flashier names for them than for temporary vari-
able. This practice alone, if studiously followed, can do as much as use strict can
toward discouraging the use of global variables, especially in less prestidigitatorial
typists.

Repeated our declarations do not meaningfully nest. Every nested my pr oduces a
new variable, and every nested local a new value. But every time you use our,
you’r e talking about the same global variable, irrespective of nesting. When you
assign to an our variable, the effects of that assignment persist after the scope of
the declaration. That’s because our never creates values; it just exposes a limited
for m of access to the global, which lives forever:

our $PROGRAM_NAME = "waiter";
{

our $PROGRAM_NAME = "server";
Code called here sees "server".
...

}
Code executed here still sees "server".

Contrast this with what happens under my or local, wher e after the block, the
outer variable or value becomes visible again:

my $i = 10;
{

my $i = 99;
...

}
Code compiled here sees outer variable.

local $PROGRAM_NAME = "waiter";
{

local $PROGRAM_NAME = "server";
Code called here sees "server".
...

}
Code executed here sees "waiter" again.

It usually only makes sense to assign to an our declaration once, probably at the
very top of the program or module, or, mor e rar ely, when you preface the our

with a local of its own:

{
local our @Current_Inventory = qw(bananas);
check_warehouse(); # no, we haven’t no bananas :-)

}

Dynamically Scoped Var iables: local
Using a local operator on a global variable gives it a temporary value each time
local is executed, but it does not affect that variable’s global visibility. When the
pr ogram reaches the end of that dynamic scope, this temporary value is discarded
and the original value restor ed. But it’s always still a global variable that just hap-
pens to hold a temporary value while that block is executing. If you call some
other function while your global contains the temporary value and that function
accesses that global variable, it sees the temporary value, not the original one. In
other words, that other function is in your dynamic scope, even though it’s pre-
sumably not in your lexical scope.*

If you have a local that looks like this:

{
local $var = $newvalue;
some_func();
...

}

you can think of it purely in terms of run-time assignments:

{
$oldvalue = $var;
$var = $newvalue;
some_func();
...

}
continue {

$var = $oldvalue;
}

The differ ence is that with local the value is restor ed no matter how you exit the
block, even if you prematur ely return fr om that scope. The variable is still the
same global variable, but the value found there depends on which scope the func-
tion was called from. That’s why it’s called dynamic scoping—because it changes
during run time.

As with my, you can initialize a local with a copy of the same global variable. Any
changes to that variable during the execution of a subroutine (and any others
called from within it, which of course can still see the dynamically scoped global)

* That’s why lexical scopes are sometimes called static scopes: to contrast them with dynamic scopes
and emphasize their compile-time determinability. Don’t confuse this use of the term with how
static is used in C or C++. The term is heavily overloaded, which is why we avoid it.

Scoped Declarations 135

136 Chapter 4: Statements and Declarations

will be thrown away when the subroutine retur ns. You’d certainly better comment
what you are doing, though:

WARNING: Changes are temporary to this dynamic scope.
local $Some_Global = $Some_Global;

A global variable then is still completely visible throughout your whole program,
no matter whether it was explicitly declared with our or just allowed to spring into
existence, or whether it’s holding a local value destined to be discarded when the
scope exits. In tiny programs, this isn’t so bad, but for large ones, you’ll quickly
lose track of where in the code all these global variables are being used. You can
forbid accidental use of globals, if you want, through the use strict ’vars’

pragma, described in the next section.

Although both my and local confer some degree of protection, by and large you
should prefer my over local. Sometimes, though, you have to use local so you
can temporarily change the value of an existing global variable, like those listed in
Chapter 28, Special Names. Only alphanumeric identifiers may be lexically scoped,
and many of those special variables aren’t strictly alphanumeric. You also need to
use local to make temporary changes to a package’s symbol table as shown in the
section “Symbol Tables” in Chapter 10. Finally, you can use local on a single ele-
ment or a whole slice of an array or a hash. This even works if the array or hash
happens to be a lexical variable, layering local’s dynamic scoping behavior on top
of those lexicals. We won’t talk much more about the semantics of local her e. See
local in Chapter 29 for more infor mation.

Pragmas
Many programming languages allow you to give hints to the compiler. In Perl,
these hints are conveyed to the compiler with the use declaration. Some pragmas
ar e:

use warnings;
use strict;
use integer;
use bytes;
use constant pi => (4 * atan2(1,1));

Perl pragmas are all described in Chapter 31, Pragmatic Modules, but right now
we’ll just talk specifically about a couple that are most useful with the material
cover ed in this chapter.

Although a few pragmas are global declarations that affect global variables or the
curr ent package, most are lexically scoped declarations whose effects are

constrained to last only until the end of the enclosing block, file, or eval

(whichever comes first). A lexically scoped pragma can be countermanded in an
inner scope with a no declaration, which works just like use but in reverse.

Controlling War nings
To show how this works, we’ll manipulate the warnings pragma to tell Perl
whether to issue warnings for questionable practices:

use warnings; # Enable warnings from here till end of file.
...
{

no warnings; # Disable warnings through end of block.
...

}
Warnings are automatically enabled again here.

Once warnings are enabled, Perl complains about variables used only once, vari-
able declarations that mask other declarations in the same scope, improper con-
versions of strings into numbers, using undefined values as legitimate strings or
numbers, trying to write to files you only opened read-only (or didn’t open at all),
and many other conditions documented in Chapter 33, Diagnostic Messages.

The use warnings pragma is the preferr ed way to control warnings. Old programs
could only use the -w command-line switch or modify the global $ˆW variable:

{
local $ˆW = 0;
...

}

It’s much better to use the use warnings and no warnings pragmas. A pragma is
better because it happens at compile time, because it’s a lexical declaration and
ther efor e cannot affect code it wasn’t intended to affect, and because (although we
haven’t shown you in these simple examples) it affords fine-grained control over
discr ete classes of warnings. For more about the warnings pragma, including how
to convert merely noisy warnings into fatal errors, and how to override the pragma
to turn on war nings globally even if a module says not to, see use warnings in
Chapter 31.

Controlling the Use of Globals
Another commonly seen declaration is the use strict pragma, which has several
functions, one of which is to control the use of global variables. Normally, Perl lets
you create new globals (or all too often, step on old globals) just by mentioning
them. No variable declarations are necessary — by default, that is. Because
unbridled use of globals can make large programs or modules painful to maintain,

Pragmas 137

138 Chapter 4: Statements and Declarations

you may sometimes wish to discourage their accidental use. As an aid to prevent-
ing such accidents, you can say:

use strict ’vars’;

This means that any variable mentioned from here to the end of the enclosing
scope must refer either to a lexical variable or to an explicitly allowed global. If it’s
not one of those, a compilation error results. A global is explicitly allowed if one
of the following is true:

• It’s one of Perl’s program-wide special variables (see Chapter 28).

• It’s fully qualified with its package name (see Chapter 10),

• It’s imported into the current package (see Chapter 11).

• It’s masquerading as a lexically scoped variable via an our declaration. (This is
the main reason we added our declarations to Perl.)

Of course, there’s always the fifth alternative — if the pragma proves burdensome,
simply countermand it within an inner block using:

no strict ’vars’

You can also turn on strict checking of symbolic derefer ences and accidental use
of barewords with this pragma. Normally people just say:

use strict;

to enable all three strictures. See the use strict entry in Chapter 31 for more
infor mation.

5
Patter n Matching

Perl’s built-in support for pattern matching lets you search large amounts of data
conveniently and efficiently. Whether you run a huge commercial portal site scan-
ning every newsfeed in existence for interesting tidbits, or a government organiza-
tion dedicated to figuring out human demographics (or the human genome), or an
educational institution just trying to get some dynamic information up on your
web site, Perl is the tool of choice, in part because of its database connections, but
largely because of its pattern-matching capabilities. If you take “text” in the widest
possible sense, perhaps 90% of what you do is 90% text processing. That’s really
what Perl is all about and always has been about—in fact, it’s even part of Perl’s
name: Practical Extraction and Report Language. Perl’s patterns provide a power-
ful way to scan through mountains of mere data and extract useful information
fr om it.

You specify a pattern by creating a regular expression (or regex), and Perl’s regular
expr ession engine (the “Engine”, for the rest of this chapter) then takes that
expr ession and determines whether (and how) the pattern matches your data.
While most of your data will probably be text strings, there’s nothing stopping you
fr om using regexes to search and replace any byte sequence, even what you’d
nor mally think of as “binary” data. To Perl, bytes are just characters that happen to
have an ordinal value less than 256. (More on that in Chapter 15, Unicode.)

If you’re acquainted with regular expressions from some other venue, we should
war n you that regular expressions are a bit differ ent in Perl. First, they aren’t
entir ely “r egular” in the theoretical sense of the word, which means they can do
much more than the traditional regular expressions taught in computer science
classes. Second, they are used so often in Perl that they have their own special
variables, operators, and quoting conventions which are tightly integrated into the

139

140 Chapter 5: Patter n Matching

language, not just loosely bolted on like any other library. Programmers new to
Perl often look in vain for functions like these:

match($string, $pattern);
subst($string, $pattern, $replacement);

But matching and substituting are such fundamental tasks in Perl that they merit
one-letter operators: m/PATTERN/ and s/PATTERN/REPLACEMENT/ (m// and s///, for
short). Not only are they syntactically brief, but they’re also parsed like double-
quoted strings rather than ordinary operators; nevertheless, they operate like oper-
ators, so we’ll call them that. Throughout this chapter, you’ll see these operators
used to match patterns against a string. If some portion of the string fits the pat-
ter n, we say that the match is successful. There are lots of cool things you can do
with a successful pattern match. In particular, if you are using s///, a successful
match causes the matched portion of the string to be replaced with whatever you
specified as the REPLACEMENT.

This chapter is all about how to build and use patterns. Perl’s regular expressions
ar e potent, packing a lot of meaning into a small space. They can therefor e be
daunting if you try to intuit the meaning of a long pattern as a whole. But if you
can break it up into its parts, and if you know how the Engine interprets those
parts, you can understand any regular expression. It’s not unusual to see a hun-
dr ed line C or Java program expressed with a one-line regular expression in Perl.
That regex may be a little harder to understand than any single line out of the
longer program; on the other hand, the regex will likely be much easier to under-
stand than the longer program taken as a whole. You just have to keep these
things in perspective.

The Regular Expression Bestiary
Befor e we dive into the rules for interpreting regular expressions, let’s see what
some patterns look like. Most characters in a regular expression simply match
themselves. If you string several characters in a row, they must match in order, just
as you’d expect. So if you write the pattern match:

/Frodo/

you can be sure that the pattern won’t match unless the string contains the sub-
string “Frodo” somewher e. (A substring is just a part of a string.) The match could
be anywhere in the string, just as long as those five characters occur somewhere,
next to each other and in that order.

Other characters don’t match themselves, but “misbehave” in some way. We call
these metacharacters. (All metacharacters are naughty in their own right, but some
ar e so bad that they also cause other nearby characters to misbehave as well.)

Her e ar e the miscreants:

\ | () [{ ˆ $ * + ? .

Metacharacters are actually very useful and have special meanings inside patterns;
we’ll tell you all those meanings as we go along. But we do want to reassur e you
that you can always match any of these twelve characters literally by putting a
backslash in front of it. For example, backslash is itself a metacharacter, so to
match a literal backslash, you’d backslash the backslash: \\.

You see, backslash is one of those characters that makes other characters misbe-
have. It just works out that when you make a misbehaving metacharacter misbe-
have, it ends up behaving—a double negative, as it were. So backslashing a
character to get it to be taken literally works, but only on punctuational characters;
backslashing an (ordinarily well-behaved) alphanumeric character does the oppo-
site: it turns the literal character into something special. Whenever you see such a
two-character sequence:

\b \D \t \3 \s

you’ll know that the sequence is a metasymbol that matches something strange.
For instance, \b matches a word boundary, while \t matches an ordinary tab char-
acter. Notice that a tab is one character wide, while a word boundary is zero char-
acters wide because it’s the spot between two characters. So we call \b a zer o-
width assertion. Still, \t and \b ar e alike in that they both assert something about a
particular spot in the string. Whenever you assert something in a regular expres-
sion, you’re just claiming that that particular something has to be true in order for
the pattern to match.

Most pieces of a regular expression are some sort of assertion, including the ordi-
nary characters that simply assert that they match themselves. To be precise, they
also assert that the next thing will match one character later in the string, which is
why we talk about the tab character being “one character wide”. Some assertions
(like \t) eat up some of the string as they match, and others (like \b) don’t. But
we usually reserve the term “assertion” for the zero-width assertions. To avoid
confusion, we’ll call the thing with width an atom. (If you’re a physicist, you can
think of nonzero-width atoms as massive, in contrast to the zero-width assertions,
which are massless like photons.)

You’ll also see some metacharacters that aren’t assertions; rather, they’r e structural
(just as braces and semicolons define the structure of ordinary Perl code, but don’t
really do anything). These structural metacharacters are in some ways the most
important ones because the crucial first step in learning to read regular

The Regular Expression Bestiary 141

142 Chapter 5: Patter n Matching

expr essions is to teach your eyes to pick out the structural metacharacters. Once
you’ve learned that, reading regular expressions is a breeze.*

One such structural metacharacter is the vertical bar, which indicates alter nation:

/Frodo|Pippin|Merry|Sam/

That means that any of those strings can trigger a match; this is covered in “Alter-
nation” later in the chapter. And in the “Capturing and Clustering” section after
that, we’ll show you how to use parentheses around portions of your pattern to do
gr ouping :

/(Frodo|Drogo|Bilbo) Baggins/

or even:

/(Frod|Drog|Bilb)o Baggins/

Another thing you’ll see are what we call quantifiers, which say how many of the
pr evious thing should match in a row. Quantifiers look like this:

* + ? *? {3} {2,5}

You’ll never see them in isolation like that, though. Quantifiers only make sense
when attached to atoms—that is, to assertions that have width.† Quantifiers attach
to the previous atom only, which in human terms means they normally quantify
only one character. If you want to match three copies of “bar” in a row, you need
to group the individual characters of “bar” into a single “molecule” with parenthe-
ses, like this:

/(bar){3}/

That will match “barbarbar”. If you’d said /bar{3}/, that would match
“barrr”—which might qualify you as Scottish but disqualify you as barbarbaric.
(Then again, maybe not. Some of our favorite metacharacters are Scottish.) For
mor e on quantifiers, see “Quantifiers” later.

Now that you’ve seen a few of the beasties that inhabit regular expressions, you’re
pr obably anxious to start taming them. However, befor e we discuss regular ex-
pr essions in earnest, we need to backtrack a little and talk about the pattern-
matching operators that make use of regular expressions. (And if you happen to
spot a few more regex beasties along the way, just leave a decent tip for the tour
guide.)

* Admittedly, a stiff breeze at times, but not something that will blow you away.

† Quantifiers are a bit like the statement modifiers in Chapter 4, Statements and Declarations, which
can only attach to a single statement. Attaching a quantifier to a zero-width assertion would be like
trying to attach a while modifier to a declaration—either of which makes about as much sense as
asking your local apothecary for a pound of photons. Apothecaries only deal in atoms and such.

Patter n-Matching Operator s
Zoologically speaking, Perl’s pattern-matching operators function as a kind of cage
for regular expressions, to keep them from getting out. This is by design; if we
wer e to let the regex beasties wander throughout the language, Perl would be a
total jungle. The world needs its jungles, of course—they’r e the engines of biolog-
ical diversity, after all—but jungles should stay where they belong. Similarly,
despite being the engines of combinatorial diversity, regular expressions should
stay inside pattern match operators where they belong. It’s a jungle in there.

As if regular expressions weren’t powerful enough, the m// and s/// operators
also provide the (likewise confined) power of double-quote interpolation. Since
patter ns ar e parsed like double-quoted strings, all the normal double-quote con-
ventions will work, including variable interpolation (unless you use single quotes
as the delimiter) and special characters indicated with backslash escapes. (See
“Specific Characters” later in this chapter.) These are applied before the string is
interpr eted as a regular expression. (This is one of the few places in the Perl lan-
guage where a string undergoes more than one pass of processing.) The first pass
is not quite normal double-quote interpolation, in that it knows what it should
interpolate and what it should pass on to the regular expression parser. So, for
instance, any $ immediately followed by a vertical bar, closing parenthesis, or the
end of the string will be treated not as a variable interpolation, but as the tradi-
tional regex assertion meaning end-of-line. So if you say:

$foo = "bar";
/foo/;

the double-quote interpolation pass knows that those two $ signs are functioning
dif ferently. It does the interpolation of $foo, then hands this to the regular expres-
sion parser:

/bar$/;

Another consequence of this two-pass parsing is that the ordinary Perl tokener
finds the end of the regular expression first, just as if it were looking for the termi-
nating delimiter of an ordinary string. Only after it has found the end of the string
(and done any variable interpolation) is the pattern treated as a regular expression.
Among other things, this means you can’t “hide” the terminating delimiter of a pat-
ter n inside a regex construct (such as a character class or a regex comment, which
we haven’t covered yet). Perl will see the delimiter wherever it is and terminate
the pattern at that point.

Patter n-Matching Operator s 143

144 Chapter 5: Patter n Matching

You should also know that interpolating variables into a pattern slows down the
patter n matcher, because it feels it needs to check whether the variable has
changed, in case it has to recompile the pattern (which will slow it down even fur-
ther). See “Variable Interpolation” later in this chapter.

The tr/// transliteration operator does not interpolate variables; it doesn’t even
use regular expressions! (In fact, it probably doesn’t belong in this chapter at all,
but we couldn’t think of a better place to put it.) It does share one feature with
m// and s///, however: it binds to variables using the =˜ and !˜ operators.

The =˜ and !˜ operators, described in Chapter 3, Unary and Binary Operators,
bind the scalar expression on their lefthand side to one of three quote-like opera-
tors on their right: m// for matching a pattern, s/// for substituting some string for
a substring matched by a pattern, and tr/// (or its synonym, y///) for transliterat-
ing one set of characters to another set. (You may write m// as //, without the m, if
slashes are used for the delimiter.) If the righthand side of =˜ or !˜ is none of
these three, it still counts as a m// matching operation, but there’ll be no place to
put any trailing modifiers (see “Pattern Modifiers” later), and you’ll have to handle
your own quoting:

print "matches" if $somestring =˜ $somepattern;

Really, there’s little reason not to spell it out explicitly:

print "matches" if $somestring =˜ m/$somepattern/;

When used for a matching operation, =˜ and !˜ ar e sometimes pronounced
“matches” and “doesn’t match” respectively (although “contains” and “doesn’t con-
tain” might cause less confusion).

Apart from the m// and s/// operators, regular expressions show up in two other
places in Perl. The first argument to the split function is a special match operator
specifying what not to retur n when breaking a string into multiple substrings. See
the description and examples for split in Chapter 29, Functions. The qr// (“quote
regex”) operator also specifies a pattern via a regex, but it doesn’t try to match
anything (unlike m//, which does). Instead, the compiled form of the regex is
retur ned for future use. See “Variable Interpolation” for more infor mation.

You apply one of the m//, s///, or tr/// operators to a particular string with the
=˜ binding operator (which isn’t a real operator, just a kind of topicalizer, linguisti-
cally speaking). Here are some examples:

$haystack =˜ m/needle/ # match a simple pattern
$haystack =˜ /needle/ # same thing

$italiano =˜ s/butter/olive oil/ # a healthy substitution

$rotate13 =˜ tr/a-zA-Z/n-za-mN-ZA-M/ # easy encryption (to break)

Without a binding operator, $_ is implicitly used as the “topic”:

/new life/ and # search in $_ and (if found)
/new civilizations/ # boldly search $_ again

s/sugar/aspartame/ # substitute a substitute into $_

tr/ATCG/TAGC/ # complement the DNA stranded in $_

Because s/// and tr/// change the scalar to which they’re applied, you may only
use them on valid lvalues:

"onshore" =˜ s/on/off/; # WRONG: compile-time error

However, m// works on the result of any scalar expression:

if ((lc $magic_hat->fetch_contents->as_string) =˜ /rabbit/) {
print "Nyaa, what’s up doc?\n";

}
else {

print "That trick never works!\n";
}

But you have to be a wee bit careful, since =˜ and !˜ have rather high prece-
dence — in our previous example the parentheses are necessary around the left
ter m.* The !˜ binding operator works like =˜, but negates the logical result of the
operation:

if ($song !˜ /words/) {
print qq/"$song" appears to be a song without words.\n/;

}

Since m//, s///, and tr/// ar e quote operators, you may pick your own delimiters.
These work in the same way as the quoting operators q//, qq//, qr//, and qw//

(see the section “Pick your own quotes” in Chapter 2, Bits and Pieces).

$path =˜ s#/tmp#/var/tmp/scratch#;

if ($dir =˜ m[/bin]) {
print "No binary directories please.\n";

}

When using paired delimiters with s/// or tr///, if the first part is one of the four
customary bracketing pairs (angle, round, square, or curly), you may choose dif-
fer ent delimiters for the second part than you chose for the first:

s(egg)<larva>;
s{larva}{pupa};
s[pupa]/imago/;

* Without the parentheses, the lower-pr ecedence lc would have applied to the whole pattern match
instead of just the method call on the magic hat object.

Patter n-Matching Operator s 145

146 Chapter 5: Patter n Matching

Whitespace is allowed in front of the opening delimiters:

s (egg) <larva>;
s {larva} {pupa};
s [pupa] /imago/;

Each time a pattern successfully matches (including the pattern in a substitution), it
sets the $‘, $&, and $’ variables to the text left of the match, the whole match, and
the text right of the match. This is useful for pulling apart strings into their compo-
nents:

"hot cross buns" =˜ /cross/;
print "Matched: <$‘> $& <$’>\n"; # Matched: <hot > cross < buns>
print "Left: <$‘>\n"; # Left: <hot >
print "Match: <$&>\n"; # Match: <cross>
print "Right: <$’>\n"; # Right: < buns>

For better granularity and efficiency, use parentheses to capture the particular por-
tions that you want to keep around. Each pair of parentheses captures the sub-
string corresponding to the subpatter n in the parentheses. The pairs of
par entheses ar e number ed fr om left to right by the positions of the left parenthe-
ses; the substrings corresponding to those subpatterns are available after the match
in the numbered variables, $1, $2, $3, and so on:*

$_ = "Bilbo Baggins’s birthday is September 22";
/(.*)’s birthday is (.*)/;
print "Person: $1\n";
print "Date: $2\n";

$‘, $&, $’, and the numbered variables are global variables implicitly localized to
the enclosing dynamic scope. They last until the next successful pattern match or
the end of the current scope, whichever comes first. More on this later, in a dif fer-
ent scope.

Once Perl sees that you need one of $‘, $&, or $’ anywher e in the program, it pro-
vides them for every pattern match. This will slow down your program a bit. Perl
uses a similar mechanism to produce $1, $2, and so on, so you also pay a price for
each pattern that contains capturing parentheses. (See “Clustering” to avoid the
cost of capturing while still retaining the grouping behavior.) But if you never use
$‘ $&, or $’, then patterns without capturing parentheses will not be penalized. So
it’s usually best to avoid $‘, $&, and $’ if you can, especially in library modules.
But if you must use them once (and some algorithms really appreciate their conve-
nience), then use them at will, because you’ve already paid the price. $& is not so
costly as the other two in recent versions of Perl.

* Not $0, though, which holds the name of your program.

Patter n Modifier s
We’ll discuss the individual pattern-matching operators in a moment, but first we’d
like to mention another thing they all have in common, modifiers.

Immediately following the final delimiter of an m//, s///, qr//, or tr/// operator,
you may optionally place one or more single-letter modifiers, in any order. For
clarity, modifiers are usually written as “the /o modifier” and pronounced “the
slash oh modifier”, even though the final delimiter might be something other than
a slash. (Sometimes people say “flag” or “option” to mean “modifier”; that’s okay
too.)

Some modifiers change the behavior of the individual operator, so we’ll describe
those in detail later. Others change how the regex is interpreted, so we’ll talk
about them here. The m//, s///, and qr// operators* all accept the following modi-
fiers after their final delimiter:

Modifier Meaning

/i Ignor e alphabetic case distinctions (case insensitive).
/s Let . match newline and ignore depr ecated $* variable.
/m Let ˆ and $ match next to embedded \n.
/x Ignor e (most) whitespace and permit comments in pattern.
/o Compile pattern once only.

The /i modifier says to match both upper- and lowercase (and title case, under
Unicode). That way /perl/i would also match the strings “PROPERLY” or “Perla-
ceous” (amongst other things). A use locale pragma may also have some influ-
ence on what is considered to be equivalent. (This may be a negative influence on
strings containing Unicode.)

The /s and /m modifiers don’t involve anything kinky. Rather, they affect how Perl
tr eats matches against a string that contains newlines. But they aren’t about
whether your string actually contains newlines; they’re about whether Perl should
assume that your string contains a single line (/s) or multiple lines (/m), because
certain metacharacters work differ ently depending on whether they’re expected to
behave in a line-oriented fashion or not.

Ordinarily, the metacharacter “.” matches any one character except a newline,
because its traditional meaning is to match characters within a line. With /s, how-
ever, the “.” metacharacter can also match a newline, because you’ve told Perl to
ignor e the fact that the string might contain multiple newlines. (The /s modifier
also makes Perl ignore the deprecated $* variable, which we hope you too have

* The tr/// operator does not take regexes, so these modifiers do not apply.

Patter n-Matching Operator s 147

148 Chapter 5: Patter n Matching

been ignoring.) The /m modifier, on the other hand, changes the interpretation of
the ˆ and $ metacharacters by letting them match next to newlines within the
string instead of considering only the ends of the string. See the examples in the
section “Positions” later in this chapter.

The /o modifier controls pattern recompilation. Unless the delimiters chosen are
single quotes (m’PATTERN’, s’PATTERN’REPLACEMENT’, or qr’PATTERN’), any variables
in the pattern will be interpolated (and may cause the pattern to be recompiled)
every time the pattern operator is evaluated. If you want such a pattern to be com-
piled once and only once, use the /o modifier. This prevents expensive run-time
recompilations; it’s useful when the value you are interpolating won’t change dur-
ing execution. However, mentioning /o constitutes a promise that you won’t
change the variables in the pattern. If you do change them, Perl won’t even notice.
For better control over recompilation, use the qr// regex quoting operator. See
“Variable Interpolation” later in this chapter for details.

The /x is the expr essive modifier: it allows you to exploit whitespace and explana-
tory comments in order to expand your pattern’s legibility, even extending the pat-
ter n acr oss newline boundaries.

Er, that is to say, /x modifies the meaning of the whitespace characters (and the #

character): instead of letting them do self-matching as ordinary characters do, it
tur ns them into metacharacters that, oddly, now behave as whitespace (and com-
ment characters) should. Hence, /x allows spaces, tabs, and newlines for format-
ting, just like regular Perl code. It also allows the # character, not normally special
in a pattern, to introduce a comment that extends through the end of the current
line within the pattern string.* If you want to match a real whitespace character (or
the # character), then you’ll have to put it into a character class, or escape it with a
backslash, or encode it using an octal or hex escape. (But whitespace is normally
matched with a \s* or \s+ sequence, so the situation doesn’t arise often in
practice.)

Taken together, these features go a long way toward making traditional regular ex-
pr essions a readable language. In the spirit of TMTOWTDI, there’s now more than
one way to write a given regular expression. In fact, there’s more than two ways:

m/\w+:(\s+\w+)\s*\d+/; # A word, colon, space, word, space, digits.

m/\w+: (\s+ \w+) \s* \d+/x; # A word, colon, space, word, space, digits.

m{
\w+: # Match a word and a colon.

* Be careful not to include the pattern delimiter in the comment—because of its “find the end first”
rule, Perl has no way of knowing you didn’t intend to terminate the pattern at that point.

(# (begin group)
\s+ # Match one or more spaces.
\w+ # Match another word.

) # (end group)
\s* # Match zero or more spaces.
\d+ # Match some digits

}x;

We’ll explain those new metasymbols later in the chapter. (This section was sup-
posed to be about pattern modifiers, but we’ve let it get out of hand in our excite-
ment about /x. Ah well.) Here’s a regular expression that finds duplicate words in
paragraphs, stolen right out of the Perl Cookbook. It uses the /x and /i modifiers,
as well as the /g modifier described later.

Find duplicate words in paragraphs, possibly spanning line boundaries.
Use /x for space and comments, /i to match both ‘is’
in "Is is this ok?", and use /g to find all dups.
$/ = ""; # "paragrep" mode
while (<>) {

while (m{
\b # start at a word boundary
(\w\S+) # find a wordish chunk
(

\s+ # separated by some whitespace
\1 # and that chunk again

) + # repeat ad lib
\b # until another word boundary

}xig
)

{
print "dup word ’$1’ at paragraph $.\n";

}
}

When run on this chapter, it produces warnings like this:

dup word ’that’ at paragraph 100

As it happens, we know that that particular instance was intentional.

The m// Operator (Matching)
EXPR =˜ m/PATTERN/cgimosx
EXPR =˜ /PATTERN/cgimosx
EXPR =˜ ?PATTERN?cgimosx
m/PATTERN/cgimosx
/PATTERN/cgimosx
?PATTERN?cgimosx

The m// operator searches the string in the scalar EXPR for PATTERN. If / or ? is the
delimiter, the initial m is optional. Both ? and ’ have special meanings as delim-
iters: the first is a once-only match; the second suppresses variable interpolation
and the six translation escapes (\U and company, described later).

Patter n-Matching Operator s 149

150 Chapter 5: Patter n Matching

If PATTERN evaluates to a null string, either because you specified it that way using
// or because an interpolated variable evaluated to the empty string, the last suc-
cessfully executed regular expression not hidden within an inner block (or within
a split, grep, or map) is used instead.

In scalar context, the operator retur ns true (1) if successful, false ("") otherwise.
This form is usually seen in Boolean context:

if ($shire =˜ m/Baggins/) { ... } # search for Baggins in $shire
if ($shire =˜ /Baggins/) { ... } # search for Baggins in $shire

if (m#Baggins#) { ... } # search right here in $_
if (/Baggins/) { ... } # search right here in $_

Used in list context, m// retur ns a list of substrings matched by the capturing
par entheses in the pattern (that is, $1, $2, $3, and so on) as described later under
“Capturing and Clustering”. The numbered variables are still set even when the list
is retur ned. If the match fails in list context, a null list is retur ned. If the match suc-
ceeds in list context but there wer e no capturing parentheses (nor /g), a list value
of (1) is retur ned. Since it retur ns a null list on failure, this form of m// can also be
used in Boolean context, but only when participating indirectly via a list assign-
ment:

if (($key,$value) = /(\w+): (.*)/) { ... }

Valid modifiers for m// (in whatever guise) are shown in Table 5-1.

Table 5-1. m// Modifiers

Modifier Meaning

/i Ignor e alphabetic case.

/m Let ˆ and $ match next to embedded \n.

/s Let . match newline and ignore depr ecated $*.

/x Ignor e (most) whitespace and permit comments in pattern.

/o Compile pattern once only.

/g Globally find all matches.

/cg Allow continued search after failed /g match.

The first five modifiers apply to the regex and were described earlier. The last two
change the behavior of the match operation itself. The /g modifier specifies global
matching — that is, matching as many times as possible within the string. How it
behaves depends on context. In list context, m//g retur ns a list of all matches
found. Here we find all the places someone mentioned “perl”, “Perl”, “PERL”, and
so on:

if (@perls = $paragraph =˜ /perl/gi) {
printf "Perl mentioned %d times.\n", scalar @perls;

}

If there are no capturing parentheses within the /g patter n, then the complete
matches are retur ned. If there are capturing parentheses, then only the strings cap-
tur ed ar e retur ned. Imagine a string like:

$string = "password=xyzzy verbose=9 score=0";

Also imagine you want to use that to initialize a hash like this:

%hash = (password => "xyzzy", verbose => 9, score => 0);

Except, of course, you don’t have a list, you have a string. To get the correspond-
ing list, you can use the m//g operator in list context to capture all of the
key/value pairs from the string:

%hash = $string =˜ /(\w+)=(\w+)/g;

The (\w+) sequence captures an alphanumeric word. See the section “Capturing
and Clustering”.

Used in scalar context, the /g modifier indicates a pr ogressive match, which makes
Perl start the next match on the same variable at a position just past where the last
one stopped. The \G assertion repr esents that position in the string; see “Positions”
later in this chapter for a description of \G. If you use the /c (for “continue”) modi-
fier in addition to /g, then when the /g runs out, the failed match doesn’t reset the
position pointer.

If a ? is the delimiter, as in ?PATTERN?, this works just like a normal /PATTERN/
search, except that it matches only once between calls to the reset operator. This
can be a convenient optimization when you want to match only the first occur-
rence of the pattern during the run of the program, not all occurrences. The oper-
ator runs the search every time you call it, up until it finally matches something,
after which it turns itself off, retur ning false until you explicitly turn it back on
with reset. Perl keeps track of the match state for you.

The ?? operator is most useful when an ordinary pattern match would find the last
rather than the first occurrence:

open DICT, "/usr/dict/words" or die "Can’t open words: $!\n";
while (<DICT>) {

$first = $1 if ?(ˆneur.*)?;
$last = $1 if /(ˆneur.*)/;

}
print $first,"\n"; # prints "neurad"
print $last,"\n"; # prints "neurypnology"

Patter n-Matching Operator s 151

152 Chapter 5: Patter n Matching

The reset operator will reset only those instances of ?? compiled in the same
package as the call to reset. Saying m?? is equivalent to saying ??.

The s/// Operator (Substitution)
LVALUE =˜ s/PATTERN/REPLACEMENT/egimosx
s/PATTERN/REPLACEMENT/egimosx

This operator searches a string for PATTERN and, if found, replaces the matched
substring with the REPLACEMENT text. (Modifiers are described later in this section.)

$lotr = $hobbit; # Just copy The Hobbit
$lotr =˜ s/Bilbo/Frodo/g; # and write a sequel the easy way.

The retur n value of an s/// operation (in scalar and list contexts alike) is the num-
ber of times it succeeded (which can be more than once if used with the /g modi-
fier, as described earlier). On failure, since it substituted zero times, it retur ns false
(""), which is numerically equivalent to 0.

if ($lotr =˜ s/Bilbo/Frodo/) { print "Successfully wrote sequel." }
$change_count = $lotr =˜ s/Bilbo/Frodo/g;

The replacement portion is treated as a double-quoted string. You may use any of
the dynamically scoped pattern variables described earlier ($‘, $&, $’, $1, $2, and
so on) in the replacement string, as well as any other double-quote gizmos you
car e to employ. For instance, here’s an example that finds all the strings “revi-
sion”, “version”, or “release”, and replaces each with its capitalized equivalent,
using the \u escape in the replacement portion:

s/revision|version|release/\u$&/g; # Use | to mean "or" in a pattern

All scalar variables expand in double-quote context, not just these strange ones.
Suppose you had a %Names hash that mapped revision numbers to internal project
names; for example, $Names{"3.0"} might be code-named “Isengard”. You could
use s/// to find version numbers and replace them with their corresponding pro-
ject names:

s/version ([0-9.]+)/the $Names{$1} release/g;

In the replacement string, $1 retur ns what the first (and only) pair of parentheses
captur ed. (You could use also \1 as you would in the pattern, but that usage is
depr ecated in the replacement. In an ordinary double-quoted string, \1 means a
Contr ol-A.)

If PATTERN is a null string, the last successfully executed regular expression is used
instead. Both PATTERN and REPLACEMENT ar e subject to variable interpolation, but a
PATTERN is interpolated each time the s/// operator is evaluated as a whole, while
the REPLACEMENT is interpolated every time the pattern matches. (The PATTERN can
match multiple times in one evaluation if you use the /g modifier.)

As before, the first five modifiers in Table 5-2 alter the behavior of the regex;
they’r e the same as in m// and qr//. The last two alter the substitution operator
itself.

Table 5-2. s/// Modifiers

Modifier Meaning

/i Ignor e alphabetic case (when matching).

/m Let ˆ and $ match next to embedded \n.

/s Let . match newline and ignore depr ecated $*.

/x Ignor e (most) whitespace and permit comments in pattern.

Compile pattern once only./o

Replace globally, that is, all occurrences./g

/e Evaluate the right side as an expression.

The /g modifier is used with s/// to replace every match of PATTERN with the
REPLACEMENT value, not just the first one found. A s///g operator acts as a global
search and replace, making all the changes at once, much like list m//g, except
that m//g doesn’t change anything. (And s///g is not a progr essive match as scalar
m//g was.)

The /e modifier treats the REPLACEMENT as a chunk of Perl code rather than as an
interpolated string. The result of executing that code is used as the replacement
string. For example, s/([0-9]+)/sprintf("%#x", $1)/ge would convert all num-
bers into hexadecimal, changing, for example, 2581 into 0xb23. Or suppose that, in
our earlier example, you weren’t sure that you had names for all the versions, so
you wanted to leave any others unchanged. With a little creative /x for matting,
you could say:

s{
version
\s+
(

[0-9.]+
)

}{
$Names{$1}

? "the $Names{$1} release"
: $&

}xge;

The righthand side of your s///e (or in this case, the lower side) is syntax-checked
and compiled at compile time along with the rest of your program. Any syntax
err or is detected during compilation, and run-time exceptions are left uncaught.
Each additional /e after the first one (like /ee, /eee, and so on) is equivalent to
calling eval STRING on the result of the code, once per extra /e. This evaluates the

Patter n-Matching Operator s 153

154 Chapter 5: Patter n Matching

result of the code expression and traps exceptions in the special $@ variable. See
the section “Programmatic Patterns” later in the chapter for more details.

Modifying strings en passant

Sometimes you want a new, modified string without clobbering the old one upon
which the new one was based. Instead of writing:

$lotr = $hobbit;
$lotr =˜ s/Bilbo/Frodo/g;

you can combine these into one statement. Due to precedence, parentheses are
requir ed ar ound the assignment, as they are with most combinations applying =˜

to an expression.

($lotr = $hobbit) =˜ s/Bilbo/Frodo/g;

Without the parentheses around the assignment, you’d only change $hobbit and
get the number of replacements stored into $lotr, which would make a rather dull
sequel.

You can’t use a s/// operator directly on an array. For that, you need a loop. By a
lucky coincidence, the aliasing behavior of for/foreach, combined with its use of
$_ as the default loop variable, yields the standard Perl idiom to search and
replace each element in an array:

for (@chapters) { s/Bilbo/Frodo/g } # Do substitutions chapter by chapter.
s/Bilbo/Frodo/g for @chapters; # Same thing.

As with a simple scalar variable, you can combine the substitution with an assign-
ment if you’d like to keep the original values around, too:

@oldhues = (’bluebird’, ’bluegrass’, ’bluefish’, ’the blues’);
for (@newhues = @oldhues) { s/blue/red/ }
print "@newhues\n"; # prints: redbird redgrass redfish the reds

The idiomatic way to perfor m repeated substitutes on the same variable is to use a
once-thr ough loop. For example, here’s how to canonicalize whitespace in a vari-
able:

for ($string) {
s/ˆ\s+//; # discard leading whitespace
s/\s+$//; # discard trailing whitespace
s/\s+/ /g; # collapse internal whitespace

}

which just happens to produce the same result as:

$string = join(" ", split " ", $string);

You can also use such a loop with an assignment, as we did in the array case:

for ($newshow = $oldshow) {
s/Fred/Homer/g;
s/Wilma/Marge/g;
s/Pebbles/Lisa/g;
s/Dino/Bart/g;

}

When a global substitution just isn’t global enough

Occasionally, you can’t just use a /g to get all the changes to occur, either because
the substitutions have to happen right-to-left or because you need the length of $‘
to change between matches. You can usually do what you want by calling s///

repeatedly. However, you want the loop to stop when the s/// finally fails, so you
have to put it into the conditional, which leaves nothing to do in the main part of
the loop. So we just write a 1, which is a rather boring thing to do, but bored is
the best you can hope for sometimes. Here are some examples that use a few
mor e of those odd regex beasties that keep popping up:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/;

expand tabs to 8-column spacing
1 while s/\t+/’ ’ x (length($&)*8 - length($‘)%8)/e;

remove (nested (even deeply nested (like this))) remarks
1 while s/\([ˆ()]*\)//g;

remove duplicate words (and triplicate (and quadruplicate...))
1 while s/\b(\w+) \1\b/$1/gi;

That last one needs a loop because otherwise it would turn this:

Paris in THE THE THE THE spring.

into this:

Paris in THE THE spring.

which might cause someone who knows a little French to picture Paris sitting in
an artesian well emitting iced tea, since “thé” is French for “tea”. A Parisian is
never fooled, of course.

The tr/// Operator (Transliteration)
LVALUE =˜ tr/SEARCHLIST/REPLACEMENTLIST/cds
tr/SEARCHLIST/REPLACEMENTLIST/cds

For sed devotees, y/// is provided as a synonym for tr///. This is why you can’t
call a function named y, any more than you can call a function named q or m. In
all other respects, y/// is identical to tr///, and we won’t mention it again.

Patter n-Matching Operator s 155

156 Chapter 5: Patter n Matching

This operator might not appear to fit into a chapter on pattern matching, since it
doesn’t use patterns. This operator scans a string, character by character, and
replaces each occurrence of a character found in SEARCHLIST (which is not a regu-
lar expression) with the corresponding character from REPLACEMENTLIST (which is
not a replacement string). It looks a bit like m// and s///, though, and you can
even use the =˜ or !˜ binding operators on it, so we describe it here. (qr// and
split ar e patter n-matching operators, but you don’t use the binding operators on
them, so they’re elsewher e in the book. Go figure.)

Transliteration retur ns the number of characters replaced or deleted. If no string is
specified via the =˜ or !˜ operator, the $_ string is altered. The SEARCHLIST and
REPLACEMENTLIST may define ranges of sequential characters with a dash:

$message =˜ tr/A-Za-z/N-ZA-Mn-za-m/; # rot13 encryption.

Note that a range like A-Z assumes a linear character set like ASCII. But each char-
acter set has its own ideas of how characters are order ed and thus of which char-
acters fall in a particular range. A sound principle is to use only ranges that begin
fr om and end at either alphabets of equal case (a-e, A-E), or digits (0-4). Anything
else is suspect. When in doubt, spell out the character sets in full: ABCDE.

The SEARCHLIST and REPLACEMENTLIST ar e not variable interpolated as double-
quoted strings; you may, however, use those backslash sequences that map to a
specific character, such as \n or \015.

Table 5-3 lists the modifiers applicable to the tr/// operator. They’r e completely
dif ferent from those you apply to m//, s///, or qr//, even if some look the same.

Table 5-3. tr/// Modifiers

Modifier Meaning

/c Complement SEARCHLIST.

/d Delete found but unreplaced characters.

/s Squash duplicate replaced characters.

If the /c modifier is specified, the character set in SEARCHLIST is complemented;
that is, the effective search list consists of all the characters not in SEARCHLIST. In
the case of Unicode, this can repr esent a lot of characters, but since they’re stor ed
logically, not physically, you don’t need to worry about running out of memory.

The /d modifier turns tr/// into what might be called the “transobliteration” oper-
ator: any characters specified by SEARCHLIST but not given a replacement in
REPLACEMENTLIST ar e deleted. (This is slightly more flexible than the behavior of
some tr (1) programs, which delete anything they find in SEARCHLIST, period.)

If the /s modifier is specified, sequences of characters converted to the same char-
acter are squashed down to a single instance of the character.

If the /d modifier is used, REPLACEMENTLIST is always interpreted exactly as speci-
fied. Otherwise, if REPLACEMENTLIST is shorter than SEARCHLIST, the final character
is replicated until it is long enough. If REPLACEMENTLIST is null, the SEARCHLIST is
replicated, which is surprisingly useful if you just want to count characters, not
change them. It’s also useful for squashing characters using /s.

tr/aeiou/!/; # change any vowel into !
tr{/\\\r\n\b\f. }{_}; # change strange chars into an underscore

tr/A-Z/a-z/ for @ARGV; # canonicalize to lowercase ASCII

$count = ($para =˜ tr/\n//); # count the newlines in $para
$count = tr/0-9//; # count the digits in $_

$word =˜ tr/a-zA-Z//s; # bookkeeper -> bokeper

tr/@$%*//d; # delete any of those
tr#A-Za-z0-9+/##cd; # remove non-base64 chars

change en passant
($HOST = $host) =˜ tr/a-z/A-Z/;

$pathname =˜ tr/a-zA-Z/_/cs; # change non-(ASCII)alphas to single underbar

tr [\200-\377]
[\000-\177]; # strip 8th bit, bytewise

If the same character occurs more than once in SEARCHLIST, only the first is used.
Ther efor e, this:

tr/AAA/XYZ/

will change any single character A to an X (in $_).

Although variables aren’t interpolated into tr///, you can still get the same effect
by using eval EXPR:

$count = eval "tr/$oldlist/$newlist/";
die if $@; # propagates exception from illegal eval contents

One more note: if you want to change your text to uppercase or lowercase, don’t
use tr///. Use the \U or \L sequences in a double-quoted string (or the equivalent
uc and lc functions) since they will pay attention to locale or Unicode information
and tr/a-z/A-Z/ won’t. Additionally, in Unicode strings, the \u sequence and its
corr esponding ucfirst function understand the notion of titlecase, which for some
languages may be distinct from simply converting to uppercase.

Patter n-Matching Operator s 157

158 Chapter 5: Patter n Matching

Metacharacter s and Metasymbols
Now that we’ve admired all the fancy cages, we can go back to looking at the crit-
ters in the cages, those funny-looking symbols you put inside the patterns. By now
you’ll have cottoned to the fact that these symbols aren’t regular Perl code like
function calls or arithmetic operators. Regular expressions are their own little lan-
guage nestled inside of Perl. (There’s a bit of the jungle in all of us.)

For all their power and expressivity, patterns in Perl recognize the same 12 tradi-
tional metacharacters (the Dirty Dozen, as it were) found in many other regular
expr ession packages:

\ | () [{ ˆ $ * + ? .

Some of those bend the rules, making otherwise normal characters that follow
them special. We don’t like to call the longer sequences “characters”, so when they
make longer sequences, we call them metasymbols (or sometimes just “symbols”).
But at the top level, those twelve metacharacters are all you (and Perl) need to
think about. Everything else proceeds from there.

Some simple metacharacters stand by themselves, like . and ˆ and $. They don’t
dir ectly af fect anything around them. Some metacharacters work like prefix opera-
tors, governing what follows them, like \. Others work like postfix operators, gov-
er ning what immediately precedes them, like *, +, and ?. One metacharacter, |,
acts like an infix operator, standing between the operands it governs. There are
even bracketing metacharacters that work like circumfix operators, governing
something contained inside them, like (...) and [...]. Par entheses ar e particu-
larly important, because they specify the bounds of | on the inside, and of *, +,
and ? on the outside.

If you learn only one of the twelve metacharacters, choose the backslash.
(Er . . . and the parentheses.) That’s because backslash disables the others. When a
backslash precedes a nonalphanumeric character in a Perl pattern, it always makes
that next character a literal. If you need to match one of the twelve metacharacters
in a pattern literally, you write them with a backslash in front. Thus, \. matches a
real dot, \$ a real dollar sign, \\ a real backslash, and so on. This is known as
“escaping” the metacharacter, or “quoting it”, or sometimes just “backslashing” it.
(Of course, you already know that backslash is used to suppress variable interpo-
lation in double-quoted strings.)

Although a backslash turns a metacharacter into a literal character, its effect upon a
following alphanumeric character goes the other direction. It takes something that
was regular and makes it special. That is, together they make a metasymbol. An
alphabetical list of these metasymbols can be found below in Table 5-7.

Metasymbol Tables
In the following tables, the Atomic column says “yes” if the given metasymbol is
quantifiable (if it can match something with width, more or less). Also, we’ve used
“...” to repr esent “something else”. Please see the later discussion to find out
what “...” means, if it is not clear from the one-line gloss in the table.)

Table 5-4 shows the basic traditional metasymbols. The first four of these are the
structural metasymbols we mentioned earlier, while the last three are simple
metacharacters. The . metacharacter is an example of an atom because it matches
something with width (the width of a character, in this case); ˆ and $ ar e examples
of assertions, because they match something of zero width, and because they are
only evaluated to see if they’re true or not.

Table 5-4. General Regex Metacharacters

Symbol Atomic Meaning

\... Varies De-meta next nonalphanumeric character, meta next
alphanumeric character (maybe).

...|... No Alter nation (match one or the other).

(...) Yes Gr ouping (tr eat as a unit).

[...] Yes Character class (match one character from a set).

ˆ No True at beginning of string (or after any newline, maybe).

. Yes Match one character (except newline, normally).

$ No True at end of string (or before any newline, maybe).

The quantifiers, which are further described in their own section, indicate how
many times the preceding atom (that is, single character or grouping) should
match. These are listed in Table 5-5.

Table 5-5. Regex Quantifiers

Quantifier Atomic Meaning

No* Match 0 or more times (maximal).

+ No Match 1 or more times (maximal).

? No Match 1 or 0 times (maximal).

{COUNT} No Match exactly COUNT times.

{MIN,} No Match at least MIN times (maximal).

{MIN,MAX} No Match at least MIN but not more than MAX times (maximal).

*? No Match 0 or more times (minimal).

+? No Match 1 or more times (minimal).

?? No Match 0 or 1 time (minimal).

Metacharacter s and Metasymbols 159

160 Chapter 5: Patter n Matching

Table 5-5. Regex Quantifiers (continued)

Quantifier Atomic Meaning

{MIN,}? No Match at least MIN times (minimal).

{MIN,MAX}? No Match at least MIN but not more than MAX times (minimal).

A minimal quantifier tries to match as few characters as possible within its allowed
range. A maximal quantifier tries to match as many characters as possible within
its allowed range. For instance, .+ is guaranteed to match at least one character of
the string, but will match all of them given the opportunity. The opportunities are
discussed later in “The Little Engine That /Could(n’t)?/”.

You’ll note that quantifiers may never be quantified.

We wanted to provide an extensible syntax for new kinds of metasymbols. Given
that we only had a dozen metacharacters to work with, we chose a formerly illegal
regex sequence to use for arbitrary syntactic extensions. These metasymbols are all
of the form (?KEY...); that is, a (balanced) parenthesis followed by a question
mark, followed by a KEY and the rest of the subpattern. The KEY character indicates
which particular regex extension it is. See Table 5-6 for a list of these. Most of
them behave structurally since they’re based on parentheses, but they also have
additional meanings. Again, only atoms may be quantified because they repr esent
something that’s really there (potentially).

Table 5-6. Extended Regex Sequences

Extension Atomic Meaning

(?#...) No Comment, discard.

(?:...) Yes Cluster-only parentheses, no capturing.

(?imsx-imsx) No Enable/disable pattern modifiers.

(?imsx-imsx:...) Yes Cluster-only parentheses plus modifiers.

(?=...) No True if lookahead assertion succeeds.

(?!...) No True if lookahead assertion fails.

(?<=...) No True if lookbehind assertion succeeds.

(?<!...) No True if lookbehind assertion fails.

(?>...) Yes Match nonbacktracking subpattern.

(?{...}) No Execute embedded Perl code.

(??{...}) Yes Match regex from embedded Perl code.

(?(...)...|...) Yes Match with if-then-else pattern.

(?(...)...) Yes Match with if-then pattern.

And finally, Table 5-7 shows all of your favorite alphanumeric metasymbols. (Sym-
bols that are processed by the variable interpolation pass are marked with a dash
in the Atomic column, since the Engine never even sees them.)

Table 5-7. Alphanumeric Regex Metasymbols

Symbol Atomic Meaning

\0 Yes Match the null character (ASCII NUL).

\NNN Yes Match the character given in octal, up to \377.

\n Yes Match nth previously captured string (decimal).

\a Yes Match the alarm character (BEL).

\A No True at the beginning of a string.

\b Yes Match the backspace character (BS).

\b No True at word boundary.

\B No True when not at word boundary.

\cX Yes Match the control character Control-X (\cZ, \c[, etc.).

\C Yes Match one byte (C char) even in utf8 (dangerous).

\d Yes Match any digit character.

\D Yes Match any nondigit character.

\e Yes Match the escape character (ASCII ESC, not backslash).

\E — End case (\L, \U) or metaquote (\Q) translation.

\f Yes Match the form feed character (FF).

\G No True at end-of-match position of prior m//g.

\l — Lowercase the next character only.

\L — Lowercase till \E.

\n Yes Match the newline character (usually NL, but CR on Macs).

\N{NAME} Yes Match the named char (\N{greek:Sigma}).

\p{PROP} Yes Match any character with the named property.

\P{PROP} Yes Match any character without the named property.

\Q — Quote (de-meta) metacharacters till \E.

\r Yes Match the retur n character (usually CR, but NL on Macs).

\s Yes Match any whitespace character.

\S Yes Match any nonwhitespace character.

\t Yes Match the tab character (HT).

\u — Titlecase next character only.

\U — Uppercase (not titlecase) till \E.

\w Yes Match any “word” character (alphanumerics plus “_”).

\W Yes Match any nonword character.

\x{abcd} Yes Match the character given in hexadecimal.

Metacharacter s and Metasymbols 161

162 Chapter 5: Patter n Matching

Table 5-7. Alphanumeric Regex Metasymbols (continued)

Symbol Atomic Meaning

\X Yes Match Unicode “combining character sequence” string.

\z No True at end of string only.

\Z No True at end of string or before optional newline.

The braces are optional on \p and \P if the property name is one character. The
braces are optional on \x if the hexadecimal number is two digits or less. The
braces are never optional on \N.

Only metasymbols with “Match the . . . ” or “Match any . . . ” descriptions may be
used within character classes (square brackets). That is, character classes are lim-
ited to containing specific sets of characters, so within them you may only use
metasymbols that describe other specific sets of characters, or that describe spe-
cific individual characters. Of course, these metasymbols may also be used outside
character classes, along with all the other nonclassificatory metasymbols. Note
however that \b is two entirely differ ent beasties: it’s a backspace character inside
the character class, but a word boundary assertion outside.

Ther e is some amount of overlap between the characters that a pattern can match
and the characters an ordinary double-quoted string can interpolate. Since regexes
undergo two passes, it is sometimes ambiguous which pass should process a given
character. When there is ambiguity, the variable interpolation pass defers the inter-
pr etation of such characters to the regular expression parser.

But the variable interpolation pass can only defer to the regex parser when it
knows it is parsing a regex. You can specify regular expressions as ordinary dou-
ble-quoted strings, but then you must follow normal double-quote rules. Any of
the previous metasymbols that happen to map to actual characters will still work,
even though they’re not being deferred to the regex parser. But you can’t use any
of the other metasymbols in ordinary double quotes (or in any similar constructs
such as ‘...‘, qq(...), qx(...), or the equivalent here documents). If you want
your string to be parsed as a regular expression without doing any matching, you
should be using the qr// (quote regex) operator.

Note that the case and metaquote translation escapes (\U and friends) must be
pr ocessed during the variable interpolation pass because the purpose of those
metasymbols is to influence how variables are interpolated. If you suppress vari-
able interpolation with single quotes, you don’t get the translation escapes either.
Neither variables nor translation escapes (\U, etc.) are expanded in any single
quoted string, nor in single-quoted m’...’ or qr’...’ operators. Even when you

do interpolation, these translation escapes are ignor ed if they show up as the
result of variable interpolation, since by then it’s too late to influence variable
interpolation.

Although the transliteration operator doesn’t take regular expressions, any meta-
symbol we’ve discussed that matches a single specific character also works in a
tr/// operation. The rest do not (except for backslash, which continues to work
in the backward way it always works.)

Specific Character s
As mentioned before, everything that’s not special in a pattern matches itself. That
means an /a/ matches an “a”, an /=/ matches an “=”, and so on. Some characters,
though, aren’t very easy to type in from the keyboard or, even if you manage that,
don’t show up on a printout; control characters are notorious for this. In a regular
expr ession, Perl recognizes the following double-quotish character aliases:

Escape Meaning

\0 Null character (ASCII NUL)
\a Alar m (BEL)
\e Escape (ESC)
\f For m feed (FF)
\n Newline (NL, CR on Mac)
\r Retur n (CR, NL on Mac)
\t Tab (HT)

Just as in double-quoted strings, Perl also honors the following four metasymbols
in patterns:

\cX

A named control character, like \cC for Control-C, \cZ for Control-Z, \c[for
ESC, and \c? for DEL.

\NNN

A character specified using its two- or three-digit octal code. The leading 0 is
optional, except for values less than 010 (8 decimal) since (unlike in double-
quoted strings) the single-digit versions are always considered to be backrefer-
ences to captured strings within a pattern. Multiple digits are interpr eted as the
nth backrefer ence if you’ve captured at least n substrings earlier in the pattern
(wher e n is considered as a decimal number). Otherwise, they are interpr eted
as a character specified in octal.

Metacharacter s and Metasymbols 163

164 Chapter 5: Patter n Matching

\x{LONGHEX}

\xHEX

A character number specified as one or two hex digits ([0-9a-fA-F]), as in
\x1B. The one-digit form is usable only if the character following it is not a
hex digit. If braces are used, you may use as many digits as you’d like, which
may result in a Unicode character. For example, \x{262f} matches a Unicode
YIN YANG.

\N{NAME}

A named character, such \N{GREEK SMALL LETTER EPSILON}, \N{greek:epsilon},
or \N{epsilon}. This requir es the use charnames pragma described in
Chapter 31, Pragmatic Modules, which also determines which flavors of those
names you may use (":long", ":full", ":short" respectively, corresponding
to the three styles just shown).

A list of all Unicode character names can be found in your closest Unicode
standards document, or in PATH_TO_PERLLIB/unicode/Names.txt.

Wildcard Metasymbols
Thr ee special metasymbols serve as generic wildcards, each of them matching
“any” character (for certain values of “any”). These are the dot (“.”), \C, and \X.
None of these may be used in a character class. You can’t use the dot there
because it would match (nearly) any character in existence, so it’s something of a
universal character class in its own right. If you’re going to include or exclude
everything, there’s not much point in having a character class. The special wild-
cards \C and \X have special structural meanings that don’t map well to the notion
of choosing a single Unicode character, which is the level at which character
classes work.

The dot metacharacter matches any one character other than a newline. (And with
the /s modifier, it matches that, too.) Like any of the dozen special characters in a
patter n, to match a dot literally, you must escape it with a backslash. For example,
this checks whether a filename ends with a dot followed by a one-character exten-
sion:

if ($pathname =˜ /\.(.)\z/s) {
print "Ends in $1\n";

}

The first dot, the escaped one, is the literal character, and the second says “match
any character”. The \z says to match only at the end of the string, and the /s mod-
ifier lets the dot match a newline as well. (Yes, using a newline as a file extension
Isn’t Very Nice, but that doesn’t mean it can’t happen.)

The dot metacharacter is most often used with a quantifier. A .* matches a maxi-
mal number of characters, while a .*? matches a minimal number of characters.
But it’s also sometimes used without a quantifier for its width: /(..):(..):(..)/
matches three colon-separated fields, each of which is two characters long.

If you use a dot in a pattern compiled under the lexically scoped use utf8

pragma, then it will match any Unicode character. (You’r e not supposed to need a
use utf8 for that, but accidents will happen. The pragma may not be necessary by
the time you read this.)

use utf8;
use charnames qw/:full/;
$BWV[887] = "G\N{MUSIC SHARP SIGN} minor";
($note, $black, $mode) = $BWV[887] =˜ /ˆ([A-G])(.)\s+(\S+)/;
print "That’s lookin’ sharp!\n" if $black eq chr(9839);

The \X metasymbol matches a character in a more extended sense. It really
matches a string of one or more Unicode characters known as a “combining char-
acter sequence”. Such a sequence consists of a base character followed by any
“mark” characters (diacritical markings like cedillas or diereses) that combine with
that base character to form one logical unit. \X is exactly equivalent to
(?:\PM\pM*). This allows it to match one logical character, even when that really
comprises several separate characters. The length of the match in /\X/ would
exceed one character if it matched any combining characters. (And that’s character
length, which has little to do with byte length).

If you are using Unicode and really want to get at a single byte instead of a single
character, you can use the \C metasymbol. This will always match one byte
(specifically, one C language char type), even if this gets you out of sync with
your Unicode character stream. See the appropriate warnings about doing this in
Chapter 15.

Character Classes
In a pattern match, you may match any character that has—or that does not
have — a particular property. There are four ways to specify character classes. You
may specify a character classes in the traditional way using square brackets and
enumerating the possible characters, or you may use any of three mnemonic
shortcuts: the classic Perl classes, the new Perl Unicode properties, or the standard
POSIX classes. Each of these shortcuts matches only one character from its set.
Quantify them to match larger expanses, such as \d+ to match one or more digits.
(An easy mistake is to think that \w matches a word. Use \w+ to match a word.)

Character Classes 165

166 Chapter 5: Patter n Matching

Custom Character Classes
An enumerated list of characters in square brackets is called a character class and
matches any one of the characters in the list. For example, [aeiouy] matches a let-
ter that can be a vowel in English. (For Welsh add a “w”, for Scottish an “r”.) To
match a right square bracket, either backslash it or place it first in the list.

Character ranges may be indicated using a hyphen and the a-z notation. Multiple
ranges may be combined; for example, [0-9a-fA-F] matches one hex “digit”. You
may use a backslash to protect a hyphen that would otherwise be interpreted as a
range delimiter, or just put it at the beginning or end of the class (a practice which
is arguably less readable but more traditional).

A car et (or circumflex, or hat, or up arrow) at the front of the character class
inverts the class, causing it to match any single character not in the list. (To match
a car et, either don’t put it first, or better, escape it with a backslash.) For example,
[ˆaeiouy] matches any character that isn’t a vowel. Be careful with character class
negation, though, because the universe of characters is expanding. For example,
that character class matches consonants—and also matches spaces, newlines, and
anything (including vowels) in Cyrillic, Greek, or nearly any other script, not to
mention every idiograph in Chinese, Japanese, and Korean. And someday maybe
even Cirth, Tengwar, and Klingon. (Linear B and Etruscan, for sure.) So it might be
better to specify your consonants explicitly, such as [cbdfghjklmnpqrstvwxyz], or
[b-df-hj-np-tv-z] for short. (This also solves the issue of “y” needing to be in
two places at once, which a set complement would preclude.)

Nor mal character metasymbols are supported inside a character class, (see “Spe-
cific Characters”), such as \n, \t, \cX, \NNN, and \N{NAME}. Additionally, you may
use \b within a character class to mean a backspace, just as it does in a double-
quoted string. Normally, in a pattern match, it means a word boundary. But zero-
width assertions don’t make any sense in character classes, so here \b retur ns to its
nor mal meaning in strings. You may also use any predefined character class
described later in the chapter (classic, Unicode, or POSIX), but don’t try to use
them as endpoints of a range—that doesn’t make sense, so the “-” will be inter-
pr eted literally.

All other metasymbols lose their special meaning inside square brackets. In partic-
ular, you can’t use any of the three generic wildcards: “.”, \X, or \C. The first often
surprises people, but it doesn’t make much sense to use the universal character
class within a restricted one, and you often want to match a literal dot as part of a
character class—when you’re matching filenames, for instance. It’s also meaning-
less to specify quantifiers, assertions, or alternation inside a character class, since
the characters are interpr eted individually. For example, [fee|fie|foe|foo] means
the same thing as [feio|].

Classic Perl Character Class Shortcuts
Since the beginning, Perl has provided a number of character class shortcuts.
These are listed in Table 5-8. All of them are backslashed alphabetic metasymbols,
and in each case, the uppercase version is the negation of the lowercase version.
The meanings of these are not quite as fixed as you might expect; the meanings
can be influenced by locale settings. Even if you don’t use locales, the meanings
can change whenever a new Unicode standard comes out, adding scripts with
new digits and letters. (To keep the old byte meanings, you can always use bytes.
For explanations of the utf8 meanings, see “Unicode Properties” later in this chap-
ter. In any case, the utf8 meanings are a superset of the byte meanings.)

Table 5-8. Classic Character Classes

Symbol Meaning As Bytes As utf8

\d Digit [0-9] \p{IsDigit}

\D Nondigit [ˆ0-9] \P{IsDigit}

\s Whitespace [\t\n\r\f] \p{IsSpace}

\S Nonwhitespace [ˆ \t\n\r\f] \P{IsSpace}

\w Word character [a-zA-Z0-9_] \p{IsWord}

\W Non-(word character) [ˆa-zA-Z0-9_] \P{IsWord}

(Yes, we know most words don’t have numbers or underscores in them; \w is for
matching “words” in the sense of tokens in a typical programming language. Or
Perl, for that matter.)

These metasymbols may be used either outside or inside square brackets, that is,
either standalone or as part of a constructed character class:

if ($var =˜ /\D/) { warn "contains non-digit" }
if ($var =˜ /[ˆ\w\s.]/) { warn "contains non-(word, space, dot)" }

Unicode Proper ties
Unicode properties are available using \p{PROP} and its set complement, \P{PROP}.
For the rare properties with one-character names, braces are optional, as in \pN to
indicate a numeric character (not necessarily decimal—Roman numerals are
numeric characters too). These property classes may be used by themselves or
combined in a constructed character class:

if ($var =˜ /ˆ\p{IsAlpha}+$/) { print "all alphabetic" }
if ($var =˜ s/[\p{Zl}\p{Zp}]/\n/g) { print "fixed newline wannabes" }

Some properties are dir ectly defined in the Unicode standard, and some properties
ar e composites defined by Perl, based on the standard properties. Zl and Zp ar e
standard Unicode properties repr esenting line separators and paragraph

Character Classes 167

168 Chapter 5: Patter n Matching

separators, while IsAlpha is defined by Perl to be a property class combining the
standard properties Ll, Lu, Lt, and Lo, (that is, letters that are lowercase, upper-
case, titlecase, or other). As of version 5.6.0 of Perl, you need to use utf8 for these
pr operties to work. This restriction will be relaxed in the future.

Ther e ar e a great many properties. We’ll list the ones we know about, but the list
is necessarily incomplete. New properties are likely to be in new versions of Uni-
code, and you can even define your own properties. More about that later.

The Unicode Consortium produces the online resources that turn into the various
files Perl uses in its Unicode implementation. For more about these files, see
Chapter 15. You can get a nice overview of Unicode in the document
PATH_TO_PERLLIB/unicode/Unicode3.html wher e PATH_TO_PERLLIB is what is printed
out by:

perl -MConfig -le ’print $Config{privlib}’

Most Unicode properties are of the form \p{IsPROP}. The Is is optional, since it’s
so common, but you may prefer to leave it in for readability.

Perl’s Unicode proper ties

First, Table 5-9 lists Perl’s composite properties. They’re defined to be reasonably
close to the standard POSIX definitions for character classes.

Table 5-9. Composite Unicode Properties

Proper ty Equivalent

IsASCII [\x00-\x7f]

IsAlnum [\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}\p{IsNd}]

IsAlpha [\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}]

IsCntrl \p{IsC}

IsDigit \p{Nd}

IsGraph [ˆ\pC\p{IsSpace}]

IsLower \p{IsLl}

IsPrint \P{IsC}

IsPunct \p{IsP}

IsSpace [\t\n\f\r\p{IsZ}]

IsUpper [\p{IsLu}\p{IsLt}]

IsWord [_\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}\p{IsNd}]

IsXDigit [0-9a-fA-F]

Perl also provides the following composites for each of main categories of stan-
dard Unicode properties (see the next section):

Proper ty Meaning Normative

IsC Crazy control codes and such Yes
IsL Letters Partly
IsM Marks Yes
IsN Numbers Yes
IsP Punctuation No
IsS Symbols No
IsZ Separators (Zeparators?) Yes

Standard Unicode proper ties

Table 5-10 lists the most basic standard Unicode properties, derived from each
character’s category. No character is a member of more than one category. Some
pr operties ar e nor mative; others are mer ely infor mative. See the Unicode Standard
for the standard spiel on just how normative the normative information is, and just
how informative the informative information isn’t.

Table 5-10. Standar d Unicode Properties

Proper ty Meaning Normative

IsCc Other, Contr ol Yes

IsCf Other, For mat Yes

IsCn Other, Not assigned Yes

IsCo Other, Private Use Yes

IsCs Other, Surr ogate Yes

IsLl Letter, Lowercase Yes

IsLm Letter, Modifier No

IsLo Letter, Other No

IsLt Letter, Titlecase Yes

IsLu Letter, Uppercase Yes

IsMc Mark, Combining Yes

IsMe Mark, Enclosing Yes

IsMn Mark, Nonspacing Yes

IsNd Number, Decimal digit Yes

IsNl Number, Letter Yes

IsNo Number, Other Yes

IsPc Punctuation, Connector No

IsPd Punctuation, Dash No

IsPe Punctuation, Close No

IsPf Punctuation, Final quote No

Character Classes 169

170 Chapter 5: Patter n Matching

Table 5-10. Standar d Unicode Properties (continued)

Proper ty Meaning Normative

IsPi Punctuation, Initial quote No

IsPo Punctuation, Other No

IsPs Punctuation, Open No

IsSc Symbol, Currency No

IsSk Symbol, Modifier No

IsSm Symbol, Math No

IsSo Symbol, Other No

IsZl Separator, Line Yes

IsZp Separator, Paragraph Yes

IsZs Separator, Space Yes

Another useful set of properties has to do with whether a given character can be
decomposed (either canonically or compatibly) into other simpler characters.
Canonical decomposition doesn’t lose any formatting information. Compatibility
decomposition may lose formatting information such as whether a character is a
superscript.

Proper ty Infor mation Lost

IsDecoCanon Nothing
IsDecoCompat Something (one of the following)

IsDCcircle Circle around character
IsDCfinal Final position prefer ence (Arabic)
IsDCfont Variant font prefer ence
IsDCfraction Vulgar fraction characteristic
IsDCinitial Initial position prefer ence (Arabic)
IsDCisolated Isolated position prefer ence (Arabic)
IsDCmedial Medial position prefer ence (Arabic)
IsDCnarrow Narr ow characteristic
IsDCnoBreak Nonbr eaking pr efer ence on space or hyphen
IsDCsmall Small characteristic
IsDCsquare Squar e ar ound CJK character
IsDCsub Subscription
IsDCsuper Superscription
IsDCvertical Rotation (horizontal to vertical)
IsDCwide Wide characteristic
IsDCcompat Identity (miscellaneous)

Her e ar e some properties of interest to people doing bidirectional rendering:

Proper ty Meaning

IsBidiL Left-to-right (Arabic, Hebrew)
IsBidiLRE Left-to-right embedding
IsBidiLRO Left-to-right override
IsBidiR Right-to-left
IsBidiAL Right-to-left Arabic
IsBidiRLE Right-to-left embedding
IsBidiRLO Right-to-left override
IsBidiPDF Pop directional format
IsBidiEN Eur opean number
IsBidiES Eur opean number separator
IsBidiET Eur opean number terminator
IsBidiAN Arabic number
IsBidiCS Common number separator
IsBidiNSM Nonspacing mark
IsBidiBN Boundary neutral
IsBidiB Paragraph separator
IsBidiS Segment separator
IsBidiWS Whitespace
IsBidiON Other Neutrals
IsMirrored Reverse when used right-to-left

The following properties classify various syllabaries according to vowel sounds:

IsSylA IsSylE IsSylO IsSylWAA IsSylWII
IsSylAA IsSylEE IsSylOO IsSylWC IsSylWO
IsSylAAI IsSylI IsSylU IsSylWE IsSylWOO
IsSylAI IsSylII IsSylV IsSylWEE IsSylWU
IsSylC IsSylN IsSylWA IsSylWI IsSylWV

For example, \p{IsSylA} would match \N{KATAKANA LETTER KA} but not
\N{KATAKANA LETTER KU}.

Now that we’ve basically told you all these Unicode 3.0 properties, we should
point out that a few of the more esoteric ones aren’t implemented in version 5.6.0
of Perl because its implementation was based in part on Unicode 2.0, and things
like the bidirectional algorithm were still being worked out. However, by the time
you read this, the missing properties may well be implemented, so we listed them
anyway.

Unicode block proper ties

Some Unicode properties are of the form \p{InSCRIPT}. (Note the distinction
between Is and In.) The In pr operties ar e for testing block ranges of a particular

Character Classes 171

172 Chapter 5: Patter n Matching

SCRIPT. If you have a character, and you wonder whether it were written in Greek
script, you could test with:

print "It’s Greek to me!\n" if chr(931) =˜ /\p{InGreek}/;

That works by checking whether a character is “in” the valid range of that script
type. This may be negated with \P{InSCRIPT} to find out whether something isn’t
in a particular script’s block, such as \P{InDingbats} to test whether a string con-
tains a non-dingbat. Block properties include the following:

InArabic InCyrillic InHangulJamo InMalayalam InSyriac
InArmenian InDevanagari InHebrew InMongolian InTamil
InArrows InDingbats InHiragana InMyanmar InTelugu
InBasicLatin InEthiopic InKanbun InOgham InThaana
InBengali InGeorgian InKannada InOriya InThai
InBopomofo InGreek InKatakana InRunic InTibetan
InBoxDrawing InGujarati InKhmer InSinhala InYiRadicals
InCherokee InGurmukhi InLao InSpecials InYiSyllables

Not to mention jawbreakers like these:

InAlphabeticPresentationForms InHalfwidthandFullwidthForms
InArabicPresentationForms-A InHangulCompatibilityJamo
InArabicPresentationForms-B InHangulSyllables
InBlockElements InHighPrivateUseSurrogates
InBopomofoExtended InHighSurrogates
InBraillePatterns InIdeographicDescriptionCharacters
InCJKCompatibility InIPAExtensions
InCJKCompatibilityForms InKangxiRadicals
InCJKCompatibilityIdeographs InLatin-1Supplement
InCJKRadicalsSupplement InLatinExtended-A
InCJKSymbolsandPunctuation InLatinExtended-B
InCJKUnifiedIdeographs InLatinExtendedAdditional
InCJKUnifiedIdeographsExtensionA InLetterlikeSymbols
InCombiningDiacriticalMarks InLowSurrogates
InCombiningHalfMarks InMathematicalOperators
InCombiningMarksforSymbols InMiscellaneousSymbols
InControlPictures InMiscellaneousTechnical
InCurrencySymbols InNumberForms
InEnclosedAlphanumerics InOpticalCharacterRecognition
InEnclosedCJKLettersandMonths InPrivateUse
InGeneralPunctuation InSuperscriptsandSubscripts
InGeometricShapes InSmallFormVariants
InGreekExtended InSpacingModifierLetters

And the winner is:

InUnifiedCanadianAboriginalSyllabics

See PATH_TO_PERLLIB/unicode/In/*.pl to get an up-to-date listing of all of these
character block properties. Note that these In pr operties ar e only testing to see if
the character is in the block of characters allocated for that script. There is no

guarantee that all characters in that range are defined; you also need to test against
one of the Is pr operties discussed earlier to see if the character is defined. There
is also no guarantee that a particular language doesn’t use characters outside its
assigned block. In particular, many European languages mix extended Latin char-
acters with Latin-1 characters.

But hey, if you need a particular property that isn’t provided, that’s not a big prob-
lem. Read on.

Defining your own character proper ties

To define your own property, you need to write a subroutine with the name of the
pr operty you want (see Chapter 6, Subr outines). The subroutine should be defined
in the package that needs the property (see Chapter 10, Packages), which means
that if you want to use it in multiple packages, you’ll either have to import it from
a module (see Chapter 11, Modules), or inherit it as a class method from the pack-
age in which it is defined (see Chapter 12, Objects).

Once you’ve got that all settled, the subroutine should retur n data in the same for-
mat as the files in PATH_TO_PERLLIB/unicode/Is dir ectory. That is, just retur n a list of
characters or character ranges in hexadecimal, one per line. If there is a range, the
two numbers are separated by a tab. Suppose you wanted a property that would
be true if your character is in the range of either of the Japanese syllabaries,
known as hiragana and katakana. (Together they’re known as kana). You can just
put in the two ranges like this:

sub InKana {
return <<’END’;

3040 309F
30A0 30FF
END
}

Alter natively, you could define it in terms of existing property names:

sub InKana {
return <<’END’;

+utf8::InHiragana
+utf8::InKatakana
END
}

You can also do set subtraction using a “-” prefix. Suppose you only wanted the
actual characters, not just the block ranges of characters. You could weed out all
the undefined ones like this:

sub IsKana {
return <<’END’;

+utf8::InHiragana

Character Classes 173

174 Chapter 5: Patter n Matching

+utf8::InKatakana
-utf8::IsCn
END
}

You can also start with a complemented character set using the “!” prefix:

sub IsNotKana {
return <<’END’;

!utf8::InHiragana
-utf8::InKatakana
+utf8::IsCn
END
}

Perl itself uses exactly the same tricks to define the meanings of its “classic” char-
acter classes (like \w) when you include them in your own custom character
classes (like [-.\w\s]). You might think that the more complicated you get with
your rules, the slower they will run, but in fact, once Perl has calculated the bit
patter n for a particular 64-bit swatch of your property, it caches it so it never has
to recalculate the pattern again. (It does it in 64-bit swatches so that it doesn’t
even have to decode your utf8 to do its lookups.) Thus, all character classes, built-
in or custom, run at essentially the same speed (fast) once they get going.

POSIX-Style Character Classes
Unlike Perl’s other character class shortcuts, the POSIX-style character-class syntax
notation, [:CLASS:], is available for use only when constructing other character
classes, that is, inside an additional pair of square brackets. For example,
/[.,[:alpha:][:digit:]]/ will search for one character that is either a literal dot
(because it’s in a character class), a comma, an alphabetic character, or a digit.

The POSIX classes available as of revision 5.6 of Perl are shown in Table 5-11.

Table 5-11. POSIX Character Classes

Class Meaning

alnum Any alphanumeric, that is, an alpha or a digit.

alpha Any letter. (That’s a lot more letters than you think, unless you’re thinking
Unicode, in which case it’s still a lot.)

ascii Any character with an ordinal value between 0 and 127.

cntrl Any control character. Usually characters that don’t produce output as such, but
instead control the terminal somehow; for example, newline, form feed, and
backspace are all control characters. Characters with an ord value less than 32
ar e most often classified as control characters.

digit A character repr esenting a decimal digit, such as 0 to 9. (Includes other
characters under Unicode.) Equivalent to \d.

Table 5-11. POSIX Character Classes (continued)

Class Meaning

graph Any alphanumeric or punctuation character.

lower A lowercase letter.

print Any alphanumeric or punctuation character or space.

punct Any punctuation character.

space Any space character. Includes tab, newline, form feed, and carriage retur n (and a
lot more under Unicode.) Equivalent to \s.

upper Any uppercase (or titlecase) letter.

word Any identifier character, either an alnum or underline.

xdigit Any hexadecimal digit. Though this may seem silly ([0-9a-fA-F] works just fine),
it is included for completeness.

You can negate the POSIX character classes by prefixing the class name with a ˆ

following the [:. (This is a Perl extension.) For example:

POSIX Classic

[:ˆdigit:] \D

[:ˆspace:] \S

[:ˆword:] \W

If the use utf8 pragma is not requested, but the use locale pragma is, the classes
corr elate dir ectly with the equivalent functions in the C library’s isalpha (3) inter-
face (except for word, which is a Perl extension, mirroring \w).

If the utf8 pragma is used, POSIX character classes are exactly equivalent to the
corr esponding Is pr operties listed in Table 5-9. For example [:lower:] and
\p{Lower} ar e equivalent, except that the POSIX classes may only be used within
constructed character classes, whereas Unicode properties have no such restriction
and may be used in patterns wherever Perl shortcuts like \s and \w may be used.

The brackets are part of the POSIX-style [::] construct, not part of the whole
character class. This leads to writing patterns like /ˆ[[:lower:][:digit:]]+$/, to
match a string consisting entirely of lowercase letters or digits (plus an optional
trailing newline). In particular, this does not work:

42 =˜ /ˆ[:digit:]$/ # WRONG

That’s because it’s not inside a character class. Rather, it is a character class, the
one repr esenting the characters “:”, “i”, “t”, “g”, and “d”. Perl doesn’t care that you
specified “:” twice.

Character Classes 175

176 Chapter 5: Patter n Matching

Her e’s what you need instead:

42 =˜ /ˆ[[:digit:]]+$/

The POSIX character classes [.cc.] and [=cc=] ar e recognized but produce an
err or indicating they are not supported. Trying to use any POSIX character class in
older verions of Perl is likely to fail miserably, and perhaps even silently. If you’re
going to use POSIX character classes, it’s best to requir e a new version of Perl by
saying:

use 5.6.0;

Quantifier s
Unless you say otherwise, each item in a regular expression matches just once.
With a pattern like /nop/, each of those characters must match, each right after the
other. Words like “panoply” or “xenophobia” are fine, because wher e the match
occurs doesn’t matter.

If you wanted to match both “xenophobia” and “Snoopy”, you couldn’t use the
/nop/ patter n, since that requir es just one “o” between the “n” and the “p”, and
Snoopy has two. This is where quantifiers come in handy: they say how many
times something may match, instead of the default of matching just once. Quanti-
fiers in a regular expression are like loops in a program; in fact, if you think of a
regex as a program, then they ar e loops. Some loops are exact, like “repeat this
match five times only” ({5}). Others give both lower and upper bounds on the
match count, like “repeat this match at least twice but no more than four times”
({2,4}). Others have no closed upper bound at all, like “match this at least twice,
but as many times as you’d like” ({2,}).

Table 5-12 shows the quantifiers that Perl recognizes in a pattern.

Table 5-12. Regex Quantifiers Compared

Maximal Minimal Allowed Range

{MIN,MAX} {MIN,MAX}? Must occur at least MIN times but no more than MAX times

{MIN,} {MIN,}? Must occur at least MIN times

{COUNT} {COUNT}? Must match exactly COUNT times

* *? 0 or mor e times (same as {0,})

+ +? 1 or mor e times (same as {1,})

? ?? 0 or 1 time (same as {0,1})

Something with a * or a ? doesn’t actually have to match. That’s because they can
match 0 times and still be considered a success. A + may often be a better fit, since
it has to be there at least once.

Don’t be confused by the use of “exactly” in the previous table. It refers only to
the repeat count, not the overall string. For example, $n =˜ /\d{3}/ doesn’t say “is
this string exactly three digits long?” It asks whether there’s any point within $n at
which three digits occur in a row. Strings like “101 Morris Street” test true, but so
do strings like “95472” or “1-800-555-1212”. All contain thr ee digits at one or more
points, which is all you asked about. See the section “Positions” for how to use
positional assertions (as in /ˆ\d{3}$/) to nail this down.

Given the opportunity to match something a variable number of times, maximal
quantifiers will elect to maximize the repeat count. So when we say “as many
times as you’d like”, the greedy quantifier interprets this to mean “as many times
as you can possibly get away with”, constrained only by the requir ement that this
not cause specifications later in the match to fail. If a pattern contains two open-
ended quantifiers, then obviously both cannot consume the entire string: charac-
ters used by one part of the match are no longer available to a later part. Each
quantifier is greedy at the expense of those that follow it, reading the pattern left
to right.

That’s the traditional behavior of quantifiers in regular expressions. However, Perl
per mits you to refor m the behavior of its quantifiers: by placing a ? after that
quantifier, you change it from maximal to minimal. That doesn’t mean that a mini-
mal quantifier will always match the smallest number of repetitions allowed by its
range, any more than a maximal quantifier must always match the greatest number
allowed in its range. The overall match must still succeed, and the minimal match
will take as much as it needs to succeed, and no more. (Minimal quantifiers value
contentment over greed.)

For example, in the match:

"exasperate" =˜ /e(.*)e/ # $1 now "xasperat"

the .* matches “xasperat”, the longest possible string for it to match. (It also stores
that value in $1, as described in the section “Capturing and Clustering” later in the
chapter.) Although a shorter match was available, a greedy match doesn’t care.
Given two choices at the same starting point, it always retur ns the longer of the
two.

Contrast this with this:

"exasperate" =˜ /e(.*?)e/ # $1 now "xasp"

Her e, the minimal matching version, .*?, is used. Adding the ? to * makes *? take
on the opposite behavior: now given two choices at the same starting point, it
always retur ns the shorter of the two.

Although you could read *? as saying to match zero or mor e of something but
pr eferring zer o, that doesn’t mean it will always match zero characters. If it did so

Quantifier s 177

178 Chapter 5: Patter n Matching

her e, for example, and left $1 set to "", then the second “e” wouldn’t be found,
since it doesn’t immediately follow the first one.

You might also wonder why, in minimally matching /e(.*?)e/, Perl didn’t stick
“rat” into $1. After all, “rat” also falls between two e’s, and is shorter than “xasp”.
In Perl, the minimal/maximal choice applies only when selecting the shortest or
longest from among several matches that all have the same starting point. If two
possible matches exist, but these start at differ ent of fsets in the string, then their
lengths don’t matter—nor does it matter whether you’ve used a minimal quantifier
or a maximal one. The earliest of several valid matches always wins out over all
latecomers. It’s only when multiple possible matches start at the same point that
you use minimal or maximal matching to break the tie. If the starting points differ,
ther e’s no tie to break. Perl’s matching is normally leftmost longest ; with minimal
matching, it becomes leftmost shortest. But the “leftmost” part never varies and is
the dominant criterion.*

Ther e ar e two ways to defeat the leftward leanings of the pattern matcher. First,
you can use an earlier greedy quantifier (typically .*) to try to slurp earlier parts of
the string. In searching for a match for a greedy quantifier, it tries for the longest
match first, which effectively searches the rest of the string right-to-left:

"exasperate" =˜ /.*e(.*?)e/ # $1 now "rat"

But be careful with that, since the overall match now includes the entire string up
to that point.

The second way to defeat leftmostness to use positional assertions, discussed in
the next section.

Positions
Some regex constructs repr esent positions in the string to be matched, which is a
location just to the left or right of a real character. These metasymbols are exam-
ples of zer o-width assertions because they do not correspond to actual characters
in the string. We often just call them “assertions”. (They’re also known as
“anchors” because they tie some part of the pattern to a particular position.)

You can always manipulate positions in a string without using patterns. The built-
in substr function lets you extract and assign to substrings, measured from the
beginning of the string, the end of the string, or from a particular numeric offset.
This might be all you need if you were working with fixed-length records, for

* Not all regex engines work this way. Some believe in overall greed, in which the longest match
always wins, even if it shows up later. Perl isn’t that way. You might say that eagerness holds priority
over greed (or thrift). For a more for mal discussion of this principle and many others, see the section
“The Little Engine That /Could(n’t)?/”.

instance. Patterns are only necessary when a numeric offset isn’t sufficient. But
most of the time, offsets aren’t sufficient — at least, not sufficiently convenient,
compar ed to patterns.

Beg innings: The \A and ˆ Assertions
The \A assertion matches only at the beginning of the string, no matter what.
However, the ˆ assertion is the traditional beginning-of-line assertion as well as a
beginning-of-string assertion. Therefor e, if the pattern uses the /m modifier* and
the string has embedded newlines, ˆ also matches anywhere inside the string
immediately following a newline character:

/\Abar/ # Matches "bar" and "barstool"
/ˆbar/ # Matches "bar" and "barstool"
/ˆbar/m # Matches "bar" and "barstool" and "sand\nbar"

Used in conjunction with /g, the /m modifier lets ˆ match many times in the same
string:

s/ˆ\s+//gm; # Trim leading whitespace on each line
$total++ while /ˆ./mg; # Count nonblank lines

Endings: The \z, \Z, and $ Assertions
The \z metasymbol matches at the end of the string, no matter what’s inside. \Z
matches right before the newline at the end of the string if there is a newline, or at
the end if there isn’t. The $ metacharacter usually means the same as \Z. However,
if the /m modifier was specified and the string has embedded newlines, then $ can
also match anywhere inside the string right in front of a newline:

/bot\z/ # Matches "robot"
/bot\Z/ # Matches "robot" and "abbot\n"
/bot$/ # Matches "robot" and "abbot\n"
/bot$/m # Matches "robot" and "abbot\n" and "robot\nrules"

/ˆrobot$/ # Matches "robot" and "robot\n"
/ˆrobot$/m # Matches "robot" and "robot\n" and "this\nrobot\n"
/\Arobot\Z/ # Matches "robot" and "robot\n"
/\Arobot\z/ # Matches only "robot" -- but why didn’t you use eq?

As with ˆ, the /m modifier lets $ match many times in the same string when used
with /g. (These examples assume that you’ve read a multiline record into $_, per-
haps by setting $/ to "" befor e reading.)

* Or you’ve set the deprecated $* variable to 1 and you’re not overriding $* with the /s modifier.

Positions 179

180 Chapter 5: Patter n Matching

s/\s*$//gm; # Trim trailing whitespace on each line in paragraph

while (/ˆ([ˆ:]+):\s*(.*)/gm) { # get mail header
$headers{$1} = $2;

}

In “Variable Interpolation” later in this chapter, we’ll discuss how you can interpo-
late variables into patterns: if $foo is “bc”, then /a$foo/ is equivalent to /abc/.
Her e, the $ does not match the end of the string. For a $ to match the end of the
string, it must be at the end of the pattern or immediately be followed by a vertical
bar or closing parenthesis.

Boundar ies: The \b and \B Asser tions
The \b assertion matches at any word boundary, defined as the position between
a \w character and a \W character, in either order. If the order is \W\w, it’s a begin-
ning-of-word boundary, and if the order is \w\W, it’s an end-of-word boundary.
(The ends of the string count as \W characters here.) The \B assertion matches any
position that is not a word boundary, that is, the middle of either \w\w or \W\W.

/\bis\b/ # matches "what it is" and "that is it"
/\Bis\B/ # matches "thistle" and "artist"
/\bis\B/ # matches "istanbul" and "so--isn’t that butter?"
/\Bis\b/ # matches "confutatis" and "metropolis near you"

Because \W includes all punctuation characters (except the underscore), there are
\b boundaries in the middle of strings like “isn’t”, “booktech@oreilly.com”, “M.I.T.”,
and “key/value”.

Inside a character class ([\b]), a \b repr esents a backspace rather than a word
boundary.

Prog ressive Matching
When used with the /g modifier, the pos function allows you to read or set the off-
set where the next progr essive match will start:

$burglar = "Bilbo Baggins";
while ($burglar =˜ /b/gi) {

printf "Found a B at %d\n", pos($burglar)-1;
}

(We subtract one from the position because that was the length of the string we
wer e looking for, and pos is always the position just past the match.)

The code above prints:

Found a B at 0
Found a B at 3
Found a B at 6

After a failure, the match position normally resets back to the start. If you also
apply the /c (for “continue”) modifier, then when the /g runs out, the failed match
doesn’t reset the position pointer. This lets you continue your search past that
point without starting over at the very beginning.

$burglar = "Bilbo Baggins";
while ($burglar =˜ /b/gci) { # ADD /c

printf "Found a B at %d\n", pos($burglar)-1;
}
while ($burglar =˜ /i/gi) {

printf "Found an I at %d\n", pos($burglar)-1;
}

Besides the three B’s it found earlier, Perl now reports finding an i at position 10.
Without the /c, the second loop’s match would have restarted from the beginning
and found another i at position 6 first.

Where You Left Off: The \G Assertion
Whenever you start thinking in terms of the pos function, it’s tempting to start
carving your string up with substr, but this is rarely the right thing to do. More
often, if you started with pattern matching, you should continue with pattern
matching. However, if you’r e looking for a positional assertion, you’re probably
looking for \G.

The \G assertion repr esents within the pattern the same point that pos repr esents
outside of it. When you’re progr essively matching a string with the /g modifier (or
you’ve used the pos function to directly select the starting point), you can use \G

to specify the position just after the previous match. That is, it matches the loca-
tion immediately before whatever character would be identified by pos. This
allows you to remember where you left off:

($recipe = <<’DISH’) =˜ s/ˆ\s+//gm;
Preheat oven to 451 deg. fahrenheit.
Mix 1 ml. dilithium with 3 oz. NaCl and
stir in 4 anchovies. Glaze with 1 g.
mercury. Heat for 4 hours and let cool
for 3 seconds. Serves 10 aliens.

DISH

$recipe =˜ /\d+ /g;
$recipe =˜ /\G(\w+)/; # $1 is now "deg"
$recipe =˜ /\d+ /g;
$recipe =˜ /\G(\w+)/; # $1 is now "ml"
$recipe =˜ /\d+ /g;
$recipe =˜ /\G(\w+)/; # $1 is now "oz"

The \G metasymbol is often used in a loop, as we demonstrate in our next exam-
ple. We “pause” after every digit sequence, and at that position, we test whether

Positions 181

182 Chapter 5: Patter n Matching

ther e’s an abbreviation. If so, we grab the next two words. Otherwise, we just grab
the next word:

pos($recipe) = 0; # Just to be safe, reset \G to 0
while ($recipe =˜ /(\d+) /g) {

my $amount = $1;
if ($recipe =˜ / \G (\w{0,3}) \. \s+ (\w+) /x) { # abbrev. + word

print "$amount $1 of $2\n";
} else {

$recipe =˜ / \G (\w+) /x; # just a word
print "$amount $1\n";

}
}

That produces:

451 deg of fahrenheit
1 ml of dilithium
3 oz of NaCl
4 anchovies
1 g of mercury
4 hours
3 seconds
10 aliens

Captur ing and Clustering
Patter ns allow you to group portions of your pattern together into subpatterns and
to remember the strings matched by those subpatterns. We call the first behavior
clustering and the second one capturing.

Captur ing
To captur e a substring for later use, put parentheses around the subpattern that
matches it. The first pair of parentheses stores its substring in $1, the second pair
in $2, and so on. You may use as many parentheses as you like; Perl just keeps
defining more number ed variables for you to repr esent these captured strings.

Some examples:

/(\d)(\d)/ # Match two digits, capturing them into $1 and $2
/(\d+)/ # Match one or more digits, capturing them all into $1
/(\d)+/ # Match a digit one or more times, capturing the last into $1

Note the differ ence between the second and third patterns. The second form is
usually what you want. The third form does not cr eate multiple variables for multi-
ple digits. Parentheses are number ed when the pattern is compiled, not when it is
matched.

Captur ed strings are often called backr efer ences because they refer back to parts
of the captured text. There are actually two ways to get at these backrefer ences.
The numbered variables you’ve seen are how you get at backrefer ences outside of
a patter n, but inside the pattern, that doesn’t work. You have to use \1, \2, etc.* So
to find doubled words like “the the” or “had had”, you might use this pattern:

/\b(\w+) \1\b/i

But most often, you’ll be using the $1 for m, because you’ll usually apply a pattern
and then do something with the substrings. Suppose you have some text (a mail
header) that looks like this:

From: gnat@perl.com
To: camelot@oreilly.com
Date: Mon, 17 Jul 2000 09:00:00 -1000
Subject: Eye of the needle

and you want to construct a hash that maps the text before each colon to the text
afterward. If you were looping through this text line by line (say, because you
wer e reading it from a file) you could do that as follows:

while (<>) {
/ˆ(.*?): (.*)$/; # Pre-colon text into $1, post-colon into $2
$fields{$1} = $2;

}

Like $‘, $&, and $’, these numbered variables are dynamically scoped through the
end of the enclosing block or eval string, or to the next successful pattern match,
whichever comes first. You can use them in the righthand side (the replacement
part) of a substitute, too:

s/ˆ(\S+) (\S+)/$2 $1/; # Swap first two words

Gr oupings can nest, and when they do, the groupings are counted by the location
of the left parenthesis. So given the string “Primula Brandybuck”, the pattern:

/ˆ((\w+) (\w+))$/

would capture “Primula Brandybuck” into $1, “Primula” into $2, and “Brandybuck”
into $3. This is depicted in Figure 5-1.

* You can’t use $1 for a backrefer ence within the pattern because that would already have been inter-
polated as an ordinary variable back when the regex was compiled. So we use the traditional \1
backr efer ence notation inside patterns. For two- and three-digit backrefer ence numbers, there is
some ambiguity with octal character notation, but that is neatly solved by considering how many
captur ed patter ns ar e available. For instance, if Perl sees a \11 metasymbol, it’s equivalent to $11
only if there are at least 11 substrings captured earlier in the pattern. Otherwise, it’s equivalent to
\011, that is, a tab character.

Captur ing and Clustering 183

184 Chapter 5: Patter n Matching

/^((\w+) (\w+))$/

$2
$1

$3

Figur e 5-1. Creating backrefer ences with parentheses

Patter ns with captures are often used in list context to populate a list of values,
since the pattern is smart enough to retur n the captured substrings as a list:

($first, $last) = /ˆ(\w+) (\w+)$/;
($full, $first, $last) = /ˆ((\w+) (\w+))$/;

With the /g modifier, a patter n can retur n multiple substrings from multiple
matches, all in one list. Suppose you had the mail header we saw earlier all in one
string (in $_, say). You could do the same thing as our line-by-line loop, but with
one statement:

%fields = /ˆ(.*?): (.*)$/gm;

The pattern matches four times, and each time it matches, it finds two substrings.
The /gm match retur ns all of these as a flat list of eight strings, which the list
assignment to %fields will conveniently interpret as four key/value pairs, thus
restoring harmony to the universe.

Several other special variables deal with text captured in pattern matches. $& con-
tains the entire matched string, $‘ everything to the left of the match, $’ every-
thing to the right. $+ contains the contents of the last backrefer ence.

$_ = "Speak, friend, and enter.";
m[(<.*?>) (.*?) (</.*?>)]x; # A tag, then chars, then an end tag
print "prematch: $‘\n"; # Speak,
print "match: $&\n"; # friend
print "postmatch: $’\n"; # , and enter.
print "lastmatch: $+\n"; #

For more explanation of these magical Elvish variables (and for a way to write
them in English), see Chapter 28, Special Names.

The @- (@LAST_MATCH_START) array holds the offsets of the beginnings of any
submatches, and @+ (@LAST_MATCH_END) holds the offsets of the ends:

#!/usr/bin/perl
$alphabet = "abcdefghijklmnopqrstuvwxyz";
$alphabet =˜ /(hi).*(stu)/;

print "The entire match began at $-[0] and ended at $+[0]\n";
print "The first match began at $-[1] and ended at $+[1]\n";
print "The second match began at $-[2] and ended at $+[2]\n";

If you really want to match a literal parenthesis character instead of having it inter-
pr eted as a metacharacter, backslash it:

/\(e.g., .*?\)/

This matches a parenthesized example (e.g., this statement). But since dot is a
wildcard, this also matches any parenthetical statement with the first letter e and
third letter g (ergo, this statement too).

Cluster ing
Bar e par entheses both cluster and capture. But sometimes you don’t want that.
Sometimes you just want to group portions of the pattern without creating a back-
refer ence. You can use an extended form of par entheses to suppress capturing:
the (?:PATTERN) notation will cluster without capturing.

Ther e ar e at least three reasons you might want to cluster without capturing:

1. To quantify something.

2. To limit the scope of interior alternation; for example, /ˆcat|cow|dog$/ needs
to be /ˆ(?:cat|cow|dog)$/ so that the cat doesn’t run away with the ˆ.

3. To limit the scope of an embedded pattern modifier to a particular subpattern,
such as in /foo(?-i:Case_Matters)bar/i. (See the next section, “Cloistered
Patter n Modifiers.”)

In addition, it’s more efficient to suppress the capture of something you’re not
going to use. On the minus side, the notation is a little noisier, visually speaking.

In a pattern, a left parenthesis immediately followed by a question mark denotes a
regex extension. The current regular expression bestiary is relatively fixed—we
don’t dare create a new metacharacter, for fear of breaking old Perl programs.
Instead, the extension syntax is used to add new features to the bestiary.

In the remainder of the chapter, we’ll see many more regex extensions, all of
which cluster without capturing, as well as doing something else. The (?:PATTERN)

extension is just special in that it does nothing else. So if you say:

@fields = split(/\b(?:a|b|c)\b/)

Captur ing and Clustering 185

186 Chapter 5: Patter n Matching

it’s like:

@fields = split(/\b(a|b|c)\b/)

but doesn’t spit out extra fields. (The split operator is a bit like m//g in that it will
emit extra fields for all the captured substrings within the pattern. Ordinarily, split
only retur ns what it didn’t match. For more on split see Chapter 29.)

Cloistered Patter n Modifier s
You may cloister the /i, /m, /s, and /x modifiers within a portion of your pattern
by inserting them (without the slash) between the ? and : of the clustering nota-
tion. If you say:

/Harry (?i:s) Truman/

it matches both “Harry S Truman” and “Harry s Truman”, whereas:

/Harry (?x: [A-Z] \.? \s)?Truman/

matches both “Harry S Truman” and “Harry S. Truman”, as well as “Harry Truman”,
and:

/Harry (?ix: [A-Z] \.? \s)?Truman/

matches all five, by combining the /i and /x modifiers within the cloister.

You can also subtract modifiers from a cloister with a minus sign:

/Harry (?x-i: [A-Z] \.? \s)?Truman/i

This matches any capitalization of the name—but if the middle initial is provided,
it must be capitalized, since the /i applied to the overall pattern is suspended
inside the cloister.

By omitting the colon and PATTERN, you can export modifier settings to an outer
cluster, tur ning it into a cloister. That is, you can selectively turn modifiers on and
of f for the cluster one level outside the modifiers’ parentheses, like so:

/(?i)foo/ # Equivalent to /foo/i
/foo((?-i)bar)/i # "bar" must be lower case
/foo((?x-i) bar)/ # Enables /x and disables /i for "bar"

Note that the second and third examples create backrefer ences. If that wasn’t what
you wanted, then you should have been using (?-i:bar) and (?x-i: bar), respec-
tively.

Setting modifiers on a portion of your pattern is particularly useful when you want
“.” to match newlines in part of your pattern but not in the rest of it. Setting /s on
the whole pattern doesn’t help you there.

Alter nation
Inside a pattern or subpatter n, use the | metacharacter to specify a set of possibili-
ties, any one of which could match. For instance:

/Gandalf|Saruman|Radagast/

matches Gandalf or Saruman or Radagast. The alternation extends only as far as the
inner most enclosing parentheses (whether capturing or not):

/prob|n|r|l|ate/ # Match prob, n, r, l, or ate
/pro(b|n|r|l)ate/ # Match probate, pronate, prorate, or prolate
/pro(?:b|n|r|l)ate/ # Match probate, pronate, prorate, or prolate

The second and third forms match the same strings, but the second form captur es
the variant character in $1 and the third form does not.

At any given position, the Engine tries to match the first alternative, and then the
second, and so on. The relative length of the alternatives does not matter, which
means that in this pattern:

/(Sam|Samwise)/

$1 will never be set to Samwise no matter what string it’s matched against, because
Sam will always match first. When you have overlapping matches like this, put the
longer ones at the beginning.

But the ordering of the alternatives only matters at a given position. The outer
loop of the Engine does left-to-right matching, so the following always matches
the first Sam:

"’Sam I am,’ said Samwise" =˜ /(Samwise|Sam)/; # $1 eq "Sam"

But you can force right-to-left scanning by making use of greedy quantifiers, as
discussed earlier in “Quantifiers”:

"’Sam I am,’ said Samwise" =˜ /.*(Samwise|Sam)/; # $1 eq "Samwise"

You can defeat any left-to-right (or right-to-left) matching by including any of the
various positional assertions we saw earlier, such as \G, ˆ, and $. Her e we anchor
the pattern to the end of the string:

"’Sam I am,’ said Samwise" =˜ /(Samwise|Sam)$/; # $1 eq "Samwise"

That example factors the $ out of the alternation (since we already had a handy
pair of parentheses to put it after), but in the absence of parentheses you can also

Alter nation 187

188 Chapter 5: Patter n Matching

distribute the assertions to any or all of the individual alternatives, depending on
how you want them to match. This little program displays lines that begin with
either a __DATA_ _ or __END_ _ token:

#!/usr/bin/perl
while (<>) {

print if /ˆ__DATA_ _|ˆ_ _END_ _/;
}

But be careful with that. Remember that the first and last alternatives (before the
first | and after the last one) tend to gobble up the other elements of the regular
expr ession on either side, out to the ends of the expression, unless there are
enclosing parentheses. A common mistake is to ask for:

/ˆcat|dog|cow$/

when you really mean:

/ˆ(cat|dog|cow)$/

The first matches “cat” at the beginning of the string, or “dog” anywher e, or “cow”
at the end of the string. The second matches any string consisting solely of “cat”
or “dog” or “cow”. It also captures $1, which you may not want. You can also say:

/ˆcat$|ˆdog$|ˆcow$/

We’ll show you another solution later.

An alternative can be empty, in which case it always matches.

/com(pound|)/; # Matches "compound" or "com"
/com(pound(s|)|)/; # Matches "compounds", "compound", or "com"

This is much like using the ? quantifier, which matches 0 times or 1 time:

/com(pound)?/; # Matches "compound" or "com"
/com(pound(s?))?/; # Matches "compounds", "compound", or "com"
/com(pounds?)?/; # Same, but doesn’t use $2

Ther e is one differ ence, though. When you apply the ? to a subpattern that cap-
tur es into a numbered variable, that variable will be undefined if there’s no string
to go there. If you used an empty alternative, it would still be false, but would be
a defined null string instead.

Staying in Control
As any good manager knows, you shouldn’t micromanage your employees. Just
tell them what you want, and let them figure out the best way of doing it.
Similarly, it’s often best to think of a regular expression as a kind of specification:
“Her e’s what I want; go find a string that fits the bill.”

On the other hand, the best managers also understand the job their employees are
trying to do. The same is true of pattern matching in Perl. The more thor oughly
you understand of how Perl goes about the task of matching any particular
patter n, the more wisely you’ll be able to make use of Perl’s pattern matching
capabilities.

One of the most important things to understand about Perl’s pattern-matching is
when not to use it.

Letting Perl Do the Work
When people of a certain temperament first learn regular expressions, they’re
often tempted to see everything as a problem in pattern matching. And while that
may even be true in the larger sense, pattern matching is about more than just
evaluating regular expressions. It’s partly about looking for your car keys where
you dropped them, not just under the streetlamp where you can see better. In real
life, we all know that it’s a lot more efficient to look in the right places than the
wr ong ones.

Similarly, you should use Perl’s control flow to decide which patterns to execute,
and which ones to skip. A regular expression is pretty smart, but it’s smart like a
horse. It can get distracted if it sees too much at once. So sometimes you have to
put blinders onto it. For example, you’ll recall our earlier example of alternation:

/Gandalf|Saruman|Radagast/

That works as advertised, but not as well as it might, because it searches every
position in the string for every name before it moves on to the next position.
Astute readers of The Lord of the Rings will recall that, of the three wizards named
above, Gandalf is mentioned much more frequently than Saruman, and Saruman is
mentioned much more frequently than Radagast. So it’s generally more efficient to
use Perl’s logical operators to do the alternation:

/Gandalf/ || /Saruman/ || /Radagast/

This is yet another way of defeating the “leftmost” policy of the Engine. It only
searches for Saruman if Gandalf was nowhere to be seen. And it only searches for
Radagast if Saruman is also absent.

Not only does this change the order in which things are searched, but it some-
times allows the regular expression optimizer to work better. It’s generally easier
to optimize searching for a single string than for several strings simultaneously.
Similarly, anchored searches can often be optimized if they’re not too complicated.

You don’t have to limit your control of the control flow to the || operator. Often
you can control things at the statement level. You should always think about

Staying in Control 189

190 Chapter 5: Patter n Matching

weeding out the common cases first. Suppose you’re writing a loop to process a
configuration file. Many configuration files are mostly comments. It’s often best to
discard comments and blank lines early before doing any heavy-duty processing,
even if the heavy duty processing would throw out the comments and blank lines
in the course of things:

while (<CONF>) {
next if /ˆ#/;
next if /ˆ\s*(#|$)/;
chomp;
munchabunch($_);

}

Even if you’re not trying to be efficient, you often need to alternate ordinary Perl
expr essions with regular expressions simply because you want to take some action
that is not possible (or very difficult) from within the regular expression, such as
printing things out. Here’s a useful number classifier:

warn "has nondigits" if /\D/;
warn "not a natural number" unless /ˆ\d+$/; # rejects -3
warn "not an integer" unless /ˆ-?\d+$/; # rejects +3
warn "not an integer" unless /ˆ[+-]?\d+$/;
warn "not a decimal number" unless /ˆ-?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless /ˆ-?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /ˆ([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

We could stretch this section out a lot longer, but really, that sort of thing is what
this whole book is about. You’ll see many more examples of the interplay of Perl
code and pattern matching as we go along. In particular, see the later section “Pro-
grammatic Patterns”. (It’s okay to read the intervening material first, of course.)

Variable Interpolation
Using Perl’s control flow mechanisms to control regular expression matching has
its limits. The main difficulty is that it’s an “all or nothing” approach; either you
run the pattern, or you don’t. Sometimes you know the general outlines of the
patter n you want, but you’d like to have the capability of parameterizing it. Vari-
able interpolation provides that capability, much like parameterizing a subroutine
lets you have more influence over its behavior than just deciding whether to call it
or not. (More about subroutines in the next chapter).

One nice use of interpolation is to provide a little abstraction, along with a little
readability. With regular expressions you may certainly write things concisely:

if ($num =˜ /ˆ[-+]?\d+\.?\d*$/) { ... }

But what you mean is more appar ent when you write:

$sign = ’[-+]?’;
$digits = ’\d+’;
$decimal = ’\.?’;
$more_digits = ’\d*’;
$number = "$sign$digits$decimal$more_digits";
...
if ($num =˜ /ˆ$number$/o) { ... }

We’ll cover this use of interpolation more under “Generated patterns” later in this
chapter. We’ll just point out that we used the /o modifier to suppress recompila-
tion because we don’t expect $number to change its value over the course of the
pr ogram.

Another cute trick is to turn your tests inside out and use the variable string to
patter n-match against a set of known strings:

chomp($answer = <STDIN>);
if ("SEND" =˜ /ˆ\Q$answer/i) { print "Action is send\n" }
elsif ("STOP" =˜ /ˆ\Q$answer/i) { print "Action is stop\n" }
elsif ("ABORT" =˜ /ˆ\Q$answer/i) { print "Action is abort\n" }
elsif ("LIST" =˜ /ˆ\Q$answer/i) { print "Action is list\n" }
elsif ("EDIT" =˜ /ˆ\Q$answer/i) { print "Action is edit\n" }

This lets your user perfor m the “send” action by typing any of S, SE, SEN, or SEND
(in any mixture of upper- and lowercase). To “stop”, they’d have to type at least ST
(or St, or sT, or st).

When backslashes happen

When you think of double-quote interpolation, you usually think of both variable
and backslash interpolation. But as we mentioned earlier, for regular expressions
ther e ar e two passes, and the interpolation pass defers most of the backslash inter-
pr etation to the regular expression parser (which we discuss later). Ordinarily, you
don’t notice the differ ence, because Perl takes pains to hide the differ ence. (One
sequence that’s obviously differ ent is the \b metasymbol, which turns into a word
boundary assertion—outside of character classes, anyway. Inside a character class
wher e assertions make no sense, it reverts to being a backspace, as it is normally.)

It’s actually fairly important that the regex parser handle the backslashes. Suppose
you’r e searching for tab characters in a pattern with a /x modifier:

($col1, $col2) = /(.*?) \t+ (.*?)/x;

If Perl didn’t defer the interpretation of \t to the regex parser, the \t would have
tur ned into whitespace, which the regex parser would have ignorantly ignored
because of the /x. But Perl is not so ignoble, or tricky.

Staying in Control 191

192 Chapter 5: Patter n Matching

You can trick yourself though. Suppose you abstracted out the column separator,
like this:

$colsep = "\t+"; # (double quotes)
($col1, $col2) = /(.*?) $colsep (.*?)/x;

Now you’ve just blown it, because the \t tur ns into a real tab before it gets to the
regex parser, which will think you said /(.*?)+(.*?)/ after it discards the white-
space. Oops. To fix, avoid /x, or use single quotes. Or better, use qr//. (See the
next section.)

The only double-quote escapes that are processed as such are the six translation
escapes: \U, \u, \L, \l, \Q, and \E. If you ever look into the inner workings of the
Perl regular expression compiler, you’ll find code for handling escapes like \t for
tab, \n for newline, and so on. But you won’t find code for those six translation
escapes. (We only listed them in Table 5-7 because people expect to find them
ther e.) If you somehow manage to sneak any of them into the pattern without
going through double-quotish evaluation, they won’t be recognized.

How could they find their way in? Well, you can defeat interpolation by using sin-
gle quotes as your pattern delimiter. In m’...’, qr’...’, and s’...’...’, the single
quotes suppress variable interpolation and the processing of translation escapes,
just as they would in a single-quoted string. Saying m’\ufrodo’ won’t find a capi-
talized version of poor frodo. However, since the “normal” backslash characters
ar en’t really processed on that level anyway, m’\t\d’ still matches a real tab fol-
lowed by any digit.

Another way to defeat interpolation is through interpolation itself. If you say:

$var = ’\U’;
/${var}frodo/;

poor frodo remains uncapitalized. Perl won’t redo the interpolation pass for you
just because you interpolated something that looks like it might want to be reinter-
polated. You can’t expect that to work any more than you’d expect this double
interpolation to work:

$hobbit = ’Frodo’;
$var = ’$hobbit’; # (single quotes)
/$var/; # means m’$hobbit’, not m’Frodo’.

Her e’s another example that shows how most backslashes are interpr eted by the
regex parser, not by variable interpolation. Imagine you have a simple little
gr ep-style program written in Perl:*

* If you didn’t know what a gr ep pr ogram was before, you will now. No system should be without
gr ep —we believe gr ep is the most useful small program ever invented. (It logically follows that we
don’t believe Perl is a small program.)

#!/usr/bin/perl
$pattern = shift;
while (<>) {

print if /$pattern/o;
}

If you name that program pgr ep and call it this way:

% pgrep ’\t\d’ *.c

then you’ll find that it prints out all lines of all your C source files in which a digit
follows a tab. You didn’t have to do anything special to get Perl to realize that \t
was a tab. If Perl’s patterns wer e just double-quote interpolated, you would have;
fortunately, they aren’t. They’re recognized directly by the regex parser.

The real gr ep pr ogram has a -i switch that turns off case-sensitive matching. You
don’t have to add such a switch to your pgr ep pr ogram; it can already handle that
without modification. You just pass it a slightly fancier pattern, with an embedded
/i modifier:

% pgrep ’(?i)ring’ LotR*.pod

That now searches for any of “Ring”, “ring”, “RING”, and so on. You don’t see this
featur e too much in literal patterns, since you can always just write /ring/i. But
for patterns passed in on the command line, in web search forms, or embedded in
configuration files, it can be a lifesaver. (Speaking of rings.)

The qr// quote regex operator

Variables that interpolate into patterns necessarily do so at run time, not compile
time. This slows down execution because Perl has to check whether you’ve
changed the contents of the variable; if so, it would have to recompile the regular
expr ession. As mentioned in “Pattern-Matching Operators”, if you promise never to
change the pattern, you can use the /o option to interpolate and compile only
once:

print if /$pattern/o;

Although that works fine in our pgr ep pr ogram, in the general case, it doesn’t.
Imagine you have a slew of patterns, and you want to match each of them in a
loop, perhaps like this:

foreach $item (@data) {
foreach $pat (@patterns) {

if ($item =˜ /$pat/) { ... }
}

}

You couldn’t write /$pat/o because the meaning of $pat varies each time through
the inner loop.

Staying in Control 193

194 Chapter 5: Patter n Matching

The solution to this is the qr/PATTERN/imosx operator. This operator quotes—and
compiles — its PATTERN as a regular expression. PATTERN is interpolated the same
way as in m/PATTERN/. If ’ is used as the delimiter, no interpolation of variables (or
the six translation escapes) is done. The operator retur ns a Perl value that may be
used instead of the equivalent literal in a corresponding pattern match or substi-
tute. For example:

$regex = qr/my.STRING/is;
s/$regex/something else/;

is equivalent to:

s/my.STRING/something else/is;

So for our nested loop problem above, prepr ocess your pattern first using a sepa-
rate loop:

@regexes = ();
foreach $pat (@patterns) {

push @regexes, qr/$pat/;
}

Or all at once using Perl’s map operator:

@regexes = map { qr/$_/ } @patterns;

And then change the loop to use those precompiled regexes:

foreach $item (@data) {
foreach $re (@regexes) {

if ($item =˜ /$re/) { ... }
}

}

Now when you run the match, Perl doesn’t have to create a compiled regular
expr ession on each if test, because it sees that it already has one.

The result of a qr// may even be interpolated into a larger match, as though it
wer e a simple string:

$regex = qr/$pattern/;
$string =˜ /foo${regex}bar/; # interpolate into larger patterns

This time, Perl does recompile the pattern, but you could always chain several
qr// operators together into one.

The reason this works is because the qr// operator retur ns a special kind of object
that has a stringification overload as described in Chapter 13, Overloading. If you
print out the retur n value, you’ll see the equivalent string:

$re = qr/my.STRING/is;
print $re; # prints (?si-xm:my.STRING)

The /s and /i modifiers were enabled in the pattern because they were supplied
to qr//. The /x and /m, however, are disabled because they were not.

Any time you interpolate strings of unknown provenance into a pattern, you
should be prepar ed to handle any exceptions thrown by the regex compiler, in
case someone fed you a string containing untamable beasties:

$re = qr/$pat/is; # might escape and eat you
$re = eval { qr/$pat/is } || warn ... # caught it in an outer cage

For more on the eval operator, see Chapter 29.

The Regex Compiler
After the variable interpolation pass has had its way with the string, the regex
parser finally gets a shot at trying to understand your regular expression. There’s
not actually a great deal that can go wrong at this point, apart from messing up
the parentheses, or using a sequence of metacharacters that doesn’t mean any-
thing. The parser does a recursive-descent analysis of your regular expression and,
if it parses, turns it into a form suitable for interpretation by the Engine (see the
next section). Most of the interesting stuff that goes on in the parser involves opti-
mizing your regular expression to run as fast as possible. We’r e not going to
explain that part. It’s a trade secret. (Rumors that looking at the regular expression
code will drive you insane are greatly exaggerated. We hope.)

But you might like to know what the parser actually thought of your regular
expr ession, and if you ask it politely, it will tell you. By saying use re "debug",
you can examine how the regex parser processes your pattern. (You can also see
the same information by using the -Dr command-line switch, which is available to
you if your Perl was compiled with the -DDEBUGGING flag during installation.)

#!/usr/bin/perl
use re "debug";
"Smeagol" =˜ /ˆSm(.*)g[aeiou]l$/;

The output is below. You can see that prior to execution Perl compiles the regex
and assigns meaning to the components of the pattern: BOL for the beginning of
line (ˆ), REG_ANY for the dot, and so on:

Compiling REx ‘ˆSm(.*)g[aeiou]l$’
size 24 first at 2
rarest char l at 0
rarest char S at 0

1: BOL(2)
2: EXACT <Sm>(4)
4: OPEN1(6)

Staying in Control 195

196 Chapter 5: Patter n Matching

6: STAR(8)
7: REG_ANY(0)
8: CLOSE1(10)
10: EXACT <g>(12)
12: ANYOF[aeiou](21)
21: EXACT <l>(23)
23: EOL(24)
24: END(0)

anchored ‘Sm’ at 0 floating ‘l’$ at 4..2147483647
(checking anchored) anchored(BOL) minlen 5

Omitting $‘ $& $’ support.

Some of the lines summarize the conclusions of the regex optimizer. It knows that
the string must start with “Sm”, and that therefor e ther e’s no reason to do the ordi-
nary left-to-right scan. It knows that the string must end with an “l”, so it can
reject out of hand any string that doesn’t. It knows that the string must be at least
five characters long, so it can ignore any string shorter than that right off the bat. It
also knows what the rarest character in each constant string is, which can help in
searching “studied” strings. (See study in Chapter 29.)

It then goes on to trace how it executes the pattern:

EXECUTING...

Guessing start of match, REx ‘ˆSm(.*)g[aeiou]l$’ against ‘Smeagol’...
Guessed: match at offset 0
Matching REx ‘ˆSm(.*)g[aeiou]l$’ against ‘Smeagol’
Setting an EVAL scope, savestack=3
0 <> <Smeagol> | 1: BOL
0 <> <Smeagol> | 2: EXACT <Sm>
2 <Sm> <eagol> | 4: OPEN1
2 <Sm> <eagol> | 6: STAR

REG_ANY can match 5 times out of 32767...
Setting an EVAL scope, savestack=3
7 <Smeagol> <> | 8: CLOSE1
7 <Smeagol> <> | 10: EXACT <g>

failed...
6 <Smeago> <l> | 8: CLOSE1
6 <Smeago> <l> | 10: EXACT <g>

failed...
5 <Smeag> | 8: CLOSE1
5 <Smeag> | 10: EXACT <g>

failed...
4 <Smea> <gol> | 8: CLOSE1
4 <Smea> <gol> | 10: EXACT <g>
5 <Smeag> | 12: ANYOF[aeiou]
6 <Smeago> <l> | 21: EXACT <l>
7 <Smeagol> <> | 23: EOL
7 <Smeagol> <> | 24: END

Match successful!
Freeing REx: ‘ˆSm(.*)g[aeiou]l$’

If you follow the stream of whitespace down the middle of Smeagol, you can actu-
ally see how the Engine overshoots to let the .* be as greedy as possible, then
backtracks on that until it finds a way for the rest of the pattern to match. But
that’s what the next section is about.

The Little Engine That /Could(n’t)?/
And now we’d like to tell you the story of the Little Regex Engine that says, “I
think I can. I think I can. I think I can.”

In this section, we lay out the rules used by Perl’s regular expression engine to
match your pattern against a string. The Engine is extremely persistent and hard-
working. It’s quite capable of working even after you think it should quit. The
Engine doesn’t give up until it’s certain there’s no way to match the pattern against
the string. The Rules below explain how the Engine “thinks it can” for as long as
possible, until it knows it can or can’t. The problem for our Engine is that its task
is not merely to pull a train over a hill. It has to search a (potentially) very compli-
cated space of possibilities, keeping track of where it has been and where it
hasn’t.

The Engine uses a nondeterministic finite-state automaton (NFA, not to be con-
fused with NFL, a nondeterministic football league) to find a match. That just
means that it keeps track of what it has tried and what it hasn’t, and when some-
thing doesn’t pan out, it backs up and tries something else. This is known as back-
tracking. (Er, sorry, we didn’t invent these terms. Really.) The Engine is capable of
trying a million subpatterns at one spot, then giving up on all those, backing up to
within one choice of the beginning, and trying the million subpatterns again at a
dif ferent spot. The Engine is not terribly intelligent; just persistent, and thorough. If
you’r e cagey, you can give the Engine an efficient pattern that doesn’t let it do a
lot of silly backtracking.

When someone trots out a phrase like “Regexes choose the leftmost, longest
match”, that means that Perl generally prefers the leftmost match over longest
match. But the Engine doesn’t realize it’s “preferring” anything, and it’s not really
thinking at all, just gutting it out. The overall prefer ences ar e an emergent behav-
ior resulting from many individual and unrelated choices. Here are those choices:*

Rule 1
The Engine tries to match as far left in the string as it can, such that the entire
regular expression matches under Rule 2.

* Some of these choices may be skipped if the regex optimizer has any say, which is equivalent to the
Little Engine simply jumping through the hill via quantum tunneling. But for this discussion we’re
pr etending the optimizer doesn’t exist.

Staying in Control 197

198 Chapter 5: Patter n Matching

The Engine starts just before the first character and tries to match the entire
patter n starting there. The entire patter n matches if and only if the Engine
reaches the end of the pattern befor e it runs off the end of the string. If it
matches, it quits immediately—it doesn’t keep looking for a “better” match,
even though the pattern might match in many differ ent ways.

If it is unable to match the pattern at the first position in the string, it admits
temporary defeat and moves to the next position in the string, between the
first and second characters, and tries all the possibilities again. If it succeeds, it
stops. If it fails, it continues on down the string. The pattern match as a whole
doesn’t fail until it has tried to match the entire regular expression at every
position in the string, including after the last character.

A string of n characters actually provides n + 1 positions to match at. That’s
because the beginnings and the ends of matches are between the characters of
the string. This rule sometimes surprises people when they write a pattern like
/x*/ that can match zero or mor e “x” characters. If you try that pattern on a
string like “fox”, it won’t find the “x”. Instead, it will immediately match the
null string before the “f” and never look further. If you want it to match one
or more x characters, you need to use /x+/ instead. See the quantifiers under
Rule 5.

A cor ollary to this rule is that any pattern matching the null string is guaran-
teed to match at the leftmost position in the string (in the absence of any zero-
width assertions to the contrary).

Rule 2
When the Engine encounters a set of alternatives (separated by | symbols),
either at the top level or at the current “cluster” level, it tries them left-to-right,
stopping on the first successful match that allows successful completion of the
entir e patter n.

A set of alternatives matches a string if any of the alternatives match under
Rule 3. If none of the alternatives matches, it backtracks to the Rule that
invoked this Rule, which is usually Rule 1, but could be Rule 4 or 6, if we’r e
within a cluster. That rule will then look for a new position at which to apply
Rule 2.

If there’s only one alternative, then either it matches or it doesn’t, and Rule 2
still applies. (There’s no such thing as zero alter natives, because a null string
always matches.)

Rule 3
Any particular alternative matches if every item listed in the alternative
matches sequentially according to Rules 4 and 5 (such that the entire regular
expr ession can be satisfied).

An item consists of either an assertion, which is covered in Rule 4, or a quan-
tified atom, cover ed by Rule 5. Items that have choices on how to match are
given a “pecking order” from left to right. If the items cannot be matched in
order, the Engine backtracks to the next alternative under Rule 2.

Items that must be matched sequentially aren’t separated in the regular expres-
sion by anything syntactic—they’r e mer ely juxtaposed in the order they must
match. When you ask to match /ˆfoo/, you’r e actually asking for four items to
be matched one after the other. The first is a zero-width assertion, matched
under Rule 4, and the other three are ordinary characters that must match
themselves, one after the other, under Rule 5.

The left-to-right pecking order means that in a pattern like:

/x*y*/

x* gets to pick one way to match, and then y* tries all its ways. If that fails,
then x* gets to pick its second choice, and make y* try all of its ways again.
And so on. The items to the right “vary faster”, to borrow a phrase from multi-
dimensional arrays.

Rule 4
If an assertion does not match at the current position, the Engine backtracks to
Rule 3 and retries higher-pecking-order items with differ ent choices.

Some assertions are fancier than others. Perl supports many regex extensions,
some of which are zer o-width assertions. For example, the positive lookahead
(?=...) and the negative lookahead (?!...) don’t actually match any charac-
ters, but merely assert that the regular expression repr esented by ... would
(or would not) match at this point, were we to attempt it, hypothetically
speaking.*

Rule 5
A quantified atom matches only if the atom itself matches some number of
times that is allowed by the quantifier. (The atom itself is matched according
to Rule 6.)

* In actual fact, the Engine does attempt it. The Engine goes back to Rule 2 to test the subpattern, and
then wipes out any record of how much string was eaten, retur ning only the success or failure of the
subpatter n as the value of the assertion. (It does, however, remember any captured substrings.)

Staying in Control 199

200 Chapter 5: Patter n Matching

Dif ferent quantifiers requir e dif ferent numbers of matches, and most of them
allow a range of numbers of matches. Multiple matches must all match in a
row; that is, they must be adjacent within the string. An unquantified atom is
assumed to have a quantifier requiring exactly one match (that is, /x/ is the
same as /x{1}/). If no match can be found at the current position for any
allowed quantity of the atom in question, the Engine backtracks to Rule 3 and
retries higher-pecking-order items with differ ent choices.

The quantifiers are *, +, ?, *?, +?, ??, and the various brace forms. If you use
the {COUNT} for m, then there is no choice, and the atom must match exactly
that number of times or not at all. Otherwise, the atom can match over a range
of quantities, and the Engine keeps track of all the choices so that it can back-
track if necessary. But then the question arises as to which of these choices to
try first. One could start with the maximal number of matches and work
down, or the minimal number of matches and work up.

The traditional quantifiers (without a trailing question mark) specify gr eedy
matching; that is, they attempt to match as many characters as possible. To
find the greediest match, the Engine has to be a little bit careful. Bad guesses
ar e potentially rather expensive, so the Engine doesn’t actually count down
fr om the maximum value, which after all could be Very Large and cause mil-
lions of bad guesses. What the Engine actually does is a little bit smarter: it
first counts up to find out how many matching atoms (in a row) are really
ther e in the string, and then it uses that actual maximum as its first choice. (It
also remembers all the shorter choices in case the longest one doesn’t pan
out.) It then (at long last) tries to match the rest of the pattern, assuming the
longest choice to be the best. If the longest choice fails to produce a match for
the rest of the pattern, it backtracks and tries the next longest.

If you say /.*foo/, for example, it will try to match the maximal number of
“any” characters (repr esented by the dot) clear out to the end of the line
befor e it ever tries looking for “foo”; and then when the “foo” doesn’t match
ther e (and it can’t, because there’s not enough room for it at the end of the
string), the Engine will back off one character at a time until it finds a “foo”. If
ther e is more than one “foo” in the line, it’ll stop on the last one, since that
will really be the first one it encounters as it backtracks. When the entire
patter n succeeds using some particular length of .*, the Engine knows it can
thr ow away all the other shorter choices for .* (the ones it would have used
had the current “foo” not panned out).

By placing a question mark after any greedy quantifier, you turn it into a fru-
gal quantifier that chooses the smallest quantity for the first try. So if you say
/.*?foo/, the .*? first tries to match 0 characters, then 1 character, then 2, and

so on until it can match the “foo”. Instead of backtracking backward, it back-
tracks forward, so to speak, and ends up finding the first “foo” on the line
instead of the last.

Rule 6
Each atom matches according to the designated semantics of its type. If the
atom doesn’t match (or does match, but doesn’t allow a match of the rest of
the pattern), the Engine backtracks to Rule 5 and tries the next choice for the
atom’s quantity.

Atoms match according to the following types:

• A regular expression in parentheses, (...), matches whatever the regular
expr ession (r epr esented by ...) matches according to Rule 2. Parentheses
ther efor e serve as a clustering operator for quantification. Bare par enthe-
ses also have the side effect of capturing the matched substring for later
use in a backr efer ence. This side effect can be suppressed by using
(?:...) instead, which has only the clustering semantics—it doesn’t store
anything in $1, $2, and so on. Other forms of parenthetical atoms (and
assertions) are possible — see the rest of this chapter.

• A dot matches any character, except maybe newline.

• A list of characters in square brackets (a character class) matches any one
of the characters specified by the list.

• A backslashed letter matches either a particular character or a character
fr om a set of characters, as listed in Table 5-7.

• Any other backslashed character matches that character.

• Any character not mentioned above matches itself.

That all sounds rather complicated, but the upshot of it is that, for each set of
choices given by a quantifier or alternation, the Engine has a knob it can twiddle.
It will twiddle those knobs until the entire patter n matches. The Rules just say in
which order the Engine is allowed to twiddle those knobs. Saying the Engine
pr efers the leftmost match merely means it twiddles the start position knob the
slowest. And backtracking is just the process of untwiddling the knob you just
twiddled in order to try twiddling a knob higher in the pecking order, that is, one
that varies slower.

Her e’s a mor e concr ete example, a program that detects when two consecutive
words share a common ending and beginning:

$a = ’nobody’;
$b = ’bodysnatcher’;
if ("$a $b" =˜ /ˆ(\w+)(\w+) \2(\w+)$/) {

print "$2 overlaps in $1-$2-$3\n";
}

Staying in Control 201

202 Chapter 5: Patter n Matching

This prints:

body overlaps in no-body-snatcher

You might think that $1 would first grab up all of “nobody” due to greediness. And
in fact, it does—at first. But once it’s done so, there aren’t any further characters to
put in $2, which needs characters put into it because of the + quantifier. So the
Engine backs up and $1 begrudgingly gives up one character to $2. This time the
space character matches successfully, but then it sees \2, which repr esents a
measly “y”. The next character in the string is not a “y”, but a “b”. This makes the
Engine back up all the way and try several more times, eventually forcing $1 to
surr ender the body to $2. Habeas corpus, as it were.

Actually, that won’t quite work out if the overlap is itself the product of a dou-
bling, as in the two words “rococo” and “cocoon”. The algorithm above would
have decided that the overlapping string, $2, must be just “co” rather than “coco”.
But we don’t want a “rocococoon”; we want a “rococoon”. Here’s one of those
places you can outsmart the Engine. Adding a minimal matching quantifier to the
$1 part gives the much better pattern /ˆ(\w+?)(\w+) \2(\w+)$/, which does
exactly what we want.

For a much more detailed discussion of the pros and cons of various kinds of reg-
ular expression engines, see Jeffr ey Friedl’s book, Mastering Regular Expressions.
Perl’s regular expression Engine works very well for many of the everyday prob-
lems you want to solve with Perl, and it even works okay for those not-so-every-
day problems, if you give it a little respect and understanding.

Fanc y Patter ns
Lookaround Assertions
Sometimes you just need to sneak a peek. There are four regex extensions that
help you do just that, and we call them lookar ound assertions because they let
you scout around in a hypothetical sort of way, without committing to matching
any characters. What these assertions assert is that some pattern would (or would
not) match if we were to try it. The Engine works it all out for us by actually trying
to match the hypothetical pattern, and then pretending that it didn’t match (if it
did).

When the Engine peeks ahead from its current position in the string, we call it a
lookahead assertion. If it peeks backward, we call it a lookbehind assertion. The
lookahead patterns can be any regular expression, but the lookbehind patterns
may only be fixed width, since they have to know where to start the hypothetical
match from.

While these four extensions are all zero-width assertions, and hence do not con-
sume characters (at least, not officially), you can in fact capture substrings within
them if you supply extra levels of capturing parentheses.

(?=PATTERN) (positive lookahead)
When the Engine encounters (?=PATTERN), it looks ahead in the string to
ensur e that PATTERN occurs. If you’ll recall, in our earlier duplicate word
remover, we had to write a loop because the pattern ate too much each time
thr ough:

$_ = "Paris in THE THE THE THE spring.";

remove duplicate words (and triplicate (and quadruplicate...))
1 while s/\b(\w+) \1\b/$1/gi;

Whenever you hear the phrase “ate too much”, you should always think
“lookahead assertion”. (Well, almost always.) By peeking ahead instead of
gobbling up the second word, you can write a one-pass duplicate word
remover like this:

s/ \b(\w+) \s (?= \1\b) //gxi;

Of course, this isn’t quite right, since it will mess up valid phrases like “The
clothes you DON DON’t fit.”

(?!PATTERN) (negative lookahead)
When the Engine encounters (?!PATTERN), it looks ahead in the string to
ensur e that PATTERN does not occur. To fix our previous example, we can add
a negative lookahead assertion after the positive assertion to weed out the
case of contractions:

s/ \b(\w+) \s (?= \1\b (?! ’\w))//xgi;

That final \w is necessary to avoid confusing contractions with words at the
ends of single-quoted strings. We can take this one step further, since earlier in
this chapter we intentionally used “that that particular”, and we’d like our pro-
gram to not “fix” that for us. So we can add an alternative to the negative
lookahead in order to pre-unfix that “that”, (thereby demonstrating that any
pair of parentheses can be used to cluster alternatives):

s/ \b(\w+) \s (?= \1\b (?! ’\w | \s particular))//gix;

Now we know that that particular phrase is safe. Unfortunately, the Gettysburg
Addr ess is still broken. So we add another exception:

s/ \b(\w+) \s (?= \1\b (?! ’\w | \s particular | \s nation))//igx;

This is just starting to get out of hand. So let’s do an Official List of Exceptions,
using a cute interpolation trick with the $" variable to separate the alternatives

Fanc y Patter ns 203

204 Chapter 5: Patter n Matching

with the | character:

@thatthat = qw(particular nation);
local $" = ’|’;
s/ \b(\w+) \s (?= \1\b (?! ’\w | \s (?: @thatthat)))//xig;

(?<=PATTERN) (positive lookbehind)
When the Engine encounters (?<=PATTERN), it looks backward in the string to
ensur e that PATTERN alr eady occurr ed.

Our example still has a problem. Although it now lets Honest Abe say things
like “that that nation”, it also allows “Paris, in the the nation of France”. We
can add a positive lookbehind assertion in front of our exception list to make
sur e that we apply our @thatthat exceptions only to a real “that that”.

s/ \b(\w+) \s (?= \1\b (?! ’\w | (?<= that) \s (?: @thatthat)))//ixg;

Yes, it’s getting terribly complicated, but that’s why this section is called
“Fancy Patterns”, after all. If you need to complicate the pattern any more than
we’ve done so far, judicious use of comments and qr// will help keep you
sane. Or at least saner.

(?<!PATTERN) (negative lookbehind)
When the Engine encounters (?<!PATTERN), it looks backward in the string to
ensur e that PATTERN did not occur.

Let’s go for a really simple example this time. How about the easy version of
that old spelling rule, “I before E except after C”? In Perl, you spell it:

s/(?<!c)ei/ie/g

You’ll have to weigh for yourself whether you want to handle any of the
exceptions. (For example, “weird” is spelled weird, especially when you spell
it “wierd”.)

Nonbacktracking Subpatterns
As described in “The Little Engine That /Could(n’t)?/”, the Engine often backtracks
as it proceeds through the pattern. You can block the Engine from backtracking
back through a particular set of choices by creating a nonbacktracking subpattern.
A nonbacktracking subpattern looks like (?>PATTERN), and it works exactly like a
simple (?:PATTERN), except that once PATTERN has found a match, it suppresses
backtracking on any of the quantifiers or alternatives inside the subpattern.
(Hence, it is meaningless to use this on a PATTERN that doesn’t contain quantifiers
or alternatives.) The only way to get it to change its mind is to backtrack to some-
thing before the subpattern and reenter the subpattern from the left.

It’s like going into a car dealership. After a certain amount of haggling over the
price, you deliver an ultimatum: “Here’s my best offer; take it or leave it.” If they
don’t take it, you don’t go back to haggling again. Instead, you backtrack clear out
the door. Maybe you go to another dealership, and start haggling again. You’r e
allowed to haggle again, but only because you reenter ed the nonbacktracking
patter n again in a differ ent context.

For devotees of Prolog or SNOBOL, you can think of this as a scoped cut or fence
operator.

Consider how in "aaab" =˜ /(?:a*)ab/, the a* first matches three a’s, but then
gives up one of them because the last a is needed later. The subgroup sacrifices
some of what it wants in order for the whole match to succeed. (Which is like let-
ting the car salesman talk you into giving him more of your money because you’re
afraid to walk away from the deal.) In contrast, the subpattern in "aaab" =˜

/(?>a*)ab/ will never give up what it grabs, even though this behavior causes the
whole match to fail. (As the song says, you have to know when to hold ’em, when
to fold ’em, and when to walk away.)

Although (?>PATTERN) is useful for changing the behavior of a pattern, it’s mostly
used for speeding up the failure of certain matches that you know will fail anyway
(unless they succeed outright). The Engine can take a spectacularly long time to
fail, particular with nested quantifiers. The following pattern will succeed almost
instantly:

$_ = "aab";
/a*[b]/;

But success is not the problem. Failure is. If you remove that final “b” from the
string, the pattern will probably run for many, many years before failing. Many,
many millennia. Actually, billions and billions of years.* You can see by inspection
that the pattern can’t succeed if there’s no “b” on the end of the string, but the
regex optimizer is not smart enough (as of this writing) to figure out that /[b]/ is
equivalent to /b/. But if you give it a hint, you can get it to fail quickly while still
letting it succeed where it can:

/(?>a*)[b]/;

For a (hopefully) more realistic example, imagine a program that’s supposed to
read in a paragraph at a time and show just the lines that are continued, where

* Actually, it’s more on the order of septillions and septillions. We don’t know exactly how long it
would take. We didn’t care to wait around watching it not fail. In any event, your computer is likely
to crash before the heat death of the universe, and this regular expression takes longer than either of
those.

Fanc y Patter ns 205

206 Chapter 5: Patter n Matching

contination lines are specified with trailing backslashes. Here’s a sample from
Perl’s Makefile that uses this line-continuation convention:

Files to be built with variable substitution before miniperl
is available.
sh = Makefile.SH cflags.SH config_h.SH makeaperl.SH makedepend.SH \

makedir.SH myconfig.SH writemain.SH

You could write your simple program this way:

#!/usr/bin/perl -00p
while (/((.+) ((?<=\\) \n .*)+) /gx) {

print "GOT $.: $1\n\n";
}

That works, but it’s really quite slow. That’s because the Engine backtracks a char-
acter at a time from the end of the line, shrinking what’s in $1. This is pointless.
And writing it without the extraneous captures doesn’t help much. Using:

(.+(?:(?<=\\)\n.*)+)

for a pattern is somewhat faster, but not much. This is where a nonbacktracking
subpatter n helps a lot. The pattern:

((?>.+)(?:(?<=\\)\n.*)+)

does the same thing, but more than an order of magnitude faster because it
doesn’t waste time backtracking in search of something that isn’t there.

You’ll never get a success with (?>...) that you wouldn’t get with (?:...) or even
a simple (...). But if you’re going to fail, it’s best to fail quickly and get on with
your life.

Prog rammatic Patter ns
Most Perl programs tend to follow an imperative (also called procedural) program-
ming style, like a series of discrete commands laid out in a readily observable
order: “Preheat oven, mix, glaze, heat, cool, serve to aliens.” Sometimes into this
mix you toss a few dollops of functional programming (“Use a little more glaze
than you think you need, even after taking this into account, recursively”), or
sprinkle it with bits of object-oriented techniques (“but please hold the anchovy
objects”). Often it’s a combination of all of these.

But the regular expression Engine takes a completely differ ent appr oach to prob-
lem solving, more of a declarative approach. You describe goals in the language of
regular expressions, and the Engine implements whatever logic is needed to solve
your goals. Logic programming languages (such as Prolog) don’t always get as
much exposure as the other three styles, but they’re mor e common than you’d

think. Perl couldn’t even be built without make (1) or yacc (1), both of which
could be considered, if not purely declarative languages, at least hybrids that
blend imperative and logic programming together.

You can do this sort of thing in Perl, too, by blending goal declarations and imper-
ative code together more miscibly than we’ve done so far, drawing upon the
str engths of both. You can programmatically build up the string you’ll eventually
pr esent to the regex Engine, in a sense creating a program that writes a new pro-
gram on the fly.

You can also supply ordinary Perl expressions as the replacement part of s/// via
the /e modifier. This allows you to dynamically generate the replacement string by
executing a bit of code every time the pattern matches.

Even more elaborately, you can interject bits of code wherever you’d like in a
middle of a pattern using the (?{ CODE }) extension, and that code will be exe-
cuted every time the Engine encounters that code as it advances and recedes in its
intricate backtracking dance.

Finally, you can use s///ee or (??{ CODE }) to add another level of indirection: the
results of executing those code snippets will themselves be re-evaluated for further
use, creating bits of program and pattern on the fly, just in time.

Generated patterns

It has been said* that programs that write programs are the happiest programs in
the world. In Jeffr ey Friedl’s book, Mastering Regular Expressions, the final tour de
force demonstrates how to write a program that produces a regular expression to
deter mine whether a string conforms to the RFC 822 standard; that is, whether it
contains a standards-compliant, valid mail header. The pattern produced is several
thousand characters long, and about as easy to read as a crash dump in pure
binary. But Perl’s pattern matcher doesn’t care about that; it just compiles up the
patter n without a hitch and, even more inter estingly, executes the match very
quickly — much mor e quickly, in fact, than many short patterns with complex
backtracking requir ements.

That’s a very complicated example. Earlier we showed you a very simple example
of the same technique when we built up a $number patter n out of its components
(see the section “Variable Interpolation”). But to show you the power of this pro-
grammatic approach to producing a pattern, let’s work out a problem of medium
complexity.

Suppose you wanted to pull out all the words with a certain vowel-consonant
sequence; for example, “audio” and “eerie” both follow a VVCVV pattern.

* By Andrew Hume, the famous Unix philosopher.

Fanc y Patter ns 207

208 Chapter 5: Patter n Matching

Although describing what counts as a consonant or a vowel is easy, you wouldn’t
ever want to type that in more than once. Even for our simple VVCVV case, you’d
need to type in a pattern that looked something like this:

ˆ[aeiouy][aeiouy][cbdfghjklmnpqrstvwxzy][aeiouy][aeiouy]$

A mor e general-purpose program would accept a string like “VVCVV” and program-
matically generate that pattern for you. For even more flexibility, it could accept a
word like “audio” as input and use that as a template to infer “VVCVV”, and from
that, the long pattern above. It sounds complicated, but really isn’t, because we’ll
let the program generate the pattern for us. Here’s a simple cvmap pr ogram that
does all of that:

#!/usr/bin/perl
$vowels = ’aeiouy’;
$cons = ’cbdfghjklmnpqrstvwxzy’;
%map = (C => $cons, V => $vowels); # init map for C and V

for $class ($vowels, $cons) { # now for each type
for (split //, $class) { # get each letter of that type

$map{$_} .= $class; # and map the letter back to the type
}

}

for $char (split //, shift) { # for each letter in template word
$pat .= "[$map{$char}]"; # add appropriate character class

}

$re = qr/ˆ${pat}$/i; # compile the pattern
print "REGEX is $re\n"; # debugging output
@ARGV = (’/usr/dict/words’) # pick a default dictionary

if -t && !@ARGV;

while (<>) { # and now blaze through the input
print if /$re/; # printing any line that matches

}

The %map variable holds all the interesting bits. Its keys are each letter of the alpha-
bet, and the corresponding value is all the letters of its type. We thr ow in C and V,
too, so you can specify either “VVCVV” or “audio”, and still get out “eerie”. Each
character in the argument supplied to the program is used to pull out the right
character class to add to the pattern. Once the pattern is created and compiled up
with qr//, the match (even a very long one) will run quickly. Here’s why you
might get if you run this program on “fortuitously”:

% cvmap fortuitously /usr/dict/wordses
REGEX is (?i-xsm:ˆ[cbdfghjklmnpqrstvwxzy][aeiouy][cbdfghjklmnpqrstvwxzy][cbd
fghjklmnpqrstvwxzy][aeiouy][aeiouy][cbdfghjklmnpqrstvwxzy][aeiouy][aeiouy][c
bdfghjklmnpqrstvwxzy][cbdfghjklmnpqrstvwxzy][aeiouycbdfghjklmnpqrstvwxzy]$)
carriageable
circuitously

fortuitously
languorously
marriageable
milquetoasts
sesquiquarta
sesquiquinta
villainously

Looking at that REGEX, you can see just how much villainous typing you saved by
pr ogramming languor ously, albeit circuitously.

Substitution evaluations

When the /e modifier (“e” is for expression evaluation) is used on an
s/PATTERN/CODE/e expr ession, the replacement portion is interpreted as a Perl
expr ession, not just as a double-quoted string. It’s like an embedded do { CODE }.
Even though it looks like a string, it’s really just a code block that gets compiled
up at the same time as rest of your program, long before the substitution actually
happens.

You can use the /e modifier to build replacement strings with fancier logic than
double-quote interpolation allows. This shows the differ ence:

s/(\d+)/$1 * 2/; # Replaces "42" with "42 * 2"
s/(\d+)/$1 * 2/e; # Replaces "42" with "84"

And this converts Celsius temperatures into Fahrenheit:

$_ = "Preheat oven to 233C.\n";
s/\b(\d+\.?\d*)C\b/int($1 * 1.8 + 32) . "F"/e; # convert to 451F

Applications of this technique are limitless. Here’s a filter that modifies its files in
place (like an editor) by adding 100 to every number that starts a line (and that is
followed by a colon, which we only peek at, but don’t actually match, or replace):

% perl -pi -e ’s/ˆ(\d+)(?=:)/100 + $1/e’ filename

Now and then, you want to do more than just use the string you matched in
another computation. Sometimes you want that string to be a computation, whose
own evaluation you’ll use for the replacement value. Each additional /e modifier
after the first wraps an eval ar ound the code to execute. The following two lines
do the same thing, but the first one is easier to read:

s/PATTERN/CODE/ee
s/PATTERN/eval(CODE)/e

You could use this technique to replace mentions of simple scalar variables with
their values:

s/(\$\w+)/$1/eeg; # Interpolate most scalars’ values

Fanc y Patter ns 209

210 Chapter 5: Patter n Matching

Because it’s really an eval, the /ee even finds lexical variables. A slightly more
elaborate example calculates a replacement for simple arithmetical expressions on
(nonnegative) integers:

$_ = "I have 4 + 19 dollars and 8/2 cents.\n";
s{ (

\d+ \s* # find an integer
[+*/-] # and an arithmetical operator
\s* \d+ # and another integer

)
}{ $1 }eegx; # then expand $1 and run that code
print; # "I have 23 dollars and 4 cents."

Like any other eval STRING, compile-time errors (like syntax problems) and run-
time exceptions (like dividing by zero) are trapped. If so, the $@ ($EVAL_ERROR)
variable says what went wrong.

Match-time code evaluation

In most programs that use regular expressions, the surrounding program’s run-time
contr ol structur e drives the logical execution flow. You write if or while loops, or
make function or method calls, that wind up calling a pattern-matching operation
now and then. Even with s///e, it’s the substitution operator that is in control,
executing the replacement code only after a successful match.

With code subpatterns, the normal relationship between regular expression and
pr ogram code is inverted. As the Engine is applying its Rules to your pattern at
match time, it may come across a regex extension of the form (?{ CODE }). When
trigger ed, this subpattern doesn’t do any matching or any looking about. It’s a
zer o-width assertion that always “succeeds”, evaluated only for its side effects.
Whenever the Engine needs to progr ess over the code subpattern as it executes
the pattern, it runs that code.

"glyph" =˜ /.+ (?{ print "hi" }) ./x; # Prints "hi" twice.

As the Engine tries to match glyph against this pattern, it first lets the .+ eat up all
five letters. Then it prints “hi”. When it finds that final dot, all five letters have
been eaten, so it needs to backtrack back to the .+ and make it give up one of the
letters. Then it moves forward through the pattern again, stopping to print “hi”
again before assigning h to the final dot and completing the match successfully.

The braces around the CODE fragment are intended to remind you that it is a block
of Perl code, and it certainly behaves like a block in the lexical sense. That is, if
you use my to declare a lexically scoped variable in it, it is private to the block. But
if you use local to localize a dynamically scoped variable, it may not do what you

expect. A (?{ CODE }) subpatter n cr eates an implicit dynamic scope that is valid
thr oughout the rest of the pattern, until it either succeeds or backtracks through
the code subpattern. One way to think of it is that the block doesn’t actually
retur n when it gets to the end. Instead, it makes an invisible recursive call to the
Engine to try to match the rest of the pattern. Only when that recursive call is fin-
ished does it retur n fr om the block, delocalizing the localized variables.*

In the next example, we initialize $i to 0 by including a code subpattern at the
beginning of the pattern. Then we match any number of characters with .*—but
we place another code subpattern in between the . and the * so we can count
how many times . matches.

$_ = ’lothlorien’;
m/ (?{ $i = 0 }) # Set $i to 0

(. (?{ $i++ }))* # Update $i, even after backtracking
lori # Forces a backtrack

/x;

The Engine merrily goes along, setting $i to 0 and letting the .* gobble up all 10
characters in the string. When it encounters the literal lori in the pattern, it back-
tracks and gives up those four characters from the .*. After the match, $i will still
be 10.

If you wanted $i to reflect how many characters the .* actually ended up with,
you could make use of the dynamic scope within the pattern:

$_ = ’lothlorien’;
m/ (?{ $i = 0 })

(. (?{ local $i = $i + 1; }))* # Update $i, backtracking-safe.
lori
(?{ $result = $i }) # Copy to non-localized location.

/x;

Her e, we use local to ensure that $i contains the number of characters matched
by .*, regardless of backtracking. $i will be forgotten after the regular expression
ends, so the code subpattern, (?{ $result = $i }), ensur es that the count will live
on in $result.

The special variable $ˆR (described in Chapter 28) holds the result of the last (?{
CODE }) that was executed as part of a successful match.

* People who are familiar with recursive descent parsers may find this behavior confusing because
such compilers retur n fr om a recursive function call whenever they figure something out. The
Engine doesn’t do that—when it figures something out, it goes deeper into recursion (even when
exiting a parenthetical group!). A recursive descent parser is at a minimum of recursion when it suc-
ceeds at the end, but the Engine is at a local maximum of recursion when it succeeds at the end of
the pattern. You might find it helpful to dangle the pattern from its left end and think of it as a
skinny repr esentation of a call graph tree. If you can get that picture into your head, the dynamic
scoping of local variables will make more sense. (And if you can’t, you’re no worse off than before.)

Fanc y Patter ns 211

212 Chapter 5: Patter n Matching

You can use a (?{ CODE }) extension as the COND of a (?(COND)IFTRUE|IFFALSE). If
you do this, $ˆR will not be set, and you may omit the parentheses around the
conditional:

"glyph" =˜ /.+(?(?{ $foo{bar} gt "symbol" }).|signet)./;

Her e, we test whether $foo{bar} is greater than symbol. If so, we include . in the
patter n, and if not, we include signet in the pattern. Stretched out a bit, it might
be construed as more readable:

"glyph" =˜ m{
.+ # some anythings
(?(?{ # if

$foo{bar} gt "symbol" # this is true
})

. # match another anything
| # else

signet # match signet
)
. # and one more anything

}x;

When use re ’eval’ is in effect, a regex is allowed to contain (?{ CODE }) subpat-
ter ns even if the regular expression interpolates variables:

/(.*?) (?{length($1) < 3 && warn}) $suffix/; # Error without use re ’eval’

This is normally disallowed since it is a potential security risk. Even though the
patter n above may be innocuous because $suffix is innocuous, the regex parser
can’t tell which parts of the string were interpolated and which ones weren’t, so it
just disallows code subpatterns entirely if there wer e any interpolations.

If the pattern is obtained from tainted data, even use re ’eval’ won’t allow the
patter n match to proceed.

When use re ’taint’ is in effect and a tainted string is the target of a regex, the
captur ed subpatter ns (either in the numbered variables or in the list of values
retur ned by m// in list context) are tainted. This is useful when regex operations
on tainted data are meant not to extract safe substrings, but merely to perfor m
other transformations. See Chapter 23, Security, for more on tainting. For the pur-
pose of this pragma, precompiled regular expressions (usually obtained from qr//)
ar e not considered to be interpolated:

/foo${pat}bar/

This is allowed if $pat is a precompiled regular expression, even if $pat contains
(?{ CODE }) subpatter ns.

Earlier we showed you a bit of what use re ’debug’ prints out. A more primitive
debugging solution is to use (?{ CODE }) subpatter ns to print out what’s been
matched so far during the match:

"abcdef" =˜ / .+ (?{print "Matched so far: $&\n"}) bcdef $/x;

This prints:

Matched so far: abcdef
Matched so far: abcde
Matched so far: abcd
Matched so far: abc
Matched so far: ab
Matched so far: a

showing the .+ grabbing all the letters and giving them up one by one as the
Engine backtracks.

Match-time pattern interpolation

You can build parts of your pattern from within the pattern itself. The (??{ CODE })

extension allows you to insert code that evaluates to a valid pattern. It’s like saying
/$pattern/, except that you can generate $pattern at run time—mor e specifically,
at match time. For instance:

/\w (??{ if ($threshold > 1) { "red" } else { "blue" } }) \d/x;

This is equivalent to /\wred\d/ if $threshold is greater than 1, and /\wblue\d/

otherwise.

You can include backrefer ences inside the evaluated code to derive patterns from
just-matched substrings (even if they will later become unmatched through back-
tracking). For instance, this matches all strings that read the same backward as for-
ward (known as palindromedaries, phrases with a hump in the middle):

/ˆ (.+) .? (??{quotemeta reverse $1}) $/xi;

You can balance parentheses like so:

$text =˜ /(\(+) (.*?) (??{ ’\)’ x length $1 })/x;

This matches strings of the form (shazam!) and (((shazam!))), sticking shazam!

into $2. Unfortunately, it doesn’t notice whether the parentheses in the middle are
balanced. For that we need recursion.

Fortunately, you can do recursive patterns too. You can have a compiled pattern
that uses (??{ CODE }) to refer to itself. Recursive matching is pretty irregular, as

Fanc y Patter ns 213

214 Chapter 5: Patter n Matching

regular expressions go. Any text on regular expressions will tell you that a stan-
dard regex can’t match nested parentheses correctly. And that’s correct. It’s also
corr ect that Perl’s regexes aren’t standard. The following pattern* matches a set of
nested parentheses, however deep they go:

$np = qr{
\(
(?:

(?> [ˆ()]+) # Non-parens without backtracking
|
(??{ $np }) # Group with matching parens

)*
\)

}x;

You could use it like this to match a function call:

$funpat = qr/\w+$np/;
’myfunfun(1,(2*(3+4)),5)’ =˜ /ˆ$funpat$/; # Matches!

Conditional interpolation

The (?(COND)IFTRUE|IFFALSE) regex extension is similar to Perl’s ?: operator. If
COND is true, the IFTRUE patter n is used; otherwise, the IFFALSE patter n is used. The
COND can be a backrefer ence (expr essed as a bare integer, without the \ or $), a
lookar ound assertion, or a code subpattern. (See the sections “Lookaround Asser-
tions” and “Match-time code evaluation” earlier in this chapter.)

If the COND is an integer, it is treated as a backrefer ence. For instance, consider:

#!/usr/bin/perl
$x = ’Perl is free.’;
$y = ’ManagerWare costs $99.95.’;

foreach ($x, $y) {
/ˆ(\w+) (?:is|(costs)) (?(2)(\$\d+)|\w+)/; # Either (\$\d+) or \w+
if ($3) {

print "$1 costs money.\n"; # ManagerWare costs money.
} else {

print "$1 doesn’t cost money.\n"; # Perl doesn’t cost money.
}

}

Her e, the COND is (2), which is true if a second backrefer ence exists. If that’s the
case, (\$\d+) is included in the pattern at that point (creating the $3 backr efer-
ence); otherwise, \w+ is used.

* Note that you can’t declare the variable in the same statement in which you’re going to use it. You
can always declare it earlier, of course.

If the COND is a lookaround or code subpattern, the truth of the assertion is used to
deter mine whether to include IFTRUE or IFFALSE:

/[ATGC]+(?(?<=AA)G|C)$/;

This uses a lookbehind assertion as the COND to match a DNA sequence that ends
in either AAG, or some other base combination and C.

You can omit the |IFFALSE alter native. If you do, the IFTRUE patter n will be
included in the pattern as usual if the COND is true, but if the condition isn’t true,
the Engine will move on to the next portion of the pattern.

Defining Your Own Assertions
You can’t change how Perl’s Engine works, but if you’re suf ficiently warped, you
can change how it sees your pattern. Since Perl interprets your pattern similarly to
double-quoted strings, you can use the wonder of overloaded string constants to
see to it that text sequences of your choosing are automatically translated into
other text sequences.

In the example below, we specify two transformations to occur when Perl encoun-
ters a pattern. First, we define \tag so that when it appears in a pattern, it’s auto-
matically translated to (?:<.*?>), which matches most HTML and XML tags.
Second, we “redefine” the \w metasymbol so that it handles only English letters.

We’ll define a package called Tagger that hides the overloading from our main
pr ogram. Once we do that, we’ll be able to say:

use Tagger;
$_ = ’<I>camel</I>’;
print "Tagged camel found" if /\tag\w+\tag/;

Her e’s Tagger.pm, couched in the form of a Perl module (see Chapter 11):

package Tagger;
use overload;

sub import { overload::constant ’qr’ => \&convert }

sub convert {
my $re = shift;
$re =˜ s/ \\tag /<.*?>/xg;
$re =˜ s/ \\w /[A-Za-z]/xg;
return $re;

}

1;

Fanc y Patter ns 215

216 Chapter 5: Patter n Matching

The Tagger module is handed the pattern immediately before interpolation, so you
can bypass the overloading by bypassing interpolation, as follows:

$re = ’\tag\w+\tag’; # This string begins with \t, a tab
print if /$re/; # Matches a tab, followed by an "a"...

If you wanted the interpolated variable to be customized, call the convert function
dir ectly:

$re = ’\tag\w+\tag’; # This string begins with \t, a tab
$re = Tagger::convert $re; # expand \tag and \w
print if /$re/; # $re becomes <.*?>[A-Za-z]+<.*?>

Now if you’re still wondering what those sub thingies are ther e in the Tagger mod-
ule, you’ll find out soon enough because that’s what our next chapter is all about.

6
Subroutines

Like many languages, Perl provides for user-defined subroutines.* These subrou-
tines may be defined anywhere in the main program, loaded in from other files via
the do, require, or use keywords, or generated at run time using eval. You can
even load them at run time with the mechanism described in the section
“Autoloading” in Chapter 10, Packages. You can call a subroutine indirectly, using
a variable containing either its name or a refer ence to the routine, or through an
object, letting the object determine which subroutine should really be called. You
can generate anonymous subroutines, accessible only through refer ences, and if
you want, use these to clone new, nearly identical functions via closur es, which
ar e cover ed in the section by that name in Chapter 8, Refer ences.

Syntax
To declar e a named subroutine without defining it, use one of these forms:

sub NAME
sub NAME PROTO
sub NAME ATTRS
sub NAME PROTO ATTRS

To declar e and define a named subroutine, add a BLOCK:

sub NAME BLOCK
sub NAME PROTO BLOCK
sub NAME ATTRS BLOCK
sub NAME PROTO ATTRS BLOCK

* We’ll also call them functions, but functions are the same thing as subroutines in Perl. Sometimes
we’ll even call them methods, which are defined the same way, but called differ ently.

217

218 Chapter 6: Subroutines

To create an anonymous subroutine or closure, leave out the NAME:

sub BLOCK
sub PROTO BLOCK
sub ATTRS BLOCK
sub PROTO ATTRS BLOCK

PROTO and ATTRS stand for the prototype and attributes, each of which is discussed
in its own section later in the chapter. They’r e not so important—the NAME and the
BLOCK ar e the essential parts, even when they’re missing.

For the forms without a NAME, you still have to provide some way of calling the
subr outine. So be sure to save the retur n value since this form of sub declaration is
not only compiled at compile time as you would expect, but also produces a run-
time retur n value:

$subref = sub BLOCK;

To import subroutines defined in another module, say:

use MODULE qw(NAME1 NAME2 NAME3...);

To call subroutines directly, say:

NAME(LIST) # & is optional with parentheses.
NAME LIST # Parens optional if sub predeclared/imported.
&NAME # Exposes current @_ to that subroutine,

(and circumvents prototypes).

To call subroutines indirectly (by name or by refer ence), use any of these:

&$subref(LIST) # The & is not optional on indirect call
$subref->(LIST) # (unless using infix notation).
&$subref # Exposes current @_ to that subroutine.

The official name of a subroutine includes the & pr efix. A subr outine may be
called using the prefix, but the & is usually optional, and so are the parentheses if
the subroutine has been predeclar ed. However, the & is not optional when you’re
just naming the subroutine, such as when it’s used as an argument to defined or
undef or when you want to generate a refer ence to a named subroutine by saying
$subref = \&name. Nor is the & optional when you want to make an indirect sub-
routine call using the &$subref() or &{$subref}() constructs. However, the more
convenient $subref->() notation does not requir e it. See Chapter 8 for more about
refer ences to subroutines.

Perl doesn’t force a particular capitalization style on your subroutine names. How-
ever, one loosely held convention is that functions called indirectly by Perl’s run-
time system (BEGIN, CHECK, INIT, END, AUTOLOAD, DESTROY, and all the functions men-
tioned in Chapter 14, Tied Variables) are in all capitals, so you might want to
avoid using that style. (But subroutines used for constant values are customarily
named with all caps too. That’s okay. We hope . . .)

Semantics
Befor e you get too worked up over all that syntax, just remember that the normal
way to define a simple subroutine ends up looking like this:

sub razzle {
print "Ok, you’ve been razzled.\n";

}

and the normal way to call it is simply:

razzle();

In this case, we ignored inputs (arguments) and outputs (retur n values). But the
Perl model for passing data into and out of a subroutine is really quite simple: all
function parameters are passed as one single, flat list of scalars, and multiple
retur n values are likewise retur ned to the caller as one single, flat list of scalars. As
with any LIST, any arrays or hashes passed in these lists will interpolate their val-
ues into the flattened list, losing their identities—but there are several ways to get
ar ound this, and the automatic list interpolation is frequently quite useful. Both
parameter lists and retur n lists may contain as many or as few scalar elements as
you’d like (though you may put constraints on the parameter list by using proto-
types). Indeed, Perl is designed around this notion of variadic functions (those
taking any number of arguments), unlike C, where they’r e sort of grudgingly
kludged in so that you can call printf (3).

Now, if you’re going to design a language around the notion of passing varying
numbers of arbitrary arguments, you’d better make it easy to process those arbi-
trary lists of arguments. Any arguments passed to a Perl routine come in as the
array @_. If you call a function with two arguments, they are accessible inside the
function as the first two elements of that array: $_[0] and $_[1]. Since @_ is a just a
regular array with an irregular name, you can do anything to it you’d normally do
to an array.* The array @_ is a local array, but its values are aliases to the actual
scalar parameters. (This is known as pass-by-refer ence semantics.) Thus you can
modify the actual parameters if you modify the corresponding element of @_. (This
is rarely done, however, since it’s so easy to retur n inter esting values in Perl.)

The retur n value of the subroutine (or of any other block, for that matter) is the
value of the last expression evaluated. Or you may use an explicit return state-
ment to specify the retur n value and exit the subroutine from any point in the sub-
routine. Either way, as the subroutine is called in a scalar or list context, so also is
the final expression of the routine evaluated in that same scalar or list context.

* This is an area where Perl is mor e orthogonal than the typical programming language.

Semantics 219

220 Chapter 6: Subroutines

Tr icks with Parameter Lists
Perl does not yet have named formal parameters, but in practice all you do is copy
the values of @_ to a my list, which serves nicely for a list of formal parameters.
(Not coincidentally, copying the values changes the pass-by-refer ence semantics
into pass-by-value, which is how people usually expect parameters to work any-
way, even if they don’t know the fancy computer science terms for it.) Here’s a
typical example:

sub maysetenv {
my ($key, $value) = @_;
$ENV{$key} = $value unless $ENV{$key};

}

But you aren’t requir ed to name your parameters, which is the whole point of the
@_ array. For example, to calculate a maximum, you can just iterate over @_

dir ectly:

sub max {
my $max = shift(@_);
for my $item (@_) {

$max = $item if $max < $item;
}
return $max;

}

$bestday = max($mon,$tue,$wed,$thu,$fri);

Or you can fill an entire hash at once:

sub configuration {
my %options = @_;
print "Maximum verbosity.\n" if $options{VERBOSE} == 9;

}

configuration(PASSWORD => "xyzzy", VERBOSE => 9, SCORE => 0);

Her e’s an example of not naming your formal arguments so that you can modify
your actual arguments:

upcase_in($v1, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@_) { tr/a-z/A-Z/ }
}

You aren’t allowed to modify constants in this way, of course. If an argument were
actually a scalar literal like "hobbit" or read-only scalar variable like $1, and you
tried to change it, Perl would raise an exception (presumably fatal, possibly career-
thr eatening). For example, this won’t work:

upcase_in("frederick");

It would be much safer if the upcase_in function were written to retur n a copy of
its parameters instead of changing them in place:

($v3, $v4) = upcase($v1, $v2);
sub upcase {

my @parms = @_;
for (@parms) { tr/a-z/A-Z/ }
Check whether we were called in list context.
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn’t care whether it was passed real
scalars or arrays. Perl will smash everything into one big, long, flat @_ parameter
list. This is one of the places where Perl’s simple argument-passing style shines.
The upcase function will work perfectly well without changing the upcase defini-
tion even if we feed it things like this:

@newlist = upcase(@list1, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@a, @b) = upcase(@list1, @list2); # WRONG

Why not? Because, like the flat incoming parameter list in @_, the retur n list is also
flat. So this stores everything in @a and empties out @b by storing the null list there.
See the later section “Passing References” for alternatives.

Er ror Indications
If you want your function to retur n in such a way that the caller will realize there’s
been an error, the most natural way to do this in Perl is to use a bare return state-
ment without an argument. That way when the function is used in scalar context,
the caller gets undef, and when used in list context, the caller gets a null list.

Under extraordinary circumstances, you might choose to raise an exception to
indicate an error. Use this measure sparingly, though; otherwise, your whole pro-
gram will be littered with exception handlers. For example, failing to open a file in
a generic file-opening function is hardly an exceptional event. However, ignoring
that failure might well be. The wantarray built-in retur ns undef if your function
was called in void context, so you can tell if you’re being ignored:

if ($something_went_awry) {
return if defined wantarray; # good, not void context.
die "Pay attention to my error, you danglesocket!!!\n";

}

Semantics 221

222 Chapter 6: Subroutines

Scoping Issues
Subr outines may be called recursively because each call gets its own argument
array, even when the routine calls itself. If a subroutine is called using the & for m,
the argument list is optional. If the & is used but the argument list is omitted,
something special happens: the @_ array of the calling routine is supplied implic-
itly. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() gets current args, like foo(@_), but faster!
foo; # like foo() if sub foo predeclared, else bareword "foo"

Not only does the & for m make the argument list optional, but it also disables any
pr ototype checking on the arguments you do provide. This is partly for historical
reasons and partly to provide a convenient way to cheat if you know what you’re
doing. See the section “Prototypes” later in this chapter.

Variables you access from inside a function that haven’t been declared private to
that function are not necessarily global variables; they still follow the normal
block-scoping rules of Perl. As explained in the “Names” section of Chapter 2, Bits
and Pieces, this means they look first in the surrounding lexical scope (or scopes)
for resolution, then on to the single package scope. From the viewpoint of a sub-
routine, then, any my variables from an enclosing lexical scope are still perfectly
visible.

For example, the bumpx function below has access to the file-scoped $x lexical
variable because the scope where the my was declared — the file itself—hasn’t
been closed off befor e the subroutine is defined:

top of file
my $x = 10; # declare and initialize variable
sub bumpx { $x++ } # function can see outer lexical variable

C and C++ programmers would probably think of $x as a “file static” variable. It’s
private as far as functions in other files are concer ned, but global from the per-
spective of functions declared after the my. C programmers who come to Perl look-
ing for what they would call “static variables” for files or functions find no such
keyword in Perl. Perl programmers generally avoid the word “static”, because
static systems are dead and boring, and because the word is so muddled in histori-
cal usage.

Although Perl doesn’t include the word “static” in its lexicon, Perl programmers
have no problem creating variables that are private to a function and persist across
function calls. There’s just no special word for these. Perl’s richer scoping primi-
tives combine with automatic memory management in ways that someone looking
for a “static” keyword might never think of trying.

Lexical variables don’t get automatically garbage collected just because their scope
has exited; they wait to get recycled until they’re no longer used, which is much
mor e important. To create private variables that aren’t automatically reset across
function calls, enclose the whole function in an extra block and put both the my

declaration and the function definition within that block. You can even put more
than one function there for shared access to an otherwise private variable:

{
my $counter = 0;
sub next_counter { return ++$counter }
sub prev_counter { return --$counter }

}

As always, access to the lexical variable is limited to code within the same lexical
scope. The names of the two functions, on the other hand, are globally accessible
(within the package), and, since they were defined inside $counter’s scope, they
can still access that variable even though no one else can.

If this function is loaded via require or use, then this is probably just fine. If it’s all
in the main program, you’ll need to make sure any run-time assignment to my is
executed early enough, either by putting the whole block before your main pro-
gram, or alternatively, by placing a BEGIN or INIT block around it to make sure it
gets executed before your program starts:

BEGIN {
my @scale = (’A’ .. ’G’);
my $note = -1;
sub next_pitch { return $scale[($note += 1) %= @scale] };

}

The BEGIN doesn’t affect the subroutine definition, nor does it affect the persis-
tence of any lexicals used by the subroutine. It’s just there to ensur e the variables
get initialized before the subroutine is ever called. For more on declaring private
and global variables, see my and our respectively in Chapter 29, Functions. The
BEGIN and INIT constructs are explained in Chapter 18, Compiling.

Semantics 223

224 Chapter 6: Subroutines

Passing References
If you want to pass more than one array or hash into or out of a function, and you
want them to maintain their integrity, then you’ll need to use an explicit pass-by-
refer ence mechanism. Before you do that, you need to understand refer ences as
detailed in Chapter 8. This section may not make much sense to you otherwise.
But hey, you can always look at the pictures . . .

Her e ar e a few simple examples. First, let’s define a function that expects a refer-
ence to an array. When the array is large, it’s much faster to pass it in as a single
refer ence than a long list of values:

$total = sum (\@a);

sub sum {
my ($aref) = @_;
my ($total) = 0;
foreach (@$aref) { $total += $_ }
return $total;

}

Let’s pass in several arrays to a function and have it pop each of them, retur ning a
new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my @retlist = ();
for my $aref (@_) {

push @retlist, pop @$aref;
}
return @retlist;

}

Her e’s how you might write a function that does a kind of set intersection by
retur ning a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {

my %seen;
for my $href (@_) {

while (my $k = each %$href) {
$seen{$k}++;

}
}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we’r e just using the normal list retur n mechanism. What happens if you
want to pass or retur n a hash? Well, if you’re only using one of them, or you don’t

mind them concatenating, then the normal calling convention is okay, although a
little expensive.

As we explained earlier, wher e people get into trouble is here:

(@a, @b) = func(@c, @d);

or here:

(%a, %b) = func(%c, %d);

That syntax simply won’t work. It just sets @a or %a and clears @b or %b. Plus the
function doesn’t get two separate arrays or hashes as arguments: it gets one long
list in @_, as always.

You may want to arrange for your functions to use refer ences for both input and
output. Here’s a function that takes two array refer ences as arguments and retur ns
the two array refer ences order ed by the number of elements they have in them:

($aref, $bref) = func(\@c, \@d);
print "@$aref has more than @$bref\n";
sub func {

my ($cref, $dref) = @_;
if (@$cref > @$dref) {

return ($cref, $dref);
} else {

return ($dref, $cref);
}

}

For passing filehandles or directory handles into or out of functions, see the sec-
tions “Filehandle References” and “Symbol Table References” in Chapter 8.

Prototypes
Perl lets you define your own functions to be called like Perl’s built-in functions.
Consider push(@array, $item), which must tacitly receive a refer ence to @array,
not just the list values held in @array, so that the array can be modified. Pr ototypes
let you declare subr outines to take arguments just like many of the built-ins, that
is, with certain constraints on the number and types of arguments. We call them
“pr ototypes”, but they work more like automatic templates for the calling context
than like what C or Java programmers would think of as prototypes. With these
templates, Perl will automatically add implicit backslashes, or calls to scalar, or
whatever else it takes to get things to show up in a way that matches the template.
For instance, if you declare:

sub mypush (\@@);

Prototypes 225

226 Chapter 6: Subroutines

then mypush takes arguments exactly like push does. For this to work, the declara-
tion of the function to be called must be visible at compile time. The prototype
only affects the interpretation of function calls when the & character is omitted. In
other words, if you call it like a built-in function, it behaves like a built-in function.
If you call it like an old-fashioned subroutine, then it behaves like an old-fash-
ioned subroutine. The & suppr esses pr ototype checks and associated contextual
ef fects.

Since prototypes are taken into consideration only at compile time, it naturally falls
out that they have no influence on subroutine refer ences like \&foo or on indirect
subr outine calls like &{$subref} or $subref->(). Method calls are not influenced
by prototypes, either. That’s because the actual function to be called is indetermi-
nate at compile time, depending as it does on inheritance, which is dynamically
deter mined in Perl.

Since the intent is primarily to let you define subroutines that work like built-in
functions, here are some prototypes you might use to emulate the corresponding
built-ins:

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myreverse (@) myreverse $a,$b,$c

sub myjoin ($@) myjoin ":",$a,$b,$c

sub mypop (\@) mypop @array

sub mysplice (\@$$@) mysplice @array,@array,0,@pushme

sub mykeys (\%) mykeys %{$hashref}

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE

sub myindex ($$;$) myindex &getstring, "substr"

myindex &getstring, "substr", $start

sub mysyswrite (*$;$$) mysyswrite OUTF, $buf

mysyswrite OUTF, $buf, length($buf)-$off, $off

sub myopen (*;$@) myopen HANDLE

myopen HANDLE, $name

myopen HANDLE, "-|", @cmd

sub mygrep (&@) mygrep { /foo/ } $a,$b,$c

sub myrand ($) myrand 42

sub mytime () mytime

Any backslashed prototype character (shown between parentheses in the left col-
umn above) repr esents an actual argument (exemplified in the right column),
which absolutely must start with that character. Just as the first argument to keys

must start with %, so too must the first argument to mykeys.

A semicolon separates mandatory arguments from optional arguments. (It would
be redundant before @ or %, since lists can be null.) Unbackslashed prototype char-
acters have special meanings. Any unbackslashed @ or % eats all the rest of the
actual arguments and forces list context. (It’s equivalent to LIST in a syntax
description.) An argument repr esented by $ has scalar context forced on it. An &

requir es a refer ence to a named or anonymous subroutine.

A * allows the subroutine to accept anything in that slot that would be accepted
by a built-in as a filehandle: a bare name, a constant, a scalar expression, a type-
glob, or a refer ence to a typeglob. The value will be available to the subroutine
either as a simple scalar or (in the latter two cases) as a refer ence to the typeglob.
If you wish to always convert such arguments to a typeglob refer ence, use Sym-

bol::qualify_to_ref as follows:

use Symbol ’qualify_to_ref’;

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);
...

}

Note how the last three examples in the table are treated specially by the parser.
mygrep is parsed as a true list operator, myrand is parsed as a true unary operator
with unary precedence the same as rand, and mytime is truly argumentless, just like
time.

That is, if you say:

mytime +2;

you’ll get mytime() + 2, not mytime(2), which is how it would be parsed without
the prototype, or with a unary prototype.

The mygrep example also illustrates how & is treated specially when it is the first
argument. Ordinarily, an & pr ototype would demand an argument like \&foo or
sub{}. When it is the first argument, however, you can leave off the sub of your
anonymous subroutine, and just pass a bare block in the “indirect object” slot
(with no comma after it). So one nifty thing about the & pr ototype is that you can
generate new syntax with it, provided the & is in the initial position:

sub try (&$) {
my ($try, $catch) = @_;
eval { &$try };
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) { $_[0] }

Prototypes 227

228 Chapter 6: Subroutines

try {
die "phooey";

} # not the end of the function call!
catch {

/phooey/ and print "unphooey\n";
};

This prints “unphooey”. What happens is that try is called with two arguments, the
anonymous function {die "phooey";} and the retur n value of the catch function,
which in this case is nothing but its own argument, the entire block of yet another
anonymous function. Within try, the first function argument is called while pro-
tected within an eval block to trap anything that blows up. If something does
blow up, the second function is called with a local version of the global $_ vari-
able set to the raised exception.* If this all sounds like pure gobbledygook, you’ll
have to read about die and eval in Chapter 29, and then go check out anonymous
functions and closures in Chapter 8. On the other hand, if it intrigues you, you
might check out the Error module on CPAN, which uses this to implement elabo-
rately structured exception handling with try, catch, except, otherwise, and
finally clauses.

Her e’s a reimplementation of the grep operator (the built-in one is more efficient,
of course):

sub mygrep (&@) {
my $coderef = shift;
my @result;
foreach $_ (@_) {

push(@result, $_) if &$coderef;
}
return @result;

}

Some folks would prefer to see full alphanumeric prototypes. Alphanumerics have
been intentionally left out of prototypes for the express purpose of someday
adding named, formal parameters. (Maybe.) The current mechanism’s main goal is
to let module writers enforce a certain amount of compile-time checking on mod-
ule users.

Inlining Constant Functions
Functions prototyped with (), meaning that they take no arguments at all, are
parsed like the time built-in. More inter estingly, the compiler treats such functions
as potential candidates for inlining. If the result of that function, after Perl’s opti-
mization and constant-folding pass, is either a constant or a lexically scoped scalar

* Yes, there are still unresolved issues having to do with the visibility of @_. We’r e ignoring that ques-
tion for the moment. But if we make @_ lexically scoped someday, as already occurs in the experi-
mental threaded versions of Perl, those anonymous subroutines can act like closures.

with no other refer ences, then that value will be used in place of calls to that func-
tion. Calls made using &NAME ar e never inlined, however, just as they are not sub-
ject to any other prototype effects. (See the use constant pragma in Chapter 31,
Pragmatic Modules, for an easy way to declare such constants.)

Both version of these functions to compute π will be inlined by the compiler:

sub pi () { 3.14159 } # Not exact, but close
sub PI () { 4 * atan2(1, 1) } # As good as it gets

In fact, all of the following functions are inlined because Perl can determine every-
thing at compile time:

sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

sub OPT_GLARCH () { (0x1B58 & FLAG_MASK) == 0 }
sub GLARCH_VAL () {

if (OPT_GLARCH) { return 23 }
else { return 42 }

}

sub N () { int(GLARCH_VAL) / 3 }
BEGIN { # compiler runs this block at compile time

my $prod = 1; # persistent, private variable
for (1 .. N) { $prod *= $_ }
sub NFACT () { $prod }

}

In the last example, the NFACT function is inlined because it has a void prototype
and the variable it retur ns is not changed by that function—and furthermor e can’t
be changed by anyone else, since it’s in a lexical scope. So the compiler replaces
uses of NFACT with that value, which was precomputed at compile time because of
the surrounding BEGIN.

If you redefine a subroutine that was eligible for inlining, you’ll get a mandatory
war ning. (You can use this warning to tell whether the compiler inlined a particu-
lar subroutine.) The warning is considered severe enough not to be optional,
because previously compiled invocations of the function will still use the old value
of the function. If you need to redefine the subroutine, ensure that it isn’t inlined
either by dropping the () pr ototype (which changes calling semantics, so beware)
or by thwarting the inlining mechanism in some other way, such as:

sub not_inlined () {
return 23 if $$;

}

See Chapter 18 for more about what happens during the compilation and execu-
tion phases of your program’s life.

Prototypes 229

230 Chapter 6: Subroutines

Care with Prototypes
It’s probably best to put prototypes on new functions, not retr ofit pr ototypes onto
older ones. These are context templates, not ANSI C prototypes, so you must be
especially careful about silently imposing a differ ent context. Suppose, for exam-
ple, you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

That makes it a unary operator (like the rand built-in) and changes how the com-
piler determines the function’s arguments. With the new prototype, the function
consumes just one, scalar-context argument instead of many arguments in list con-
text. If someone has been calling it with an array or list expression, even if that
array or list contained just a single element, where befor e it worked, now you’ve
got something completely differ ent:

func @foo; # counts @foo elements
func split /:/; # counts number of fields returned
func "a", "b", "c"; # passes "a" only, discards "b" and "c"
func("a", "b", "c"); # suddenly, a compiler error!

You’ve just supplied an implicit scalar in front of the argument list, which can be
mor e than a bit surprising. The old @foo that used to hold one thing doesn’t get
passed in. Instead, 1 (the number of elements in @foo) is now passed to func. And
the split, being called in scalar context, scribbles all over your @_ parameter list.
In the third example, because func has been prototyped as a unary operator, only
“a” is passed in; then the retur n value from func is discarded as the comma opera-
tor goes on to evaluate the next two items and retur n “c.” In the final example, the
user now gets a syntax error at compile time on code that used to compile and
run just fine.

If you’re writing new code and would like a unary operator that takes only a
scalar variable, not any old scalar expression, you could prototype it to take a
scalar refer ence :

sub func (\$) {
my $nref = shift;
print "you gave me $$nref\n";

}

Now the compiler won’t let anything by that doesn’t start with a dollar sign:

func @foo; # compiler error, saw @, want $
func split/:/; # compiler error, saw function, want $
func $s; # this one is ok -- got real $ symbol
func $a[3]; # and this one

func $h{stuff}[-1]; # or even this
func 2+5; # scalar expr still a compiler error
func ${ \(2+5) }; # ok, but is the cure worse than the disease?

If you aren’t careful, you can get yourself into trouble with prototypes. But if you
ar e car eful, you can do a lot of neat things with them. This is all very powerful, of
course, and should only be used in moderation to make the world a better place.

Subroutine Attributes
A subr outine declaration or definition may have a list of attributes associated with
it. If such an attribute list is present, it is broken up at whitespace or colon bound-
aries and treated as though a use attributes had been seen. See the use

attributes pragma in Chapter 31 for internal details. There are thr ee standard
attributes for subroutines: locked, method, and lvalue.

The locked and method Attributes
Only one thread is allowed into this function.
sub afunc : locked { ... }

Only one thread is allowed into this function on a given object.
sub afunc : locked method { ... }

Setting the locked attribute is meaningful only when the subroutine or method is
intended to be called by multiple threads simultaneously. When set on a non-
method subroutine, Perl ensures that a lock is acquired on the subroutine itself
befor e that subroutine is entered. When set on a method subroutine (that is, one
also marked with the method attribute), Perl ensures that any invocation of it
implicitly locks its first argument (the object) before execution.

Semantics of this lock are the same as using the lock operator on the subroutine
as the first statement in that routine. See Chapter 17, Thr eads, for more on locking.

The method attribute can be used by itself:

sub afunc : method { ... }

Curr ently this has only the effect of marking the subroutine so as not to trigger the
“Ambiguous call resolved as CORE::%s” war ning. (We may make it mean more
someday.)

The attribute system is user-extensible, letting you create your own attribute
names. These new attributes must be valid as simple identifier names (without any
punctuation other than the “_” character). They may have a parameter list
appended, which is currently only checked for whether its parentheses nest
pr operly.

Subroutine Attributes 231

232 Chapter 6: Subroutines

Her e ar e examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive;
sub plugh () : Ugly(’\(") :Bad;
sub xyzzy : _5x5 { ... }

Her e ar e examples of invalid syntax:

sub fnord : switch(10,foo(); # ()-string not balanced
sub snoid : Ugly(’(’); # ()-string not balanced
sub xyzzy : 5x5; # "5x5" not a valid identifier
sub plugh : Y2::north; # "Y2::north" not a simple identifier
sub snurt : foo + bar; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code that associates
them with the subroutine. Exactly how this works (or doesn’t) is highly experi-
mental. Check attributes (3) for current details on attribute lists and their manipula-
tion.

The lvalue Attribute
It is possible to retur n a modifiable scalar value from a subroutine, but only if you
declar e the subroutine to retur n an lvalue:

my $val;
sub canmod : lvalue {

$val;
}
sub nomod {

$val;
}

canmod() = 5; # Assigns to $val.
nomod() = 5; # ERROR

If you’re passing parameters to an lvalued subroutine, you’ll usually want paren-
theses to disambiguate what’s being assigned:

canmod $x = 5; # assigns 5 to $x first!
canmod 42 = 5; # can’t change a constant; compile-time error
canmod($x) = 5; # this is ok
canmod(42) = 5; # and so is this

If you want to be sneaky, you can get around this in the particular case of a sub-
routine that takes one argument. Declaring the function with a prototype of ($)
causes the function to be parsed with the precedence of a named unary operator.
Since named unaries have higher precedence than assignment, you no longer
need the parentheses. (Whether this is desirable or not is left up to the style
police.)

You don’t have to be sneaky in the particular case of a subroutine that allows zero
arguments (that is, with a () pr ototype). You can without ambiguity say this:

canmod = 5;

That works because no valid term begins with =. Similarly, lvalued method calls
can omit the parentheses when you don’t pass any arguments:

$obj->canmod = 5;

We promise not to break those two constructs in future versions of Perl. They’re
handy when you want to wrap object attributes in method calls (so that they can
be inherited like method calls but accessed like variables).

The scalar or list context of both the lvalue subroutine and the righthand side of
an assignment to that subroutine is determined as if the subroutine call were
replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in list context.

The current implementation does not allow arrays and hashes to be retur ned fr om
lvalue subroutines directly. You can always retur n a refer ence instead.

Subroutine Attributes 233

7
Formats

Perl has a mechanism to help you generate simple reports and charts. To facilitate
this, Perl helps you code up your output page close to how it will look when it’s
printed. It can keep track of things like how many lines are on a page, the current
page number, when to print page headers, and so on. Keywords are borr owed
fr om FOR TRAN: format to declare and write to execute; see the relevant entries in
Chapter 29, Functions. Fortunately, the layout is much more legible, more like the
PRINT USING statement of BASIC. Think of it as a poor man’s nr off (1). (If you
know nr off, that may not sound like a recommendation.)

For mats, like packages and subroutines, are declar ed rather than executed, so they
may occur at any point in your program. (Usually it’s best to rukeep them all
together.) They have their own namespace apart from all the other types in Perl.
This means that if you have a function named “Foo”, it is not the same thing as a
for mat named “Foo”. However, the default name for the format associated with a
given filehandle is the same as the name of that filehandle. Thus, the default for-
mat for STDOUT is named “STDOUT”, and the default format for filehandle TEMP is
named “TEMP”. They just look the same. They aren’t.

Output record formats are declar ed as follows:

format NAME =
FORMLIST
.

If NAME is omitted, format STDOUT is defined. FORMLIST consists of a sequence of
lines, each of which may be of one of three types:

• A comment, indicated by putting a # in the first column.

234

• A “pictur e” line giving the format for one output line.

• An argument line supplying values to plug into the previous picture line.

Pictur e lines are printed exactly as they look, except for certain fields that substi-
tute values into the line.* Each substitution field in a picture line starts with either
@ (at) or ˆ (car et). These lines do not undergo any kind of variable interpolation.
The @ field (not to be confused with the array marker @) is the normal kind of
field; the other kind, the ˆ field, is used to do rudimentary multiline text-block fill-
ing. The length of the field is supplied by padding out the field with multiple <, >,
or | characters to specify, respectively, left justification, right justification, or cen-
tering. If the variable exceeds the width specified, it is truncated.

As an alternate form of right justification, you may also use # characters (after an
initial @ or ˆ) to specify a numeric field. You can insert a . in place of one of the #

characters to line up the decimal points. If any value supplied for these fields con-
tains a newline, only the text up to the newline is printed. Finally, the special field
@* can be used for printing multiline, nontruncated values; it should generally
appear on a picture line by itself.

The values are specified on the following line in the same order as the picture
fields. The expressions providing the values should be separated by commas. The
expr essions ar e all evaluated in a list context before the line is processed, so a sin-
gle list expression could produce multiple list elements. The expressions may be
spr ead out to more than one line if enclosed in braces. (If so, the opening brace
must be the first token on the first line). This lets you line up the values under
their respective format fields for easier reading.

If an expression evaluates to a number with a decimal part, and if the correspond-
ing picture specifies that the decimal part should appear in the output (that is, any
pictur e except multiple # characters without an embedded .), the character used
for the decimal point is always determined by the current LC_NUMERIC locale. This
means that if, for example, the run-time environment happens to specify a German
locale, a comma will be used instead of a period. See the perllocale manpage for
mor e infor mation.

Inside an expression, the whitespace characters \n, \t, and \f ar e all considered
equivalent to a single space. Thus, you could think of this filter as being applied to
each value in the format:

* Even those fields maintain the integrity of the columns you put them in, however. Ther e is nothing
in a picture line that can cause fields to grow or shrink or shift back and forth. The columns you see
ar e sacr ed in a WYSIWYG sense—assuming you’re using a fixed-width font. Even control characters
ar e assumed to have a width of one.

Introduction 235

236 Chapter 7: For mats

$value =˜ tr/\n\t\f/ /;

The remaining whitespace character, \r, forces the printing of a new line if the
pictur e line allows it.

Pictur e fields that begin with ˆ rather than @ ar e tr eated specially. With a # field,
the field is blanked out if the value is undefined. For other field types, the caret
enables a kind of fill mode. Instead of an arbitrary expression, the value supplied
must be a scalar variable name that contains a text string. Perl puts as much text as
it can into the field, and then chops off the front of the string so that the next time
the variable is refer enced, mor e of the text can be printed. (Yes, this means that
the variable itself is altered during execution of the write call and is not preserved.
Use a scratch variable if you want to preserve the original value.) Normally you
would use a sequence of fields lined up vertically to print out a block of text. You
might wish to end the final field with the text “...”, which will appear in the out-
put if the text was too long to appear in its entirety. You can change which char-
acters are legal to “break” on (or after) by changing the variable $: (that’s
$FORMAT_LINE_BREAK_CHARACTERS if you’re using the English module) to a list of the
desir ed characters.

Using ˆ fields can produce variable-length records. If the text to be formatted is
short, just repeat the format line with the ˆ field in it a few times. If you just do
this for short data you’d end up getting a few blank lines. To suppr ess lines that
would end up blank, put a ˜ (tilde) character anywhere in the line. (The tilde itself
will be translated to a space upon output.) If you put a second tilde next to the
first, the line will be repeated until all the text in the fields on that line are
exhausted. (This works because the ˆ fields chew up the strings they print. But if
you use a field of the @ variety in conjunction with two tildes, the expression you
supply had better not give the same value every time forever! Use a shift, or
some other operator with a side effect that exhausts the set of values.)

Top-of-for m pr ocessing is by default handled by a format with the same name as
the current filehandle with _TOP concatenated to it. It’s triggered at the top of each
page. See write in Chapter 29.

Her e ar e some examples:

a report on the /etc/passwd file
format STDOUT_TOP =

Passwd File
Name Login Office Uid Gid Home
--
.
format STDOUT =
@<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
$name, $login, $office,$uid,$gid, $home
.

a report from a bug report form
format STDOUT_TOP =

Bug Reports
@<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>
$system, $%, $date
--
.
format STDOUT =
Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$subject
Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$index, $description
Priority: @<<<<<<<<<< Date: @<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$priority, $date, $description
From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$from, $description
Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$programmer, $description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<...

$description
.

Lexical variables are not visible within a format unless the format is declared
within the scope of the lexical variable.

It is possible to intermix prints with writes on the same output channel, but you’ll
have to handle the $- special variable ($FORMAT_LINES_LEFT if you’re using the
English module) yourself.

Format Var iables
The current format name is stored in the variable $˜ ($FORMAT_NAME), and the cur-
rent top-of-form for mat name is in $ˆ ($FORMAT_TOP_NAME). The current output page
number is stored in $% ($FORMAT_PAGE_NUMBER), and the number of lines on the
page is in $= ($FORMAT_LINES_PER_PAGE). Whether to flush the output buffer on this
handle automatically is stored in $| ($OUTPUT_AUTOFLUSH). The string to be output
befor e each top of page (except the first) is stored in $ˆL ($FORMAT_FORMFEED).
These variables are set on a per-filehandle basis, so you’ll need to select the file-
handle associated with a format in order to affect its format variables:

Format Var iables 237

238 Chapter 7: For mats

select((select(OUTF),
$˜ = "My_Other_Format",
$ˆ = "My_Top_Format"
)[0]);

Pr etty ugly, eh? It’s a common idiom though, so don’t be too surprised when you
see it. You can at least use a temporary variable to hold the previous filehandle:

$ofh = select(OUTF);
$˜ = "My_Other_Format";
$ˆ = "My_Top_Format";
select($ofh);

This is a much better approach in general because not only does legibility
impr ove, but you now have an intermediary statement in the code to stop on
when you’re single-stepping in the debugger. If you use the English module, you
can even read the variable names:

use English;
$ofh = select(OUTF);
$FORMAT_NAME = "My_Other_Format";
$FORMAT_TOP_NAME = "My_Top_Format";
select($ofh);

But you still have those funny calls to select. If you want to avoid them, use the
FileHandle module bundled with Perl. Now you can access these special variables
using lowercase method names instead:

use FileHandle;
OUTF->format_name("My_Other_Format");
OUTF->format_top_name("My_Top_Format");

Much better!

Since the values line following your picture line may contain arbitrary expressions
(for @ fields, not ˆ fields), you can farm out more sophisticated processing to other
functions, like sprintf or one of your own. For example, to insert commas into a
number:

format Ident =
@<<<<<<<<<<<<<<<
commify($n)

.

To get a real @, ˜, or ˆ into the field, do this:

format Ident =
I have an @ here.

"@"
.

To center a whole line of text, do something like this:

format Ident =
@||

"Some text line"
.

The > field-length indicator ensures that the text will be right-justified within the
field, but the field as a whole occurs exactly where you show it occurring. There is
no built-in way to say “float this field to the right-hand side of the page, however
wide it is.” You have to specify where it goes relative to the left margin. The truly
desperate can generate their own format on the fly, based on the current number
of columns (not supplied), and then eval it:

$format = "format STDOUT = \n"
. ’ˆ’ . ’<’ x $cols . "\n"
. ’$entry’ . "\n"
. "\tˆ" . "<" x ($cols-8) . "˜˜\n"
. ’$entry’ . "\n"
. ".\n";

print $format if $Debugging;
eval $format;
die $@ if $@;

The most important line there is probably the print. What the print would print
out looks something like this:

format STDOUT =
ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$entry

ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<˜˜
$entry
.

Her e’s a little program that behaves like the fmt (1) Unix utility:

format =
ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ˜˜
$_

.

$/ = "";
while (<>) {

s/\s*\n\s*/ /g;
write;

}

Format Var iables 239

240 Chapter 7: For mats

Footer s
While $ˆ ($FORMAT_TOP_NAME) contains the name of the current header format, there
is no corresponding mechanism to do the same thing automatically for a footer.
Not knowing how big a format is going to be until you evaluate it is one of the
major problems. It’s on the TODO list.*

Her e’s one strategy: if you have a fixed-size footer, you can get footers by check-
ing $- ($FORMAT_LINES_LEFT) befor e each write and then print the footer yourself if
necessary.

Her e’s another strategy; open a pipe to yourself, using open(MESELF, "|-") (see
the open entry in Chapter 29) and always write to MESELF instead of STDOUT. Have
your child process postprocess its STDIN to rearrange headers and footers however
you like. Not very convenient, but doable.

Accessing For matting Inter nals
For low-level access to the internal formatting mechanism, you may use the built-
in formline operator and access $ˆA (the $ACCUMULATOR variable) directly. (Formats
essentially compile into a sequence of calls to formline.) For example:

$str = formline <<’END’, 1,2,3;
@<<< @||| @>>>
END

print "Wow, I just stored ‘$ˆA’ in the accumulator!\n";

Or to create an swrite subr outine that is to write as sprintf is to printf, do this:

use Carp;
sub swrite {

croak "usage: swrite PICTURE ARGS" unless @_;
my $format = shift;
$ˆA = "";
formline($format, @_);
return $ˆA;

}

$string = swrite(<<’END’, 1, 2, 3);
Check me out
@<<< @||| @>>>
END
print $string;

* That doesn’t guarantee we’ll ever do it, of course. Formats are somewhat passé in this age of WWW,
Unicode, XML, XSLT, and whatever the next few things after that are.

If you were using the FileHandle module, you could use formline as follows to
wrap a block of text at column 72:

use FileHandle;
STDOUT->formline("ˆ" . ("<" x 72) . "˜˜\n", $long_text);

Footer s 241

8
References

For both practical and philosophical reasons, Perl has always been biased in favor
of flat, linear data structures. And for many problems, this is just what you want.

Suppose you wanted to build a simple table (two-dimensional array) showing vital
statistics — age, eye color, and weight—for a group of people. You could do this
by first creating an array for each individual:

@john = (47, "brown", 186);
@mary = (23, "hazel", 128);
@bill = (35, "blue", 157);

You could then construct a single, additional array consisting of the names of the
other arrays:

@vitals = (’john’, ’mary’, ’bill’);

To change John’s eyes to “red” after a night on the town, we want a way to
change the contents of the @john array given only the simple string “john”. This is
the basic problem of indir ection, which various languages solve in various ways.
In C, the most common form of indir ection is the pointer, which lets one variable
hold the memory address of another variable. In Perl, the most common form of
indir ection is the refer ence.

What Is a Reference?
In our example, $vitals[0] has the value “john”. That is, it contains a string that
happens to be the name of another (global) variable. We say that the first variable
refers to the second, and this sort of refer ence is called a symbolic refer ence, since

242

Perl has to look up @john in a symbol table to find it. (You might think of symbolic
refer ences as analogous to symbolic links in the filesystem.) We’ll talk about sym-
bolic refer ences later in this chapter.

The other kind of refer ence is a har d refer ence, and this is what most Perl pro-
grammers use to accomplish their indirections (if not their indiscretions). We call
them hard refer ences not because they’re dif ficult, but because they’re real and
solid. If you like, think of hard refer ences as real refer ences and symbolic refer-
ences as fake refer ences. It’s like the differ ence between true friendship and mere
name-dr opping. When we don’t specify which type of refer ence we mean, it’s a
hard refer ence. Figur e 8-1 depicts a variable named $bar referring to the contents
of a scalar named $foo which has the value “bot”.

$foo

"bot"

$bar

$foo = "bot"

$bar = \$foo

$foo

"bot"

$bar

$foo = "bot"

$bar = "foo""foo"

Figur e 8-1. A har d refer ence and a symbolic refer ence

Unlike a symbolic refer ence, a real refer ence refers not to the name of another
variable (which is just a container for a value) but to an actual value itself, some
inter nal glob of data. There’s no good word for that thing, but when we have to,
we’ll call it a refer ent. Suppose, for example, that you create a hard refer ence to a
lexically scoped array named @array. This hard refer ence, and the refer ent it refers
to, will continue to exist even after @array goes out of scope. A refer ent is only
destr oyed when all the refer ences to it are eliminated.

A refer ent doesn’t really have a name of its own, apart from the refer ences to it.
To put it another way, every Perl variable name lives in some kind of symbol
table, holding one hard refer ence to its underlying (otherwise nameless) refer ent.
That refer ent might be simple, like a number or string, or complex, like an array
or hash. Either way, there’s still exactly one refer ence fr om the variable to its
value. You might create additional hard refer ences to the same refer ent, but if so,
the variable doesn’t know (or care) about them.*

* If you’re curious, you can determine the underlying refcount with the Devel::Peek module, bundled
with Perl.

What Is a Reference? 243

244 Chapter 8: References

A symbolic refer ence is just a string that happens to name something in a package
symbol table. It’s not so much a distinct type as it is something you do with a
string. But a hard refer ence is a differ ent beast entirely. It is the third of the three
kinds of fundamental scalar data types, the other two being strings and numbers.
A hard refer ence doesn’t know something’s name just to refer to it, and it’s actually
completely normal for there to be no name to use in the first place. Such totally
nameless refer ents ar e called anonymous; we discuss them in “Anonymous Data”
below.

To refer ence a value, in the terminology of this chapter, is to create a hard refer-
ence to it. (There’s a special operator for this creative act.) The refer ence so cre-
ated is simply a scalar, which behaves in all familiar contexts just like any other
scalar. To der efer ence this scalar means to use the refer ence to get at the refer ent.
Both refer encing and derefer encing occur only when you invoke certain explicit
mechanisms; implicit refer encing or derefer encing never occurs in Perl. Well,
almost never.

A function call can use implicit pass-by-refer ence semantics — if it has a prototype
declaring it that way. If so, the caller of the function doesn’t explicitly pass a refer-
ence, although you still have to derefer ence it explicitly within the function. See
the section “Prototypes” in Chapter 6, Subr outines. And to be perfectly honest,
ther e’s also some behind-the-scenes derefer encing happening when you use cer-
tain kinds of filehandles, but that’s for backward compatibility and is transparent to
the casual user. Finally, two built-in functions, bless and lock, each take a refer-
ence for their argument but implicitly derefer ence it to work their magic on what
lies behind. But those confessions aside, the basic principle still holds that Perl
isn’t interested in muddling your levels of indirection.

A refer ence can point to any data structure. Since refer ences ar e scalars, you can
stor e them in arrays and hashes, and thus build arrays of arrays, arrays of hashes,
hashes of arrays, arrays of hashes and functions, and so on. There are examples of
these in Chapter 9, Data Structures.

Keep in mind, though, that Perl arrays and hashes are inter nally one-dimensional.
That is, their elements can hold only scalar values (strings, numbers, and refer-
ences). When we use a phrase like “array of arrays”, we really mean “array of ref-
er ences to arrays”, just as when we say “hash of functions” we really mean “hash
of refer ences to subroutines”. But since refer ences ar e the only way to implement
such structures in Perl, it follows that the shorter, less accurate phrase is not so
inaccurate as to be false, and therefor e should not be totally despised, unless
you’r e into that sort of thing.

Creating References
Ther e ar e several ways to create refer ences, most of which we will describe before
explaining how to use (derefer ence) the resulting refer ences.

The Backslash Operator
You can create a refer ence to any named variable or subroutine with a backslash.
(You may also use it on an anonymous scalar value like 7 or "camel", although
you won’t often need to.) This operator works like the & (addr ess-of) operator in
C—at least at first glance.

Her e ar e some examples:

$scalarref = \$foo;
$constref = \186_282.42;
$arrayref = \@ARGV;
$hashref = \%ENV;
$coderef = \&handler;
$globref = *STDOUT;

The backslash operator can do more than produce a single refer ence. It will gener-
ate a whole list of refer ences if applied to a list. See the section “Other Tricks You
Can Do with Hard References” for details.

Anonymous Data
In the examples just shown, the backslash operator merely makes a duplicate of a
refer ence that is already held in a variable name—with one exception. The
186_282.42 isn’t refer enced by a named variable—it’s just a value. It’s one of those
anonymous refer ents we mentioned earlier. Anonymous refer ents ar e accessed
only through refer ences. This one happens to be a number, but you can create
anonymous arrays, hashes, and subroutines as well.

The anonymous arra y composer

You can create a refer ence to an anonymous array with square brackets:

$arrayref = [1, 2, [’a’, ’b’, ’c’, ’d’]];

Her e we’ve composed an anonymous array of three elements, whose final element
is a refer ence to an anonymous array of four elements (depicted in Figure 8-2).
(The multidimensional syntax described later can be used to access this. For exam-
ple, $arrayref->[2][1] would have the value “b”.)

Creating References 245

246 Chapter 8: References

$arrayref

1 2

’a’ ’b’ ’c’ ’d’

Figur e 8-2. A refer ence to an array, whose third element is itself an array refer ence

We now have one way to repr esent the table at the beginning of the chapter:

$table = [["john", 47, "brown", 186],
["mary", 23, "hazel", 128],
["bill", 35, "blue", 157]];

Squar e brackets work like this only where the Perl parser is expecting a term in an
expr ession. They should not be confused with the brackets in an expression like
$array[6]—although the mnemonic association with arrays is intentional. Inside a
quoted string, square brackets don’t compose anonymous arrays; instead, they
become literal characters in the string. (Square brackets do still work for subscript-
ing in strings, or you wouldn’t be able to print string values like
"VAL=$array[6]\n". And to be totally honest, you can in fact sneak anonymous
array composers into strings, but only when embedded in a larger expression that
is being interpolated. We’ll talk about this cool feature later in the chapter because
it involves derefer encing as well as refer encing.)

The anonymous hash composer

You can create a refer ence to an anonymous hash with braces:

$hashref = {
’Adam’ => ’Eve’,
’Clyde’ => $bonnie,
’Antony’ => ’Cleo’ . ’patra’,

};

For the values (but not the keys) of the hash, you can freely mix other anonymous
array, hash, and subroutine composers to produce as complicated a structure as
you like.

We now have another way to repr esent the table at the beginning of the chapter:

$table = {
"john" => [47, "brown", 186],
"mary" => [23, "hazel", 128],
"bill" => [35, "blue", 157],

};

That’s a hash of arrays. Choosing the best data structure is a tricky business, and
the next chapter is devoted to it. But as a teaser, we could even use a hash of
hashes for our table:

$table = {
"john" => { age => 47,

eyes => "brown",
weight => 186,

},
"mary" => { age => 23,

eyes => "hazel",
weight => 128,

},
"bill" => { age => 35,

eyes => "blue",
weight => 157,

},
};

As with square brackets, braces work like this only where the Perl parser is
expecting a term in an expr ession. They should not be confused with the braces
in an expression like $hash{key}—although the mnemonic association with hashes
is (again) intentional. The same caveats apply to the use of braces within strings.

Ther e is one additional caveat which didn’t apply to square brackets. Since braces
ar e also used for several other things (including blocks), you may occasionally
have to disambiguate braces at the beginning of a statement by putting a + or a
return in front, so that Perl realizes the opening brace isn’t starting a block. For
example, if you want a function to make a new hash and retur n a refer ence to it,
you have these options:

sub hashem { { @_ } } # Silently WRONG -- returns @_.
sub hashem { +{ @_ } } # Ok.
sub hashem { return { @_ } } # Ok.

The anonymous subroutine composer

You can create a refer ence to an anonymous subroutine by using sub without a
subr outine name:

$coderef = sub { print "Boink!\n" }; # Now &$coderef prints "Boink!"

Creating References 247

248 Chapter 8: References

Note the presence of the semicolon, requir ed her e to terminate the expression. (It
isn’t requir ed after the more common usage of sub NAME {} that declares and
defines a named subroutine.) A nameless sub {} is not so much a declaration as it
is an operator—like do {} or eval {}—except that the code inside isn’t executed
immediately. Instead, it just generates a refer ence to the code, which in our exam-
ple is stored in $coderef. However, no matter how many times you execute the
line shown above, $coderef will still refer to the same anonymous subroutine.*

Object Constructor s
Subr outines can also retur n refer ences. That may sound trite, but sometimes you
ar e supposed to use a subroutine to create a refer ence rather than creating the ref-
er ence yourself. In particular, special subroutines called constructors cr eate and
retur n refer ences to objects. An object is simply a special kind of refer ence that
happens to know which class it’s associated with, and constructors know how to
cr eate that association. They do so by taking an ordinary refer ent and turning it
into an object with the bless operator, so we can speak of an object as a blessed
refer ence. Ther e’s nothing religious going on here; since a class acts as a user-
defined type, blessing a refer ent simply makes it a user-defined type in addition to
a built-in one. Constructors are often named new—especially by C++ program-
mers — but they can be named anything in Perl.

Constructors can be called in any of these ways:

$objref = Doggie::->new(Tail => ’short’, Ears => ’long’); #1
$objref = new Doggie:: Tail => ’short’, Ears => ’long’; #2
$objref = Doggie->new(Tail => ’short’, Ears => ’long’); #3
$objref = new Doggie Tail => ’short’, Ears => ’long’; #4

The first and second invocations are the same. They both call a function named
new that is supplied by the Doggie module. The third and fourth invocations are
the same as the first two, but are slightly more ambiguous: the parser will get con-
fused if you define your own subroutine named Doggie. (Which is why people
typically stick with lowercase names for subroutines and uppercase for modules.)
The fourth invocation can also get confused if you’ve defined your own new sub-
routine and don’t happen to have done either a require or a use of the Doggie

module, either of which has the effect of declaring the module. Always declare
your modules if you want to use #4. (And watch out for stray Doggie subr outines.)

See Chapter 12, Objects for a discussion of Perl objects.

* But even though there’s only one anonymous subroutine, there may be several copies of the lexical
variables in use by the subroutine, depending on when the subroutine refer ence was generated.
These are discussed later in the section “Closures”.

Handle References
Refer ences to filehandles or directory handles can be created by refer encing the
typeglob of the same name:

splutter(*STDOUT);

sub splutter {
my $fh = shift;
print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {

my $fh = shift;
return scalar <$fh>;

}

If you’re passing around filehandles, you can also use the bare typeglob to do so:
in the example above, you could have used *STDOUT or *STDIN instead of *STDOUT
and *STDIN.

Although you can usually use typeglob and refer ences to typeglobs interchange-
ably, there are a few places where you can’t. Simple typeglobs can’t be blessed
into objectdom, and typeglob refer ences can’t be passed back out of the scope of
a localized typeglob.

When generating new filehandles, older code would often do something like this
to open a list of files:

for $file (@names) {
local *FH;
open(*FH, $file) || next;
$handle{$file} = *FH;

}

That still works, but now it’s just as easy to let an undefined variable autovivify an
anonymous typeglob:

for $file (@names) {
my $fh;
open($fh, $file) || next;
$handle{$file} = $fh;

}

With indirect filehandles, it doesn’t matter whether you use use typeglobs, refer-
ences to typeglobs, or one of the more exotic I/O objects. You just use a scalar
that — one way or another—gets interpreted as a filehandle. For most purposes,
you can use either a typeglob or a typeglob refer ence almost indiscriminately. As
we admitted earlier, ther e is some implicit derefer encing magic going on here.

Creating References 249

250 Chapter 8: References

Symbol Table References
In unusual circumstances, you might not know what type of refer ence you need
when your program is written. A refer ence can be created by using a special syn-
tax, affectionately known as the *foo{THING} syntax. *foo{THING} retur ns a refer-
ence to the THING slot in *foo, which is the symbol table entry holding the values
of $foo, @foo, %foo, and friends.

$scalarref = *foo{SCALAR}; # Same as \$foo
$arrayref = *ARGV{ARRAY}; # Same as \@ARGV
$hashref = *ENV{HASH}; # Same as \%ENV
$coderef = *handler{CODE}; # Same as \&handler
$globref = *foo{GLOB}; # Same as *foo
$ioref = *STDIN{IO}; # Er...

All of these are self-explanatory except for *STDIN{IO}. It yields the actual internal
IO::Handle object that the typeglob contains, that is, the part of the typeglob that
the various I/O functions are actually interested in. For compatibility with previous
versions of Perl, *foo{FILEHANDLE} is a synonym for the hipper *foo{IO} notation.

In theory, you can use a *HANDLE{IO} anywher e you’d use a *HANDLE or a *HANDLE,
such as for passing handles into or out of subroutines, or storing them in larger
data structures. (In practice, there are still some wrinkles to be ironed out.) The
advantage of them is that they access only the real I/O object you want, not the
whole typeglob, so you run no risk of clobbering more than you want to through
a typeglob assignment (although if you always assign to a scalar variable instead
of to a typeglob, you’ll be okay). One disadvantage is that there’s no way to auto-
vivify one as of yet.*

splutter(*STDOUT);
splutter(*STDOUT{IO});

sub splutter {
my $fh = shift;
print $fh "her um well a hmmm\n";

}

Both invocations of splutter() print “her um well a hmmm”.

The *foo{THING} thing retur ns undef if that particular THING hasn’t been seen by
the compiler yet, except when THING is SCALAR. It so happens that *foo{SCALAR}
retur ns a refer ence to an anonymous scalar even if $foo hasn’t been seen yet. (Perl
always adds a scalar to any typeglob as an optimization to save a bit of code else-
wher e. But don’t depend on it to stay that way in future releases.)

* Curr ently, open my $fh autovivifies a typeglob instead of an IO::Handle object, but someday we may
fix that, so you shouldn’t rely on the typeglobbedess of what open curr ently autovivifies.

Implicit Creation of References
A final method for creating refer ences is not really a method at all. References of
an appropriate type simply spring into existence if you derefer ence them in an
lvalue context that assumes they exist. This is extremely useful, and is also What
You Expect. This topic is covered later in this chapter, wher e we’ll discuss how to
der efer ence all of the refer ences we’ve created so far.

Using Hard References
Just as there are numer ous ways to create refer ences, ther e ar e also several ways
to use, or der efer ence, a refer ence. Ther e is just one overriding principle: Perl does
no implicit refer encing or derefer encing.* When a scalar is holding a refer ence, it
always behaves like a simple scalar. It doesn’t magically start being an array or
hash or subroutine; you have to tell it explicitly to do so, by derefer encing it.

Using a Var iable as a Var iable Name
When you encounter a scalar like $foo, you should be thinking “the scalar value of
foo.” That is, there’s a foo entry in the symbol table, and the $ funny character is a
way of looking at whatever scalar value might be inside. If what’s inside is a refer-
ence, you can look inside that (der efer encing $foo) by prepending another funny
character. Or looking at it the other way around, you can replace the literal foo in
$foo with a scalar variable that points to the actual refer ent. This is true of any
variable type, so not only is $$foo the scalar value of whatever $foo refers to, but
@$bar is the array value of whatever $bar refers to, %$glarch is the hash value of
whatever $glarch refers to, and so on. The upshot is that you can put an extra
funny character on the front of any simple scalar variable to derefer ence it:

$foo = "three humps";
$scalarref = \$foo; # $scalarref is now a reference to $foo
$camel_model = $$scalarref; # $camel_model is now "three humps"

Her e ar e some other derefer ences:

$bar = $$scalarref;

push(@$arrayref, $filename);
$$arrayref[0] = "January"; # Set the first element of @$arrayref
@$arrayref[4..6] = qw/May June July/; # Set several elements of @$arrayref

%$hashref = (KEY => "RING", BIRD => "SING"); # Initialize whole hash
$$hashref{KEY} = "VALUE"; # Set one key/value pair
@$hashref{"KEY1","KEY2"} = ("VAL1","VAL2"); # Set two more pairs

* We alr eady confessed that this was a small fib. We’r e not about to do so again.

Using Hard References 251

252 Chapter 8: References

&$coderef(1,2,3);

print $handleref "output\n";

This form of der efer encing can only make use of a simple scalar variable (one
without a subscript). That is, derefer encing happens befor e (or binds tighter than)
any array or hash lookups. Let’s use some braces to clarify what we mean: an
expr ession like $$arrayref[0] is equivalent to ${$arrayref}[0] and means the first
element of the array referr ed to by $arrayref. That is not at all the same as
${$arrayref[0]}, which is derefer encing the first element of the (probably non-
existent) array named @arrayref. Likewise, $$hashref{KEY} is the same as
${$hashref}{KEY}, and has nothing to do with ${$hashref{KEY}}, which would be
der efer encing an entry in the (probably nonexistent) hash named %hashref. You
will be miserable until you understand this.

You can achieve multiple levels of refer encing and derefer encing by concatenating
the appropriate funny characters. The following prints “howdy”:

$refrefref = \\\"howdy";
print $$$$refrefref;

You can think of the dollar signs as operating right to left. But the beginning of
the chain must still be a simple, unsubscripted scalar variable. There is, however, a
way to get fancier, which we already sneakily used earlier, and which we’ll explain
in the next section.

Using a BLOCK as a Var iable Name
Not only can you derefer ence a simple variable name, you can also derefer ence
the contents of a BLOCK. Anywher e you’d put an alphanumeric identifier as part of
a variable or subroutine name, you can replace the identifier with a BLOCK retur n-
ing a refer ence of the correct type. In other words, the earlier examples could all
be disambiguated like this:

$bar = ${$scalarref};
push(@{$arrayref}, $filename);
${$arrayref}[0] = "January";
@{$arrayref}[4..6] = qw/May June July/;
${$hashref}{"KEY"} = "VALUE";
@{$hashref}{"KEY1","KEY2"} = ("VAL1","VAL2");
&{$coderef}(1,2,3);

not to mention:

$refrefref = \\\"howdy";
print ${${${$refrefref}}};

Admittedly, it’s silly to use the braces in these simple cases, but the BLOCK can con-
tain any arbitrary expression. In particular, it can contain subscripted expressions.

In the following example, $dispatch{$index} is assumed to contain a refer ence to
a subr outine (sometimes called a “coderef ”). The example invokes the subroutine
with three arguments.

&{ $dispatch{$index} }(1, 2, 3);

Her e, the BLOCK is necessary. Without that outer pair of braces, Perl would have
tr eated $dispatch as the coderef instead of $dispatch{$index}.

Using the Arrow Operator
For refer ences to arrays, hashes, or subroutines, a third method of derefer encing
involves the use of the -> infix operator. This form of syntactic sugar that makes it
easier to get at individual array or hash elements, or to call a subroutine indirectly.

The type of the derefer ence is determined by the right operand, that is, by what
follows directly after the arrow. If the next thing after the arrow is a bracket or
brace, the left operand is treated as a refer ence to an array or a hash, respectively,
to be subscripted by the expression on the right. If the next thing is a left paren-
thesis, the left operand is treated as a refer ence to a subroutine, to be called with
whatever parameters you supply in the parentheses on the right.

Each of these next trios is equivalent, corresponding to the three notations we’ve
intr oduced. (We’ve inserted some spaces to line up equivalent elements.)

$ $arrayref [2] = "Dorian"; #1
${ $arrayref }[2] = "Dorian"; #2

$arrayref->[2] = "Dorian"; #3

$ $hashref {KEY} = "F#major"; #1
${ $hashref }{KEY} = "F#major"; #2

$hashref->{KEY} = "F#major"; #3

& $coderef (Presto => 192); #1
&{ $coderef }(Presto => 192); #2

$coderef->(Presto => 192); #3

You can see that the initial funny character is missing from the third notation in
each trio. The funny character is guessed at by Perl, which is why it can’t be used
to derefer ence complete arrays, complete hashes, or slices of either. As long as
you stick with scalar values, though, you can use any expression to the left of the
->, including another derefer ence, because multiple arrow operators associate left
to right:

print $array[3]->{"English"}->[0];

You can deduce from this expression that the fourth element of @array is intended
to be a hash refer ence, and the value of the “English” entry in that hash is
intended to be an array refer ence.

Using Hard References 253

254 Chapter 8: References

Note that $array[3] and $array->[3] ar e not the same. The first is talking about
the fourth element of @array, while the second one is talking about the fourth ele-
ment of the (possibly anonymous) array whose refer ence is contained in $array.

Suppose now that $array[3] is undefined. The following statement is still legal:

$array[3]->{"English"}->[0] = "January";

This is one of those cases mentioned earlier in which refer ences spring into exis-
tence (or “autovivify”) when used as an lvalue (that is, when a value is being
assigned to it). If $array[3] was undefined, it’s automatically defined as a hash ref-
er ence so that we can set a value for $array[3]->{"English"} in it. Once that’s
done, $array[3]->{"English"} is automatically defined as an array refer ence so
that we can assign something to the first element in that array. Note that rvalues
ar e a little differ ent: print $array[3]->{"English"}->[0] only defines $array[3]

and $array[3]->{"English"}, not $array[3]->{"English"}->[0], since the final ele-
ment is not an lvalue. (The fact that it defines the first two at all in an rvalue con-
text could be considered a bug. We may fix that someday.)

The arrow is optional between brackets or braces, or between a closing bracket or
brace and a parenthesis for an indirect function call. So you can shrink the previ-
ous code down to:

$dispatch{$index}(1, 2, 3);
$array[3]{"English"}[0] = "January";

In the case of ordinary arrays, this gives you multidimensional arrays that are just
like C’s array:

$answer[$x][$y][$z] += 42;

Well, okay, not entir ely like C’s arrays. For one thing, C doesn’t know how to
gr ow its arrays on demand, while Perl does. Also, some constructs that are similar
in the two languages parse differ ently. In Perl, the following two statements do the
same thing:

$listref->[2][2] = "hello"; # Pretty clear
$$listref[2][2] = "hello"; # A bit confusing

This second of these statements may disconcert the C programmer, who is accus-
tomed to using *a[i] to mean “what’s pointed to by the i th element of a”. But in
Perl, the five characters ($ @ * % &) effectively bind more tightly than braces or
brackets.* Ther efor e, it is $$listref and not $listref[2] that is taken to be a

* But not because of operator precedence. The funny characters in Perl are not operators in that
sense. Perl’s grammar simply prohibits anything more complicated than a simple variable or block
fr om following the initial funny character, for various funny reasons.

refer ence to an array. If you want the C behavior, either you have to write
${$listref[2]} to force the $listref[2] to get evaluated before the leading $

der efer encer, or you have to use the -> notation:

$listref[2]->[$greeting] = "hello";

Using Object Methods
If a refer ence happens to be a refer ence to an object, then the class that defines
that object probably provides methods to access the innards of the object, and you
should generally stick to those methods if you’re mer ely using the class (as
opposed to implementing it). In other words, be nice, and don’t treat an object
like a regular refer ence, even though Perl lets you when you really need to. Perl
does not enforce encapsulation. We are not totalitarians here. We do expect some
basic civility, however.

In retur n for this civility, you get complete orthogonality between objects and data
structur es. Any data structure can behave as an object when you want it to. Or
not, when you don’t.

Pseudohashes
A pseudohash is any refer ence to an array whose first element is a refer ence to a
hash. You can treat the pseudohash refer ence as either an array refer ence (as you
would expect) or a hash refer ence (as you might not expect). Here’s an example
of a pseudohash:

$john = [{age => 1, eyes => 2, weight => 3}, 47, "brown", 186];

The underlying hash in $john->[0] defines the names ("age", "eyes", "weight") of
the array elements that follow (47, "brown", 186). Now you can access an element
with both hash and array notations:

$john->{weight} # Treats $john as a hashref
$john->[3] # Treats $john as an arrayref

Pseudohash magic is not deep; it only knows one “trick”: how to turn a hash
der efer ence into an array derefer ence. When adding another element to a pseudo-
hash, you have to explicitly tell the underlying mapping hash where the element
will reside before you can use the hash notation:

$john->[0]{height} = 4; # height is to be element 4
$john->{height} = "tall"; # Or $john->[4] = "tall"

Perl raises an exception if you try to delete a key from a pseudohash, although
you can always delete keys from the mapping hash. Perl also raises an exception

Using Hard References 255

256 Chapter 8: References

if you try to access a nonexistent key, where “existence” means presence in the
mapping hash:

delete $john->[0]{height}; # Deletes from the underlying hash only
$john->{height}; # This now raises an exception
$john->[4]; # Still prints "tall"

Don’t try to splice the array unless you know what you’re doing. If the array ele-
ments move around, the mapping hash values will still refer to the old element
positions, unless you change those explicitly, too. Pseudohash magic is not deep.

To avoid inconsistencies, you can use the fields::phash function provided by the
use fields pragma to create a pseudohash:

use fields;
$ph = fields::phash(age => 47, eyes => "brown", weight => 186);
print $ph->{age};

Ther e ar e two ways to check for the existence of a key in a pseudohash. The first
is to use exists, which checks whether the given field has ever been set. It acts
this way to match the behavior of a real hash. For instance:

use fields;
$ph= fields::phash([qw(age eyes brown)], [47]);
$ph->{eyes} = undef;

print exists $ph->{age}; # True, ’age’ was set in declaration.
print exists $ph->{weight}; # False, ’weight’ has not been used.
print exists $ph->{eyes}; # True, your ’eyes’ have been touched.

The second way is to use exists on the mapping hash sitting in the first array ele-
ment. This checks whether the given key is a valid field for that pseudohash:

print exists $ph->[0]{age}; # True, ’age’ is a valid field
print exists $ph->[0]{name}; # False, ’name’ can’t be used

Unlike what happens in a real hash, calling delete on a pseudohash element
deletes only the array value corresponding to the key, not the real key in the map-
ping hash. To delete the key, you have to explicitly delete it from the mapping
hash. Once you do that, you may no longer use that key name as a pseudohash
subscript:

print delete $ph->{age}; # Removes and returns $ph->[1], 47
print exists $ph->{age}; # Now false
print exists $ph->[0]{age}; # True, ’age’ key still usable
print delete $ph->[0]{age}; # Now ’age’ key is gone
print $ph->{age}; # Run-time exception

You’ve probably begun to wonder what could possibly have motivated this mas-
querade of arrays prancing about in hashes’ clothing. Arrays provide faster
lookups and more efficient storage, while hashes offer the convenience of naming

(instead of numbering) your data; pseudohashes provide the best of both worlds.
But it’s not until you consider Perl’s compilation phase that the greatest benefit
becomes apparent. With the help of a pragma or two, the compiler can verify
pr oper access to valid fields, so you can find out about nonexistent subscripts (or
spelling errors) before your program starts to run.

Pseudohashes’ properties of speed, efficiency, and compile-time access checking
(you might even think of it as type safety) are especially handy for creating effi-
cient and robust class modules. See the discussion of the use fields pragma in
Chapter 12 and Chapter 31, Pragmatic Modules.

Pseudohashes are a new and relatively experimental feature; as such, the underly-
ing implementation may well change in the future. To protect yourself from such
changes, always go through the fields module’s documented interface via its
phash and new functions.

Other Tricks You Can Do with Hard References
As mentioned earlier, the backslash operator is usually used on a single refer ent to
generate a single refer ence, but it doesn’t have to be. When used on a list of refer-
ents, it produces a list of corresponding refer ences. The second line of the follow-
ing example does the same thing as the first line, since the backslash is
automatically distributed throughout the whole list.

@reflist = (\$s, \@a, \%h, \&f); # List of four references
@reflist = \($s, @a %h, &f); # Same thing

If a parenthesized list contains exactly one array or hash, then all of its values are
interpolated and refer ences to each retur ned:

@reflist = \(@x); # Interpolate array, then get refs
@reflist = map { \$_ } @x; # Same thing

This also occurs when there are inter nal par entheses:

@reflist = \(@x, (@y)); # But only single aggregates expand
@reflist = (\@x, map { \$_ } @y); # Same thing

If you try this with a hash, the result will contain refer ences to the values (as you’d
expect), but refer ences to copies of the keys (as you might not expect).

Since array and hash slices are really just lists, you can backslash a slice of either
of these to get a list of refer ences. Each of the next three lines does exactly the
same thing:

@envrefs = \@ENV{’HOME’, ’TERM’}; # Backslashing a slice
@envrefs = \($ENV{HOME}, $ENV{TERM}); # Backslashing a list
@envrefs = (\$ENV{HOME}, \$ENV{TERM}); # A list of two references

Using Hard References 257

258 Chapter 8: References

Since functions can retur n lists, you can apply a backslash to them. If you have
mor e than one function to call, first interpolate each function’s retur n values into a
larger list and then backslash the whole thing:

@reflist = \fx();
@reflist = map { \$_ } fx(); # Same thing

@reflist = \(fx(), fy(), fz());
@reflist = (\fx(), \fy(), \fz()); # Same thing
@reflist = map { \$_ } fx(), fy(), fz(); # Same thing

The backslash operator always supplies a list context to its operand, so those func-
tions are all called in list context. If the backslash is itself in scalar context, you’ll
end up with a refer ence to the last value of the list retur ned by the function:

@reflist = \localtime(); # Ref to each of nine time elements
$lastref = \localtime(); # Ref to whether it’s daylight savings time

In this regard, the backslash behaves like the named Perl list operators, such as
print, reverse, and sort, which always supply a list context on their right no mat-
ter what might be happening on their left. As with named list operators, use an
explicit scalar to force what follows into scalar context:

$dateref = \scalar localtime(); # \"Sat Jul 16 11:42:18 2000"

You can use the ref operator to determine what a refer ence is pointing to. Think
of ref as a “typeof” operator that retur ns true if its argument is a refer ence and
false otherwise. The value retur ned depends on the type of thing refer enced. Built-
in types include SCALAR, ARRAY, HASH, CODE, GLOB, REF, LVALUE, IO, IO::Handle, and
Regexp. Her e, we use it to check subroutine arguments:

sub sum {
my $arrayref = shift;
warn "Not an array reference" if ref($arrayref) ne "ARRAY";
return eval join("+", @$arrayref);

}

If you use a hard refer ence in a string context, it’ll be converted to a string con-
taining both the type and the address: SCALAR(0x1fc0e). (The reverse conversion
cannot be done, since refer ence count information is lost during stringification—
and also because it would be dangerous to let programs access a memory address
named by an arbitrary string.)

You can use the bless operator to associate a refer ent with a package functioning
as an object class. When you do this, ref retur ns the class name instead of the
inter nal type. An object refer ence used in a string context retur ns a string with the
exter nal and internal types, and the address in memory: MyType=HASH(0x20d10) or
IO::Handle=IO(0x186904). See Chapter 12 for more details about objects.

Since the way in which you derefer ence something always indicates what sort of
refer ent you’r e looking for, a typeglob can be used the same way a refer ence can,
despite the fact that a typeglob contains multiple refer ents of various types. So
${*main::foo} and ${\$main::foo} both access the same scalar variable, although
the latter is more efficient.

Her e’s a trick for interpolating the retur n value of a subroutine call into a string:

print "My sub returned @{[mysub(1,2,3)]} that time.\n";

It works like this. At compile time, when the @{...} is seen within the double-
quoted string, it’s parsed as a block that retur ns a refer ence. Within the block,
ther e ar e squar e brackets that create a refer ence to an anonymous array from
whatever is in the brackets. So at run time, mysub(1,2,3) is called in list context,
and the results are loaded into an anonymous array, a refer ence to which is then
retur ned within the block. That array refer ence is then immediately derefer enced
by the surrounding @{...}, and the array value is interpolated into the double-
quoted string just as an ordinary array would be. This chicanery is also useful for
arbitrary expressions, such as:

print "We need @{ [$n + 5] } widgets!\n";

Be careful though: square brackets supply a list context to their expression. In this
case it doesn’t matter, although the earlier call to mysub might care. When it does
matter, use an explicit scalar to force the context:

print "mysub returns @{ [scalar mysub(1,2,3)] } now.\n";

Closures
Earlier we talked about creating anonymous subroutines with a nameless sub {}.
You can think of those subroutines as defined at run time, which means that they
have a time of generation as well as a location of definition. Some variables might
be in scope when the subroutine is created, and differ ent variables might be in
scope when the subroutine is called.

Forgetting about subroutines for a moment, consider a refer ence that refers to a
lexical variable:

{
my $critter = "camel";
$critterref = \$critter;

}

The value of $$critterref will remain “camel” even though $critter disappears
after the closing curly brace. But $critterref could just as well have referr ed to a
subr outine that refers to $critter:

Using Hard References 259

260 Chapter 8: References

{
my $critter = "camel";
$critterref = sub { return $critter };

}

This is a closur e, which is a notion out of the functional programming world of
LISP and Scheme.* It means that when you define an anonymous function in a
particular lexical scope at a particular moment, it pretends to run in that scope
even when later called from outside that scope. (A purist would say it doesn’t
have to pretend — it actually does run in that scope.)

In other words, you are guaranteed to get the same copy of a lexical variable each
time, even if other instances of that lexical variable have been created before or
since for other instances of that closure. This gives you a way to set values used in
a subr outine when you define it, not just when you call it.

You can also think of closures as a way to write a subroutine template without
using eval. The lexical variables act as parameters for filling in the template, which
is useful for setting up little bits of code to run later. These are commonly called
callbacks in event-based programming, where you associate a bit of code with a
keypr ess, mouse click, window exposure, and so on. When used as callbacks, clo-
sur es do exactly what you expect, even if you don’t know the first thing about
functional programming. (Note that this closure business only applies to my vari-
ables. Global variables work as they’ve always worked, since they’re neither cre-
ated nor destroyed the way lexical variables are.)

Another use for closures is within function generators; that is, functions that create
and retur n brand new functions. Here’s an example of a function generator imple-
mented with closures:

sub make_saying {
my $salute = shift;
my $newfunc = sub {

my $target = shift;
print "$salute, $target!\n";

};
return $newfunc; # Return a closure

}

$f = make_saying("Howdy"); # Create a closure
$g = make_saying("Greetings"); # Create another closure

Time passes...

$f->("world");
$g->("earthlings");

* In this context, the word “functional” should not be construed as an antonym of “dysfunctional”.

This prints:

Howdy, world!
Greetings, earthlings!

Note in particular how $salute continues to refer to the actual value passed into
make_saying, despite the fact that the my $salute has gone out of scope by the
time the anonymous subroutine runs. That’s what closures are all about. Since $f

and $g hold refer ences to functions that, when called, still need access to the dis-
tinct versions of $salute, those versions automatically stick around. If you now
overwrite $f, its version of $salute would automatically disappear. (Perl only
cleans up when you’re not looking.)

Perl doesn’t provide refer ences to object methods (described in Chapter 12) but
you can get a similar effect using a closure. Suppose you want a refer ence not just
to the subroutine the method repr esents, but one which, when invoked, would
call that method on a particular object. You can conveniently remember both the
object and the method as lexical variables bound up inside a closure:

sub get_method_ref {
my ($self, $methodname) = @_;
my $methref = sub {

the @_ below is not the same as the one above!
return $self->$methodname(@_);

};
return $methref;

}

my $dog = new Doggie::
Name => "Lucky",
Legs => 3,
Tail => "clipped";

our $wagger = get_method_ref($dog, ’wag’);
$wagger->("tail"); # Calls $dog->wag(’tail’).

Not only can you get Lucky to wag what’s left of his tail now, even once the lexi-
cal $dog variable has gone out of scope and Lucky is nowhere to be seen, the
global $wagger variable can still get him to wag his tail, wherever he is.

Closures as function templates

Using a closure as a function template allows you to generate many functions that
act similarly. Suppose you want a suite of functions that generate HTML font
changes for various colors:

print "Be ", red("careful"), "with that ", green("light"), "!!!";

The red and green functions would be very similar. We’d like to name our func-
tions, but closures don’t have names since they’re just anonymous subroutines

Using Hard References 261

262 Chapter 8: References

with an attitude. To get around that, we’ll perfor m the cute trick of naming our
anonymous subroutines. You can bind a coderef to an existing name by assigning
it to a typeglob of the name of the function you want. (See the section “Symbol
Tables” in Chapter 10, Packages. In this case, we’ll bind it to two differ ent names,
one uppercase and one lowercase:

@colors = qw(red blue green yellow orange purple violet);
for my $name (@colors) {

no strict ’refs’; # Allow symbolic references
*$name = *{uc $name} = sub { "<FONT COLOR=’$name’7gt;@_" };

}

Now you can call functions named red, RED, blue, BLUE, and so on, and the appro-
priate closure will be invoked. This technique reduces compile time and conserves
memory, and is less error-pr one as well, since syntax checks happen during com-
pilation. It’s critical that any variables in the anonymous subroutine be lexicals in
order to create a closure. That’s the reason for the my above.

This is one of the few places where giving a prototype to a closure makes sense.
If you wanted to impose scalar context on the arguments of these functions (prob-
ably not a wise idea for this example), you could have written it this way instead:

*$name = sub ($) { "$_[0]" };

That’s almost good enough. However, since prototype checking happens during
compile time, the run-time assignment above happens too late to be of much use.
You could fix this by putting the whole loop of assignments within a BEGIN block,
forcing it to occur during compilation. (More likely, you’d put it out in a module
that you use at compile time.) Then the prototypes will be visible during the rest
of the compilation.

Nested subroutines

If you are accustomed (from other programming languages) to using subroutines
nested within other subroutines, each with their own private variables, you’ll have
to work at it a bit in Perl. Named subroutines do not nest properly, although
anonymous ones do.* Anyway, we can emulate nested, lexically scoped subrou-
tines using closures. Here’s an example:

sub outer {
my $x = $_[0] + 35;
local *inner = sub { return $x * 19 };
return $x + inner();

}

* To be mor e pr ecise, globally named subroutines don’t nest. Unfortunately, that’s the only kind of
named subroutine declaration we have. We haven’t yet implemented lexically scoped, named sub-
routines (known as my subs), but when we do, they should nest correctly.

Now inner can only be called from within outer, because of the temporary assign-
ments of the closure. But when it is, it has normal access to the lexical variable $x

fr om the scope of outer.

This has the interesting effect of creating a function local to another function,
something not normally supported in Perl. Because local is dynamically scoped,
and because function names are global to their package, any other function that
outer called could also call the temporary version of inner. To prevent that, you’d
need an extra level of indirection:

sub outer {
my $x = $_[0] + 35;
my $inner = sub { return $x * 19 };
return $x + $inner->();

}

Symbolic References
What happens if you try to derefer ence a value that is not a hard refer ence? The
value is then treated as a symbolic refer ence. That is, the refer ence is interpreted as
a string repr esenting the name of a global variable.

Her e is how this works:

$name = "bam";
$$name = 1; # Sets $bam
$name->[0] = 4; # Sets the first element of @bam
$name->{X} = "Y"; # Sets the X element of %bam to Y
@$name = (); # Clears @bam
keys %$name; # Yields the keys of %bam
&$name; # Calls &bam

This is very powerful, and slightly dangerous, in that it’s possible to intend (with
the utmost sincerity) to use a hard refer ence, but to accidentally use a symbolic
refer ence instead. To protect against that, you can say:

use strict ’refs’;

and then only hard refer ences will be allowed for the rest of the enclosing block.
An inner block may countermand the decree with:

no strict ’refs’;

It is also important to understand the differ ence between the following two lines
of code:

${identifier}; # Same as $identifier.
${"identifier"}; # Also $identifier, but a symbolic reference.

Symbolic References 263

264 Chapter 8: References

Because the second form is quoted, it is treated as a symbolic refer ence and will
generate an error if use strict ’refs’ is in effect. Even if strict ’refs’ is not in
ef fect, it can only refer to a package variable. But the first form is identical to the
unbracketed form, and will refer to even a lexically scoped variable if one is
declar ed. The next example shows this (and the next section discusses it).

Only package variables are accessible through symbolic refer ences, because sym-
bolic refer ences always go through the package symbol table. Since lexical vari-
ables aren’t in a package symbol table, they are ther efor e invisible to this
mechanism. For example:

our $value = "global";
{

my $value = "private";
print "Inside, mine is ${value}, ";
print "but ours is ${’value’}.\n";

}
print "Outside, ${value} is again ${’value’}.\n";

which prints:

Inside, mine is private, but ours is global.
Outside, global is again global.

Braces, Brackets, and Quoting
In the previous section, we pointed out that ${identifier} is not treated as a sym-
bolic refer ence. You might wonder how this interacts with reserved words, and the
short answer is that it doesn’t. Despite the fact that push is a reserved word, these
two statements print “pop on over”:

$push = "pop on ";
print "${push}over";

The reason is that, historically, this use of braces is how Unix shells have isolated
a variable name from subsequent alphanumeric text that would otherwise be inter-
pr eted as part of the name. It’s how many people expect variable interpolation to
work, so we made it work the same way in Perl. But with Perl, the notion extends
further and applies to any braces used in generating refer ences, whether or not
they’r e inside quotes. This means that:

print ${push} . ’over’;

or even (since spaces never matter):

print ${ push } . ’over’;

both print “pop on over”, even though the braces are outside of double quotes.
The same rule applies to any identifier used for subscripting a hash. So, instead of
writing:

$hash{ "aaa" }{ "bbb" }{ "ccc" }

you can just write:

$hash{ aaa }{ bbb }{ ccc }

or:

$hash{aaa}{bbb}{ccc}

and not worry about whether the subscripts are reserved words. So this:

$hash{ shift }

is interpreted as $hash{"shift"}. You can force interpretation as a reserved word
by adding anything that makes it more than a mere identifier:

$hash{ shift() }
$hash{ +shift }
$hash{ shift @_ }

References Don’t Work as Hash Keys
Hash keys are stor ed inter nally as strings.* If you try to store a refer ence as a key
in a hash, the key value will be converted into a string:

$x{ \$a } = $a;
($key, $value) = each %x;
print $$key; # WRONG

We mentioned earlier that you can’t convert a string back to a hard refer ence. So if
you try to derefer ence $key, which contains a mere string, it won’t retur n a hard
der efer ence, but rather a symbolic derefer ence—and since you probably don’t
have a variable named SCALAR(0x1fc0e), you won’t accomplish what you’re
attempting. You might want to do something more like:

$r = \@a;
$x{ $r } = $r;

Then at least you can use the hash value, which will be a hard refer ence, instead
of the key, which won’t.

Although you can’t store a refer ence as a key, if (as in the earlier example) you
use a hard refer ence in a string context, it is guaranteed to produce a unique

* They’r e also stored exter nally as strings, such as when you put them into a DBM file. In fact, DBM
files requir e that their keys (and values) be strings.

Braces, Brackets, and Quoting 265

266 Chapter 8: References

string, since the address of the refer ence is included as part of the resulting string.
So you can in fact use a refer ence as a unique hash key. You just can’t derefer ence
it later.

Ther e is one special kind of hash in which you ar e able to use refer ences as keys.
Thr ough the magic* of the Tie::RefHash module bundled with Perl, the thing we
just said you couldn’t do, you can do:

use Tie::RefHash;
tie my %h, ’Tie::RefHash’;
%h = (

["this", "here"] => "at home",
["that", "there"] => "elsewhere",

);
while (my($keyref, $value) = each %h) {

print "@$keyref is $value\n";
}

In fact, by tying differ ent implementations to the built-in types, you can make
scalars, hashes, and arrays behave in many of the ways we’ve said you can’t.
That’ll show us! Stupid authors . . .

For more about tying, see Chapter 14, Tied Variables.

Garbage Collection, Circular References,
and Weak References
High-level languages typically allow programmers not to worry about deallocating
memory when they’re done using it. This automatic reclamation process is known
as garbage collection. For most purposes, Perl uses a fast and simple refer ence-
based garbage collector.

When a block is exited, its locally scoped variables are nor mally fr eed up, but it is
possible to hide your garbage so that Perl’s garbage collector can’t find it. One
serious concern is that unreachable memory with a nonzero refer ence count will
nor mally not get freed. Therefor e, circular refer ences ar e a bad idea:

{ # make $a and $b point to each other
my ($a, $b);
$a = \$b;
$b = \$a;

}

* Yes, that is a technical term, as you’ll notice if you muddle through the mg.c file in the Perl source
distribution.

or more simply:

{ # make $a point to itself
my $a;
$a = \$a;

}

Even though $a should be deallocated at the end of the block, it isn’t. When build-
ing recursive data structures, you’ll have to break (or weaken; see below) the self-
refer ence yourself if you want to reclaim the memory before your program (or
thr ead) exits. (Upon exit, the memory will be reclaimed for you automatically via a
costly but complete mark-and-sweep garbage collection.) If the data structure is an
object, you can use a DESTROY method to break the refer ence automatically; see
“Garbage Collection with DESTROY Methods” in Chapter 12.

A similar situation can occur with caches—repositories of data designed for faster-
than-nor mal retrieval. Outside the cache, there are refer ences to data inside the
cache. The problem occurs when all of those refer ences ar e deleted, but the cache
data with its internal refer ence remains. The existence of any refer ence pr events
the refer ent fr om being reclaimed by Perl, even though we want cache data to dis-
appear as soon as it’s no longer needed. As with circular refer ences, we want a
refer ence that doesn’t affect the refer ence count, and therefor e doesn’t delay
garbage collection.

Weak refer ences solve the problems caused by circular refer ences and cache data
by allowing you to “weaken” any refer ence; that is, make it not affect the refer-
ence count. When the last nonweak refer ence to an object is deleted, the object is
destr oyed and all the weak refer ences to the object are automatically freed.

To use this feature, you need the WeakRef package from CPAN, which contains
additional documentation. Weak refer ences ar e an experimental feature. But hey,
somebody’s gotta be the guinea pig.

Braces, Brackets, and Quoting 267

9
Data Structures

Perl provides for free many of the data structures that you have to build yourself
in other programming languages. The stacks and queues that budding computer
scientists learn about are both just arrays in Perl. When you push and pop (or shift
and unshift) an array, it’s a stack; when you push and shift (or unshift and pop)
an array, it’s a queue. And many of the tree structures in the world are built only
to provide fast, dynamic access to a conceptually flat lookup table. Hashes, of
course, are built into Perl, and provide fast, dynamic access to a conceptually flat
lookup table, only without the mind-numbingly recursive data structures that are
claimed to be beautiful by people whose minds have been suitably numbed
alr eady.

But sometimes you want nested data structures because they most naturally model
the problem you’re trying to solve. So Perl lets you combine and nest arrays and
hashes to create arbitrarily complex data structures. Properly applied, they can be
used to create linked lists, binary trees, heaps, B-trees, sets, graphs, and anything
else you can devise. See Mastering Algorithms with Perl (O’Reilly, 1999), the Perl
Cookbook (O’Reilly, 1998), or CPAN, the central repository for all such modules.
But simple combinations of arrays and hashes may be all you ever need, so
they’r e what we’ll talk about in this chapter.

Ar rays of Arrays
Ther e ar e many kinds of nested data structures. The simplest kind to build is an
array of arrays, also called a two-dimensional array or a matrix. (The obvious gen-
eralization applies: an array of arrays of arrays is a three-dimensional array, and so
on for higher dimensions.) It’s reasonably easy to understand, and nearly
everything that applies here will also be applicable to the fancier data structures
that we’ll explore in subsequent sections.

268

Creating and Accessing a Two-Dimensional Arra y
Her e’s how to put together a two-dimensional array:

Assign a list of array references to an array.
@AoA = (

["fred", "barney"],
["george", "jane", "elroy"],
["homer", "marge", "bart"],

);

print $AoA[2][1]; # prints "marge"

The overall list is enclosed by parentheses, not brackets, because you’re assigning
a list and not a refer ence. If you wanted a refer ence to an array instead, you’d use
brackets:

Create an reference to an array of array references.
$ref_to_AoA = [

["fred", "barney", "pebbles", "bamm bamm", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "elroy", "judy",],

];

print $ref_to_AoA->[2][3]; # prints "judy"

Remember that there is an implied -> between every pair of adjacent braces or
brackets. Therefor e these two lines:

$AoA[2][3]
$ref_to_AoA->[2][3]

ar e equivalent to these two lines:

$AoA[2]->[3]
$ref_to_AoA->[2]->[3]

Ther e is, however, no implied -> befor e the first pair of brackets, which is why the
der efer ence of $ref_to_AoA requir es the initial ->. Also remember that you can
count backward from the end of an array with a negative index, so:

$AoA[0][-2]

is the next-to-last element of the first row.

Growing Your Own
Those big list assignments are well and good for creating a fixed data structure,
but what if you want to calculate each element on the fly, or otherwise build the
structur e piecemeal?

Ar rays of Arrays 269

270 Chapter 9: Data Structures

Let’s read in a data structure from a file. We’ll assume that it’s a plain text file,
wher e each line is a row of the structure, and each line consists of elements delim-
ited by whitespace. Here’s how to proceed:*

while (<>) {
@tmp = split; # Split elements into an array.
push @AoA, [@tmp]; # Add an anonymous array reference to @AoA.

}

Of course, you don’t need to name the temporary array, so you could also say:

while (<>) {
push @AoA, [split];

}

If you want a refer ence to an array of arrays, you can do this:

while (<>) {
push @$ref_to_AoA, [split];

}

Both of those examples add new rows to the array of arrays. What about adding
new columns? If you’re just dealing with two-dimensional arrays, it’s often easiest
to use simple assignment:†

for $x (0 .. 9) { # For each row...
for $y (0 .. 9) { # For each column...

$AoA[$x][$y] = func($x, $y); # ...set that cell
}

}

for $x (0..9) { # For each row...
$ref_to_AoA->[$x][3] = func2($x); # ...set the fourth column

}

It doesn’t matter in what order you assign the elements, nor does it matter whether
the subscripted elements of @AoA ar e alr eady ther e or not; Perl will gladly create
them for you, setting intervening elements to the undefined value as need be.
(Perl will even create the original refer ence in $ref_to_AoA for you if it needs to.)
If you just want to append to a row, you have to do something a bit funnier:

Append new columns to an existing row.
push @{ $AoA[0] }, "wilma", "betty";

* Her e as in other chapters, we omit (for clarity) the my declarations that you would ordinarily put in.
In this example, you’d normally write my @tmp = split.

† As with the temp assignment earlier, we’ve simplified; the loops in this chapter would likely be writ-
ten for my $x in real code.

Notice that this wouldn’t work:

push $AoA[0], "wilma", "betty"; # WRONG!

That won’t even compile, because the argument to push must be a real array, not
just a refer ence to an array. Therefor e, the first argument absolutely must begin
with an @ character. What comes after the @ is somewhat negotiable.

Access and Printing
Now let’s print the data structure. If you only want one element, this is sufficient:

print $AoA[3][2];

But if you want to print the whole thing, you can’t just say:

print @AoA; # WRONG

It’s wrong because you’ll see stringified refer ences instead of your data. Perl never
automatically derefer ences for you. Instead, you have to roll yourself a loop or
two. The following code prints the whole structure, looping through the elements
of @AoA and derefer encing each inside the print statement:

for $row (@AoA) {
print "@$row\n";

}

If you want to keep track of subscripts, you might do this:

for $i (0 .. $#AoA) {
print "row $i is: @{$AoA[$i]}\n";

}

or maybe even this (notice the inner loop):

for $i (0 .. $#AoA) {
for $j (0 .. $#{$AoA[$i]}) {

print "element $i $j is $AoA[$i][$j]\n";
}

}

As you can see, things are getting a bit complicated. That’s why sometimes it’s eas-
ier to use a temporary variable on your way through:

for $i (0 .. $#AoA) {
$row = $AoA[$i];
for $j (0 .. $#{$row}) {

print "element $i $j is $row->[$j]\n";
}

}

Ar rays of Arrays 271

272 Chapter 9: Data Structures

Slices
If you want to access a slice (part of a row) of a multidimensional array, you’re
going to have to do some fancy subscripting. The pointer arrows give us a nice
way to access a single element, but no such convenience exists for slices. You can
always extract the elements of your slice one-by-one with a loop:

@part = ();
for ($y = 7; $y < 13; $y++) {

push @part, $AoA[4][$y];
}

This particular loop could be replaced with an array slice:

@part = @{ $AoA[4] } [7..12];

If you want a two-dimensional slice, say, with $x running from 4..8 and $y fr om
7..12, her e’s one way to do it:

@newAoA = ();
for ($startx = $x = 4; $x <= 8; $x++) {

for ($starty = $y = 7; $y <= 12; $y++) {
$newAoA[$x - $startx][$y - $starty] = $AoA[$x][$y];

}
}

In this example, the individual values within our destination two-dimensional
array, @newAoA, are assigned one by one, taken from a two-dimensional subarray of
@AoA. An alter native is to create anonymous arrays, each consisting of a desired
slice of an @AoA subarray, and then put refer ences to these anonymous arrays into
@newAoA. We would then be writing refer ences into @newAoA (subscripted once, so
to speak) instead of subarray values into a twice-subscripted @newAoA. This method
eliminates the innermost loop:

for ($x = 4; $x <= 8; $x++) {
push @newAoA, [@{ $AoA[$x] } [7..12]];

}

Of course, if you do this often, you should probably write a subroutine called
something like extract_rectangle. And if you do it very often with large collec-
tions of multidimensional data, you should probably use the PDL (Perl Data Lan-
guage) module, available from CPAN.

Common Mistakes
As mentioned earlier, Perl arrays and hashes are one-dimensional. In Perl, even
“multidimensional” arrays are actually one-dimensional, but the values along that
dimension are refer ences to other arrays, which collapse many elements into one.

If you print these values out without derefer encing them, you will get the stringi-
fied refer ences rather than the data you want. For example, these two lines:

@AoA = ([2, 3], [4, 5, 7], [0]);
print "@AoA";

result in something like:

ARRAY(0x83c38) ARRAY(0x8b194) ARRAY(0x8b1d0)

On the other hand, this line displays 7:

print $AoA[1][2];

When constructing an array of arrays, remember to compose new refer ences for
the subarrays. Otherwise, you will just create an array containing the element
counts of the subarrays, like this:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = @array; # WRONG!

}

Her e @array is being accessed in a scalar context, and therefor e yields the count of
its elements, which is dutifully assigned to $AoA[$i]. The proper way to assign the
refer ence will be shown in a moment.

After making the previous mistake, people realize they need to assign a refer ence,
so the next mistake people naturally make involves taking a refer ence to the same
memory location over and over again:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = \@array; # WRONG AGAIN!

}

Every refer ence generated by the second line of the for loop is the same, namely,
a refer ence to the single array @array. Yes, this array changes on each pass
thr ough the loop, but when everything is said and done, $AoA contains 10 refer-
ences to the same array, which now holds the last set of values assigned to it.
print @{$AoA[1]} will reveal the same values as print @{$AoA[2]}.

Her e’s a mor e successful approach:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = [@array]; # RIGHT!

}

The brackets around @array cr eate a new anonymous array, into which the ele-
ments of @array ar e copied. We then store a refer ence to that new array.

Ar rays of Arrays 273

274 Chapter 9: Data Structures

A similar result — though mor e dif ficult to read — would be produced by:

for $i (1..10) {
@array = somefunc($i);
@{$AoA[$i]} = @array;

}

Since $AoA[$i] needs to be a new refer ence, the refer ence springs into existence.
Then, the preceding @ der efer ences this new refer ence, with the result that the val-
ues of @array ar e assigned (in list context) to the array refer enced by $AoA[$i].
You might wish to avoid this construct for clarity’s sake.

But there is a situation in which you might use it. Suppose @AoA is already an array
of refer ences to arrays. That is, you’ve made assignments like:

$AoA[3] = \@original_array;

And now suppose that you want to change @original_array (that is, you want to
change the fourth row of $AoA) so that it refers to the elements of @array. This
code will work:

@{$AoA[3]} = @array;

In this case, the refer ence itself does not change, but the elements of the refer-
enced array do. This overwrites the values of @original_array.

Finally, the following dangerous-looking code actually works fine:

for $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = \@array;

}

That’s because the lexically scoped my @array variable is created afresh on each
pass through the loop. So even though it looks as though you’ve stored the same
variable refer ence each time, you haven’t. This is a subtle distinction, but the tech-
nique can produce more efficient code, at the risk of misleading less-enlightened
pr ogrammers. (It’s more efficient because there’s no copy in the final assignment.)
On the other hand, if you have to copy the values anyway (which the first assign-
ment in the loop is doing), then you might as well use the copy implied by the
brackets and avoid the temporary variable:

for $i (1..10) {
$AoA[$i] = [somefunc($i)];

}

In summary:

$AoA[$i] = [@array]; # Safest, sometimes fastest
$AoA[$i] = \@array; # Fast but risky, depends on my-ness of array
@{ $AoA[$i] } = @array; # A bit tricky

Once you’ve mastered arrays of arrays, you’ll want to tackle more complex data
structur es. If you’re looking for C structures or Pascal records, you won’t find any
special reserved words in Perl to set these up for you. What you get instead is a
mor e flexible system. If your idea of a record structure is less flexible than this, or
if you’d like to provide your users with something more opaque and rigid, then
you can use the object-oriented features detailed in Chapter 12, Objects.

Perl has just two ways of organizing data: as ordered lists stored in arrays and
accessed by position, or as unordered key/value pairs stored in hashes and
accessed by name. The best way to repr esent a record in Perl is with a hash refer-
ence, but how you choose to organize such records will vary. You might want to
keep an ordered list of these records that you can look up by number, in which
case you’d use an array of hash refer ences to store the records. Or, you might
wish to look the records up by name, in which case you’d maintain a hash of hash
refer ences. You could even do both at once, with pseudohashes.

In the following sections, you will find code examples detailing how to compose
(fr om scratch), generate (from other sources), access, and display several differ ent
data structures. We first demonstrate three straightforward combinations of arrays
and hashes, followed by a hash of functions and more irr egular data structures. We
end with a demonstration of how these data structures can be saved. These exam-
ples assume that you have already familiarized yourself with the explanations set
forth earlier in this chapter.

Hashes of Arra ys
Use a hash of arrays when you want to look up each array by a particular string
rather than merely by an index number. In our example of television characters,
instead of looking up the list of names by the zeroth show, the first show, and so
on, we’ll set it up so we can look up the cast list given the name of the show.

Because our outer data structure is a hash, we can’t order the contents, but we can
use the sort function to specify a particular output order.

Composition of a Hash of Arra ys
You can create a hash of anonymous arrays as follows:

We customarily omit quotes when the keys are identifiers.
%HoA = (

flintstones => ["fred", "barney"],
jetsons => ["george", "jane", "elroy"],
simpsons => ["homer", "marge", "bart"],

);

Hashes of Arra ys 275

276 Chapter 9: Data Structures

To add another array to the hash, you can simply say:

$HoA{teletubbies} = ["tinky winky", "dipsy", "laa-laa", "po"];

Generation of a Hash of Arra ys
Her e ar e some techniques for populating a hash of arrays. To read from a file with
the following format:

flintstones: fred barney wilma dino
jetsons: george jane elroy
simpsons: homer marge bart

you could use either of the following two loops:

while (<>) {
next unless s/ˆ(.*?):\s*//;
$HoA{$1} = [split];

}

while ($line = <>) {
($who, $rest) = split /:\s*/, $line, 2;
@fields = split ’ ’, $rest;
$HoA{$who} = [@fields];

}

If you have a subroutine get_family that retur ns an array, you can use it to stuff
%HoA with either of these two loops:

for $group ("simpsons", "jetsons", "flintstones") {
$HoA{$group} = [get_family($group)];

}

for $group ("simpsons", "jetsons", "flintstones") {
@members = get_family($group);
$HoA{$group} = [@members];

}

You can append new members to an existing array like so:

push @{ $HoA{flintstones} }, "wilma", "pebbles";

Access and Printing of a Hash of Arra ys
You can set the first element of a particular array as follows:

$HoA{flintstones}[0] = "Fred";

To capitalize the second Simpson, apply a substitution to the appropriate array
element:

$HoA{simpsons}[1] =˜ s/(\w)/\u$1/;

You can print all of the families by looping through the keys of the hash:

for $family (keys %HoA) {
print "$family: @{ $HoA{$family} }\n";

}

With a little extra effort, you can add array indices as well:

for $family (keys %HoA) {
print "$family: ";
for $i (0 .. $#{ $HoA{$family} }) {

print " $i = $HoA{$family}[$i]";
}
print "\n";

}

Or sort the arrays by how many elements they have:

for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
print "$family: @{ $HoA{$family} }\n"

}

Or even sort the arrays by the number of elements and then order the elements
ASCIIbetically (or to be precise, utf8ically):

Print the whole thing sorted by number of members and name.
for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {

print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";
}

Ar rays of Hashes
An array of hashes is useful when you have a bunch of records that you’d like to
access sequentially, and each record itself contains key/value pairs. Arrays of
hashes are used less frequently than the other structures in this chapter.

Composition of an Arra y of Hashes
You can create an array of anonymous hashes as follows:

@AoH = (
{

husband => "barney",
wife => "betty",
son => "bamm bamm",

},
{

husband => "george",
wife => "jane",
son => "elroy",

},

Ar rays of Hashes 277

278 Chapter 9: Data Structures

{
husband => "homer",
wife => "marge",
son => "bart",

},
);

To add another hash to the array, you can simply say:

push @AoH, { husband => "fred", wife => "wilma", daughter => "pebbles" };

Generation of an Arra y of Hashes
Her e ar e some techniques for populating an array of hashes. To read from a file
with the following format:

husband=fred friend=barney

you could use either of the following two loops:

while (<>) {
$rec = {};
for $field (split) {

($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
push @AoH, $rec;

}

while (<>) {
push @AoH, { split /[\s=]+/ };

}

If you have a subroutine get_next_pair that retur ns key/value pairs, you can use it
to stuff @AoH with either of these two loops:

while (@fields = get_next_pair()) {
push @AoH, { @fields };

}

while (<>) {
push @AoH, { get_next_pair($_) };

}

You can append new members to an existing hash like so:

$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa’s little helper";

Access and Printing of an Arra y of Hashes
You can set a key/value pair of a particular hash as follows:

$AoH[0]{husband} = "fred";

To capitalize the husband of the second array, apply a substitution:

$AoH[1]{husband} =˜ s/(\w)/\u$1/;

You can print all of the data as follows:

for $href (@AoH) {
print "{ ";
for $role (keys %$href) {

print "$role=$href->{$role} ";
}
print "}\n";

}

and with indices:

for $i (0 .. $#AoH) {
print "$i is { ";
for $role (keys %{ $AoH[$i] }) {

print "$role=$AoH[$i]{$role} ";
}
print "}\n";

}

Hashes of Hashes
A multidimensional hash is the most flexible of Perl’s nested structures. It’s like
building up a record that itself contains other records. At each level, you index
into the hash with a string (quoted when necessary). Remember, however, that the
key/value pairs in the hash won’t come out in any particular order; you can use
the sort function to retrieve the pairs in whatever order you like.

Composition of a Hash of Hashes
You can create a hash of anonymous hashes as follows:

%HoH = (
flintstones => {

husband => "fred",
pal => "barney",

},
jetsons => {

husband => "george",
wife => "jane",
"his boy" => "elroy", # Key quotes needed.

},

Hashes of Hashes 279

280 Chapter 9: Data Structures

simpsons => {
husband => "homer",
wife => "marge",
kid => "bart",

},
);

To add another anonymous hash to %HoH, you can simply say:

$HoH{ mash } = {
captain => "pierce",
major => "burns",
corporal => "radar",

};

Generation of a Hash of Hashes
Her e ar e some techniques for populating a hash of hashes. To read from a file
with the following format:

flintstones: husband=fred pal=barney wife=wilma pet=dino

you could use either of the following two loops:

while (<>) {
next unless s/ˆ(.*?):\s*//;
$who = $1;
for $field (split) {

($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

}
}

while (<>) {
next unless s/ˆ(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {

($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
}

If you have a subroutine get_family that retur ns a list of key/value pairs, you can
use it to stuff %HoH with either of these three snippets:

for $group ("simpsons", "jetsons", "flintstones") {
$HoH{$group} = { get_family($group) };

}

for $group ("simpsons", "jetsons", "flintstones") {
@members = get_family($group);
$HoH{$group} = { @members };

}

sub hash_families {
my @ret;
for $group (@_) {

push @ret, $group, { get_family($group) };
}
return @ret;

}
%HoH = hash_families("simpsons", "jetsons", "flintstones");

You can append new members to an existing hash like so:

%new_folks = (
wife => "wilma",
pet => "dino";

);
for $what (keys %new_folks) {

$HoH{flintstones}{$what} = $new_folks{$what};
}

Access and Printing of a Hash of Hashes
You can set a key/value pair of a particular hash as follows:

$HoH{flintstones}{wife} = "wilma";

To capitalize a particular key/value pair, apply a substitution to an element:

$HoH{jetsons}{’his boy’} =˜ s/(\w)/\u$1/;

You can print all the families by looping through the keys of the outer hash and
then looping through the keys of the inner hash:

for $family (keys %HoH) {
print "$family: ";
for $role (keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "\n";

}

In very large hashes, it may be slightly faster to retrieve both keys and values at
the same time using each (which precludes sorting):

while (($family, $roles) = each %HoH) {
print "$family: ";
while (($role, $person) = each %$roles) {

print "$role=$person ";
}
print "\n";

}

Hashes of Hashes 281

282 Chapter 9: Data Structures

(Unfortunately, it’s the large hashes that really need to be sorted, or you’ll never
find what you’re looking for in the printout.) You can sort the families and then
the roles as follows:

for $family (sort keys %HoH) {
print "$family: ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "\n";

}

To sort the families by the number of members (instead of ASCIIbetically (or
utf8ically)), you can use keys in a scalar context:

for $family (sort { keys %{$HoH{$a}} <=> keys %{$HoH{$b}} } keys %HoH) {
print "$family: ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "\n";

}

To sort the members of a family in some fixed order, you can assign ranks to each:

$i = 0;
for (qw(husband wife son daughter pal pet)) { $rank{$_} = ++$i }

for $family (sort { keys %{$HoH{$a}} <=> keys %{$HoH{$b}} } keys %HoH) {
print "$family: ";
for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "\n";

}

Hashes of Functions
When writing a complex application or network service in Perl, you might want to
make a large number of commands available to your users. Such a program might
have code like this to examine the user’s selection and take appropriate action:

if ($cmd =˜ /ˆexit$/i) { exit }
elsif ($cmd =˜ /ˆhelp$/i) { show_help() }
elsif ($cmd =˜ /ˆwatch$/i) { $watch = 1 }
elsif ($cmd =˜ /ˆmail$/i) { mail_msg($msg) }
elsif ($cmd =˜ /ˆedit$/i) { $edited++; editmsg($msg); }
elsif ($cmd =˜ /ˆdelete$/i) { confirm_kill() }
else {

warn "Unknown command: ‘$cmd’; Try ‘help’ next time\n";
}

You can also store refer ences to functions in your data structures, just as you can
stor e refer ences to arrays or hashes:

%HoF = (# Compose a hash of functions
exit => sub { exit },
help => \&show_help,
watch => sub { $watch = 1 },
mail => sub { mail_msg($msg) },
edit => sub { $edited++; editmsg($msg); },
delete => \&confirm_kill,

);

if ($HoF{lc $cmd}) { $HoF{lc $cmd}->() } # Call function
else { warn "Unknown command: ‘$cmd’; Try ‘help’ next time\n" }

In the second to last line, we check whether the specified command name (in
lowercase) exists in our “dispatch table”, %HoF. If so, we invoke the appropriate
command by derefer encing the hash value as a function and pass that function an
empty argument list. We could also have derefer enced it as &{ $HoF{lc $cmd} }(),
or, as of the 5.6 release of Perl, simply $HoF{lc $cmd}().

More Elaborate Records
So far, what we’ve seen in this chapter are simple, two-level, homogeneous data
structur es: each element contains the same kind of refer ent as all the other ele-
ments at that level. It certainly doesn’t have to be that way. Any element can hold
any kind of scalar, which means that it could be a string, a number, or a refer ence
to anything at all. The refer ence could be an array or hash refer ence, or a pseudo-
hash, or a refer ence to a named or anonymous function, or an object. The only
thing you can’t do is to stuff multiple refer ents into one scalar. If you find yourself
trying to do that, it’s a sign that you need an array or hash refer ence to collapse
multiple values into one.

In the sections that follow, you will find code examples designed to illustrate
many of the possible types of data you might want to store in a record, which
we’ll implement using a hash refer ence. The keys are uppercase strings, a conven-
tion sometimes employed (and occasionally unemployed, but only briefly) when
the hash is being used as a specific record type.

Composition, Access, and Printing of
More Elaborate Records
Her e is a record with six disparate fields:

$rec = {
TEXT => $string,
SEQUENCE => [@old_values],

More Elaborate Records 283

284 Chapter 9: Data Structures

LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub { $_[0] ** $_[1] },
HANDLE => *STDOUT,

};

The TEXT field is a simple string, so you can just print it:

print $rec->{TEXT};

SEQUENCE and LOOKUP ar e regular array and hash refer ences:

print $rec->{SEQUENCE}[0];
$last = pop @{ $rec->{SEQUENCE} };

print $rec->{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec->{LOOKUP} };

THATCODE is a named subroutine and THISCODE is an anonymous subroutine, but
they’r e invoked identically:

$that_answer = $rec->{THATCODE}->($arg1, $arg2);
$this_answer = $rec->{THISCODE}->($arg1, $arg2);

With an extra pair of braces, you can treat $rec->{HANDLE} as an indirect object:

print { $rec->{HANDLE} } "a string\n";

If you’re using the FileHandle module, you can even treat the handle as a regular
object:

use FileHandle;
$rec->{HANDLE}->autoflush(1);
$rec->{HANDLE}->print("a string\n");

Composition, Access, and Printing of
Even More Elaborate Records
Naturally, the fields of your data structures can themselves be arbitrarily complex
data structures in their own right:

%TV = (
flintstones => {

series => "flintstones",
nights => ["monday", "thursday", "friday"],
members => [

{ name => "fred", role => "husband", age => 36, },
{ name => "wilma", role => "wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4, },

],
},

jetsons => {
series => "jetsons",
nights => ["wednesday", "saturday"],
members => [

{ name => "george", role => "husband", age => 41, },
{ name => "jane", role => "wife", age => 39, },
{ name => "elroy", role => "kid", age => 9, },

],
},

simpsons => {
series => "simpsons",
nights => ["monday"],
members => [

{ name => "homer", role => "husband", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role => "kid", age => 11, },

],
},

);

Generation of a Hash of Complex Records
Because Perl is quite good at parsing complex data structures, you might just put
your data declarations in a separate file as regular Perl code, and then load them
in with the do or require built-in functions. Another popular approach is to use a
CPAN module (such as XML::Parser) to load in arbitrary data structures expressed
in some other language (such as XML).

You can build data structures piecemeal:

$rec = {};
$rec->{series} = "flintstones";
$rec->{nights} = [find_days()];

Or read them in from a file (here, assumed to be in field=value syntax):

@members = ();
while (<>) {

%fields = split /[\s=]+/;
push @members, { %fields };

}
$rec->{members} = [@members];

And fold them into larger data structures keyed by one of the subfields:

$TV{ $rec->{series} } = $rec;

You can use extra pointer fields to avoid duplicate data. For example, you might
want a "kids" field included in a person’s record, which might be a refer ence to
an array containing refer ences to the kids’ own records. By having parts of your

More Elaborate Records 285

286 Chapter 9: Data Structures

data structure refer to other parts, you avoid the data skew that would result from
updating the data in one place but not in another:

for $family (keys %TV) {
my $rec = $TV{$family}; # temporary pointer
@kids = ();
for $person (@{$rec->{members}}) {

if ($person->{role} =˜ /kid|son|daughter/) {
push @kids, $person;

}
}
$rec and $TV{$family} point to same data!
$rec->{kids} = [@kids];

}

The $rec->{kids} = [@kids] assignment copies the array contents—but they are
mer ely refer ences to uncopied data. This means that if you age Bart as follows:

$TV{simpsons}{kids}[0]{age}++; # increments to 12

then you’ll see the following result, because $TV{simpsons}{kids}[0] and
$TV{simpsons}{members}[2] both point to the same underlying anonymous hash
table:

print $TV{simpsons}{members}[2]{age}; # also prints 12

Now, to print the entire %TV structur e:

for $family (keys %TV) {
print "the $family";
print " is on ", join (" and ", @{ $TV{$family}{nights} }), "\n";
print "its members are:\n";
for $who (@{ $TV{$family}{members} }) {

print " $who->{name} ($who->{role}), age $who->{age}\n";
}
print "children: ";
print join (", ", map { $_->{name} } @{ $TV{$family}{kids} });
print "\n\n";

}

Saving Data Structures
If you want to save your data structures for use by another program later, ther e ar e
many ways to do it. The easiest way is to use Perl’s Data::Dumper module, which
tur ns a (possibly self-refer ential) data structure into a string that can be saved
exter nally and later reconstituted with eval or do.

use Data::Dumper;
$Data::Dumper::Purity = 1; # since %TV is self-referential
open (FILE, "> tvinfo.perldata") or die "can’t open tvinfo: $!";
print FILE Data::Dumper->Dump([\%TV], [’*TV’]);
close FILE or die "can’t close tvinfo: $!";

A separate program (or the same program) can then read in the file later:

open (FILE, "< tvinfo.perldata") or die "can’t open tvinfo: $!";
undef $/; # read in file all at once
eval <FILE>; # recreate %TV
die "can’t recreate tv data from tvinfo.perldata: $@" if $@;
close FILE or die "can’t close tvinfo: $!";
print $TV{simpsons}{members}[2]{age};

or simply:

do "tvinfo.perldata" or die "can’t recreate tvinfo: $! $@";
print $TV{simpsons}{members}[2]{age};

Many other solutions are available, with storage formats ranging from packed
binary (very fast) to XML (very interoperable). Check out a CPAN mirror near you
today!

Saving Data Structures 287

10
Packages

In this chapter, we get to start having fun, because we get to start talking about
softwar e design. If we’re going to talk about good software design, we have to
talk about Laziness, Impatience, and Hubris, the basis of good software design.

We’ve all fallen into the trap of using cut-and-paste when we should have defined
a higher-level abstraction, if only just a loop or subroutine.* To be sur e, some folks
have gone to the opposite extreme of defining ever-gr owing mounds of higher-
level abstractions when they should have used cut-and-paste.† Generally, though,
most of us need to think about using more abstraction rather than less.

Caught somewhere in the middle are the people who have a balanced view of
how much abstraction is good, but who jump the gun on writing their own
abstractions when they should be reusing existing code.‡

Whenever you’re tempted to do any of these things, you need to sit back and
think about what will do the most good for you and your neighbor over the long
haul. If you’re going to pour your creative energies into a lump of code, why not
make the world a better place while you’re at it? (Even if you’re only aiming for
the program to succeed, you need to make sure it fits the right ecological niche.)

The first step toward ecologically sustainable programming is simply this: don’t lit-
ter in the park. When you write a chunk of code, think about giving the code its
own namespace, so that your variables and functions don’t clobber anyone else’s,
or vice versa. A namespace is a bit like your home, where you’r e allowed to be as

* This is a form of False Laziness.

† This is a form of False Hubris.

‡ You guessed it—this is False Impatience. But if you’re deter mined to reinvent the wheel, at least try
to invent a better one.

288

messy as you like, as long as you keep your external interface to other citizens
moderately civil. In Perl, a namespace is called a package. Packages provide the
fundamental building block upon which the higher-level concepts of modules and
classes are constructed.

Like the notion of “home”, the notion of “package” is a bit nebulous. Packages are
independent of files. You can have many packages in a single file, or a single
package that spans several files, just as your home could be one small garret in a
larger building (if you’re a starving artist), or it could comprise several buildings (if
your name happens to be Queen Elizabeth). But the usual size of a home is one
building, and the usual size of a package is one file. Perl provides some special
help for people who want to put one package in one file, as long as you’re willing
to give the file the same name as the package and use an extension of .pm, which
is short for “perl module”. The module is the fundamental unit of reusability in
Perl. Indeed, the way you use a module is with the use command, which is a com-
piler directive that controls the importation of subroutines and variables from a
module. Every example of use you’ve seen until now has been an example of
module reuse.

The Comprehensive Perl Archive Network, or CPAN, is where you should put your
modules if other people might find them useful. Perl has thrived because of the
willingness of programmers to share the fruits of their labor with the community.
Naturally, CPAN is also where you can find modules that others have thoughtfully
uploaded for everyone to use. See Chapter 22, CPAN, and www.cpan.or g for
details.

The trend over the last 25 years or so has been to design computer languages that
enforce a state of paranoia. You’r e expected to program every module as if it were
in a state of siege. Certainly there are some feudal cultures where this is appropri-
ate, but not all cultures are like this. In Perl culture, for instance, you’re expected
to stay out of someone’s home because you weren’t invited in, not because there
ar e bars on the windows.*

This is not a book about object-oriented methodology, and we’re not here to con-
vert you into a raving object-oriented zealot, even if you want to be converted.
Ther e ar e alr eady plenty of books out there for that. Perl’s philosophy of object-
oriented design fits right in with Perl’s philosophy of everything else: use object-
oriented design where it makes sense, and avoid it where it doesn’t. Your call.

In OO-speak, every object belongs to a grouping called a class. In Perl, classes
and packages and modules are all so closely related that novices can often think

* But Perl provides some bars if you want them, too. See “Handling Insecure Code” in Chapter 23,
Security.

Introduction 289

290 Chapter 10: Packages

of them as being interchangeable. The typical class is implemented by a module
that defines a package with the same name as the class. We’ll explain all of this in
the next few chapters.

When you use a module, you benefit from direct software reuse. With classes, you
benefit from indirect software reuse when one class uses another through inheri-
tance. And with classes, you get something more: a clean interface to another
namespace. Everything in a class is accessed indirectly, insulating the class from
the outside world.

As we mentioned in Chapter 8, Refer ences, object-oriented programming in Perl is
accomplished through refer ences whose refer ents know which class they belong
to. In fact, now that you know about refer ences, you know almost everything diffi-
cult about objects. The rest of it just “lays under the fingers”, as a pianist would
say. You will need to practice a little, though.

One of your basic finger exercises consists of learning how to protect differ ent
chunks of code from inadvertently tampering with each other’s variables. Every
chunk of code belongs to a particular package, which determines what variables
and subroutines are available to it. As Perl encounters a chunk of code, it is com-
piled into what we call the curr ent package. The initial current package is called
“main”, but you can switch the current package to another one at any time with
the package declaration. The current package determines which symbol table is
used to find your variables, subroutines, I/O handles, and formats.

Any variable not declared with my is associated with a package—even seemingly
omnipr esent variables like $_ and %SIG. In fact, there’s really no such thing as a
global variable in Perl, just package variables. (Special identifiers like _ and SIG

mer ely seem global because they default to the main package instead of the cur-
rent one.)

The scope of a package declaration is from the declaration itself through the end of
the enclosing scope (block, file, or eval—whichever comes first) or until another
package declaration at the same level, which supersedes the earlier one. (This is a
common practice).

All subsequent identifiers (including those declared with our, but not including
those declared with my or those qualified with a differ ent package name) will be
placed in the symbol table belonging to the current package. (Variables declared
with my ar e independent of packages; they are always visible within, and only
within, their enclosing scope, regardless of any package declarations.)

Typically, a package declaration will be the first statement of a file meant to be
included by require or use. But again, that’s by convention. You can put a package

declaration anywhere you can put a statement. You could even put it at the end of
a block, in which case it would have no effect whatsoever. You can switch into a
package in more than one place; a package declaration merely selects the symbol
table to be used by the compiler for the rest of that block. (This is how a given
package can span more than one file.)

You can refer to identifiers* in other packages by prefixing (“qualifying”) the iden-
tifier with the package name and a double colon: $Package::Variable. If the pack-
age name is null, the main package is assumed. That is, $::sail is equivalent to
$main::sail.†

The old package delimiter was a single quote, so in old Perl programs you’ll see
variables like $main’sail and $somepack’horse. But the double colon is now the
pr eferr ed delimiter, in part because it’s more readable to humans, and in part
because it’s more readable to emacs macr os. It also makes C++ programmers feel
like they know what’s going on—as opposed to using the single quote as the sep-
arator, which was there to make Ada programmers feel like they knew what’s
going on. Because the old-fashioned syntax is still supported for backward com-
patibility, if you try to use a string like "This is $owner’s house", you’ll be access-
ing $owner::s; that is, the $s variable in package owner, which is probably not
what you meant. Use braces to disambiguate, as in "This is ${owner}’s house".

The double colon can be used to chain together identifiers in a package name:
$Red::Blue::var. This means the $var belonging to the Red::Blue package. The
Red::Blue package has nothing to do with any Red or Blue packages that might
happen to exist. That is, a relationship between Red::Blue and Red or Blue may
have meaning to the person writing or using the program, but it means nothing to
Perl. (Well, other than the fact that, in the current implementation, the symbol
table Red::Blue happens to be stored in the symbol table Red. But the Perl lan-
guage makes no use of that directly.)

For this reason, every package declaration must declare a complete package name.
No package name ever assumes any kind of implied “prefix”, even if (seemingly)
declar ed within the scope of some other package declaration.

* By identifiers, we mean the names used as symbol table keys for accessing scalar variables, array
variables, hash variables, subroutines, file or directory handles, and formats. Syntactically speaking,
labels are also identifiers, but they aren’t put into a particular symbol table; rather, they are attached
dir ectly to the statements in your program. Labels cannot be package qualified.

† To clear up another bit of potential confusion, in a variable name like $main::sail, we use the term
“identifier” to talk about main and sail, but not main::sail. We call that a variable name instead,
because identifiers cannot contain colons.

Introduction 291

292 Chapter 10: Packages

Only identifiers (names starting with letters or an underscore) are stor ed in a pack-
age’s symbol table. All other symbols are kept in the main package, including all
the nonalphabetic variables, like $!, $?, and $_. In addition, when unqualified, the
identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC, and SIG ar e forced to be
in package main, even when used for other purposes than their built-in ones.
Don’t name your package m, s, y, tr, q, qq, qr, qw, or qx unless you’re looking for a
lot of trouble. For instance, you won’t be able to use the qualified form of an iden-
tifier as a filehandle because it will be interpreted instead as a pattern match, a
substitution, or a transliteration.

Long ago, variables beginning with an underscore wer e forced into the main pack-
age, but we decided it was more useful for package writers to be able to use a
leading underscore to indicate semi-private identifiers meant for internal use by
that package only. (Truly private variables can be declared as file-scoped lexicals,
but that works best when the package and module have a one-to-one relationship,
which is common but not requir ed.)

The %SIG hash (which is for trapping signals; see Chapter 16, Interpr ocess Commu-
nication) is also special. If you define a signal handler as a string, it’s assumed to
refer to a subroutine in the main package unless another package name is explic-
itly used. Use a fully qualified signal handler name if you want to specify a partic-
ular package, or avoid strings entirely by assigning a typeglob or a function
refer ence instead:

$SIG{QUIT} = "Pkg::quit_catcher"; # fully qualified handler name
$SIG{QUIT} = "quit_catcher"; # implies "main::quit_catcher"
$SIG{QUIT} = *quit_catcher; # forces current package’s sub
$SIG{QUIT} = \&quit_catcher; # forces current package’s sub
$SIG{QUIT} = sub { print "Caught SIGQUIT\n" }; # anonymous sub

The notion of “current package” is both a compile-time and run-time concept.
Most variable name lookups happen at compile time, but run-time lookups hap-
pen when symbolic refer ences ar e der efer enced, and also when new bits of code
ar e parsed under eval. In particular, when you eval a string, Perl knows which
package the eval was invoked in and propagates that package inward when eval-
uating the string. (You can always switch to a differ ent package inside the eval

string, of course, since an eval string counts as a block, just like a file loaded in
with do, require, or use.)

Alter natively, if an eval wants to find out what package it’s in, the special symbol
__PACKAGE_ _ contains the current package name. Since you can treat it as a string,
you could use it in a symbolic refer ence to access a package variable. But if you
wer e doing that, chances are you should have declared the variable with our

instead so it could be accessed as if it were a lexical.

Symbol Tables
The contents of a package are collectively called a symbol table. Symbol tables are
stor ed in a hash whose name is the same as the package, but with two colons
appended. The main symbol table’s name is thus %main::. Since main also happens
to be the default package, Perl provides %:: as an abbreviation for %main::.

Likewise, the symbol table for the Red::Blue package is named %Red::Blue::. As it
happens, the main symbol table contains all other top-level symbol tables, includ-
ing itself, so %Red::Blue:: is also %main::Red::Blue::.

When we say that a symbol table “contains” another symbol table, we mean that it
contains a refer ence to the other symbol table. Since main is the top-level package,
it contains a refer ence to itself, with the result that %main:: is the same as
%main::main::, and %main::main::main::, and so on, ad infinitum. It’s important to
check for this special case if you write code that traverses all symbol tables.

Inside a symbol table’s hash, each key/value pair matches a variable name to its
value. The keys are the symbol identifiers, and the values are the corresponding
typeglobs. So when you use the *NAME typeglob notation, you’re really just access-
ing a value in the hash that holds the current package’s symbol table. In fact, the
following have (nearly) the same effect:

*sym = *main::variable;
*sym = $main::{"variable"};

The first is more efficient because the main symbol table is accessed at compile
time. It will also create a new typeglob by that name if none previously exists,
wher eas the second form will not.

Since a package is a hash, you can look up the keys of the package and get to all
the variables of the package. Since the values of the hash are typeglobs, you can
der efer ence them in several ways. Try this:

foreach $symname (sort keys %main::) {
local *sym = $main::{$symname};
print "\$$symname is defined\n" if defined $sym;
print "\@$symname is nonnull\n" if @sym;
print "\%$symname is nonnull\n" if %sym;

}

Since all packages are accessible (directly or indirectly) through the main package,
you can write Perl code to visit every package variable in your program. The Perl
debugger does precisely that when you ask it to dump all your variables with the
V command. Note that if you do this, you won’t see variables declared with my

since those are independent of packages, although you will see variables declared
with our. See Chapter 20, The Perl Debugger.

Symbol Tables 293

294 Chapter 10: Packages

Earlier we said that only identifiers are stor ed in packages other than main. That
was a bit of a fib: you can use any string you want as the key in a symbol table
hash — it’s just that it wouldn’t be valid Perl if you tried to use a non-identifier
dir ectly:

$!@#$% = 0; # WRONG, syntax error.
${’!@#$%’} = 1; # Ok, though unqualified.

${’main::!@#$%’} = 2; # Can qualify within the string.
print ${ $main::{’!@#$%’} } # Ok, prints 2!

Assignment to a typeglob perfor ms an aliasing operation; that is,

*dick = *richard;

causes variables, subroutines, formats, and file and directory handles accessible via
the identifier richard to also be accessible via the symbol dick. If you want to
alias only a particular variable or subroutine, assign a refer ence instead:

*dick = \$richard;

That makes $richard and $dick the same variable, but leaves @richard and @dick

as separate arrays. Tricky, eh?

This is how the Exporter works when importing symbols from one package to
another. For example:

*SomePack::dick = \&OtherPack::richard;

imports the &richard function from package OtherPack into SomePack, making it
available as the &dick function. (The Exporter module is described in the next
chapter.) If you precede the assignment with a local, the aliasing will only last as
long as the current dynamic scope.

This mechanism may be used to retrieve a refer ence fr om a subr outine, making
the refer ent available as the appropriate data type:

*units = populate() ; # Assign \%newhash to the typeglob
print $units{kg}; # Prints 70; no dereferencing needed!

sub populate {
my %newhash = (km => 10, kg => 70);
return \%newhash;

}

Likewise, you can pass a refer ence into a subroutine and use it without derefer-
encing:

%units = (miles => 6, stones => 11);
fillerup(\%units); # Pass in a reference
print $units{quarts}; # Prints 4

sub fillerup {
local *hashsym = shift; # Assign \%units to the typeglob
$hashsym{quarts} = 4; # Affects %units; no dereferencing needed!

}

These are tricky ways to pass around refer ences cheaply when you don’t want to
have to explicitly derefer ence them. Note that both techniques only work with
package variables; they would not have worked had we declared %units with my.

Another use of symbol tables is for making “constant” scalars:

*PI = \3.14159265358979;

Now you cannot alter $PI, which is probably a good thing, all in all. This isn’t the
same as a constant subroutine, which is optimized at compile time. A constant
subr outine is one prototyped to take no arguments and to retur n a constant
expr ession; see the section “Inlining Constant Functions” in Chapter 6, Subr ou-
tines, for details. The use constant pragma (see Chapter 31, Pragmatic Modules) is
a convenient shorthand:

use constant PI => 3.14159;

Under the hood, this uses the subroutine slot of *PI, instead of the scalar slot used
earlier. It’s equivalent to the more compact (but less readable):

*PI = sub () { 3.14159 };

That’s a handy idiom to know anyway—assigning a sub {} to a typeglob is the
way to give a name to an anonymous subroutine at run time.

Assigning a typeglob refer ence to another typeglob (*sym = *oldvar) is the same
as assigning the entire typeglob, because Perl automatically derefer ences the type-
glob refer ence for you. And when you set a typeglob to a simple string, you get
the entire typeglob named by that string, because Perl looks up the string in the
curr ent symbol table. The following are all equivalent to one another, though the
first two compute the symbol table entry at compile time, while the last two do so
at run time:

*sym = *oldvar;
*sym = *oldvar; # autodereference
*sym = *{"oldvar"}; # explicit symbol table lookup
*sym = "oldvar"; # implicit symbol table lookup

When you perfor m any of the following assignments, you’re replacing just one of
the refer ences within the typeglob:

*sym = \$frodo;
*sym = \@sam;
*sym = \%merry;
*sym = \&pippin;

Symbol Tables 295

296 Chapter 10: Packages

If you think about it sideways, the typeglob itself can be viewed as a kind of hash,
with entries for the differ ent variable types in it. In this case, the keys are fixed,
since a typeglob can contain exactly one scalar, one array, one hash, and so on.
But you can pull out the individual refer ences, like this:

*pkg::sym{SCALAR} # same as \$pkg::sym
*pkg::sym{ARRAY} # same as \@pkg::sym
*pkg::sym{HASH} # same as \%pkg::sym
*pkg::sym{CODE} # same as \&pkg::sym
*pkg::sym{GLOB} # same as *pkg::sym
*pkg::sym{IO} # internal file/dir handle, no direct equivalent
*pkg::sym{NAME} # "sym" (not a reference)
*pkg::sym{PACKAGE} # "pkg" (not a reference)

You can say *foo{PACKAGE} and *foo{NAME} to find out what name and package
the *foo symbol table entry comes from. This may be useful in a subroutine that is
passed typeglobs as arguments:

sub identify_typeglob {
my $glob = shift;
print ’You gave me ’, *{$glob}{PACKAGE}, ’::’, *{$glob}{NAME}, "\n";

}

identify_typeglob(*foo);
identify_typeglob(*bar::glarch);

This prints:

You gave me main::foo
You gave me bar::glarch

The *foo{THING} notation can be used to obtain refer ences to individual elements
of *foo. See the section “Symbol Table References” in Chapter 8 for details.

This syntax is primarily used to get at the internal filehandle or directory handle
refer ence, because the other internal refer ences ar e alr eady accessible in other
ways. (The old *foo{FILEHANDLE} is still supported to mean *foo{IO}, but don’t let
its name fool you into thinking it can distinguish filehandles from directory han-
dles.) But we thought we’d generalize it because it looks kind of pretty. Sort of.
You probably don’t need to remember all this unless you’re planning to write
another Perl debugger.

Autoloading
Nor mally, you can’t call a subroutine that isn’t defined. However, if ther e is a sub-
routine named AUTOLOAD in the undefined subroutine’s package (or in the case of
an object method, in the package of any of the object’s base classes), then the

AUTOLOAD subr outine is called with the same arguments that would have been
passed to the original subroutine. You can define the AUTOLOAD subr outine to
retur n values just like a regular subroutine, or you can make it define the routine
that didn’t exist and then call that as if it’d been there all along.

The fully qualified name of the original subroutine magically appears in the pack-
age-global $AUTOLOAD variable, in the same package as the AUTOLOAD routine. Here’s
a simple example that gently warns you about undefined subroutine invocations
instead of exiting:

sub AUTOLOAD {
our $AUTOLOAD;
warn "Attempt to call $AUTOLOAD failed.\n";

}

blarg(10); # our $AUTOLOAD will be set to main::blarg
print "Still alive!\n";

Or you can retur n a value on behalf of the undefined subroutine:

sub AUTOLOAD {
our $AUTOLOAD;
return "I see $AUTOLOAD(@_)\n";

}

print blarg(20); # prints: I see main::blarg(20)

Your AUTOLOAD subr outine might load a definition for the undefined subroutine
using eval or require, or use the glob assignment trick discussed earlier, and then
execute that subroutine using the special form of goto that can erase the stack
frame of the AUTOLOAD routine without a trace. Here we define the subroutine by
assigning a closure to the glob:

sub AUTOLOAD {
my $name = our $AUTOLOAD;
*$AUTOLOAD = sub { print "I see $name(@_)\n" };
goto &$AUTOLOAD; # Restart the new routine.

}

blarg(30); # prints: I see main::blarg(30)
glarb(40); # prints: I see main::glarb(40)
blarg(50); # prints: I see main::blarg(50)

The standard AutoSplit module is used by module writers to split their modules
into separate files (with filenames ending in .al), each holding one routine. The
files are placed in the auto/ dir ectory of your system’s Perl library, after which the
files can be autoloaded on demand by the standard AutoLoader module.

Autoloading 297

298 Chapter 10: Packages

A similar approach is taken by the SelfLoader module, except that it autoloads
functions from the file’s own DATA ar ea, which is less efficient in some ways and
mor e ef ficient in others. Autoloading of Perl functions by AutoLoader and Self-

Loader is analogous to dynamic loading of compiled C functions by DynaLoader,
except that autoloading is done at the granularity of the function call, whereas
dynamic loading is done at the granularity of the complete module, and will usu-
ally link in many C or C++ functions all at once. (Note that many Perl program-
mers get along just fine without the AutoSplit, AutoLoader, SelfLoader, or
DynaLoader modules. You just need to know that they’re ther e, in case you can’t
get along just fine without them.)

One can have great fun with AUTOLOAD routines that serve as wrappers to other
inter faces. For example, let’s pretend that any function that isn’t defined should
just call system with its arguments. All you’d do is this:

sub AUTOLOAD {
my $program = our $AUTOLOAD;
$program =˜ s/.*:://; # trim package name
system($program, @_);

}

(Congratulations, you’ve now implemented a rudimentary form of the Shell mod-
ule that comes standard with Perl.) You can call your autoloader (on Unix) like
this:

date();
who(’am’, ’i’);
ls(’-l’);
echo("Abadugabudabuda...");

In fact, if you predeclar e the functions you want to call that way, you can pretend
they’r e built-ins and omit the parentheses on the call:

sub date (;$$); # Allow zero to two arguments.
sub who (;$$$$); # Allow zero to four args.
sub ls; # Allow any number of args.
sub echo ($@); # Allow at least one arg.

date;
who "am", "i";
ls "-l";
echo "That’s all, folks!";

11
Modules

The module is the fundamental unit of code reuse in Perl. Under the hood, it’s just
a package defined in a file of the same name (with .pm on the end). In this chap-
ter, we’ll explore how you can use other people’s modules and create your own.

Perl comes bundled with a large number of modules, which you can find in the lib
dir ectory of your Perl distribution. Many of those modules are described in
Chapter 32, Standar d Modules, and Chapter 31, Pragmatic Modules. All the stan-
dard modules also have extensive online documentation, which (horrors) may be
mor e up-to-date than this book. Try the perldoc command if your man command
doesn’t work.

The Comprehensive Perl Archive Network (CPAN) contains a worldwide repository
of modules contributed by the Perl community, and is discussed in Chapter 22,
CPAN. See also http://www.cpan.or g.

Using Modules
Modules come in two flavors: traditional and object-oriented. Traditional modules
define subroutines and variables for the caller to import and use. Object-oriented
modules function as class definitions and are accessed through method calls,
described in Chapter 12, Objects. Some modules do both.

Perl modules are typically included in your program by saying:

use MODULE LIST;

or just:

use MODULE;

299

300 Chapter 11: Modules

MODULE must be an identifier naming the module’s package and file. (The syntax
descriptions here are meant to be suggestive; the full syntax of the use statement is
given in Chapter 29, Functions.)

The use statement does a preload of MODULE at compile time and then an import of
the symbols you’ve requested so that they’ll be available for the rest of the compi-
lation. If you do not supply a LIST of symbols that you want, the symbols named
in the module’s internal @EXPORT array are used — assuming you’r e using the
Exporter module, described in “Module Privacy and the Exporter” later in this
chapter. (If you do supply a LIST, all your symbols must be mentioned in the
module’s @EXPORT or @EXPORT_OK arrays, or an error will result.)

Since modules use the Exporter to import symbols into the current package, you
can use symbols from the module without providing a package qualifier:

use Fred; # If Fred.pm has @EXPORT = qw(flintstone)
flintstone(); # ...this calls Fred::flintstone().

All Perl module files have the extension .pm. Both use and require assume this (as
well as the quotes) so that you don’t have to spell out "MODULE.pm". Using the bare
identifier helps to differ entiate new modules from .pl and .ph libraries used in old
versions of Perl. It also introduces MODULE as an official module name, which helps
the parser in certain ambiguous situations. Any double colons in the module name
ar e translated into your system’s directory separator, so if your module is named
Red::Blue::Green, Perl might look for it as Red/Blue/Gr een.pm.

Perl will search for modules in each of the directories listed in the @INC array.
Since use loads modules at compile time, any modifications to @INC need to occur
at compile time as well. You can do this with the lib pragma described in
Chapter 31 or with a BEGIN block. Once a module is included, a key/value pair
will be added to the %INC hash. The key will be the module filename
(Red/Blue/Green.pm in our example) and the value will be the full pathname,
which might be something like C:/perl/site/lib/Red/Blue/Green.pm for a prop-
erly installed module on a Windows system.

Module names should be capitalized unless they’re functioning as pragmas. Prag-
mas are in effect compiler directives (hints for the compiler), so we reserve the
lowercase pragma names for future use.

When you use a module, any code inside the module is executed, just as it would
be for an ordinary require. If you really don’t care whether the module is pulled
in at compile time or run time, you can just say:

require MODULE;

In general, however, use is preferr ed over require because it looks for modules
during compilation, so you learn about any mistakes sooner.

These two statements do almost the same thing:

require MODULE;
require "MODULE.pm";

They differ in two ways, however. In the first statement, require translates any
double colons in the module name into your system’s directory separator, just as
use does. The second case does no translation, forcing you to specify the path-
name of your module literally, which is less portable. The other differ ence is that
the first require tells the compiler that the expressions with indirect object nota-
tion involving “MODULE ” (such as $ob = purge MODULE) are method calls, not func-
tion calls. (Yes, this really can make a differ ence, if there’s a conflicting definition
of purge in your own module.)

Because the use declaration and the related no declaration imply a BEGIN block,
the compiler loads the module (and runs any executable initialization code in it)
as soon as it encounters that declaration, befor e it compiles the rest of the file. This
is how pragmas can change the compiler’s behavior, and also how modules are
able to declare subr outines that are then visible as list operators for the remainder
of compilation. This will not work if you use require instead of use. Just about the
only reason to use require is if you have two modules that each need a function
fr om the other. (And we’re not sure that’s a good reason.)

Perl modules always load a .pm file, but that file may in turn load associated files,
such as dynamically linked C or C++ libraries or autoloaded Perl subroutine defini-
tions. If so, the additional shenanigans will be entirely transparent to the module
user. It is the responsibility of the .pm file to load (or arrange to autoload) any
additional functionality. The POSIX module happens to perfor m both dynamic
loading and autoloading, but the user can say just:

use POSIX;

to get all the exported functions and variables.

Creating Modules
Earlier, we said that there are two ways for a module to make its interface avail-
able to your program: by exporting symbols or by allowing method calls. We’ll
show you an example of the first style here; the second style is for object-oriented
modules and is described in the next chapter. (Object-oriented modules should
export nothing, since the whole idea of methods is that Perl finds them for you
automatically, based on the type of the object.)

Creating Modules 301

302 Chapter 11: Modules

To construct a module called Bestiary, create a file called Bestiary.pm that looks
like this:

package Bestiary;
require Exporter;

our @ISA = qw(Exporter);
our @EXPORT = qw(camel); # Symbols to be exported by default
our @EXPORT_OK = qw($weight); # Symbols to be exported on request
our $VERSION = 1.00; # Version number

Include your variables and functions here

sub camel { print "One-hump dromedary" }

$weight = 1024;

1;

A program can now say use Bestiary to be able to access the camel function (but
not the $weight variable), and use Bestiary qw(camel $weight) to access both the
function and the variable.

You can also create modules that dynamically load code written in C. See
Chapter 21, Inter nals and Externals, for details.

Module Privac y and the Exporter
Perl does not automatically patrol private/public borders within its modules—
unlike languages such as C++, Java, and Ada, Perl isn’t obsessed with enforced pri-
vacy. A Perl module would prefer that you stay out of its living room because you
wer en’t invited, not because it has a shotgun.

The module and its user have a contract, part of which is common law and part of
which is written. Part of the common law contract is that a module refrain from
changing any namespace it wasn’t asked to change. The written contract for the
module (that is, the documentation) may make other provisions. But then, having
read the contract, you presumably know that when you say use RedefineTheWorld

you’r e redefining the world, and you’re willing to risk the consequences. The most
common way to redefine worlds is to use the Exporter module. As we’ll see later
in the chapter, you can even redefine built-ins with this module.

When you use a module, the module typically makes some variables or functions
available to your program, or more specifically, to your program’s current pack-
age. This act of exporting symbols from the module (and thus importing them into
your program) is sometimes called polluting your namespace. Most modules use
Exporter to do this; that’s why most modules say something like this near the top:

require Exporter;
our @ISA = ("Exporter");

These two lines make the module inherit from the Exporter class. Inheritance is
described in the next chapter, but all you need to know is our Bestiary module
can now export symbols into other packages with lines like these:

our @EXPORT = qw($camel %wolf ram); # Export by default
our @EXPORT_OK = qw(leopard @llama $emu); # Export by request
our %EXPORT_TAGS = (# Export as group

camelids => [qw($camel @llama)],
critters => [qw(ram $camel %wolf)],

);

Fr om the viewpoint of the exporting module, the @EXPORT array contains the
names of variables and functions to be exported by default: what your program
gets when it says use Bestiary. Variables and functions in @EXPORT_OK ar e
exported only when the program specifically requests them in the use statement.
Finally, the key/value pairs in %EXPORT_TAGS allow the program to include particu-
lar groups of the symbols listed in @EXPORT and @EXPORT_OK.

Fr om the viewpoint of the importing package, the use statement specifies a list of
symbols to import, a group named in %EXPORT_TAGS, a patter n of symbols, or noth-
ing at all, in which case the symbols in @EXPORT would be imported from the mod-
ule into your program.

You can include any of these statements to import symbols from the Bestiary

module:

use Bestiary; # Import @EXPORT symbols
use Bestiary (); # Import nothing
use Bestiary qw(ram @llama); # Import the ram function and @llama array
use Bestiary qw(:camelids); # Import $camel and @llama
use Bestiary qw(:DEFAULT); # Import @EXPORT symbols
use Bestiary qw(/am/); # Import $camel, @llama, and ram
use Bestiary qw(/ˆ\$/); # Import all scalars
use Bestiary qw(:critters !ram); # Import the critters, but exclude ram
use Bestiary qw(:critters !:camelids);

Import critters, but no camelids

Leaving a symbol off the export lists (or removing it explicitly from the import list
with the exclamation point) does not render it inaccessible to the program using
the module. The program will always be able to access the contents of the mod-
ule’s package by fully qualifying the package name, like %Bestiary::gecko. (Since
lexical variables do not belong to packages, privacy is still possible: see “Private
Methods” in the next chapter.)

You can say BEGIN { $Exporter::Verbose=1 } to see how the specifications are
being processed and what is actually being imported into your package.

Creating Modules 303

304 Chapter 11: Modules

The Exporter is itself a Perl module, and if you’re curious you can see the type-
glob trickery it uses to export symbols from one package into another. Inside the
Export module, the key function is named import, which perfor ms the necessary
aliasing to make a symbol in one package appear to be in another. In fact, a use

Bestiary LIST statement is exactly equivalent to:

BEGIN {
require Bestiary;
import Bestiary LIST;

}

This means that your modules don’t have to use the Exporter. A module can do
anything it jolly well pleases when it’s used, since use just calls the ordinary
import method for the module, and you can define that method to do anything
you like.

Expor ting without using Exporter’s impor t method

The Exporter defines a method called export_to_level, used for situations where
(for some reason) you can’t directly call Exporter’s import method. The
export_to_level method is invoked like this:

MODULE->export_to_level($where_to_export, @what_to_export);

wher e $where_to_export is an integer indicating how far up the calling stack to
export your symbols, and @what_to_export is an array listing the symbols to export
(usually @_).

For example, suppose our Bestiary had an import function of its own:

package Bestiary;
@ISA = qw(Exporter);
@EXPORT_OK = qw ($zoo);

sub import {
$Bestiary::zoo = "menagerie";

}

The presence of this import function prevents Exporter’s import function from
being inherited. If you want Bestiary’s import function to behave just like
Exporter’s import function once it sets $Bestiary::zoo, you’d define it as follows:

sub import {
$Bestiary::zoo = "menagerie";
Bestiary->export_to_level(1, @_);

}

This exports symbols to the package one level “above” the current package. That
is, to whatever program or module is using the Bestiary.

Version checking

If your module defines a $VERSION variable, a program using your module can
ensur e that the module is sufficiently recent. For example:

use Bestiary 3.14; # The Bestiary must be version 3.14 or later
use Bestiary v1.0.4; # The Bestiary must be version 1.0.4 or later

These are converted into calls to Bestiary->require_version, which your module
then inherits.

Manag ing unknown symbols

In some situations, you may want to pr event certain symbols from being exported.
Typically, this applies to modules that have functions or constants that might not
make sense on some systems. You can prevent the Exporter fr om exporting those
symbols by placing them in the @EXPORT_FAIL array.

If a program attempts to import any of these symbols, the Exporter gives the mod-
ule an opportunity to handle the situation before generating an error. It does this
by calling an export_fail method with a list of the failed symbols, which you
might define as follows (assuming your module uses the Carp module):

sub export_fail {
my $class = shift;
carp "Sorry, these symbols are unavailable: @_";
return @_;

}

The Exporter pr ovides a default export_fail method, which simply retur ns the list
unchanged and makes the use fail with an exception raised for each symbol. If
export_fail retur ns an empty list, no error is recorded and all the requested sym-
bols are exported.

Tag-handling utility functions

Since the symbols listed within %EXPORT_TAGS must also appear in either @EXPORT or
@EXPORT_OK, the Exporter pr ovides two functions to let you add those tagged sets
of symbols:

%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

Exporter::export_tags(’foo’); # add aa, bb and cc to @EXPORT
Exporter::export_ok_tags(’bar’); # add aa, cc and dd to @EXPORT_OK

Specifying names that are not tags is erroneous.

Creating Modules 305

306 Chapter 11: Modules

Over r iding Built-in Functions
Many built-in functions may be overridden, although (like knocking holes in your
walls) you should do this only occasionally and for good reason. Typically, this
might be done by a package attempting to emulate missing built-in functionality
on a non-Unix system. (Do not confuse overriding with overloading, which adds
additional object-oriented meanings to built-in operators, but doesn’t override
much of anything. See the discussion of the overload module in Chapter 13, Over-
loading for more on that.)

Overriding may be done only by importing the name from a module—ordinary
pr edeclaration isn’t good enough. To be per fectly forthcoming, it’s the assignment
of a code refer ence to a typeglob that triggers the override, as in *open =

\&myopen. Further more, the assignment must occur in some other package; this
makes accidental overriding through typeglob aliasing intentionally difficult. How-
ever, if you really want to do your own overriding, don’t despair, because the subs

pragma lets you predeclar e subr outines via the import syntax, so those names then
override the built-in ones:

use subs qw(chdir chroot chmod chown);
chdir $somewhere;
sub chdir { ... }

In general, modules should not export built-in names like open or chdir as part of
their default @EXPORT list, since these names may sneak into someone else’s names-
pace and change the semantics unexpectedly. If the module includes the name in
the @EXPORT_OK list instead, importers will be forced to explicitly request that the
built-in name be overridden, thus keeping everyone honest.

The original versions of the built-in functions are always accessible via the CORE

pseudopackage. Therefor e, CORE::chdir will always be the version originally com-
piled into Perl, even if the chdir keyword has been overridden.

Well, almost always. The foregoing mechanism for overriding built-in functions is
restricted, quite deliberately, to the package that requests the import. But there is a
mor e sweeping mechanism you can use when you wish to override a built-in
function everywhere, without regard to namespace boundaries. This is achieved
by defining the function in the CORE::GLOBAL pseudopackage. Below is an example
that replaces the glob operator with something that understands regular expres-
sions. (Note that this example does not implement everything needed to cleanly
override Perl’s built-in glob, which behaves differ ently depending on whether it
appears in a scalar or list context. Indeed, many Perl built-ins have such context-
sensitive behaviors, and any properly written override should adequately support
these. For a fully functional example of glob overriding, study the File::Glob

module bundled with Perl.) Anyway, here’s the antisocial version:

*CORE::GLOBAL::glob = sub {
my $pat = shift;
my @got;
local *D;
if (opendir D, ’.’) {

@got = grep /$pat/, readdir D;
closedir D;

}
return @got;

}

package Whatever;

print <ˆ[a-z_]+\.pm\$>; # show all pragmas in the current directory

By overriding glob globally, this preemptively forces a new (and subversive)
behavior for the glob operator in every namespace, without the cognizance or
cooperation of modules that own those namespaces. Naturally, this must be done
with extreme caution—if it must be done at all. And it probably mustn’t.

Our overriding philosophy is: it’s nice to be important, but it’s more important to
be nice.

Over r iding Built-in Functions 307

12
Objects

First of all, you need to understand packages and modules; see Chapter 10, Pack-
ages, and Chapter 11, Modules. You also need to know about refer ences and data
structur es; see Chapter 8, Refer ences and Chapter 9, Data Structures. It’s also help-
ful to understand a little about object-oriented programming (OOP), so in the next
section we’ll give you a little course on OOL (object-oriented lingo).

Br ief Refresher on Object-Oriented Lingo
An object is a data structure with a collection of behaviors. We generally speak of
the behaviors as acted out by the object directly, sometimes to the point of anthro-
pomorphizing the object. For example, we might say that a rectangle “knows”
how to display itself on the screen, or that it “knows” how to compute its own
ar ea.

Every object gets its behaviors by virtue of being an instance of a class. The class
defines methods: behaviors that apply to the class and its instances. When the dis-
tinction matters, we refer to methods that apply only to a particular object as
instance methods and those that apply to the entire class as class methods. But this
is only a convention—to Perl, a method is just a method, distinguished only by
the type of its first argument.

You can think of an instance method as some action perfor med by a particular
object, such as printing itself out, copying itself, or altering one or more of its
pr operties (“set this sword’s name to Anduril”). Class methods might perfor m oper-
ations on many objects collectively (“display all swords”) or provide other opera-
tions that aren’t dependent on any particular object (“from now on, whenever a

308

new sword is forged, register its owner in this database”). Methods that generate
instances (objects) of a class are called constructor methods (“cr eate a sword with
a gem-studded hilt and a secret inscription”). These are usually class methods
(“make me a new sword”) but can also be instance methods (“make a copy just
like this sword here”).

A class may inherit methods from par ent classes, also known as base classes or
super classes. If it does, it’s known as a derived class or a subclass. (Confusing the
issue further, some literature uses “base class” to mean a “most super” superclass.
That’s not what we mean by it.) Inheritance makes a new class that behaves just
like an existing one but also allows for altered or added behaviors not found in its
par ents. When you invoke a method whose definition is not found in the class,
Perl automatically consults the parent classes for a definition. For example, a
sword class might inherit its attack method from a generic blade class. Parents can
themselves have parents, and Perl will search those classes as well when it needs
to. The blade class might in turn inherit its attack method from an even more
generic weapon class.

When the attack method is invoked on an object, the resulting behavior may
depend on whether that object is a sword or an arrow. Perhaps there wouldn’t be
any differ ence at all, which would be the case if both swords and arrows inherited
their attacking behavior from the generic weapon class. But if there wer e a dif fer-
ence in behaviors, the method dispatch mechanism would always select the
attack method suitable for the object in question. The useful property of always
selecting the most appropriate behavior for a particular type of object is known as
polymorphism. It’s an important form of not caring.

You have to care about the innards of your objects when you’re implementing a
class, but when you use a class, you should be thinking of its objects as black
boxes. You can’t see what’s inside, you shouldn’t need to know how it works, and
you interact with the box only on its terms: via the methods provided by the class.
Even if you know what those methods do to the object, you should resist the urge
to fiddle around yourself. It’s like the remote control for your television set: even if
you know what’s going on inside it, you shouldn’t monkey with its innards with-
out good reason.

Perl lets you peer inside the object from outside the class when you need to. But
doing so breaks its encapsulation, the principle that all access to an object should
be through methods alone. Encapsulation decouples the published interface (how
an object should be used) from the implementation (how it actually works). Perl
does not have an explicit interface facility apart from this unwritten contract
between designer and user. Both parties are expected to exercise common sense
and common decency: the user by relying only upon the documented interface,
the designer by not breaking that interface.

Br ief Refresher on Object-Oriented Lingo 309

310 Chapter 12: Objects

Perl doesn’t force a particular style of programming on you, and it doesn’t have
the obsession with privacy that some other object-oriented languages do. Perl does
have an obsession with freedom, however, and one of the freedoms you have as a
Perl programmer is the right to select as much or as little privacy as you like. In
fact, Perl can have stronger privacy in its classes and objects than C++. That is,
Perl does not restrict you from anything, and in particular it doesn’t restrict you
fr om restricting yourself, if you’re into that kind of thing. The sections “Private
Methods” and “Closures as Objects” later in this chapter demonstrate how you can
incr ease your dosage of discipline.

Admittedly, there’s a lot more to objects than this, and a lot of ways to find out
mor e about object-oriented design. But that’s not our purpose here. So, on we go.

Perl’s Object System
Perl doesn’t provide any special syntax for defining objects, classes, or methods.
Instead, it reuses existing constructs to implement these three concepts.*

Her e ar e some simple definitions that you may find reassuring:

An object is simply a refer ence . . . er, a refer ent.
Since refer ences let individual scalars repr esent larger collections of data, it
shouldn’t be a surprise that refer ences ar e used for all objects. Technically, an
object isn’t the refer ence pr oper—it’s really the refer ent that the refer ence
points at. This distinction is frequently blurred by Perl programmers, however,
and since we feel it’s a lovely metonymy, we will perpetuate the usage here
when it suits us.†

A class is simply a package.
A package serves as a class by using the package’s subroutines to execute the
class’s methods, and by using the package’s variables to hold the class’s global
data. Often, a module is used to hold one or more classes.

A method is simply a subroutine.
You just declare subr outines in the package you’re using as the class; these
will then be used as the class’s methods. Method invocation, a new way to call
subr outines, passes an extra argument: the object or package used for invok-
ing the method.

* Now ther e’s an example of software reuse for you!

† We prefer linguistic vigor over mathematical rigor. Either you will agree or you won’t.

Method Invocation
If you were to boil down all of object-oriented programming into one quintessen-
tial notion, it would be abstraction. It’s the single underlying theme you’ll find
running through all those 10-dollar words that OO enthusiasts like to bandy about,
like polymorphism and inheritance and encapsulation. We believe in those fancy
words, but we’ll address them from the practical viewpoint of what it means to
invoke methods. Methods lie at the heart of the object system because they pro-
vide the abstraction layer needed to implement all these fancy terms. Instead of
dir ectly accessing a piece of data sitting in an object, you invoke an instance
method. Instead of directly calling a subroutine in some package, you invoke a
class method. By interposing this level of indirection between class use and class
implementation, the program designer remains free to tinker with the internal
workings of the class, with little risk of breaking programs that use it.

Perl supports two differ ent syntactic forms for invoking methods. One uses a
familiar style you’ve already seen elsewhere in Perl, and the second is a form you
may recognize from other programming languages. No matter which form of
method invocation is used, the subroutine constituting the method is always
passed an extra initial argument. If a class is used to invoke the method, that argu-
ment will be the name of the class. If an object is used to invoke the method, that
argument will be the refer ence to the object. Whichever it is, we’ll call it the
method’s invocant. For a class method, the invocant is the name of a package. For
an instance method, the invocant is a refer ence that specifies an object.

In other words, the invocant is whatever the method was invoked with. Some OO
literatur e calls this the method’s agent or its actor. Grammatically, the invocant is
neither the subject of the action nor the receiver of that action. It’s more like an
indir ect object, the beneficiary on whose behalf the action is perfor med—just like
the word “me” in the command, “Forge me a sword!” Semantically, you can think
of the invocant as either an invoker or an invokee, whichever fits better into your
mental apparatus. We’r e not going to tell you how to think. (Well, not about that.)

Most methods are invoked explicitly, but methods may also be invoked implicitly
when triggered by object destructors, overloaded operators, or tied variables.
Pr operly speaking, these are not regular subroutine calls, but rather method invo-
cations automatically triggered by Perl on behalf of an object. Destructors are
described later in this chapter, overloading is described in Chapter 13, Overload-
ing, and ties are described in Chapter 14, Tied Variables.

Method Invocation 311

312 Chapter 12: Objects

One differ ence between methods and regular subroutines is when their packages
ar e resolved — that is, how early (or late) Perl decides which code should be exe-
cuted for the method or subroutine. A subroutine’s package is resolved during
compilation, before your program begins to run.* In contrast, a method’s package
isn’t resolved until it is actually invoked. (Prototypes are checked at compile time,
which is why regular subroutines can use them but methods can’t.)

The reason a method’s package can’t be resolved earlier is relatively straightfor-
ward: the package is determined by the class of the invocant, and the invocant
isn’t known until the method is actually invoked. At the heart of OO is this simple
chain of logic: once the invocant is known, the invocant’s class is known, and
once the class is known, the class’s inheritance is known, and once the class’s
inheritance is known, the actual subroutine to call is known.

The logic of abstraction comes at a price. Because of the late resolution of meth-
ods, an object-oriented solution in Perl is likely to run slower than the correspond-
ing non-OO solution. For some of the fancier techniques described later, it could
be a lot slower. However, many common problems are solved not by working
faster, but by working smarter. That’s where OO shines.

Method Invocation Using the Arrow Operator
We mentioned that there are two styles of method invocation. The first style for
invoking a method looks like this:

INVOCANT->METHOD(LIST)
INVOCANT->METHOD

For obvious reasons, this style is usually called the arrow form of invocation. (Do
not confuse -> with =>, the “double-barreled” arrow used as a fancy comma.)
Par entheses ar e requir ed if there are any arguments. When executed, the invoca-
tion first locates the subroutine determined jointly by the class of the INVOCANT and
the METHOD name, and then calls that subroutine, passing INVOCANT as its first argu-
ment.

When INVOCANT is a refer ence, we say that METHOD is invoked as an instance
method, and when INVOCANT is a package name, we say that METHOD is invoked as
a class method. There really is no differ ence between the two, other than that the
package name is more obviously associated with the class itself than with the
objects of the class. You’ll have to take our word for it that the objects also know

* Mor e pr ecisely, the subroutine call is resolved down to a particular typeglob, a refer ence to which is
stuf fed into the compiled opcode tree. The meaning of that typeglob is negotiable even at run
time — this is how AUTOLOAD can autoload a subroutine for you. Normally, however, the meaning of
the typeglob is also resolved at compile time by the definition of an appropriately named subroutine.

their class. We’ll tell you in a bit how to associate an object with a class name, but
you can use objects without knowing that.

For example, to construct an object using the class method summon and then
invoke the instance method speak on the resulting object, you might say this:

$mage = Wizard->summon("Gandalf"); # class method
$mage->speak("friend"); # instance method

The summon and speak methods are defined by the Wizard class — or one of the
classes from which it inherits. But you shouldn’t worry about that. Do not meddle
in the affairs of Wizards.

Since the arrow operator is left associative (see Chapter 3, Unary and Binary Oper-
ators), you can even combine the two statements into one:

Wizard->summon("Gandalf")->speak("friend");

Sometimes you want to invoke a method without knowing its name ahead of time.
You can use the arrow form of method invocation and replace the method name
with a simple scalar variable:

$method = "summon";
$mage = Wizard->$method("Gandalf"); # Invoke Wizard->summon

$travel = $companion eq "Shadowfax" ? "ride" : "walk";
$mage->$travel("seven leagues"); # Invoke $mage->ride or $mage->walk

Although you’re using the name of the method to invoke it indirectly, this usage is
not forbidden by use strict ’refs’, since all method calls are in fact looked up
symbolically at the time they’re resolved.

In our example, we stored the name of a subroutine in $travel, but you could
also store a subr outine refer ence. This bypasses the method lookup algorithm, but
sometimes that’s exactly what you want to do. See both the section “Private Meth-
ods” and the discussion of the can method in the section “UNIVERSAL: The Ulti-
mate Ancestor Class”. To create a refer ence to a particular method being called on
a particular instance, see the section “Closures” in Chapter 8.

Method Invocation Using Indirect Objects
The second style of method invocation looks like this:

METHOD INVOCANT (LIST)
METHOD INVOCANT LIST
METHOD INVOCANT

Method Invocation 313

314 Chapter 12: Objects

The parentheses around LIST ar e optional; if omitted, the method acts as a list
operator. So you can have statements like the following, all of which use this style
of method call:

$mage = summon Wizard "Gandalf";
$nemesis = summon Balrog home => "Moria", weapon => "whip";
move $nemesis "bridge";
speak $mage "You cannot pass";
break $staff; # safer to use: break $staff ();

The list operator syntax should be familiar to you; it’s the same style used for pass-
ing filehandles to print or printf:

print STDERR "help!!!\n";

It’s also similar to English sentences like “Give Gollum the Preciousss”, so we call
it the indir ect object for m. The invocant is expected in the indir ect object slot.
When you read about passing a built-in function like system or exec something in
its “indirect object slot”, this means that you’re supplying this extra, comma-less
argument in the same place you would when you invoke a method using the indi-
rect object syntax.

The indirect object form even permits you to specify the INVOCANT as a BLOCK that
evaluates to an object (refer ence) or class (package). This lets you combine those
two invocations into one statement this way:

speak { summon Wizard "Gandalf" } "friend";

Syntactic Snafus with Indirect Objects
One syntax will often be more readable than the other. The indirect object syntax
is less cluttered, but suffers from several forms of syntactic ambiguity. The first is
that the LIST part of an indirect object invocation is parsed the same as any other
list operator. Thus, the parentheses of:

enchant $sword ($pips + 2) * $cost;

ar e assumed to surround all the arguments, regardless of what comes afterward. It
would therefor e be be equivalent to this:

($sword->enchant($pips + 2)) * $cost;

That’s unlikely to do what you want: enchant is only being called with $pips + 2,
and the method’s retur n value is then multiplied by $cost. As with other list opera-
tors, you must also be careful of the precedence of && and || versus and and or.

For example, this:

name $sword $oldname || "Glamdring"; # can’t use "or" here!

becomes the intended:

$sword->name($oldname || "Glamdring");

but this:

speak $mage "friend" && enter(); # should’ve been "and" here!

becomes the dubious:

$mage->speak("friend" && enter());

which could be fixed by rewriting into one of these equivalent forms:

enter() if $mage->speak("friend");
$mage->speak("friend") && enter();
speak $mage "friend" and enter();

The second syntactic infelicity of the indirect object form is that its INVOCANT is lim-
ited to a name, an unsubscripted scalar variable, or a block.* As soon as the parser
sees one of these, it has its INVOCANT, so it starts looking for its LIST. So these invo-
cations:

move $party->{LEADER}; # probably wrong!
move $riders[$i]; # probably wrong!

actually parse as these:

$party->move->{LEADER};
$riders->move([$i]);

rather than what you probably wanted:

$party->{LEADER}->move;
$riders[$i]->move;

The parser only looks a little ways ahead to find the invocant for an indirect
object, not even as far as it would look for a unary operator. This oddity does not
arise with the first notation, so you might wish to stick with the arrow as your
weapon of choice.

Even English has a similar issue here. Think about the command, “Throw your cat
out the window a toy mouse to play with.” If you parse that sentence too quickly,
you’ll end up throwing the cat, not the mouse (unless you notice that the cat is
alr eady out the window). Like Perl, English has two differ ent syntaxes for

* Attentive readers will recall that this is precisely the same list of syntactic items that are allowed after
a funny character to indicate a variable derefer ence—for example, @ary, @$aryref, or @{$aryref}.

Method Invocation 315

316 Chapter 12: Objects

expr essing the agent: “Throw your cat the mouse” and “Throw the mouse to your
cat.” Sometimes the longer form is clear er and more natural, and sometimes the
shorter one is. At least in Perl, you’re requir ed to use braces around any compli-
cated indirect object.

Package-Quoted Classes
The final syntactic ambiguity with the indirect object style of method invocation is
that it may not be parsed as a method call at all, because the current package may
have a subroutine of the same name as the method. When using a class method
with a literal package name as the invocant, there is a way to resolve this ambigu-
ity while still keeping the indirect object syntax: package-quote the classname by
appending a double colon to it.

$obj = method CLASS::; # forced to be "CLASS"->method

This is important because the commonly seen notation:

$obj = new CLASS; # might not parse as method

will not always behave properly if the current package has a subroutine named
new or CLASS. Even if you studiously use the arrow form instead of the indirect
object form to invoke methods, this can, on rare occasion, still be a problem. At
the cost of extra punctuation noise, the CLASS:: notation guarantees how Perl will
parse your method invocation. The first two examples below do not always parse
the same way, but the second two do:

$obj = new ElvenRing; # could be new("ElvenRing")
or even new(ElvenRing())

$obj = ElvenRing->new; # could be ElvenRing()->new()

$obj = new ElvenRing::; # always "ElvenRing"->new()
$obj = ElvenRing::->new; # always "ElvenRing"->new()

This package-quoting notation can be made prettier with some creative alignment:

$obj = new ElvenRing::
name => "Narya",
owner => "Gandalf",
domain => "fire",
stone => "ruby";

Still, you may say, “Oh, ugh!” at that double colon, so we’ll tell you that you can
almost always get away with a bare class name, provided two things are true. First,
ther e is no subroutine of the same name as the class. (If you follow the conven-
tion that subroutine names like new start lowercase and class names like ElvenRing

start uppercase, this is never a problem.) Second, the class has been loaded with
one of:

use ElvenRing;
require ElvenRing;

Either of these declarations ensures that Perl knows ElvenRing is a module name,
which forces any bare name like new befor e the class name ElvenRing to be inter-
pr eted as a method call, even if you happen to have declared a new subr outine of
your own in the current package. People don’t generally get into trouble with indi-
rect objects unless they start cramming multiple classes into the same file, in which
case Perl might not know that a particular package name was supposed to be a
class name. People who name subroutines with names that look like ModuleNames

also come to grief eventually.

Object Construction
All objects are refer ences, but not all refer ences ar e objects. A refer ence won’t
work as an object unless its refer ent is specially marked to tell Perl what package
it belongs to. The act of marking a refer ent with a package name—and therefor e,
its class, since a class is just a package—is known as blessing. You can think of
the blessing as turning a refer ence into an object, although it’s more accurate to
say that it turns the refer ence into an object refer ence.

The bless function takes either one or two arguments. The first argument is a ref-
er ence and the second is the package to bless the refer ent into. If the second argu-
ment is omitted, the current package is used.

$obj = { }; # Get reference to anonymous hash.
bless($obj); # Bless hash into current package.
bless($obj, "Critter"); # Bless hash into class Critter.

Her e we’ve used a refer ence to an anonymous hash, which is what people usually
use as the data structure for their objects. Hashes are extr emely flexible, after all.
But allow us to emphasize that you can bless a refer ence to anything you can
make a refer ence to in Perl, including scalars, arrays, subroutines, and typeglobs.
You can even bless a refer ence to a package’s symbol table hash if you can think
of a good reason to. (Or even if you can’t.) Object orientation in Perl is completely
orthogonal to data structure.

Once the refer ent has been blessed, calling the built-in ref function on its refer-
ence retur ns the name of the blessed class instead of the built-in type, such as
HASH. If you want the built-in type, use the reftype function from the attributes

module. See use attributes in Chapter 31, Pragmatic Modules.

And that’s how to make an object. Just take a refer ence to something, give it a
class by blessing it into a package, and you’re done. That’s all there is to it if
you’r e designing a minimal class. If you’re using a class, there’s even less to it,
because the author of a class will have hidden the bless inside a method called a

Object Construction 317

318 Chapter 12: Objects

constructor, which creates and retur ns instances of the class. Because bless

retur ns its first argument, a typical constructor can be as simple as this:

package Critter;
sub spawn { bless {}; }

Or, spelled out slightly more explicitly:

package Critter;
sub spawn {

my $self = {}; # Reference to an empty anonymous hash
bless $self, "Critter"; # Make that hash a Critter object
return $self; # Return the freshly generated Critter

}

With that definition in hand, here’s how one might create a Critter object:

$pet = Critter->spawn;

Inher itable Constr uctors
Like all methods, a constructor is just a subroutine, but we don’t call it as a sub-
routine. We always invoke it as a method—a class method, in this particular case,
because the invocant is a package name. Method invocations differ from regular
subr outine calls in two ways. First, they get the extra argument we discussed ear-
lier. Second, they obey inheritance, allowing one class to use another’s methods.

We’ll describe the underlying mechanics of inheritance more rigor ously in the next
section, but for now, some simple examples of its effects should help you design
your constructors. For instance, suppose we have a Spider class that inherits meth-
ods from the Critter class. In particular, suppose the Spider class doesn’t have its
own spawn method. The following correspondences apply:

Method Call Resulting Subroutine Call

Critter->spawn() Critter::spawn("Critter")

Spider->spawn() Critter::spawn("Spider")

The subroutine called is the same in both cases, but the argument differs. Note
that our spawn constructor above completely ignored its argument, which means
our Spider object was incorrectly blessed into class Critter. A better constructor
would provide the package name (passed in as the first argument) to bless:

sub spawn {
my $class = shift; # Store the package name
my $self = { };
bless($self, $class); # Bless the reference into that package
return $self;

}

Now you could use the same subroutine for both these cases:

$vermin = Critter->spawn;
$shelob = Spider->spawn;

And each object would be of the proper class. This even works indirectly, as in:

$type = "Spider";
$shelob = $type->spawn; # same as "Spider"->spawn

That’s still a class method, not an instance method, because its invocant holds a
string and not a refer ence.

If $type wer e an object instead of a class name, the previous constructor definition
wouldn’t have worked, because bless needs a class name. But for many classes, it
makes sense to use an existing object as the template from which to create
another. In these cases, you can design your constructors so that they work with
either objects or class names:

sub spawn {
my $invocant = shift;
my $class = ref($invocant) || $invocant; # Object or class name
my $self = { };
bless($self, $class);
return $self;

}

Initializer s
Most objects maintain internal information that is indirectly manipulated by the
object’s methods. All our constructors so far have created empty hashes, but
ther e’s no reason to leave them empty. For instance, we could have the construc-
tor accept extra arguments to store into the hash as key/value pairs. The OO litera-
tur e often refers to such data as pr operties, attributes, accessors, member data,
instance data, or instance variables. The section “Instance Variables” later in this
chapter discusses attributes in more detail.

Imagine a Horse class with instance attributes like “name” and “color”:

$steed = Horse->new(name => "Shadowfax", color => "white");

If the object is implemented as a hash refer ence, the key/value pairs can be inter-
polated directly into the hash once the invocant is removed from the argument list:

sub new {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $self = { @_ }; # Remaining args become attributes
bless($self, $class); # Bestow objecthood
return $self;

}

Object Construction 319

320 Chapter 12: Objects

This time we used a method named new for the class’s constructor, which just
might lull C++ programmers into thinking they know what’s going on. But Perl
doesn’t consider “new” to be anything special; you may name your constructors
whatever you like. Any method that happens to create and retur n an object is a de
facto constructor. In general, we recommend that you name your constructors
whatever makes sense in the context of the problem you’re solving. For example,
constructors in the Tk module are named after the widgets they create. In the DBI

module, a constructor named connect retur ns a database handle object, and
another constructor named prepare is invoked as an instance method and retur ns
a statement handle object. But if there is no suitable context-specific constructor
name, new is perhaps not a terrible choice. Then again, maybe it’s not such a bad
thing to pick a random name to force people to read the interface contract (mean-
ing the class documentation) before they use its constructors.

Elaborating further, you can set up your constructor with default key/value pairs,
which the user could later override by supplying them as arguments:

sub new {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $self = {

color => "bay",
legs => 4,
owner => undef,
@_, # Override previous attributes

};
return bless $self, $class;

}

$ed = Horse->new; # A 4-legged bay horse
$stallion = Horse->new(color => "black"); # A 4-legged black horse

This Horse constructor ignores its invocant’s existing attributes when used as an
instance method. You could create a second constructor designed to be called as
an instance method, and if designed properly, you could use the values from the
invoking object as defaults for the new one:

$steed = Horse->new(color => "dun");
$foal = $steed->clone(owner => "EquuGen Guild, Ltd.");

sub clone {
my $model = shift;
my $self = $model->new(%$model, @_);
return $self; # Previously blessed by ->new

}

(You could also have rolled this functionality directly into new, but then the name
wouldn’t quite fit the function.)

Notice how even in the clone constructor, we don’t hardcode the name of the
Horse class. We have the original object invoke its own new method, whatever that
may be. If we had written that as Horse->new instead of $model->new, then the class
wouldn’t have facilitated inheritance by a Zebra or Unicorn class. You wouldn’t
want to clone Pegasus and suddenly find yourself with a horse of a differ ent color.

Sometimes, however, you have the opposite problem: rather than trying to share
one constructor among several classes, you’re trying to have several constructors
shar e one class’s object. This happens whenever a constructor wants to call a base
class’s constructor to do part of the construction work. Perl doesn’t do hierarchical
construction for you. That is, Perl does not automatically call the constructors (or
the destructors) for any base classes of the class requested, so your constructor
will have to do that itself and then add any additional attributes the derived class
needs. So the situation is not unlike the clone routine, except that instead of copy-
ing an existing object into the new object, you want to call your base class’s con-
structor and then transmogrify the new base object into your new derived object.

Class Inheritance
As with the rest of Perl’s object system, inheritance of one class by another
requir es no special syntax to be added to the language. When you invoke a
method for which Perl finds no subroutine in the invocant’s package, that pack-
age’s @ISA array* is examined. This is how Perl implements inheritance: each ele-
ment of a given package’s @ISA array holds the name of another package, which is
searched when methods are missing. For example, the following makes the Horse

class a subclass of the Critter class. (We declar e @ISA with our because it has to
be a package variable, not a lexical declared with my.)

package Horse;
our @ISA = "Critter";

You should now be able to use a Horse class or object everywhere that a Critter

was previously used. If your new class passes this empty subclass test, you know
that Critter is a proper base class, fit for inheritance.

Suppose you have a Horse object in $steed and invoke a move method on it:

$steed->move(10);

Because $steed is a Horse, Perl’s first choice for that method is the Horse::move

subr outine. If there isn’t one, instead of raising a run-time exception, Perl consults
the first element of @Horse::ISA, which directs it to look in the Critter package
for Critter::move. If this subroutine isn’t found either, and Critter has its own

* Pr onounced “is a”, as in “A horse is a critter.”

Class Inheritance 321

322 Chapter 12: Objects

@Critter::ISA array, then that too will be consulted for the name of an ancestral
package that might supply a move method, and so on back up the inheritance hier-
archy until we come to a package without an @ISA.

The situation we just described is single inheritance, wher e each class has only
one parent. Such inheritance is like a linked list of related packages. Perl also sup-
ports multiple inheritance ; just add more packages to the class’s @ISA. This kind of
inheritance works more like a tree data structure, because every package can have
mor e than one immediate parent. Some people find this to be sexier.

When you invoke a method methname on an invocant of type classname, Perl tries
six differ ent ways to find a subroutine to use:

1. First, Perl looks in the invocant’s own package for a subroutine named class-

name::methname. If that fails, inheritance kicks in, and we go to step 2.

2. Next, Perl checks for methods inherited from base classes by looking in all
parent packages listed in @classname::ISA for a parent::methname subr outine.
The search is left-to-right, recursive, and depth-first. The recursion assures that
grandpar ent classes, great-grandpar ent classes, great-gr eat-grandpar ent classes,
and so on, are all searched.

3. If that fails, Perl looks for a subroutine named UNIVERSAL::methname.

4. At this point, Perl gives up on methname and starts looking for an AUTOLOAD.
First, it looks for a subroutine named classname::AUTOLOAD.

5. Failing that, Perl searches all parent packages listed in @classname::ISA, for
any parent::AUTOLOAD subr outine. The search is again left-to-right, recursive,
and depth-first.

6. Finally, Perl looks for a subroutine named UNIVERSAL::AUTOLOAD.

Perl stops after the first successful attempt and invokes that subroutine. If no sub-
routine is found, an exception is raised, one that you’ll see frequently:

Can’t locate object method "methname" via package "classname"

If you’ve built a debugging version of Perl using the -DDEBUGGING option to your
C compiler, by using Perl’s -D o switch, you can watch it go through each of these
steps when it resolves method invocation.

We will discuss the inheritance mechanism in more detail as we go along.

Inher itance Through @ISA
If @ISA contains more than one package name, the packages are all searched in
left-to-right order. The search is depth-first, so if you have a Mule class set up for
inheritance this way:

package Mule;
our @ISA = ("Horse", "Donkey");

Perl looks for any methods missing from Mule first in Horse (and any of its ances-
tors, like Critter) befor e going on to search through Donkey and its ancestors.

If a missing method is found in a base class, Perl internally caches that location in
the current class for efficiency, so the next time it has to find the method, it
doesn’t have to look as far. Changing @ISA or defining new methods invalidates
the cache and causes Perl to perfor m the lookup again.

When Perl searches for a method, it makes sure that you haven’t created a circular
inheritance hierarchy. This could happen if two classes inherit from one another,
even indirectly through other classes. Trying to be your own great-grandfather is
too paradoxical even for Perl, so the attempt raises an exception. However, Perl
does not consider it an error to inherit from more than one class sharing a com-
mon ancestry, which is rather like cousins marrying. Your inheritance hierarchy
just stops looking like a tree and starts to look like a directed acyclic graph. This
doesn’t bother Perl—so long as the graph really is acyclic.

When you set @ISA, the assignment normally happens at run time, so unless you
take precautions, code in BEGIN, CHECK, or INIT blocks won’t be able to use the
inheritance hierarchy. One precaution (or convenience) is the use base pragma,
which lets you require classes and add them to @ISA at compile time. Here’s how
you might use it:

package Mule;
use base ("Horse", "Donkey"); # declare superclasses

This is a shorthand for:

package Mule;
BEGIN {

our @ISA = ("Horse", "Donkey");
require Horse;
require Donkey;

}

except that use base also takes into account any use fields declarations.

Sometimes folks are surprised that including a class in @ISA doesn’t require the
appr opriate module for you. That’s because Perl’s class system is largely orthogo-
nal to its module system. One file can hold many classes (since they’re just pack-
ages), and one package may be mentioned in many files. But in the most common
situation, where one package and one class and one module and one file all end
up being pretty interchangeable if you squint enough, the use base pragma offers
a declarative syntax that establishes inheritance, loads in module files, and
accommodates any declared base class fields. It’s one of those convenient diago-
nals we keep mentioning.

Class Inheritance 323

324 Chapter 12: Objects

See the descriptions of use base and use fields in Chapter 31 for further details.

Accessing Over r idden Methods
When a class defines a method, that subroutine overrides methods of the same
name in any base classes. Imagine that you’ve a Mule object (which is derived
fr om class Horse and class Donkey), and you decide to invoke your object’s breed

method. Although the parent classes have their own breed methods, the designer
of the Mule class overrode those by supplying the Mule class with its own breed

method. That means the following cross is unlikely to be productive:

$stallion = Horse->new(gender => "male");
$molly = Mule->new(gender => "female");
$colt = $molly->breed($stallion);

Now suppose that through the miracle of genetic engineering, you find some way
ar ound a mule’s notorious sterility problem, so you want to skip over the nonvi-
able Mule::breed method. You could call your method as an ordinary subroutine,
being sure to pass the invocant explicitly:

$colt = Horse::breed($molly, $stallion);

However, this sidesteps inheritance, which is nearly always the wrong thing to do.
It’s perfectly imaginable that no Horse::breed subr outine exists because both
Horses and Donkeys derive that behavior from a common parent class called
Equine. If, on the other hand, you want to specify that Perl should start searching
for a method in a particular class, just use ordinary method invocation but qualify
the method name with the class:

$colt = $molly->Horse::breed($stallion);

Occasionally, you’ll want a method in a derived class to act as a wrapper around
some method in a base class. The method in the derived class can itself invoke the
method in the base class, adding its own actions before or after that invocation.
You could use the notation just demonstrated to specify at which class to start the
search. But in most cases of overridden methods, you don’t want to have to know
or specify which parent class’s overridden method to execute.

That’s where the SUPER pseudoclass comes in handy. It lets you invoke an overrid-
den base class method without having to specify which class defined that
method.* The following subroutine looks in the current package’s @ISA without
making you specify particular classes:

* This is not to be confused with the mechanism mentioned in Chapter 11 for overriding Perl’s built-in
functions, which aren’t object methods and so aren’t overridden by inheritance. You call overridden
built-ins via the CORE pseudopackage, not the SUPER pseudopackage.

package Mule;
our @ISA = qw(Horse Donkey);
sub kick {

my $self = shift;
print "The mule kicks!\n";
$self->SUPER::kick(@_);

}

The SUPER pseudopackage is meaningful only when used inside a method.
Although the implementer of a class can employ SUPER in their own code, some-
one who merely uses a class’s objects cannot.

SUPER does not always work as you might like when multiple inheritance is
involved. As you’d expect, it follows @ISA just as the regular inheritance mecha-
nism does: in left-to-right, recursive, depth-first order. If both Horse and Donkey

had a speak method, and you preferr ed the Donkey method, you’d have to name
that parent class explicitly:

sub speak {
my $self = shift;
print "The mule speaks!\n";
$self->Donkey::speak(@_);

}

Mor e elaborate approaches to multiple inheritance situations can be crafted using
the UNIVERSAL::can method described in the next section. Or you can grab the
Class::Multimethods module from CPAN, which provides many elaborate solu-
tions, including finding the closest match instead of leftmost one.

Every bit of code in Perl knows what its current package is, as determined by the
last package statement. A SUPER method consults the @ISA only of the package into
which the call to SUPER was compiled. It does not care about the class of the invo-
cant, nor about the package of the subroutine that was called. This can cause
pr oblems if you try to define methods in another class by merely playing tricks
with the method name:

package Bird;
use Dragonfly;
sub Dragonfly::divebomb { shift->SUPER::divebomb(@_) }

Unfortunately, this invokes Bird’s superclass, not Dragonfly’s. To do what you’re
trying to do, you need to explicitly switch into the appropriate package for the
compilation of SUPER as well:

package Bird;
use Dragonfly;
{

package Dragonfly;
sub divebomb { shift->SUPER::divebomb(@_) }

}

Class Inheritance 325

326 Chapter 12: Objects

As this example illustrates, you never need to edit a module file just to add meth-
ods to an existing class. Since a class is just a package, and a method just a sub-
routine, all you have to do is define a function in that package as we’ve done
her e, and the class suddenly has a new method. No inheritance requir ed. Only the
package matters, and since packages are global, any package can be accessed
fr om anywher e in the program. (Did we mention we’re going to install a jacuzzi in
your living room next week?)

UNIVERSAL: The Ultimate Ancestor Class
If no method definition with the right name is found after searching the invocant’s
class and all its ancestor classes recursively, one more check for a method of that
name is made in the special predefined class called UNIVERSAL. This package never
appears in an @ISA, but is always consulted when an @ISA check fails. You can
think of UNIVERSAL as the ultimate ancestor from which all classes implicitly derive.

The following predefined methods are available in class UNIVERSAL, and thus in all
classes. These all work regardless of whether they are invoked as class methods or
object methods.

INVOCANT->isa(CLASS)

The isa method retur ns true if INVOCANT ’s class is CLASS or any class inheriting
fr om CLASS. Instead of a package name, CLASS may also be one of the built-in
types, such as “HASH” or “ARRAY”. (Checking for an exact type does not bode
well for encapsulation or polymorphism, though. You should be relying on
method dispatch to give you the right method.)

use FileHandle;
if (FileHandle->isa("Exporter")) {

print "FileHandle is an Exporter.\n";
}

$fh = FileHandle->new();
if ($fh->isa("IO::Handle")) {

print "\$fh is some sort of IOish object.\n";
}
if ($fh->isa("GLOB")) {

print "\$fh is really a GLOB reference.\n";
}

INVOCANT->can(METHOD)

The can method retur ns a refer ence to the subroutine that would be called if
METHOD wer e applied to INVOCANT. If no such subroutine is found, can retur ns
undef.

if ($invocant->can("copy")) {
print "Our invocant can copy.\n";

}

This could be used to conditionally invoke a method only if one exists:

$obj->snarl if $obj->can("snarl");

Under multiple inheritance, this allows a method to invoke all overridden base
class methods, not just the leftmost one:

sub snarl {
my $self = shift;
print "Snarling: @_\n";
my %seen;
for my $parent (@ISA) {

if (my $code = $parent->can("snarl")) {
$self->$code(@_) unless $seen{$code}++;

}
}

}

We use the %seen hash to keep track of which subroutines we’ve already
called, so we can avoid calling the same subroutine more than once. This
could happen if several parent classes shared a common ancestor.

Methods that would trigger an AUTOLOAD (described in the next section) will
not be accurately reported unless the package has declared (but not defined)
the subroutines it wishes to have autoloaded.

INVOCANT->VERSION(NEED)

The VERSION method retur ns the version number of INVOCANT ’s class, as stored
in the package’s $VERSION variable. If the NEED argument is provided, it verifies
that the current version isn’t less than NEED and raises an exception if it is. This
is the method that use invokes to determine whether a module is sufficiently
recent.

use Thread 1.0; # calls Thread->VERSION(1.0)
print "Running version ", Thread->VERSION, " of Thread.\n";

You may supply your own VERSION method to override the method in UNIVER-

SAL. However, this will cause any classes derived from your class to use the
overridden method, too. If you don’t want that to happen, you should design
your method to delegate other classes’ version requests back up to UNIVERSAL.

The methods in UNIVERSAL ar e built-in Perl subroutines, which you may call if you
fully qualify them and pass two arguments, as in UNIVERSAL::isa($formobj,

"HASH"). (This is not recommended, though, because can usually has the answer
you’r e really looking for.)

You’r e fr ee to add your own methods to class UNIVERSAL. (You should be careful,
of course; you could really mess someone up who is expecting not to find the
method name you’re defining, perhaps so that they can autoload it from some-
wher e else.) Here we create a copy method that objects of all classes can use if

Class Inheritance 327

328 Chapter 12: Objects

they’ve not defined their own. (We fail spectacularly if invoked on a class instead
of an object.)

use Data::Dumper;
use Carp;
sub UNIVERSAL::copy {

my $self = shift;
if (ref $self) {

return eval Dumper($self); # no CODE refs
} else {

confess "UNIVERSAL::copy can’t copy class $self";
}

}

This Data::Dumper strategy doesn’t work if the object contains any refer ences to
subr outines, because they cannot be properly repr oduced. Even if the source were
available, the lexical bindings would be lost.

Method Autoloading
Nor mally, when you call an undefined subroutine in a package that defines an
AUTOLOAD subr outine, the AUTOLOAD subr outine is called in lieu of raising an excep-
tion (see the section “Autoloading” in Chapter 10). With methods, this works a lit-
tle differ ently. If the regular method search (through the class, its ancestors, and
finally UNIVERSAL) fails to find a match, the same sequence is run again, this time
looking for an AUTOLOAD subr outine. If found, this subroutine is called as a method,
with the package’s $AUTOLOAD variable set to the fully qualified name of the sub-
routine on whose behalf AUTOLOAD was called.

You need to be a bit cautious when autoloading methods. First, the AUTOLOAD sub-
routine should retur n immediately if it’s being called on behalf of a method named
DESTROY, unless your goal was to simulate DESTROY, which has a special meaning to
Perl described in the section “Instance Destructors” later in this chapter.

sub AUTOLOAD {
return if our $AUTOLOAD =˜ /::DESTROY$/;
...

}

Second, if the class is providing an AUTOLOAD safety net, you won’t be able to use
UNIVERAL::can on a method name to check whether it’s safe to invoke. You have
to check for AUTOLOAD separately:

if ($obj->can("methname") || $obj->can("AUTOLOAD")) {
$obj->methname();

}

Finally, under multiple inheritance, if a class inherits from two or more classes
each of which has an AUTOLOAD, only the leftmost will ever be triggered, since Perl
stops as soon as it finds the first AUTOLOAD.

The last two quirks are easily circumvented by declaring the subroutines in the
package whose AUTOLOAD is supposed to manage those methods. You can do this
either with individual declarations:

package Goblin;
sub kick;
sub bite;
sub scratch;

or with the use subs pragma, which is more convenient if you have many meth-
ods to declare:

package Goblin;
use subs qw(kick bite scratch);

Even though you’ve only declared these subroutines and not defined them, this is
enough for the system to think they’re real. They show up in a UNIVERAL::can

check, and, more importantly, they show up in step 2 of the search for a method,
which will never progr ess to step 3, let alone step 4.

“But, but,” you exclaim, “they invoke AUTOLOAD, don’t they?” Well, yes, they do
eventually, but the mechanism is differ ent. Having found the method stub via step
2, Perl tries to call it. When it is discovered that the method isn’t all it was cracked
up to be, the AUTOLOAD method search kicks in again, but this time, it starts its
search in the class containing the stub, which restricts the method search to that
class and its ancestors (and UNIVERSAL). That’s how Perl finds the correct AUTOLOAD
to run and knows to ignore AUTOLOADs from the wrong part of the original inheri-
tance tree.

Pr ivate Methods
Ther e is one way to invoke a method so that Perl ignores inheritance altogether. If
instead of a literal method name, you specify a simple scalar variable containing a
refer ence to a subroutine, then the subroutine is called immediately. In the
description of UNIVERSAL->can in the previous section, the last example invokes all
overridden methods using the subroutine’s refer ence, not its name.

An intriguing aspect of this behavior is that it can be used to implement private
method calls. If you put your class in a module, you can make use of the file’s lex-
ical scope for privacy. First, store an anonymous subroutine in a file-scoped lexi-
cal:

declare private method
my $secret_door = sub {

my $self = shift;
...

};

Class Inheritance 329

330 Chapter 12: Objects

Later on in the file, you can use that variable as though it held a method name.
The closure will be called directly, without regard to inheritance. As with any
other method, the invocant is passed as an extra argument.

sub knock {
my $self = shift;
if ($self->{knocked}++ > 5) {

$self->$secret_door();
}

}

This enables the file’s own subroutines (the class methods) to invoke a method
that code outside that lexical scope cannot access.

Instance Destructor s
As with any other refer ent in Perl, when the last refer ence to an object goes away,
its memory is implicitly recycled. With an object, you have the opportunity to cap-
tur e contr ol just as this is about to happen by defining a DESTROY subr outine in the
class’s package. This method is triggered automatically at the appropriate moment,
with the about-to-be-recycled object as its only argument.

Destructors are rar ely needed in Perl, because memory management is handled
automatically for you. Some objects, though, may have state outside the memory
system that you’d like to attend to, such as filehandles or database connections.

package MailNotify;
sub DESTROY {

my $self = shift;
my $fh = $self->{mailhandle};
my $id = $self->{name};
print $fh "\n$id is signing off at " . localtime() . "\n";
close $fh; # close pipe to mailer

}

Just as Perl uses only a single method to construct an object even when the con-
structor’s class inherits from one or more other classes, Perl also uses only one
DESTROY method per object destroyed regardless of inheritance. In other words,
Perl does not do hierarchical destruction for you. If your class overrides a super-
class’s destructor, then your DESTROY method may need to invoke the DESTROY

method for any applicable base classes:

sub DESTROY {
my $self = shift;
check for an overridden destructor...
$self->SUPER::DESTROY if $self->can("SUPER::DESTROY");
now do your own thing before or after

}

This applies only to inherited classes; an object that is simply contained within the
curr ent object — as, for example, one value in a larger hash—will be freed and
destr oyed automatically. This is one reason why containership via mere aggr ega-
tion (sometimes called a “has-a” relationship) is often cleaner and clearer than
inheritance (an “is-a” relationship). In other words, often you really only need to
stor e one object inside another directly instead of through inheritance, which can
add unnecessary complexity. Sometimes when users reach for multiple inheri-
tance, single inheritance will suffice.

Explicitly calling DESTROY is possible but seldom needed. It might even be harmful
since running the destructor more than once on the same object could prove
unpleasant.

Garbage Collection with DESTROY Methods
As described in the section “Garbage Collection, Circular References, and Weak
Refer ences” in Chapter 8, a variable that refers to itself (or multiple variables that
refer to one another indirectly) will not be freed until the program (or embedded
interpr eter) is about to exit. If you want to reclaim the memory any earlier, you
usually have to explicitly break the refer ence or weaken it using the WeakRef mod-
ule on CPAN.

With objects, an alternative solution is to create a container class that holds a
pointer to the self-refer ential data structure. Define a DESTROY method for the con-
taining object’s class that manually breaks the circularities in the self-refer ential
structur e. You can find an example of this in Chapter 13 of the Perl Cookbook in
the recipe 13.13, “Coping with Circular Data Structures”.

When an interpreter shuts down, all its objects are destr oyed, which is important
for multithreaded or embedded Perl applications. Objects are always destroyed in
a separate pass before ordinary refer ences. This is to prevent DESTROY methods
fr om using refer ences that have themselves been destroyed. (And also because
plain refer ences ar e only garbage-collected in embedded interpreters, since exiting
a process is a very fast way of reclaiming refer ences. But exiting won’t run the
object destructors, so Perl does that first.)

Manag ing Instance Data
Most classes create objects that are essentially just data structures with several
inter nal data fields (instance variables) plus methods to manipulate them.

Perl classes inherit methods, not data, but as long as all access to the object is
thr ough method calls anyway, this works out fine. If you want data inheritance,

Manag ing Instance Data 331

332 Chapter 12: Objects

you have to effect it through method inheritance. By and large, this is not a neces-
sity in Perl, because most classes store the attributes of their object in an anony-
mous hash. The object’s instance data is contained within this hash, which serves
as its own little namespace to be carved up by whatever classes do something
with the object. For example, if you want an object called $city to have a data
field named elevation, you can simply access $city->{elevation}. No declara-
tions are necessary. But method wrappers have their uses.

Suppose you want to implement a Person object. You decide to have a data field
called “name”, which by a strange coincidence you’ll store under the key name in
the anonymous hash that will serve as the object. But you don’t want users touch-
ing the data directly. To reap the rewards of encapsulation, users need methods to
access that instance variable without lifting the veil of abstraction.

For example, you might make a pair of accessor methods:

sub get_name {
my $self = shift;
return $self->{name};

}

sub set_name {
my $self = shift;
$self->{name} = shift;

}

which leads to code like this:

$him = Person->new();
$him->set_name("Frodo");
$him->set_name(ucfirst($him->get_name));

You could even combine both methods into one:

sub name {
my $self = shift;
if (@_) { $self->{name} = shift }
return $self->{name};

}

This would then lead to code like this:

$him = Person->new();
$him->name("Frodo");
$him->name(ucfirst($him->name));

The advantage of writing a separate function for each instance variable (which for
our Person class might be name, age, height, and so on) is that it is direct, obvi-
ous, and flexible. The drawback is that every time you want a new class, you end
up defining one or two nearly identical methods per instance variable. This isn’t
too bad for the first few, and you’re certainly welcome to do it that way if you’d

like. But when convenience is preferr ed over flexibility, you might prefer one of
the techniques described in the following sections.

Note that we will be varying the implementation, not the interface. If users of your
class respect the encapsulation, you’ll be able to transparently swap one imple-
mentation for another without the users noticing. (Family members in your inheri-
tance tree using your class for a subclass or superclass might not be so forgiving,
since they know you far better than strangers do.) If your users have been peeking
and poking into the private affairs of your class, the inevitable disaster is their own
fault and none of your concern. All you can do is live up to your end of the con-
tract by maintaining the interface. Trying to stop everyone else in the world from
ever doing something slightly wicked will take up all your time and energy — and
in the end, fail anyway.

Dealing with family members is more challenging. If a subclass overrides a super-
class’s attribute accessor, should it access the same field in the hash, or not? An
argument can be made either way, depending on the nature of the attribute. For
the sake of safety in the general case, each accessor can prefix the name of the
hash field with its own classname, so that subclass and superclass can both have
their own version. Several of the examples below, including the standard
Struct::Class module, use this subclass-safe strategy. You’ll see accessors resem-
bling this:

sub name {
my $self = shift;
my $field = __PACKAGE_ _ . "::name";
if (@_) { $self->{$field} = shift }
return $self->{$field};

}

In each of the following examples, we create a simple Person class with fields
name, race, and aliases, each with an identical interface but a completely differ ent
implementation. We’r e not going to tell you which one we like the best, because
we like them all the best, depending on the occasion. And tastes differ. Some folks
pr efer stewed conies; others prefer fissssh.

Field Declarations with use fields
Objects don’t have to be implemented as anonymous hashes. Any refer ence will
do. For example, if you used an anonymous array, you could set up a constructor
like this:

sub new {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
return bless [], $class;

}

Manag ing Instance Data 333

334 Chapter 12: Objects

and have accessors like these:

sub name {
my $self = shift;
if (@_) { $self->[0] = shift }
return $self->[0];

}

sub race {
my $self = shift;
if (@_) { $self->[1] = shift }
return $self->[1];

}

sub aliases {
my $self = shift;
if (@_) { $self->[2] = shift }
return $self->[2];

}

Arrays are somewhat faster to access than hashes and don’t take up quite as much
memory, but they’re not at all convenient to use. You have to keep track of the
index numbers (not just in your class, but in your superclass, too), which must
somehow indicate which pieces of the array your class is using. Otherwise, you
might reuse a slot.

The use fields pragma addresses all of these points:

package Person;
use fields qw(name race aliases);

This pragma does not create accessor methods for you, but it does rely on some
built-in magic (called pseudohashes) to do something similar. (You may wish to
wrap accessors around the fields anyway, as we do in the following example.)
Pseudohashes are array refer ences that you can use like hashes because they have
an associated key map table. The use fields pragma sets this key map up for you,
ef fectively declaring which fields are valid for the Person object; this makes the
Perl compiler aware of them. If you declare the type of your object variable (as in
my Person $self, in the next example), the compiler is smart enough to optimize
access to the fields into straight array accesses. Perhaps more importantly, it vali-
dates field names for type safety (well, typo safety, really) at compile time. (See
the section “Pseudohashes” in Chapter 8.)

A constructor and sample accessors would look like this:

package Person;
use fields qw(name race aliases);
sub new {

my $type = shift;
my Person $self = fields::new(ref $type || $type);

$self->{name} = "unnamed";
$self->{race} = "unknown";
$self->{aliases} = [];
return $self;

}
sub name {

my Person $self = shift;
$self->{name} = shift if @_;
return $self->{name};

}
sub race {

my Person $self = shift;
$self->{race} = shift if @_;
return $self->{race};

}
sub aliases {

my Person $self = shift;
$self->{aliases} = shift if @_;
return $self->{aliases};

}
1;

If you misspell one of the literal keys used to access the pseudohash, you won’t
have to wait until run time to learn about this. The compiler knows what type of
object $self is supposed to refer to (because you told it), so it can check that the
code accesses only those fields that Person objects actually have. If you have
horses on the brain and try to access a nonexistent field (such as $self->{mane}),
the compiler can flag this error right away and will never turn the erroneous pro-
gram over to the interpreter to run.

Ther e’s still a bit of repetition in declaring methods to get at instance variables, so
you still might like to automate the creation of simple accessor methods using one
of the techniques below. However, because all these techniques use some sort of
indir ection, if you use them, you will lose the compile-time benefits of typo-check-
ing lexically typed hash accesses. You’ll still keep the (small) time and space
advantages, though.

If you do elect to use a pseudohash to implement your class, any class that inher-
its from this one must be aware of that underlying pseudohash implementation. If
an object is implemented as a pseudohash, all participants in the inheritance hier-
archy should employ the use base and use fields declarations. For example,

package Wizard;
use base "Person";
use fields qw(staff color sphere);

This makes the Wizard module a subclass of class Person, and loads the Person.pm
file. It also registers three new fields in this class to go along with those from
Person. That way when you write:

Manag ing Instance Data 335

336 Chapter 12: Objects

my Wizard $mage = fields::new("Wizard");

you’ll get a pseudohash object with access to both classes’ fields:

$mage->name("Gandalf");
$mage->color("Grey");

Since all subclasses must know that they are using a pseudohash implementation,
they should use the direct pseudohash notation for both efficiency and type safety:

$mage->{name} = "Gandalf";
$mage->{color} = "Grey";

If you want to keep your implementations interchangeable, however, outside users
of your class must use the accessor methods.

Although use base supports only single inheritance, this is seldom a severe restric-
tion. See the descriptions of use base and use fields in Chapter 31.

Generating Classes with Class::Struct
The standard Class::Struct module exports a function named struct. This creates
all the trapping you’ll need to get started on an entire class. It generates a con-
structor named new, plus accessor methods for each of the data fields (instance
variables) named in that structure.

For example, if you put the class in a Person.pm file:

package Person;
use Class::Struct;
struct Person => { # create a definition for a "Person"

name => ’$’, # name field is a scalar
race => ’$’, # race field is also a scalar
aliases => ’@’, # but aliases field is an array ref

};
1;

Then you could use that module this way:

use Person;
my $mage = Person->new();
$mage->name("Gandalf");
$mage->race("Istar");
$mage->aliases(["Mithrandir", "Olorin", "Incanus"]);

The Class::Struct module created all four of those methods. Because it follows
the subclass-safe policy of always prefixing the field name with the class name, it
also permits an inherited class to have its own separate field of the same name as
a base class field without conflict. That means in this case that “Person::name”
rather than just “name” is used for the hash key for that particular instance variable.

Fields in a struct declaration don’t have to be basic Perl types. They can also
specify other classes, but classes created with struct work best because the func-
tion makes assumptions about how the classes behave that aren’t generally true of
all classes. For example, the new method for the appropriate class is invoked to ini-
tialize the field, but many classes have constructors with other names.

See the description of Class::Struct in Chapter 32, Standar d Modules, and its
online documentation for more infor mation. Many standard modules use
Class::Struct to implement their classes, including User::pwent and Net::hos-

tent. Reading their code can prove instructive.

Generating Accessors with Autoloading
As we mentioned earlier, when you invoke a nonexistent method, Perl has two
dif ferent ways to look for an AUTOLOAD method, depending on whether you
declar ed a stub method. You can use this property to provide access to the
object’s instance data without writing a separate function for each instance. Inside
the AUTOLOAD routine, the name of the method actually invoked can be retrieved
fr om the $AUTOLOAD variable. Consider the following code:

use Person;
$him = Person->new;
$him->name("Aragorn");
$him->race("Man");
$him->aliases(["Strider", "Estel", "Elessar"]);
printf "%s is of the race of %s.\n", $him->name, $him->race;
print "His aliases are: ", join(", ", @{$him->aliases}), ".\n";

As before, this version of the Person class implements a data structure with three
fields: name, race, and aliases:

package Person;
use Carp;

my %Fields = (
"Person::name" => "unnamed",
"Person::race" => "unknown",
"Person::aliases" => [],

);

The next declaration guarantees we get our own autoloader.
use subs qw(name race aliases);

sub new {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $self = { %Fields, @_ }; # clone like Class::Struct
bless $self, $class;
return $self;

}

Manag ing Instance Data 337

338 Chapter 12: Objects

sub AUTOLOAD {
my $self = shift;
only handle instance methods, not class methods
croak "$self not an object" unless ref($invocant);
my $name = our $AUTOLOAD;
return if $name =˜ /::DESTROY$/;
unless (exists $self->{$name}) {

croak "Can’t access ‘$name’ field in $self";
}
if (@_) { return $self->{$name} = shift }
else { return $self->{$name} }

}

As you see, there are no methods named name, race, or aliases anywher e to be
found. The AUTOLOAD routine takes care of all that. When someone uses
$him->name("Aragorn"), the AUTOLOAD subr outine is called with $AUTOLOAD set to
“Person::name”. Conveniently, by leaving it fully qualified, it’s in exactly the right
for m for accessing fields of the object hash. That way if you use this class as part
of a larger class hierarchy, you don’t conflict with uses of the same name in other
classes.

Generating Accessors with Closures
Most accessor methods do essentially the same thing: they simply fetch or store a
value from that instance variable. In Perl, the most natural way to create a family
of near-duplicate functions is looping around a closure. But closures are anony-
mous functions lacking names, and methods need to be named subroutines in the
class’s package symbol table so that they can be called by name. This is no prob-
lem — just assign the closure refer ence to a typeglob of the appropriate name.

package Person;

sub new {
my $invocant = shift;
my $self = bless({}, ref $invocant || $invocant);
$self->init();
return $self;

}

sub init {
my $self = shift;
$self->name("unnamed");
$self->race("unknown");
$self->aliases([]);

}

for my $field (qw(name race aliases)) {
my $slot = __PACKAGE_ _ . "::$field";
no strict "refs"; # So symbolic ref to typeglob works.

*$field = sub {
my $self = shift;
$self->{$slot} = shift if @_;
return $self->{$slot};

};
}

Closur es ar e the cleanest hand-rolled way to create a multitude of accessor meth-
ods for your instance data. It’s efficient for both the computer and you. Not only
do all the accessors share the same bit of code (they only need their own lexical
pads), but later if you decide to add another attribute, the changes requir ed ar e
minimal: just add one more word to the for loop’s list, and perhaps something to
the init method.

Using Closures for Private Objects
So far, these techniques for managing instance data have offer ed no mechanism
for “protection” from external access. Anyone outside the class can open up the
object’s black box and poke about inside—if they don’t mind voiding the war-
ranty. Enforced privacy tends to get in the way of people trying to get their jobs
done. Perl’s philosophy is that it’s better to encapsulate one’s data with a sign that
says:

IN CASE OF FIRE
BREAK GLASS

You should respect such encapsulation when possible, but still have easy access to
the contents in an emergency situation, like for debugging.

But if you do want to enforce privacy, Perl isn’t about to get in your way. Perl
of fers low-level building blocks that you can use to surround your class and its
objects with an impenetrable privacy shield—one stronger, in fact, than that found
in many popular object-oriented languages. Lexical scopes and the lexical vari-
ables inside them are the key components here, and closures play a pivotal role.

In the section “Private Methods,” we saw how a class can use closures to imple-
ment methods that are invisible outside the module file. Later we’ll look at acces-
sor methods that regulate class data so private that not even the rest of the class
has unrestricted access. Those are still fairly traditional uses of closures. The truly
inter esting appr oach is to use a closure as the very object itself. The object’s
instance variables are locked up inside a scope to which the object alone—that is,
the closure—has free access. This is a very strong form of encapsulation; not only
is it proof against external tampering, even other methods in the same class must
use the proper access methods to get at the object’s instance data.

Manag ing Instance Data 339

340 Chapter 12: Objects

Her e’s an example of how this might work. We’ll use closures both for the objects
themselves and for the generated accessors:

package Person;
sub new {

my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $data = {

NAME => "unnamed",
RACE => "unknown",
ALIASES => [],

};
my $self = sub {

my $field = shift;
#############################
ACCESS CHECKS GO HERE
#############################
if (@_) { $data->{$field} = shift }
return $data->{$field};

};
bless($self, $class);
return $self;

}
generate method names
for my $field (qw(name race aliases)) {

no strict "refs"; # for access to the symbol table
*$field = sub {

my $self = shift;
return $self->(uc $field, @_);

};
}

The object created and retur ned by the new method is no longer a hash, as it was
in other constructors we’ve looked at. It’s a closure with unique access to the
attribute data stored in the hash referr ed to by $data. Once the constructor call is
finished, the only access to $data (and hence to the attributes) is via the closure.

In a call like $him->name("Bombadil"), the invoking object stored in $self is the
closur e that was blessed and retur ned by the constructor. Ther e’s not a lot one can
do with a closure beyond calling it, so we do just that with $self->(uc $field,

@_). Don’t be fooled by the arrow; this is just a regular indirect function call, not a
method invocation. The initial argument is the string “name”, and any remaining
arguments are whatever else was passed in.* Once we’re executing inside the clo-
sur e, the hash refer ence inside $data is again accessible. The closure is then free
to permit or deny access to whatever it pleases.

* Sur e, the double-function call is slow, but if you wanted fast, would you really be using objects in
the first place?

No one outside the closure object has unmediated access to this very private
instance data, not even other methods in the class. They could try to call the clo-
sur e the way the methods generated by the for loop do, perhaps setting an
instance variable the class never heard of. But this approach is easily blocked by
inserting various bits of code in the constructor where you see the comment about
access checks. First, we need a common preamble:

use Carp;
local $Carp::CarpLevel = 1; # Keeps croak messages short
my ($cpack, $cfile) = caller();

Now for each of the checks. The first one makes sure the specified attribute name
exists:

croak "No valid field ’$field’ in object"
unless exists $data->{$field};

This one allows access only by callers from the same file:

carp "Unmediated access denied to foreign file"
unless $cfile eq __FILE_ _;

This one allows access only by callers from the same package:

carp "Unmediated access denied to foreign package ${cpack}::"
unless $cpack eq __PACKAGE_ _;

And this one allows access only by callers whose classes inherit ours:

carp "Unmediated access denied to unfriendly class ${cpack}::"
unless $cpack->isa(__PACKAGE_ _);

All these checks block unmediated access only. Users of the class who politely use
the class’s designated methods are under no such restriction. Perl gives you the
tools to be just as persnickety as you want to be. Fortunately, not many people
want to be.

But some people ought to be. Persnickety is good when you’re writing flight con-
tr ol softwar e. If you either want or ought to be one of those people, and you pre-
fer using working code over reinventing everything on your own, check out
Damian Conway’s Tie::SecureHash module on CPAN. It implements restricted
hashes with support for public, protected, and private persnicketations. It also
copes with the inheritance issues that we’ve ignored in the previous example.
Damian has also written an even more ambitious module, Class::Contract, that
imposes a formal software engineering regimen over Perl’s flexible object system.
This module’s feature list reads like a checklist from a computer science

Manag ing Instance Data 341

342 Chapter 12: Objects

pr ofessor’s softwar e engineering textbook,* including enforced encapsulation,
static inheritance, and design-by-contract condition checking for object-oriented
Perl, along with a declarative syntax for attribute, method, constructor, and
destructor definitions at both the object and class level, and preconditions, post-
conditions, and class invariants. Whew!

New Tricks
As of release 5.6 of Perl, you can also declare a method to indicate that it retur ns
an lvalue. This is done with the lvalue subroutine attribute (not to be confused
with object attributes). This experimental feature allows you to treat the method as
something that would appear on the lefthand side of an equal sign:

package Critter;

sub new {
my $class = shift;
my $self = { pups => 0, @_ }; # Override default.
bless $self, $class;

}

sub pups : lvalue { # We’ll assign to pups() later.
my $self = shift;
$self->{pups};

}

package main;
$varmint = Critter->new(pups => 4);
$varmint->pups *= 2; # Assign to $varmint->pups!
$varmint->pups =˜ s/(.)/$1$1/; # Modify $varmint->pups in place!
print $varmint->pups; # Now we have 88 pups.

This lets you pretend $varmint->pups is a variable while still obeying encapsula-
tion. See the section “The lvalue Attribute” in Chapter 6, Subr outines.

If you’re running a threaded version of Perl and want to ensure that only one
thr ead can call a particular method on an object, you can use the locked and
method attributes to do that:

sub pups : locked method {
...

}

When any thread invokes the pups method on an object, Perl locks the object
befor e execution, preventing other threads from doing the same. See the section
“The locked and method Attributes” in Chapter 6.

* Can you guess what Damian’s job is? By the way, we highly recommend his book, Object Oriented
Perl (Manning Publications, 1999).

Manag ing Class Data
We’ve looked at several approaches to accessing per-object data values. Some-
times, though, you want some common state shared by all objects of a class.
Instead of being an attribute of just one instance of the class, these variables are
global to the entire class, no matter which class instance (object) you use to access
them through. (C++ programmers would think of these as static member data.)
Her e ar e some situations where class variables might come in handy:

• To keep a count of all objects ever created, or how many are still kicking
ar ound.

• To keep a list of all objects over which you can iterate.

• To stor e the name or file descriptor of a log file used by a class-wide debug-
ging method.

• To keep collective data, like the total amount of cash dispensed by all ATMs in
a network in a given day.

• To track the last object created by a class, or the most accessed object.

• To keep a cache of in-memory objects that have already been reconstituted
fr om persistent memory.

• To provide an inverted lookup table so you can find an object based on the
value one of its attributes.

The question comes down to deciding where to stor e the state for those shared
attributes. Perl has no particular syntactic mechanism to declare class attributes,
any more than it has for instance attributes. Perl provides the developer with a
br oad set of powerful but flexible features that can be uniquely crafted to the par-
ticular demands of the situation. You can then select the mechanism that makes
the most sense for the given situation instead of having to live with someone else’s
design decisions. Alternatively, you can live with the design decisions someone
else has packaged up and put onto CPAN. Again, TMTOWTDI.

Like anything else pertaining to a class, class data shouldn’t be accessed directly,
especially from outside the implementation of the class itself. It doesn’t say much
for encapsulation to set up carefully controlled accessor methods for instance vari-
ables but then invite the public in to diddle your class variables directly, such as
by setting $SomeClass::Debug = 1. To establish a clear firewall between interface
and implementation, you can create accessor methods to manipulate class data
similar to those you use for instance data.

Manag ing Class Data 343

344 Chapter 12: Objects

Imagine we want to keep track of the total world population of Critter objects.
We’ll store that number in a package variable, but provide a method called popu-

lation so that users of the class don’t have to know about the implementation.

Critter->population() # Access via class name
$gollum->population() # Access via instance

Since a class in Perl is just a package, the most natural place to store class data is
in a package variable. Here’s a simple implementation of such a class. The popula-

tion method ignores its invocant and just retur ns the current value of the package
variable, $Population. (Some programmers like to capitalize their globals.)

package Critter;
our $Population = 0;
sub population { return $Population; }
sub DESTROY { $Population-- }
sub spawn {

my $invocant = shift;
my $class = ref($invocant) || $invocant;
$Population++;
return bless { name => shift || "anon" }, $class;

}
sub name {

my $self = shift;
$self->{name} = shift if @_;
return $self->{name};

}

If you want to make class data methods that work like accessors for instance data,
do this:

our $Debugging = 0; # class datum
sub debug {

shift; # intentionally ignore invocant
$Debugging = shift if @_;
return $Debugging;

}

Now you can set the overall debug level through the class or through any of its
instances.

Because it’s a package variable, $Debugging is globally accessible. But if you
change the our variable to my, then only code later in that same file can see it. You
can go still further—you can restrict unfettered access to class attributes even from
the rest of class itself. Wrap the variable declaration in a block scope:

{
my $Debugging = 0; # lexically scoped class datum
sub debug {

shift; # intentionally ignore invocant
$Debugging = shift if @_;

return $Debugging;
}

}

Now no one is allowed to read or write the class attributes without using the
accessor method, since only that subroutine is in the same scope as the variable
and has access to it.

If a derived class inherits these class accessors, then these still access the original
data, no matter whether the variables were declar ed with our or my. The data isn’t
package-r elative. You might look at it as methods executing in the class in which
they were originally defined, not in the class that invoked them.

For some kinds of class data, this approach works fine, but for others, it doesn’t.
Suppose we create a Warg subclass of Critter. If we want to keep our populations
separate, Warg can’t inherit Critter’s population method, because that method as
written always retur ns the value of $Critter::Population.

You’ll have to decide on a case-by-case basis whether it makes any sense for class
attributes to be package relative. If you want package-relative attributes, use the
invocant’s class to locate the package holding the class data:

sub debug {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $varname = $class . "::Debugging";
no strict "refs"; # to access package data symbolically
$$varname = shift if @_;
return $$varname;

}

We temporarily rescind strict refer ences because otherwise we couldn’t use the
fully qualified symbolic name for the package global. This is perfectly reasonable:
since all package variables by definition live in a package, there’s nothing wrong
with accessing them via that package’s symbol table.

Another approach is to make everything an object needs—even its global class
data — available via that object (or passed in as parameters). To do this, you’ll
often have to make a dedicated constructor for each class, or at least have a dedi-
cated initialization routine to be called by the constructor. In the constructor or ini-
tializer, you store refer ences to any class data directly in the object itself, so
nothing ever has to go looking for it. The accessor methods use the object to find
a refer ence to the data.

Rather than put the complexity of locating the class data in each method, just let
the object tell the method where the data is located. This approach works well

Manag ing Class Data 345

346 Chapter 12: Objects

only when the class data accessor methods are invoked as instance methods,
because the class data could be in unreachable lexicals you couldn’t get at using a
package name.

No matter how you roll it, package-relative class data is always a bit awkward. It’s
really a lot cleaner if, when you inherit a class data accessor method, you effec-
tively inherit the state data that it’s accessing as well. See the perltootc manpage for
numer ous, mor e elaborate approaches to management of class data.

Summar y
That’s about all there is to it, except for everything else. Now you just need to go
of f and buy a book about object-oriented design methodology and bang your
for ehead with it for the next six months or so.

13
Overloading

Objects are cool, but sometimes they’re just a little too cool. Sometimes you would
rather they behaved a little less like objects and a little more like regular data
types. But there’s a problem: objects are refer ents repr esented by refer ences, and
refer ences ar en’t terribly useful except as refer ences. You can’t add refer ences, or
print them, or (usefully) apply many of Perl’s built-in operators. The only thing
you can do is derefer ence them. So you find yourself writing many explicit
method invocations, like this:

print $object->as_string;
$new_object = $subject->add($object);

Such explicit derefer encing is in general a good thing; you should never confuse
your refer ences with your refer ents, except when you want to confuse them. Now
would be one of those times. If you design your class with overloading, you can
pr etend the refer ences ar en’t ther e and simply say:

print $object;
$new_object = $subject + $object;

When you overload one of Perl’s built-in operators, you define how it behaves
when it’s applied to objects of a particular class. A number of standard Perl mod-
ules use overloading, such as Math::BigInt, which lets you create Math::BigInt

objects that behave just like regular integers but have no size limits. You can add
them with +, divide them with /, compar e them with <=>, and print them with
print.

Note that overloading is not the same as autoloading, which is loading a missing
function or method on demand. Neither is it the same as overriding, which is one
function or method masking another. Overloading hides nothing; it adds meaning
to an operation that would have been nonsense on a mere refer ence.

347

348 Chapter 13: Overloading

The overload Pragma
The use overload pragma implements operator overloading. You provide it with a
key/value list of operators and their associated behaviors:

package MyClass;

use overload ’+’ => \&myadd, # coderef
’<’ => "less_than"; # named method

’abs’ => sub { return @_ }, # anonymous subroutine

Now when you try to add two MyClass objects, the myadd subr outine will be called
to create the result.

When you try to compare two MyClass objects with the < operator, Perl notices
that the behavior is specified as a string and interprets the string as a method
name and not simply as a subroutine name. In the example above, the less_than

method might be supplied by the MyClass package itself or inherited from a base
class of MyClass, but the myadd subr outine must be supplied by the current pack-
age. The anonymous subroutine for abs supplies itself even more dir ectly. How-
ever these routines are supplied, we’ll call them handlers.

For unary operators (those taking only one operand, like abs), the handler speci-
fied for the class is invoked whenever the operator is applied to an object of that
class.

For binary operators like + or <, the handler is invoked whenever the first operand
is an object of the class or when the second operand is an object of the class and
the first operand has no overloading behavior. That’s so you can say either:

$object + 6

or:

6 + $object

without having to worry about the order of operands. (In the second case, the
operands will be swapped when passed to the handler). If our expression was:

$animal + $vegetable

and $animal and $vegetable wer e objects of differ ent classes, both of which used
overloading, then the overloading behavior of $animal would be triggered. (We’ll
hope the animal likes vegetables.)

Ther e is only one trinary (ternary) operator in Perl, ?:, and you can’t overload it.
Fortunately.

Overload Handlers
When an overloaded operator is, er, operated, the corresponding handler is
invoked with three arguments. The first two arguments are the two operands. If
the operator only uses one operand, the second argument is undef.

The third argument indicates whether the first two arguments were swapped. Even
under the rules of normal arithmetic, some operations, like addition or multiplica-
tion, don’t usually care about the order of their arguments, but others, like subtrac-
tion and division, do.* Consider the differ ence between:

$object - 6

and:

6 - $object

If the first two arguments to a handler have been swapped, the third argument will
be true. Otherwise, the third argument will be false, in which case there is a finer
distinction as well: if the handler has been triggered by another handler involving
assignment (as in += using + to figure out how to add), then the third argument is
not merely false, but undef. This distinction enables some optimizations.

As an example, here is a class that lets you manipulate a bounded range of num-
bers. It overloads both + and - so that the result of adding or subtracting objects
constrains the values within the range 0 and 255:

package ClipByte;

use overload ’+’ => \&clip_add,
’-’ => \&clip_sub;

sub new {
my $class = shift;
my $value = shift;
return bless \$value => $class;

}

sub clip_add {
my ($x, $y) = @_;
my ($value) = ref($x) ? $$x : $x;
$value += ref($y) ? $$y : $y;
$value = 255 if $value > 255;
$value = 0 if $value < 0;
return bless \$value => ref($x);

}

* Your overloaded objects are not requir ed to respect the rules of normal arithmetic, of course, but it’s
usually best not to surprise people. Oddly, many languages make the mistake of overloading + with
string concatenation, which is not commutative and only vaguely additive. For a differ ent appr oach,
see Perl.

Overload Handlers 349

350 Chapter 13: Overloading

sub clip_sub {
my ($x, $y, $swap) = @_;
my ($value) = (ref $x) ? $$x : $x;
$value -= (ref $y) ? $$y : $y;
if ($swap) { $value = -$value }
$value = 255 if $value > 255;
$value = 0 if $value < 0;
return bless \$value => ref($x);

}

package main;

$byte1 = ClipByte->new(200);
$byte2 = ClipByte->new(100);

$byte3 = $byte1 + $byte2; # 255
$byte4 = $byte1 - $byte2; # 100
$byte5 = 150 - $byte2; # 50

You’ll note that every function here is by necessity a constructor, so each one
takes care to bless its new object back into the current class, whatever that is; we
assume our class might be inherited. We also assume that if $y is a refer ence, it’s a
refer ence to an object of our own type. Instead of testing ref($y), we could have
called $y->isa("ClipByte") if we wanted to be more thor ough (and run slower).

Overloadable Operator s
You can only overload certain operators, which are shown in Table 13-1. The
operators are also listed in the %overload::ops hash made available when you use

overload, though the categorization is a little differ ent ther e.

Table 13-1. Overloadable Operators

Categor y Operator s

Conversion "" 0+ bool

Arithmetic + - * / % ** x . neg

Logical !

Bitwise & | ˜ ˆ ! << >>

Assignment += -= *= /= %= **= x= .= <<= >>= ++ --

Comparison == < <= > >= != <=> lt le gt ge eq ne cmp

Mathematical atan2 cos sin exp abs log sqrt

Iterative <>

Der efer ence ${} @{} %{} &{} *{}

Pseudo nomethod fallback =>

Note that neg, bool, nomethod, and fallback ar e not actual Perl operators. The five
der efer encers, "", and 0+ pr obably don’t seem like operators either. Nevertheless,

they are all valid keys for the parameter list you provide to use overload. This is
not really a problem. We’ll let you in on a little secret: it’s a bit of a fib to say that
the overload pragma overloads operators. It overloads the underlying operations,
whether invoked explicitly via their “official” operators, or implicitly via some
related operator. (The pseudo-operators we mentioned can only be invoked
implicitly.) In other words, overloading happens not at the syntactic level, but at
the semantic level. The point is not to look good. The point is to do the right
thing. Feel free to generalize.

Note also that = does not overload Perl’s assignment operator, as you might
expect. That would not do the right thing. More on that later.

We’ll start by discussing the conversion operators, not because they’re the most
obvious (they aren’t), but because they’re the most useful. Many classes overload
nothing but stringification, specified by the "" key. (Yes, that really is two double-
quotes in a row.)

Conversion operators: "", 0+, bool
These three keys let you provide behaviors for Perl’s automatic conversions to
strings, numbers, and Boolean values, respectively.

We say that stringification occurs when any nonstring variable is used as a
string. It’s what happens when you convert a variable into a string via printing,
interpolation, concatenation, or even by using it as a hash key. Stringification
is also why you see something like SCALAR(0xba5fe0) when you try to print

an object.

We say that numification occurs when a nonnumeric variable is converted
into a number in any numeric context, such as any mathematical expression,
array index, or even as an operand of the .. range operator.

Finally, while nobody here quite has the nerve to call it boolification, you can
define how an object should be interpreted in a Boolean context (such as if,
unless, while, for, and, or, &&, ||, ?:, or the block of a grep expr ession) by
cr eating a bool handler.

Any of the three conversion operators can be autogenerated if you have any
one of them (we’ll explain autogeneration later). Your handlers can retur n any
value you like. Note that if the operation that triggered the conversion is also
overloaded, that overloading will occur immediately afterward.

Her e’s a demonstration of "" that invokes an object’s as_string handler upon
stringification. Don’t forget to quote the quotes:

package Person;

use overload q("") => \&as_string;

Overloadable Operator s 351

352 Chapter 13: Overloading

sub new {
my $class = shift;
return bless { @_ } => $class;

}

sub as_string {
my $self = shift;
my ($key, $value, $result);
while (($key, $value) = each %$self) {

$result .= "$key => $value\n";
}
return $result;

}

$obj = Person->new(height => 72, weight => 165, eyes => "brown");

print $obj;

Instead of something like Person=HASH(0xba1350), this prints (in hash order):

weight => 165
height => 72
eyes => brown

(We sincer ely hope this person was not measured in kg and cm.)

Arithmetic operators: +, -, *, /, %, **, x, ., neg
These should all be familiar except for neg, which is a special overloading key
for the unary minus: the - in -123. The distinction between the neg and - keys
allows you to specify differ ent behaviors for unary minus and binary minus,
mor e commonly known as subtraction.

If you overload - but not neg, and then try to use a unary minus, Perl will
emulate a neg handler for you. This is known as autogeneration, wher e cer-
tain operators can be reasonably deduced from other operators (on the
assumption that the overloaded operators will have the same relationships as
the regular operators). Since unary minus can be expressed as a function of
binary minus (that is, -123 is equivalent to 0 - 123), Perl doesn’t force you to
overload neg when - will do. (Of course, if you’ve arbitrarily defined binary
minus to divide the second argument by the first, unary minus will be a fine
way to throw a divide-by-0 exception.)

Concatenation via the . operator can be autogenerated via the stringification
handler (see "" above).

Logical operator: !
If a handler for ! is not specified, it can be autogenerated using the bool, "",
or 0+ handler. If you overload the ! operator, the not operator will also trigger
whatever behavior you requested. (Remember our little secret?)

You may be surprised at the absence of the other logical operators, but most
logical operators can’t be overloaded because they short-circuit. They’re really
contr ol-flow operators that need to be able to delay evaluation of some of
their arguments. That’s also the reason the ?: operator isn’t overloaded.

Bitwise operators: &, |, ˜, ˆ, <<, >>
The ˜ operator is a unary operator; all the others are binary. Here’s how we
could overload >> to do something like chop:

package ShiftString;

use overload
’>>’ => \&right_shift,
’""’ => sub { ${ $_[0] } };

sub new {
my $class = shift;
my $value = shift;
return bless \$value => $class;

}

sub right_shift {
my ($x, $y) = @_;
my $value = $$x;
substr($value, -$y) = "";
return bless \$value => ref($x);

}

$camel = ShiftString->new("Camel");
$ram = $camel >> 2;
print $ram; # Cam

Assignment operators: +=, -=, *=, /=, %=, **=, x=, .=, <<=, >>=, ++, --
These assignment operators might change the value of their arguments or
leave them as is. The result is assigned to the lefthand operand only if the
new value differs from the old one. This allows the same handler to be used
to overload both += and +. Although this is permitted, it is seldom recom-
mended, since by the semantics described later under “When an Overload
Handler Is Missing (nomethod and fallback)”, Perl will invoke the handler for
+ anyway, assuming += hasn’t been overloaded directly.

Concatenation (.=) can be autogenerated using stringification followed by
ordinary string concatenation. The ++ and -- operators can be autogenerated
fr om + and - (or += and -=).

Handlers implementing ++ and -- ar e expected to mutate (alter) their argu-
ments. If you wanted autodecrement to work on letters as well as numbers,
you could do that with a handler as follows:

Overloadable Operator s 353

354 Chapter 13: Overloading

package MagicDec;

use overload
q(- -) => \&decrement,
q("") => sub { ${ $_[0] } };

sub new {
my $class = shift;
my $value = shift;
bless \$value => $class;

}

sub decrement {
my @string = reverse split(//, ${ $_[0] });
my $i;
for ($i = 0; $i < @string; $i++) {

last unless $string[$i] =˜ /a/i;
$string[$i] = chr(ord($string[$i]) + 25);

}
$string[$i] = chr(ord($string[$i]) - 1);
my $result = join(’’, reverse @string);
$_[0] = bless \$result => ref($_[0]);

}

package main;

for $normal (qw/perl NZ Pa/) {
$magic = MagicDec->new($normal);
$magic- -;
print "$normal goes to $magic\n";

}

That prints out:

perl goes to perk
NZ goes to NY
Pa goes to Oz

exactly reversing Perl’s magical string autoincrement operator.

The ++$a operation can be autogenerated using $a += 1 or $a = $a + 1, and
$a- - using $a -= 1 or $a = $a - 1. However, this does not trigger the copying
behavior that a real ++ operator would. See “The Copy Constructor” later in
this chapter.

Comparison operators: ==, <, <=, >, >=, !=, <=>, lt, le, gt, ge, eq, ne, cmp
If <=> is overloaded, it can be used to autogenerate behaviors for <, <=, >, >=,
==, and !=. Similarly, if cmp is overloaded, it can be used to autogenerate
behaviors for lt, le, gt, ge, eq, and ne.

Note that overloading cmp won’t let you sort objects as easily as you’d like,
because what will be compared are the stringified versions of the objects
instead of the objects themselves. If that was your goal, you’d want to over-
load "" as well.

Mathematical functions: atan2, cos, sin, exp, abs, log, sqrt
If abs is unavailable, it can be autogenerated from < or <=> combined with
either unary minus or subtraction.

An overloaded - can be used to autogenerate missing handlers for unary
minus or for the abs function, which may also be separately overloaded. (Yes,
we know that abs looks like a function, whereas unary minus looks like an
operator, but they aren’t all that differ ent as far as Perl’s concerned.)

Iterative operator: <>
The <> handler can be triggered by using either readline (when it reads from
a filehandle, as in while (<FH>)) or glob (when it is used for fileglobbing, as
in @files = <*.*>).

package LuckyDraw;

use overload
’<>’ => sub {

my $self = shift;
return splice @$self, rand @$self, 1;

};

sub new {
my $class = shift;
return bless [@_] => $class;

}

package main;

$lotto = new LuckyDraw 1 .. 51;

for (qw(1st 2nd 3rd 4th 5th 6th)) {
$lucky_number = <$lotto>;
print "The $_ lucky number is: $lucky_number.\n";

}

$lucky_number = <$lotto>;
print "\nAnd the bonus number is: $lucky_number.\n";

In California, this prints:

The 1st lucky number is: 18
The 2nd lucky number is: 11
The 3rd lucky number is: 40

Overloadable Operator s 355

356 Chapter 13: Overloading

The 4th lucky number is: 7
The 5th lucky number is: 51
The 6th lucky number is: 33

And the bonus number is: 5

Der efer ence operators: ${}, @{}, %{}, &{}, *{}
Attempts to derefer ence scalar, array, hash, subroutine, and glob refer ences
can be intercepted by overloading these five symbols.

The online Perl documentation for overload demonstrates how you can use
this operator to simulate your own pseudohashes. Here’s a simpler example
that implements an object as an anonymous array but permits hash refer enc-
ing. Don’t try to treat it as a real hash; you won’t be able to delete key/value
pairs from the object. If you want to combine array and hash notations, use a
real pseudohash (as it were).

package PsychoHash;

use overload ’%{}’ => \&as_hash;

sub as_hash {
my ($x) = shift;
return { @$x };

}

sub new {
my $class = shift;
return bless [@_] => $class;

}

$critter = new PsychoHash(height => 72, weight => 365, type => "camel");

print $critter->{weight}; # prints 365

Also see Chapter 14, Tied Variables, for a mechanism to let you redefine basic
operations on hashes, arrays, and scalars.

When overloading an operator, try not to create objects with refer ences to them-
selves. For instance,

use overload ’+’ => sub { bless [\$_[0], \$_[1]] };

This is asking for trouble, since if you say $animal += $vegetable, the result will
make $animal a refer ence to a blessed array refer ence whose first element is
$animal. This is a cir cular refer ence, which means that even if you destroy
$animal, its memory won’t be freed until your process (or interpreter) terminates.
See “Garbage Collection, Circular References, and Weak References” in Chapter 8,
Refer ences.

The Copy Constr uctor (=)
Although it looks like a regular operator, = has a special and slightly subintuitive
meaning as an overload key. It does not overload the Perl assignment operator. It
can’t, because that operator has to be reserved for assigning refer ences, or every-
thing breaks.

The handler for = is used in situations where a mutator (such as ++, --, or any of
the assignment operators) is applied to a refer ence that shares its object with
another refer ence. The = handler lets you intercept the mutator and copy the
object yourself so that the copy alone is mutated. Otherwise, you’d clobber the
original.

$copy = $original; # copies only the reference
++$copy; # changes underlying shared object

Now, bear with us. Suppose that $original is a refer ence to an object. To make
++$copy modify only $copy and not $original, a copy of $copy is first made, and
$copy is assigned a refer ence to this new object. This operation is not perfor med
until ++$copy is executed, so $copy coincides with $original befor e the incre-
ment — but not afterward. In other words, it’s the ++ that recognizes the need for
the copy and calls out to your copy constructor.

The need for copying is recognized only by mutators such as ++ or +=, or by
nomethod, which is described later. If the operation is autogenerated via +, as in:

$copy = $original;
$copy = $copy + 1;

then no copying occurs, because + doesn’t know it’s being used as a mutator.

If the copy constructor is requir ed during the execution of some mutator, but a
handler for = was not specified, it can be autogenerated as a string copy provided
the object is a plain scalar and not something fancier.

For example, the code actually executed for the sequence:

$copy = $original;
...
++$copy;

might end up as something like this:

$copy = $original;
...
$copy = $copy->clone(undef, "");
$copy->incr(undef, "");

The Copy Constr uctor (=) 357

358 Chapter 13: Overloading

This assumes $original points to an overloaded object, ++ was overloaded with
\&incr, and = was overloaded with \&clone.

Similar behavior is triggered by $copy = $original++, which is interpreted as $copy
= $original; ++$original.

When an Overload Handler Is Missing
(nomethod and fallback)
If you apply an unoverloaded operator to an object, Perl first tries to autogenerate
a behavior from other overloaded operators using the rules described earlier. If
that fails, Perl looks for an overloading behavior for nomethod and uses that if
available. That handler is to operators what an AUTOLOAD subr outine is to subrou-
tines: it’s what you do when you can’t think of what else to do.

If used, the nomethod key should be followed by a refer ence to a handler that
accepts four arguments, (not three as all the other handlers expect). The first three
arguments are no dif ferent than in any other handler; the fourth is a string corre-
sponding to the operator whose handler is missing. This serves the same purpose
as the $AUTOLOAD variable does in AUTOLOAD subr outines.

If Perl has to look for a nomethod handler but can’t find one, an exception is
raised.

If you want to prevent autogeneration from occurring, or you want a failed auto-
generation attempt to result in no overloading at all, you can define the special
fallback overloading key. It has three useful states:

undef

If fallback is not set, or is explicitly set to undef, the sequence of overloading
events is unaffected: handlers are sought, autogeneration is attempted, and
finally the nomethod handler is invoked. If that fails, an exception is raised.

false
If fallback is set to a defined but false value (like 0), autogeneration is never
attempted. Perl will call the nomethod handler if one exists, but raise an excep-
tion otherwise.

true
This is nearly the same behavior as for undef, but no exception is raised if an
appr opriate handler cannot be synthesized via autogeneration. Instead, Perl
reverts to following the unoverloaded behavior for that operator, as though
ther e wer e no use overload pragma in the class at all.

Overloading Constants
You can change how constants are interpr eted by Perl with overload::constant,
which is most usefully placed in a package’s import method. (If you do this, you
should properly invoke overload::remove_constant in the package’s unimport

method so that the package can clean up after itself when you ask it to.)

Both overload::constant and overload::remove_constant expect a list of
key/value pairs. The keys should be any of integer, float, binary, q, and qr, and
each value should be the name of a subroutine, an anonymous subroutine, or a
code refer ence that will handle the constants.

sub import { overload::constant (integer => \&integer_handler,
float => \&float_handler,
binary => \&base_handler,
q => \&string_handler,
qr => \®ex_handler) }

Any handlers you provide for integer and float will be invoked whenever the
Perl tokener encounters a constant number. This is independent of the use con-

stant pragma; simple statements such as

$year = cube(12) + 1; # integer
$pi = 3.14159265358979; # float

will trigger whatever handler you requested.

The binary key lets you intercept binary, octal, and hexadecimal constants. q han-
dles single-quoted strings (including strings introduced with q) and constant sub-
strings within qq- and qx-quoted strings and here documents. Finally, qr handles
constant pieces within regular expressions, as described at the end of Chapter 5,
Patter n Matching.

The handler will be passed three arguments. The first argument is the original con-
stant, in whatever form it was provided to Perl. The second argument is how Perl
actually interpreted the constant; for instance, 123_456 will appear as 123456.

The third argument is defined only for strings handled by the q and qr handlers,
and will be one of qq, q, s, or tr depending on how the string is to be used. qq
means that the string is from an interpolated context, such as double quotes, back-
ticks, an m// match, or the pattern of an s/// substitution. q means that the string
is from an uninterpolated context, s means that the constant is a replacement
string in an s/// substitution, and tr means that it’s a component of a tr/// or
y/// expr ession.

Overloading Constants 359

360 Chapter 13: Overloading

The handler should retur n a scalar, which will be used in place of the constant.
Often, that scalar will be a refer ence to an overloaded object, but there’s nothing
pr eventing you from doing something more dastardly:

package DigitDoubler; # A module to be placed in DigitDoubler.pm
use overload;

sub import { overload::constant (integer => \&handler,
float => \&handler) }

sub handler {
my ($orig, $interp, $context) = @_;
return $interp * 2; # double all constants

}

1;

Note that handler is shared by both keys, which works okay in this case. Now
when you say:

use DigitDoubler;

$trouble = 123; # trouble is now 246
$jeopardy = 3.21; # jeopardy is now 6.42

you redefine the world.

If you intercept string constants, it is recommended that you provide a concatena-
tion operator (“.”) as well, since an interpolated expression like "ab$cd!!" is
mer ely a shortcut for the longer ’ab’ . $cd . ’!!’. Similarly, negative numbers
ar e consider ed negations of positive constants, so you should provide a handler
for neg when you intercept integers or floats. (We didn’t need to do that earlier,
because we’re retur ning actual numbers, not overloaded object refer ences.)

Note that overload::constant does not propagate into run-time compilation inside
eval, which can be either a bug or a feature depending on how you look at it.

Public Overload Functions
As of the 5.6 release of Perl, the use overload pragma provides the following func-
tions for public consumption.

overload::StrVal(OBJ)

This function retur ns the string value that OBJ would have in absence of
stringification overloading ("").

overload::Overloaded(OBJ)

This function retur ns a true value if OBJ is subject to any operator overloading
at all, and false otherwise.

overload::Method(OBJ, OPERATOR)
This function retur ns a refer ence to whatever code implements the overload-
ing for OPERATOR when it operates on OBJ, or undef if no such overloading
exists.

Inher itance and Overloading
Inheritance interacts with overloading in two ways. The first occurs when a han-
dler is named as a string rather than provided as a code refer ence or anonymous
subr outine. When named as a string, the handler is interpreted as a method, and
can therefor e be inherited from superclasses.

The second interaction between inheritance and overloading is that any class
derived from a overloaded class is itself subject to that overloading. In other
words, overloading is itself inherited. The set of handlers in a class is the union of
handlers of all that class’s ancestors, recursively. If a handler can be found in sev-
eral differ ent ancestors, the handler actually used is governed by the usual rules
for method inheritance. For example, if class Alpha inherits from classes Beta and
Gamma in that order, and class Beta overloads + with \&Beta::plus_sub, but class
Gamma overloads + with the string "plus_meth", then Beta::plus_sub will be called
when you try to apply + to an Alpha object.

Since the value of the fallback key is not a handler, its inheritance is not gov-
er ned by the rules given above. In the current implementation, the fallback value
fr om the first overloaded ancestor is used, but this is accidental and subject to
change without notice (well, without much notice).

Run-Time Overloading
Since use statements are executed at compile time, the only way to change over-
loading during run time is:

eval " use overload ’+’ => \&my_add ";

You can also say:

eval " no overload ’+’, ’--’, ’<=’ ";

although the use of these constructs during run time is questionable.

Run-Time Overloading 361

362 Chapter 13: Overloading

Overloading Diagnostics
If your Perl was compiled with -DDEBUGGING, you can view diagnostic messages for
overloading when you run a program with the -D o switch or its equivalent. You
can also deduce which operations are overloaded using the m command of Perl’s
built-in debugger.

If you’re feeling overloaded now, maybe the next chapter will tie things back
together for you.

14
Tied Var iables

Some human endeavors requir e a disguise. Sometimes the intent is to deceive, but
mor e often, the intent is to communicate something true at a deeper level. For
instance, many job interviewers expect you to dress up in a tie to indicate that
you’r e seriously interested in fitting in, even though both of you know you’ll never
wear a tie on the job. It’s odd when you think about it: tying a piece of cloth
ar ound your neck can magically get you a job. In Perl culture, the tie operator
plays a similar role: it lets you create a seemingly normal variable that, behind the
disguise, is actually a full-fledged Perl object that is expected to have an interesting
personality of its own. It’s just an odd bit of magic, like pulling Bugs Bunny out of
a hat.

Put another way, the funny characters $, @, %, or * in front of a variable name tell
Perl and its programmers a great deal—they each imply a particular set of archety-
pal behaviors. You can warp those behaviors in various useful ways with tie, by
associating the variable with a class that implements a new set of behaviors. For
instance, you can create a regular Perl hash, and then tie it to a class that makes
the hash into a database, so that when you read values from the hash, Perl magi-
cally fetches data from an external database file, and when you set values in the
hash, Perl magically stores data in the external database file. In this case, “magi-
cally” means “transparently doing something very complicated”. You know the old
saying: any technology sufficiently advanced is indistinguishable from a Perl script.
(Seriously, people who play with the guts of Perl use magic as a technical term
referring to any extra semantics attached to variables such as %ENV or %SIG. Tied
variables are just an extension of that.)

363

364 Chapter 14: Tied Var iables

Perl already has built-in dbmopen and dbmclose functions that magically tie hash
variables to databases, but those functions date back to the days when Perl had no
tie. Now tie pr ovides a mor e general mechanism. In fact, Perl itself implements
dbmopen and dbmclose in terms of tie.

You can tie a scalar, array, hash, or filehandle (via its typeglob) to any class that
pr ovides appr opriately named methods to intercept and emulate normal accesses
to those variables. The first of those methods is invoked at the point of the tie

itself: tying a variable always invokes a constructor, which, if successful, retur ns an
object that Perl squirrels away where you don’t see it, down inside the “normal”
variable. You can always retrieve that object later using the tied function on the
nor mal variable:

tie VARIABLE, CLASSNAME, LIST; # binds VARIABLE to CLASSNAME
$object = tied VARIABLE;

Those two lines are equivalent to:

$object = tie VARIABLE, CLASSNAME, LIST;

Once it’s tied, you treat the normal variable normally, but each access automati-
cally invokes methods on the underlying object; all the complexity of the class is
hidden behind those method invocations. If later you want to break the associa-
tion between the variable and the class, you can untie the variable:

untie VARIABLE;

You can almost think of tie as a funny kind of bless, except that it blesses a bare
variable instead of an object refer ence. It also can take extra parameters, just as a
constructor can—which is not terribly surprising, since it actually does invoke a
constructor internally, whose name depends on which type of variable you’re
tying: either TIESCALAR, TIEARRAY, TIEHASH, or TIEHANDLE.* These constructors are
invoked as class methods with the specified CLASSNAME as their invocant, plus any
additional arguments you supplied in LIST. (The VARIABLE is not passed to the
constructor.)

These four constructors each retur n an object in the customary fashion. They don’t
really care whether they were invoked from tie, nor do any of the other methods
in the class, since you can always invoke them directly if you’d like. In one sense,
all the magic is in the tie, not in the class implementing the tie. It’s just an ordi-
nary class with funny method names, as far as the class is concerned. (Indeed,
some tied modules provide extra methods that aren’t visible through the tied vari-
able; these methods must be called explicitly as you would any other object

* Since the constructors have separate names, you could even provide a single class that implements
all of them. That would allow you to tie scalars, arrays, hashes, and filehandles all to the same class,
although this is not generally done, since it would make the other magical methods tricky to write.

method. Such extra methods might provide services like file locking, transaction
pr otection, or anything else an instance method might do.)

So these constructors bless and retur n an object refer ence just as any other con-
structor would. That refer ence need not refer to the same type of variable as the
one being tied; it just has to be blessed, so that the tied variable can find its way
back to your class for succor. For instance, our long TIEARRAY example will use a
hash-based object, so it can conveniently hold additional information about the
array it’s emulating.

The tie function will not use or require a module for you—you must do that
yourself explicitly, if necessary, before calling the tie. (On the other hand, the
dbmopen function will, for backward compatibility, attempt to use one or another
DBM implementation. But you can preempt its selection with an explicit use, pro-
vided the module you use is one of the modules in dbmopen’s list of modules to try.
See the online docs for the AnyDBM_File module for a fuller explanation.)

The methods called by a tied variable have predeter mined names like FETCH and
STORE, since they’re invoked implicitly (that is, triggered by particular events) from
within the innards of Perl. These names are in ALLCAPS, a convention we often fol-
low for such implicitly called routines. (Other special names that follow this con-
vention include BEGIN, CHECK, INIT, END, DESTROY, and AUTOLOAD, not to mention
UNIVERSAL->VERSION. In fact, nearly all of Perl’s predefined variables and filehan-
dles are in uppercase: STDIN, SUPER, CORE, CORE::GLOBAL, DATA, @EXPORT, @INC, @ISA,
@ARGV, and %ENV. Of course, built-in operators and pragmas go to the opposite
extr eme and have no capitals at all.)

The first thing we’ll cover is extremely simple: how to tie a scalar variable.

Tying Scalars
To implement a tied scalar, a class must define the following methods: TIESCALAR,
FETCH, and STORE (and possibly DESTROY). When you tie a scalar variable, Perl calls
TIESCALAR. When you read the tied variable, it calls FETCH, and when you assign a
value to the variable, it calls STORE. If you’ve kept the object retur ned by the initial
tie (or if you retrieve it later using tied), you can access the underlying object
yourself — this does not trigger its FETCH or STORE methods. As an object, it’s not
magical at all, but rather quite objective.

If a DESTROY method exists, Perl invokes it when the last refer ence to the tied
object disappears, just as for any other object. That happens when your program
ends or when you call untie, which eliminates the refer ence used by the tie. How-
ever, untie doesn’t eliminate any outstanding refer ences you might have stored
elsewher e; DESTROY is deferred until those refer ences ar e gone, too.

Tying Scalars 365

366 Chapter 14: Tied Var iables

The Tie::Scalar and Tie::StdScalar packages, both found in the standard
Tie::Scalar module, provide some simple base class definitions if you don’t want
to define all of these methods yourself. Tie::Scalar pr ovides elemental methods
that do very little, and Tie::StdScalar pr ovides methods that make a tied scalar
behave like a regular Perl scalar. (Which seems singularly useless, but sometimes
you just want a bit of a wrapper around the ordinary scalar semantics, for exam-
ple, to count the number of times a particular variable is set.)

Befor e we show you our elaborate example and complete description of all the
mechanics, here’s a taste just to whet your appetite—and to show you how easy it
really is. Here’s a complete program:

#!/usr/bin/perl
package Centsible;
sub TIESCALAR { bless \my $self, shift }
sub STORE { ${ $_[0] } = $_[1] } # do the default thing
sub FETCH { sprintf "%.02f", ${ my $self = shift } } # round value

package main;
tie $bucks, "Centsible";
$bucks = 45.00;
$bucks *= 1.0715; # tax
$bucks *= 1.0715; # and double tax!
print "That will be $bucks, please.\n";

When run, that program produces:

That will be 51.67, please.

To see the differ ence it makes, comment out the call to tie; then you’ll get:

That will be 51.66505125, please.

Admittedly, that’s more work than you’d normally go through to round numbers.

Scalar-Tying Methods
Now that you’ve seen a sample of what’s to come, let’s develop a more elaborate
scalar-tying class. Instead of using any canned package for the base class (espe-
cially since scalars are so simple), we’ll look at each of the four methods in turn,
building an example class named ScalarFile. Scalars tied to this class contain reg-
ular strings, and each such variable is implicitly associated with a file where that
string is stored. (You might name your variables to remind you which file you’re
referring to.) Variables are tied to the class this way:

use ScalarFile; # load ScalarFile.pm
tie $camel, "ScalarFile", "/tmp/camel.lot";

Once the variable has been tied, its previous contents are clobber ed, and the inter-
nal connection between the variable and its object overrides the variable’s normal

semantics. When you ask for the value of $camel, it now reads the contents of
/tmp/camel.lot, and when you assign a value to $camel, it writes the new contents
out to /tmp/camel.lot, obliterating any previous occupants.

The tie is on the variable, not the value, so the tied nature of a variable does not
pr opagate acr oss assignment. For example, let’s say you copy a variable that’s
been tied:

$dromedary = $camel;

Instead of reading the value in the ordinary fashion from the $camel scalar vari-
able, Perl invokes the FETCH method on the associated underlying object. It’s as
though you’d written this:

$dromedary = (tied $camel)->FETCH():

Or if you remember the object retur ned by tie, you could use that refer ence
dir ectly, as in the following sample code:

$clot = tie $camel, "ScalarFile", "/tmp/camel.lot";
$dromedary = $camel; # through the implicit interface
$dromedary = $clot->FETCH(); # same thing, but explicitly

If the class provides methods besides TIESCALAR, FETCH, STORE, and DESTROY, you
could use $clot to invoke them manually. However, one normally minds one’s
own business and leaves the underlying object alone, which is why you often see
the retur n value from tie ignor ed. You can still get at the object via tied if you
need it later (for example, if the class happens to document any extra methods
you need). Ignoring the retur ned object also eliminates certain kinds of errors,
which we’ll cover later.

Her e’s the preamble of our class, which we will put into ScalarFile.pm:

package ScalarFile;
use Carp; # Propagate error messages nicely.
use strict; # Enforce some discipline on ourselves.
use warnings; # Turn on lexically scoped warnings.
use warnings::register; # Allow user to say "use warnings ’ScalarFile’".
my $count = 0; # Internal count of tied ScalarFiles.

The standard Carp module exports the carp, croak, and confess subr outines,
which we’ll use in the code later in this section. As usual, see Chapter 32, Stan-
dar d Modules, or the online docs for more about Carp.

The following methods are defined by the class.

CLASSNAME->TIESCALAR(LIST)

The TIESCALAR method of the class is triggered whenever you tie a scalar vari-
able. The optional LIST contains any parameters needed to initialize the object
pr operly. (In our example, there is only one parameter: the name of the file.)

Tying Scalars 367

368 Chapter 14: Tied Var iables

The method should retur n an object, but this doesn’t have to be a refer ence to
a scalar. In our example, though, it is.

sub TIESCALAR { # in ScalarFile.pm
my $class = shift;
my $filename = shift;
$count++; # A file-scoped lexical, private to class.
return bless \$filename, $class;

}

Since there’s no scalar equivalent to the anonymous array and hash com-
posers, [] and {}, we mer ely bless a lexical variable’s refer ent, which effec-
tively becomes anonymous as soon as the name goes out of scope. This
works fine (you could do the same thing with arrays and hashes) as long as
the variable really is lexical. If you try this trick on a global, you might think
you’r e getting away with it, until you try to create another camel.lot. Don’t be
tempted to write something like this:

sub TIESCALAR { bless \$_[1], $_[0] } # WRONG, could refer to global.

A mor e robustly written constructor might check that the filename is accessi-
ble. We check first to see if the file is readable, since we don’t want to clobber
the existing value. (In other words, we shouldn’t assume the user is going to
write first. They might be treasuring their old Camel Lot file from a previous
run of the program.) If we can’t open or create the filename specified, we’ll
indicate the error gently by retur ning undef and optionally printing a warning
via carp. (We could just croak instead — it’s a matter of taste whether you pre-
fer fish or frogs.) We’ll use the warnings pragma to determine whether the user
is interested in our warning:

sub TIESCALAR { # in ScalarFile.pm
my $class = shift;
my $filename = shift;
my $fh;
if (open $fh, "<", $filename or

open $fh, ">", $filename)
{

close $fh;
$count++;
return bless \$filename, $class;

}
carp "Can’t tie $filename: $!" if warnings::enabled();
return;

}

Given such a constructor, we can now associate the scalar $string with the
file camel.lot:

tie ($string, "ScalarFile", "camel.lot") or die;

(We’r e still assuming some things we shouldn’t. In a production version of
this, we’d probably open the filehandle once and remember the filehandle as
well as the filename for the duration of the tie, keeping the handle exclusively
locked with flock the whole time. Otherwise we’re open to race conditions—
see “Timing Glitches” in Chapter 23, Security.)

SELF->FETCH

This method is invoked whenever you access the tied variable (that is, read its
value). It takes no arguments beyond the object tied to the variable. In our
example, that object contains the filename.

sub FETCH {
my $self = shift;
confess "I am not a class method" unless ref $self;
return unless open my $fh, $$self;
read($fh, my $value, -s $fh); # NB: don’t use -s on pipes!
return $value;

}

This time we’ve decided to blow up (raise an exception) if FETCH gets some-
thing other than a refer ence. (Either it was invoked as a class method, or
someone miscalled it as a subroutine.) There’s no other way for us to retur n
an error, so it’s probably the right thing to do. In fact, Perl would have raised
an exception in any event as soon as we tried to derefer ence $self; we’r e just
being polite and using confess to spew a complete stack backtrace onto the
user’s screen. (If that can be considered polite.)

We can now see the contents of camel.lot when we say this:

tie($string, "ScalarFile", "camel.lot");
print $string;

SELF->STORE(VALUE)

This method is run when the tied variable is set (assigned). The first argument,
SELF, is as always the object associated with the variable; VALUE is whatever
was assigned to the variable. (We use the term “assigned” loosely—any opera-
tion that modifies the variable can call STORE.)

sub STORE {
my($self,$value) = @_;
ref $self or confess "not a class method";
open my $fh, ">", $$self or croak "can’t clobber $$self: $!";
syswrite($fh, $value) == length $value

or croak "can’t write to $$self: $!";
close $fh or croak "can’t close $$self: $!";
return $value;

}

Tying Scalars 369

370 Chapter 14: Tied Var iables

After “assigning” it, we retur n the new value—because that’s what assignment
does. If the assignment wasn’t successful, we croak out the error. Possible
causes might be that we didn’t have permission to write to the associated file,
or the disk filled up, or gremlins infested the disk controller. Sometimes you
contr ol the magic, and sometimes the magic controls you.

We can now write to camel.lot when we say this:

tie($string, "ScalarFile", "camel.lot");
$string = "Here is the first line of camel.lot\n";
$string .= "And here is another line, automatically appended.\n";

SELF->DESTROY

This method is triggered when the object associated with the tied variable is
about to be garbage collected, in case it needs to do something special to
clean up after itself. As with other classes, such a method is seldom necessary,
since Perl deallocates the moribund object’s memory for you automatically.
Her e, we’ll define a DESTROY method that decrements our count of tied files:

sub DESTROY {
my $self = shift;
confess "wrong type" unless ref $self;
$count- -;

}

We might then also supply an extra class method to retrieve the current count.
Actually, it doesn’t care whether it’s called as a class method or an object
method, but you don’t have an object anymore after the DESTROY, now do you?

sub count {
my $invocant = shift;
$count;

}

You can call this as a class method at any time like this:

if (ScalarFile->count) {
warn "Still some tied ScalarFiles sitting around somewhere...\n";

}

That’s about all there is to it. Actually, it’s more than all there is to it, since we’ve
done a few nice things here for the sake of completeness, robustness, and general
aesthetics (or lack thereof). Simpler TIESCALAR classes are certainly possible.

Mag ical Counter Var iables
Her e’s a simple Tie::Counter class, inspired by the CPAN module of the same
name. Variables tied to this class increment themselves by 1 every time they’re
used. For example:

tie my $counter, "Tie::Counter", 100;
@array = qw /Red Green Blue/;
for my $color (@array) { # Prints:

print " $counter $color\n"; # 100 Red
} # 101 Green

102 Blue

The constructor takes as an optional extra argument the first value of the counter,
which defaults to 0. Assigning to the counter will set a new value. Here’s the class:

package Tie::Counter;
sub FETCH { ++ ${ $_[0] } }
sub STORE { ${ $_[0] } = $_[1] }
sub TIESCALAR {

my ($class, $value) = @_;
$value = 0 unless defined $value;
bless \$value => $class;

}
1; # if in module

See how small that is? It doesn’t take much code to put together a class like this.

Mag ically Banishing $_
This curiously exotic tie class is used to outlaw unlocalized uses of $_. Instead of
pulling in the module with use, which invokes the class’s import method, this
module should be loaded with no to call the seldom-used unimport method. The
user says:

no Underscore;

And then all uses of $_ as an unlocalized global raise an exception.

Her e’s a little test suite for the module:

#!/usr/bin/perl
no Underscore;
@tests = (

"Assignment" => sub { $_ = "Bad" },
"Reading" => sub { print },
"Matching" => sub { $x = /badness/ },
"Chop" => sub { chop },
"Filetest" => sub { -x },
"Nesting" => sub { for (1..3) { print } },

);

while (($name, $code) = splice(@tests, 0, 2)) {
print "Testing $name: ";
eval { &$code };
print $@ ? "detected" : " missed!";
print "\n";

}

Tying Scalars 371

372 Chapter 14: Tied Var iables

which prints out the following:

Testing Assignment: detected
Testing Reading: detected
Testing Matching: detected
Testing Chop: detected
Testing Filetest: detected
Testing Nesting: 123 missed!

The last one was “missed” because it was properly localized by the for loop and
thus safe to access.

Her e’s the curiously exotic Underscore module itself. (Did we mention that it’s
curiously exotic?) It works because tied magic is effectively hidden by a local. The
module does the tie in its own initialization code so that a require also works.

package Underscore;
use Carp;
sub TIESCALAR { bless \my $dummy => shift }
sub FETCH { croak ’Read access to $_ forbidden’ }
sub STORE { croak ’Write access to $_ forbidden’ }
sub unimport { tie($_, __PACKAGE_ _) }
sub import { untie $_ }
tie($_, __PACKAGE_ _) unless tied $_;
1;

It’s hard to usefully mix calls to use and no for this class in your program, because
they all happen at compile time, not run time. You could call Underscore->import
and Underscore->unimport dir ectly, just as use and no do. Normally, though, to
renege and let yourself freely use $_ again, you’d just use local on it, which is the
whole point.

Tying Arra ys
A class implementing a tied array must define at least the methods TIEARRAY,
FETCH, and STORE. Ther e ar e many optional methods: the ubiquitous DESTROY

method, of course, but also the STORESIZE and FETCHSIZE methods used to provide
$#array and scalar(@array) access. In addition, CLEAR is triggered when Perl
needs to empty the array, and EXTEND when Perl would have pre-extended alloca-
tion in a real array.

You may also define the POP, PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, and EXISTS

methods if you want the corresponding Perl functions to work on the tied array.
The Tie::Array class can serve as a base class to implement the first five of those
functions in terms of FETCH and STORE. (Tie::Array’s default implementation of
DELETE and EXISTS simply calls croak.) As long as you define FETCH and STORE, it
doesn’t matter what kind of data structure your object contains.

On the other hand, the Tie::StdArray class (defined in the standard Tie::Array

module) provides a base class with default methods that assume the object con-
tains a regular array. Here’s a simple array-tying class that makes use of this.
Because it uses Tie::StdArray as its base class, it only needs to define the meth-
ods that should be treated in a nonstandard way.

#!/usr/bin/perl
package ClockArray;
use Tie::Array;
our @ISA = ’Tie::StdArray’;
sub FETCH {

my($self,$place) = @_;
$self->[$place % 12];

}
sub STORE {

my($self,$place,$value) = @_;
$self->[$place % 12] = $value;

}

package main;
tie my @array, ’ClockArray’;
@array = ("a" ... "z");
print "@array\n";

When run, the program prints out “y z o p q r s t u v w x”. This class provides
an array with only a dozen slots, like hours of a clock, numbered 0 through 11. If
you ask for the 15th array index, you really get the 3rd one. Think of it as a travel
aid for people who haven’t learned how to read 24-hour clocks.

Ar ray-Tying Methods
That’s the simple way. Now for some nitty-gritty details. To demonstrate, we’ll
implement an array whose bounds are fixed at its creation. If you try to access
anything beyond those bounds, an exception is raised. For example:

use BoundedArray;
tie @array, "BoundedArray", 2;

$array[0] = "fine";
$array[1] = "good";
$array[2] = "great";
$array[3] = "whoa"; # Prohibited; displays an error message.

The preamble code for the class is as follows:

package BoundedArray;
use Carp;
use strict;

Tying Arra ys 373

374 Chapter 14: Tied Var iables

To avoid having to define SPLICE later, we’ll inherit from the Tie::Array class:

use Tie::Array;
our @ISA = ("Tie::Array");

CLASSNAME->TIEARRAY(LIST)

As the constructor for the class, TIEARRAY should retur n a blessed refer ence
thr ough which the tied array will be emulated.

In this next example, just to show you that you don’t really have to retur n an
array refer ence, we’ll choose a hash refer ence to repr esent our object. A hash
works out well as a generic record type: the value in the hash’s “BOUND” key
will store the maximum bound allowed, and its “DATA” value will hold the
actual data. If someone outside the class tries to derefer ence the object
retur ned (doubtless thinking it an array refer ence), an exception is raised.

sub TIEARRAY {
my $class = shift;
my $bound = shift;
confess "usage: tie(\@ary, ’BoundedArray’, max_subscript)"

if @_ || $bound =˜ /\D/;
return bless { BOUND => $bound, DATA => [] }, $class;

}

We can now say:

tie(@array, "BoundedArray", 3); # maximum allowable index is 3

to ensure that the array will never have more than four elements. Whenever
an individual element of the array is accessed or stored, FETCH and STORE will
be called just as they were for scalars, but with an extra index argument.

SELF->FETCH(INDEX)

This method is run whenever an individual element in the tied array is
accessed. It receives one argument after the object: the index of the value
we’r e trying to fetch.

sub FETCH {
my ($self, $index) = @_;
if ($index > $self->{BOUND}) {

confess "Array OOB: $index > $self->{BOUND}";
}
return $self->{DATA}[$index];

}

SELF->STORE(INDEX, VALUE)

This method is invoked whenever an element in the tied array is set. It takes
two arguments after the object: the index at which we’re trying to store some-
thing and the value we’re trying to put there. For example:

sub STORE {
my($self, $index, $value) = @_;
if ($index > $self->{BOUND}) {

confess "Array OOB: $index > $self->{BOUND}";
}
return $self->{DATA}[$index] = $value;

}

SELF->DESTROY

Perl calls this method when the tied variable needs to be destroyed and its
memory reclaimed. This is almost never needed in a language with garbage
collection, so for this example we’ll just leave it out.

SELF->FETCHSIZE

The FETCHSIZE method should retur n the total number of items in the tied
array associated with SELF. It’s equivalent to scalar(@array), which is usually
equal to $#array + 1.

sub FETCHSIZE {
my $self = shift;
return scalar @{$self->{DATA}};

}

SELF->STORESIZE(COUNT)

This method sets the total number of items in the tied array associated with
SELF to be COUNT. If the array shrinks, you should remove entries beyond
COUNT. If the array grows, you should make sure the new positions are unde-
fined. For our BoundedArray class, we also ensure that the array doesn’t grow
beyond the limit initially set.

sub STORESIZE {
my ($self, $count) = @_;
if ($count > $self->{BOUND}) {

confess "Array OOB: $count > $self->{BOUND}";
}
$#{$self->{DATA}} = $count;

}

SELF->EXTEND(COUNT)

Perl uses the EXTEND method to indicate that the array is likely to expand to
hold COUNT entries. That way you can can allocate memory in one big chunk
instead of in many successive calls later on. Since our BoundedArrays have
fixed upper bounds, we won’t define this method.

SELF->EXISTS(INDEX)

This method verifies that the element at INDEX exists in the tied array. For our
BoundedArray, we just employ Perl’s built-in exists after verifying that it’s not
an attempt to look past the fixed upper bound.

Tying Arra ys 375

376 Chapter 14: Tied Var iables

sub EXISTS {
my ($self, $index) = @_;
if ($index > $self->{BOUND}) {

confess "Array OOB: $index > $self->{BOUND}";
}
exists $self->{DATA}[$index];

}

SELF->DELETE(INDEX)

The DELETE method removes the element at INDEX fr om the tied array SELF. For
our BoundedArray class, the method looks nearly identical to EXISTS, but this is
not the norm.

sub DELETE {
my ($self, $index) = @_;
print STDERR "deleting!\n";
if ($index > $self->{BOUND}) {

confess "Array OOB: $index > $self->{BOUND}";
}
delete $self->{DATA}[$index];

}

SELF->CLEAR

This method is called whenever the array has to be emptied. That happens
when the array is set to a list of new values (or an empty list), but not when
it’s provided to the undef function. Since a cleared BoundedArray always satis-
fies the upper bound, we don’t need check anything here:

sub CLEAR {
my $self = shift;
$self->{DATA} = [];

}

If you set the array to a list, CLEAR will trigger but won’t see the list values. So
if you violate the upper bound like so:

tie(@array, "BoundedArray", 2);
@array = (1, 2, 3, 4);

the CLEAR method will still retur n successfully. The exception will only be
raised on the subsequent STORE. The assignment triggers one CLEAR and four
STOREs.

SELF->PUSH(LIST)

This method appends the elements of LIST to the array. Here’s how it might
look for our BoundedArray class:

sub PUSH {
my $self = shift;
if (@_ + $#{$self->{DATA}} > $self->{BOUND}) {

confess "Attempt to push too many elements";
}

push @{$self->{DATA}}, @_;
}

SELF->UNSHIFT(LIST)

This method prepends the elements of LIST to the array. For our BoundedArray
class, the subroutine would be similar to PUSH.

SELF->POP

The POP method removes the last element of the array and retur ns it. For
BoundedArray, it’s a one-liner:

sub POP { my $self = shift; pop @{$self->{DATA}} }

SELF->SHIFT

The SHIFT method removes the first element of the array and retur ns it. For
BoundedArray, it’s similar to POP.

SELF->SPLICE(OFFSET, LENGTH, LIST)

This method lets you splice the SELF array. To mimic Perl’s built-in splice,
OFFSET should be optional and default to zero, with negative values counting
back from the end of the array. LENGTH should also be optional, defaulting to
rest of the array. LIST can be empty. If it’s properly mimicking the built-in,
the method will retur n a list of the original LENGTH elements at OFFSET (that is,
the list of elements to be replaced by LIST).

Since splicing is a somewhat complicated operation, we won’t define it at all;
we’ll just use the SPLICE subr outine fr om the Tie::Array module that we got
for free when we inherited from Tie::Array. This way we define SPLICE in
ter ms of other BoundedArray methods, so the bounds checking will still occur.

That completes our BoundedArray class. It warps the semantics of arrays just a little.
But we can do better, and in very much less space.

Notational Convenience
One of the nice things about variables is that they interpolate. One of the not-so-
nice things about functions is that they don’t. You can use a tied array to make a
function that can be interpolated. Suppose you want to interpolate random inte-
gers in a string. You can just say:

#!/usr/bin/perl
package RandInterp;
sub TIEARRAY { bless \my $self };
sub FETCH { int rand $_[1] };

package main;
tie @rand, "RandInterp";

Tying Arra ys 377

378 Chapter 14: Tied Var iables

for (1,10,100,1000) {
print "A random integer less than $_ would be $rand[$_]\n";

}
$rand[32] = 5; # Will this reformat our system disk?

When run, this prints:

A random integer less than 1 would be 0
A random integer less than 10 would be 3
A random integer less than 100 would be 46
A random integer less than 1000 would be 755
Can’t locate object method "STORE" via package "RandInterp" at foo line 10.

As you can see, it’s no big deal that we didn’t even implement STORE. It just blows
up like normal.

Tying Hashes
A class implementing a tied hash should define eight methods. TIEHASH constructs
new objects. FETCH and STORE access the key/value pairs. EXISTS reports whether a
key is present in the hash, and DELETE removes a key along with its associated
value.* CLEAR empties the hash by deleting all key/value pairs. FIRSTKEY and NEX-

TKEY iterate over the key/value pairs when you call keys, values, or each. And as
usual, if you want to perfor m particular actions when the object is deallocated,
you may define a DESTROY method. (If this seems like a lot of methods, you didn’t
read the last section on arrays attentively. In any event, feel free to inherit the
default methods from the standard Tie::Hash module, redefining only the interest-
ing ones. Again, Tie::StdHash assumes the implementation is also a hash.)

For example, suppose you want to create a hash where every time you assign a
value to a key, instead of overwriting the previous contents, the new value is
appended to an array of values. That way when you say:

$h{$k} = "one";
$h{$k} = "two";

It really does:

push @{ $h{$k} }, "one";
push @{ $h{$k} }, "two";

That’s not a very complicated idea, so you should be able to use a pretty simple
module. Using Tie::StdHash as a base class, it is. Here’s a Tie::AppendHash that
does just that:

* Remember that Perl distinguishes between a key not existing in the hash and a key existing in the
hash but having a corresponding value of undef. The two possibilities can be tested with exists and
defined, respectively.

package Tie::AppendHash;
use Tie::Hash;
our @ISA = ("Tie::StdHash");
sub STORE {

my ($self, $key, $value) = @_;
push @{$self->{key}}, $value;

}
1;

Hash-Tying Methods
Her e’s an example of an interesting tied-hash class: it gives you a hash repr esent-
ing a particular user’s dot files (that is, files whose names begin with a period,
which is a naming convention for initialization files under Unix). You index into
the hash with the name of the file (minus the period) and get back that dot file’s
contents. For example:

use DotFiles;
tie %dot, "DotFiles";
if ($dot{profile} =˜ /MANPATH/ or

$dot{login} =˜ /MANPATH/ or
$dot{cshrc} =˜ /MANPATH/) {
print "you seem to set your MANPATH\n";

}

Her e’s another way to use our tied class:

Third argument is the name of a user whose dot files we will tie to.
tie %him, "DotFiles", "daemon";
foreach $f (keys %him) {

printf "daemon dot file %s is size %d\n", $f, length $him{$f};
}

In our DotFiles example we implement the object as a regular hash containing
several important fields, of which only the {CONTENTS} field will contain what the
user thinks of as the hash. Here are the object’s actual fields:

Field Contents

USER Whose dot files this object repr esents.
HOME Wher e those dot files live.
CLOBBER Whether we are allowed to change or remove those dot files.
CONTENTS The hash of dot file names and content mappings.

Her e’s the start of DotFiles.pm:

package DotFiles;
use Carp;
sub whowasi { (caller(1))[3] . "()" }
my $DEBUG = 0;
sub debug { $DEBUG = @_ ? shift : 1 }

Tying Hashes 379

380 Chapter 14: Tied Var iables

For our example, we want to be able to turn on debugging output to help in trac-
ing during development, so we set up $DEBUG for that. We also keep one conve-
nience function around internally to help print out warnings: whowasi retur ns the
name of the function that called the current function (whowasi’s “grandparent”
function).

Her e ar e the methods for the DotFiles tied hash:

CLASSNAME->TIEHASH(LIST)

Her e’s the DotFiles constructor:

sub TIEHASH {
my $self = shift;
my $user = shift || $>;
my $dotdir = shift || "";

croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;

$user = getpwuid($user) if $user =˜ /ˆ\d+$/;
my $dir = (getpwnam($user))[7]

or croak "@{ [&whowasi] }: no user $user";
$dir .= "/$dotdir" if $dotdir;

my $node = {
USER => $user,
HOME => $dir,
CONTENTS => {},
CLOBBER => 0,

};

opendir DIR, $dir
or croak "@{[&whowasi]}: can’t opendir $dir: $!";

for my $dot (grep /ˆ\./ && -f "$dir/$_", readdir(DIR)) {
$dot =˜ s/ˆ\.//;
$node->{CONTENTS}{$dot} = undef;

}
closedir DIR;

return bless $node, $self;
}

It’s probably worth mentioning that if you’re going to apply file tests to the
values retur ned by the above readdir, you’d better prepend the directory in
question (as we do). Otherwise, since no chdir was done, you’d likely be test-
ing the wrong file.

SELF->FETCH(KEY)

This method implements reading an element from the tied hash. It takes one
argument after the object: the key whose value we’re trying to fetch. The key
is a string, and you can do anything you like with it (consistent with its being
a string).

Her e’s the fetch for our DotFiles example:

sub FETCH {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $dir = $self->{HOME};
my $file = "$dir/.$dot";

unless (exists $self->{CONTENTS}->{$dot} || -f $file) {
carp "@{[&whowasi]}: no $dot file" if $DEBUG;
return undef;

}

Implement a cache.
if (defined $self->{CONTENTS}->{$dot}) {

return $self->{CONTENTS}->{$dot};
} else {

return $self->{CONTENTS}->{$dot} = ‘cat $dir/.$dot‘;
}

}

We cheated a little by running the Unix cat (1) command, but it would be
mor e portable (and more efficient) to open the file ourselves. On the other
hand, since dotfiles are a Unixy concept, we’re not that concerned. Or
shouldn’t be. Or something . . .

SELF->STORE(KEY, VALUE)

This method does the dirty work whenever an element in the tied hash is set
(written). It takes two arguments after the object: the key under which we’re
storing the new value, and the value itself.

For our DotFiles example, we won’t let users overwrite a file without first
invoking the clobber method on the original object retur ned by tie:

sub STORE {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $value = shift;
my $file = $self->{HOME} . "/.$dot";

croak "@{[&whowasi]}: $file not clobberable"
unless $self->{CLOBBER};

open(F, "> $file") or croak "can’t open $file: $!";
print F $value;
close(F);

}

Tying Hashes 381

382 Chapter 14: Tied Var iables

If someone wants to clobber something, they can say:

$ob = tie %daemon_dots, "daemon";
$ob->clobber(1);
$daemon_dots{signature} = "A true daemon\n";

But they could alternatively set {CLOBBER} with tied:

tie %daemon_dots, "DotFiles", "daemon";
tied(%daemon_dots)->clobber(1);

or as one statement:

(tie %daemon_dots, "DotFiles", "daemon")->clobber(1);

The clobber method is simply:

sub clobber {
my $self = shift;
$self->{CLOBBER} = @_ ? shift : 1;

}

SELF->DELETE(KEY)

This method handles requests to remove an element from the hash. If your
emulated hash uses a real hash somewhere, you can just call the real delete.
Again, we’ll be careful to check whether the user really wants to clobber files:

sub DELETE {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $file = $self->{HOME} . "/.$dot";
croak "@{[&whowasi]}: won’t remove file $file"

unless $self->{CLOBBER};
delete $self->{CONTENTS}->{$dot};
unlink $file or carp "@{[&whowasi]}: can’t unlink $file: $!";

}

SELF->CLEAR

This method is run when the whole hash needs to be cleared, usually by
assigning the empty list to it. In our example, that would remove all the user’s
dot files! It’s such a dangerous thing that we’ll requir e CLOBBER to be set higher
than 1 befor e this can happen:

sub CLEAR {
carp &whowasi if $DEBUG;
my $self = shift;
croak "@{[&whowasi]}: won’t remove all dotfiles for $self->{USER}"

unless $self->{CLOBBER} > 1;
for my $dot (keys %{$self->{CONTENTS}}) {

$self->DELETE($dot);
}

}

SELF->EXISTS(KEY)

This method runs when the user invokes the exists function on a particular
hash. In our example, we’ll look at the {CONTENTS} hash element to find the
answer:

sub EXISTS {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
return exists $self->{CONTENTS}->{$dot};

}

SELF->FIRSTKEY

This method is called when the user begins to iterate through the hash, such
as with a keys, values, or each call. By calling keys in a scalar context, we
reset its internal state to ensure that the next each used in the return statement
will get the first key.

sub FIRSTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
my $temp = keys %{$self->{CONTENTS}};
return scalar each %{$self->{CONTENTS}};

}

SELF->NEXTKEY(PREVKEY)

This method is the iterator for a keys, values, or each function. PREVKEY is the
last key accessed, which Perl knows to supply. This is useful if the NEXTKEY

method needs to know its previous state to calculate the next state.

For our example, we are using a real hash to repr esent the tied hash’s data,
except that this hash is stored in the hash’s CONTENTS field instead of in the
hash itself. So we can just rely on Perl’s each iterator:

sub NEXTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
return scalar each %{ $self->{CONTENTS} }

}

SELF->DESTROY

This method is triggered when a tied hash’s object is about to be deallocated.
You don’t really need it except for debugging and extra cleanup. Here’s a very
simple version:

sub DESTROY {
carp &whowasi if $DEBUG;

}

Tying Hashes 383

384 Chapter 14: Tied Var iables

Now that we’ve given you all those methods, your homework is to go back and
find the places we interpolated @{[&whowasi]} and replace them with a simple tied
scalar named $whowasi that does the same thing.

Tying Filehandles
A class implementing a tied filehandle should define the following methods:
TIEHANDLE and at least one of PRINT, PRINTF, WRITE, READLINE, GETC, and READ. The
class can also provide a DESTROY method, and BINMODE, OPEN, CLOSE, EOF, FILENO,
SEEK, TELL, READ, and WRITE methods to enable the corresponding Perl built-ins for
the tied filehandle. (Well, that isn’t quite true: WRITE corr esponds to syswrite and
has nothing to do with Perl’s built-in write function for printing with format decla-
rations.)

Tied filehandles are especially useful when Perl is embedded in another program
(such as Apache or vi) and output to STDOUT or STDERR needs to be redir ected in
some special way.

But filehandles don’t actually have to be tied to a file at all. You can use output
statements to build up an in-memory data structure and input statements to read
them back in. Here’s an easy way to reverse a sequence of print and printf state-
ments without reversing the individual lines:

package ReversePrint;
use strict;
sub TIEHANDLE {

my $class = shift;
bless [], $class;

}
sub PRINT {

my $self = shift;
push @$self, join ’’, @_;

}
sub PRINTF {

my $self = shift;
my $fmt = shift;
push @$self, sprintf $fmt, @_;

}
sub READLINE {

my $self = shift;
pop @$self;

}

package main;
my $m = "--MORE- -\n";
tie *REV, "ReversePrint";

Do some prints and printfs.
print REV "The fox is now dead.$m";

printf REV <<"END", int rand 10000000;
The quick brown fox jumps over
over the lazy dog %d times!
END

print REV <<"END";
The quick brown fox jumps
over the lazy dog.
END

Now read back from the same handle.
print while <REV>;

This prints:

The quick brown fox jumps
over the lazy dog.
The quick brown fox jumps over
over the lazy dog 3179357 times!
The fox is now dead.--MORE- -

Filehandle-Tying Methods
For our extended example, we’ll create a filehandle that uppercases strings printed
to it. Just for kicks, we’ll begin the file with <SHOUT> when it’s opened and end
with </SHOUT> when it’s closed. That way we can rant in well-formed XML.

Her e’s the top of our Shout.pm file that will implement the class:

package Shout;
use Carp; # So we can croak our errors

We’ll now list the method definitions in Shout.pm.

CLASSNAME->TIEHANDLE(LIST)

This is the constructor for the class, which as usual should retur n a blessed
refer ence.

sub TIEHANDLE {
my $class = shift;
my $form = shift;
open my $self, $form, @_ or croak "can’t open $form@_: $!";
if ($form =˜ />/) {

print $self "<SHOUT>\n";
$$self->{WRITING} = 1; # Remember to do end tag

}
return bless $self, $class; # $self is a glob ref

}

Her e, we open a new filehandle according to the mode and filename passed
to the tie operator, write <SHOUT> to the file, and retur n a blessed refer ence to
it. There’s a lot of stuff going on in that open statement, but we’ll just point out
that, in addition to the usual “open or die” idiom, the my $self fur nishes an

Tying Filehandles 385

386 Chapter 14: Tied Var iables

undefined scalar to open, which knows to autovivify it into a typeglob. The
fact that it’s a typeglob is also significant, because not only does the typeglob
contain the real I/O object of the file, but it also contains various other handy
data structures that come along for free, like a scalar ($$$self), an array
(@$$self), and a hash (%$$self). (We won’t mention the subroutine, &$$self.)

The $form is the filename-or-mode argument. If it’s a filename, @_ is empty, so
it behaves as a two-argument open. Otherwise, $form is the mode for the rest
of the arguments.

After the open, we test to see whether we should write the beginning tag. If
so, we do. And right away, we use one of those glob data structures we men-
tioned. That $$self->{WRITING} is an example of using the glob to store inter-
esting information. In this case, we remember whether we did the beginning
tag so we know whether to do the corresponding end tag. We’r e using the
%$$self hash, so we can give the field a decent name. We could have used
the scalar as $$$self, but that wouldn’t be self-documenting. (Or it would only
be self-documenting, depending on how you look at it.)

SELF->PRINT(LIST)

This method implements a print to the tied handle. The LIST is whatever was
passed to print. Our method below uppercases each element of LIST:

sub PRINT {
my $self = shift;
print $self map {uc} @_;

}

SELF->READLINE

This method supplies the data when the filehandle is read from via the angle
operator (<FH>) or readline. The method should retur n undef when there is
no more data.

sub READLINE {
my $self = shift;
return <$self>;

}

Her e, we simply return <$self> so that the method will behave appropriately
depending on whether it was called in scalar or list context.

SELF->GETC

This method runs whenever getc is used on the tied filehandle.

sub GETC {
my $self = shift;
return getc($self);

}

Like several of the methods in our Shout class, the GETC method simply calls its
corr esponding Perl built-in and retur ns the result.

SELF->OPEN(LIST)

Our TIEHANDLE method itself opens a file, but a program using the Shout class
that calls open afterward triggers this method.

sub OPEN {
my $self = shift;
my $form = shift;
my $name = "$form@_";
$self->CLOSE;
open($self, $form, @_) or croak "can’t reopen $name: $!";
if ($form =˜ />/) {

print $self "<SHOUT>\n" or croak "can’t start print: $!";
$$self->{WRITING} = 1; # Remember to do end tag

}
else {

$$self->{WRITING} = 0; # Remember not to do end tag
}
return 1;

}

We invoke our own CLOSE method to explicitly close the file in case the user
didn’t bother to. Then we open a new file with whatever filename was speci-
fied in the open and shout at it.

SELF->CLOSE

This method deals with the request to close the handle. Her e, we seek to the
end of the file and, if that was successful, print </SHOUT> befor e using Perl’s
built-in close.

sub CLOSE {
my $self = shift;
if ($$self->{WRITING}) {

$self->SEEK(0, 2) or return;
$self->PRINT("</SHOUT>\n") or return;

}
return close $self;

}

SELF->SEEK(LIST)

When you seek on a tied filehandle, the SEEK method gets called.

sub SEEK {
my $self = shift;
my ($offset, $whence) = @_;
return seek($self, $offset, $whence);

}

Tying Filehandles 387

388 Chapter 14: Tied Var iables

SELF->TELL

This method is invoked when tell is used on the tied handle.

sub TELL {
my $self = shift;
return tell $self;

}

SELF->PRINTF(LIST)

This method is run whenever printf is used on the tied handle. The LIST will
contain the format and the items to be printed.

sub PRINTF {
my $self = shift;
my $template = shift;
return $self->PRINT(sprintf $template, @_);

}

Her e, we use sprintf to generate the formatted string and pass it to PRINT for
uppercasing. There’s nothing that requir es you to use the built-in sprintf

function though. You could interpret the percent escapes to suit your own
purpose.

SELF->READ(LIST)

This method responds when the handle is read using read or sysread. Note
that we modify the first argument of LIST “in-place”, mimicking read’s ability
to fill in the scalar passed in as its second argument.

sub READ {
my ($self, undef, $length, $offset) = @_;
my $bufref = \$_[1];
return read($self, $$bufref, $length, $offset);

}

SELF->WRITE(LIST)

This method gets invoked when the handle is written to with syswrite. Her e,
we uppercase the string to be written.

sub WRITE {
my $self = shift;
my $string = uc(shift);
my $length = shift || length $string;
my $offset = shift || 0;
return syswrite $self, $string, $length, $offset;

}

SELF->EOF

This method retur ns a Boolean value when a filehandle tied to the Shout class
is tested for its end-of-file status using eof.

sub EOF {
my $self = shift;
return eof $self;

}

SELF->BINMODE(DISC)

This method specifies the I/O discipline to be used on the filehandle. If none
is specified, it puts the tied filehandle into binary mode (the :raw discipline),
for filesystems that distinguish between text and binary files.

sub BINMODE {
my $self = shift;
my $disc = shift || ":raw";
return binmode $self, $disc;

}

That’s how you’d write it, but it’s actually useless in our case because the open

alr eady wr ote on the handle. So in our case we should probably make it say:

sub BINMODE { croak("Too late to use binmode") }

SELF->FILENO

This method should retur n the file descriptor (fileno) associated with the tied
filehandle by the operating system.

sub FILENO {
my $self = shift;
return fileno $self;

}

SELF->DESTROY

As with the other types of ties, this method is triggered when the tied object is
about to be destroyed. This is useful for letting the object clean up after itself.
Her e, we make sure that the file is closed, in case the program forgot to call
close. We could just say close $self, but it’s better to invoke the CLOSE

method of the class. That way if the designer of the class decides to change
how files are closed, this DESTROY method won’t have to be modified.

sub DESTROY {
my $self = shift;
$self->CLOSE; # Close the file using Shout’s CLOSE method.

}

Her e’s a demonstration of our Shout class:

#!/usr/bin/perl
use Shout;
tie(*FOO, Shout::, ">filename");
print FOO "hello\n"; # Prints HELLO.
seek FOO, 0, 0; # Rewind to beginning.
@lines = <FOO>; # Calls the READLINE method.
close FOO; # Close file explicitly.

Tying Filehandles 389

390 Chapter 14: Tied Var iables

open(FOO, "+<", "filename"); # Reopen FOO, calling OPEN.
seek(FOO, 8, 0); # Skip the "<SHOUT>\n".
sysread(FOO, $inbuf, 5); # Read 5 bytes from FOO into $inbuf.
print "found $inbuf\n"; # Should print "hello".
seek(FOO, -5, 1); # Back up over the "hello".
syswrite(FOO, "ciao!\n", 6); # Write 6 bytes into FOO.
untie(*FOO); # Calls the CLOSE method implicitly.

After running this, the file contains:

<SHOUT>
CIAO!
</SHOUT>

Her e ar e some more strange and wonderful things to do with that internal glob.
We use the same hash as before, but with new keys PATHNAME and DEBUG. First we
install a stringify overloading so that printing one of our objects reveals the path-
name (see Chapter 13, Overloading):

This is just so totally cool!
use overload q("") => sub { $_[0]->pathname };

This is the stub to put in each function you want to trace.
sub trace {

my $self = shift;
local $Carp::CarpLevel = 1;
Carp::cluck("\ntrace magical method") if $self->debug;

}

Overload handler to print out our path.
sub pathname {

my $self = shift;
confess "i am not a class method" unless ref $self;
$$self->{PATHNAME} = shift if @_;
return $$self->{PATHNAME};

}
Dual moded.
sub debug {

my $self = shift;
my $var = ref $self ? \$$self->{DEBUG} : \our $Debug;
$$var = shift if @_;
return ref $self ? $$self->{DEBUG} || $Debug : $Debug;

}

And then call trace on entry to all your ordinary methods like this:

sub GETC { $_[0]->trace; # NEW
my($self) = @_;
getc($self);

}

And also set the pathname in TIEHANDLE and OPEN:

sub TIEHANDLE {
my $class = shift;
my $form = shift;
my $name = "$form@_"; # NEW
open my $self, $form, @_ or croak "can’t open $name: $!";
if ($form =˜ />/) {

print $self "<SHOUT>\n";
$$self->{WRITING} = 1; # Remember to do end tag

}
bless $self, $class; # $fh is a glob ref
$self->pathname($name); # NEW
return $self;

}

sub OPEN { $_[0]->trace; # NEW
my $self = shift;
my $form = shift;
my $name = "$form@_";
$self->CLOSE;
open($self, $form, @_) or croak "can’t reopen $name: $!";
$self->pathname($name); # NEW
if ($form =˜ />/) {

print $self "<SHOUT>\n" or croak "can’t start print: $!";
$$self->{WRITING} = 1; # Remember to do end tag

}
else {

$$self->{WRITING} = 0; # Remember not to do end tag
}
return 1;

}

Somewher e you also have to call $self->debug(1) to turn debugging on. When
you do that, all your Carp::cluck calls will produce meaningful messages. Here’s
one that we get while doing the reopen above. It shows us three deep in method
calls, as we’re closing down the old file in preparation for opening the new one:

trace magical method at foo line 87
Shout::SEEK(’>filename’, ’>filename’, 0, 2) called at foo line 81
Shout::CLOSE(’>filename’) called at foo line 65
Shout::OPEN(’>filename’, ’+<’, ’filename’) called at foo line 141

Creative Filehandles
You can tie the same filehandle to both the input and the output of a two-ended
pipe. Suppose you wanted to run the bc (1) (arbitrary precision calculator) pro-
gram this way:

use Tie::Open2;

tie *CALC, ’Tie::Open2’, "bc -l";
$sum = 2;

Tying Filehandles 391

392 Chapter 14: Tied Var iables

for (1 .. 7) {
print CALC "$sum * $sum\n";
$sum = <CALC>;
print "$_: $sum";
chomp $sum;

}
close CALC;

One would expect it to print this:

1: 4
2: 16
3: 256
4: 65536
5: 4294967296
6: 18446744073709551616
7: 340282366920938463463374607431768211456

One’s expectations would be correct if one had the bc (1) program on one’s com-
puter, and one also had Tie::Open2 defined as follows. This time we’ll use a
blessed array for our internal object. It contains our two actual filehandles for
reading and writing. (The dirty work of opening a double-ended pipe is done by
IPC::Open2; we’r e just doing the fun part.)

package Tie::Open2;
use strict;
use Carp;
use Tie::Handle; # do not inherit from this!
use IPC::Open2;

sub TIEHANDLE {
my ($class, @cmd) = @_;
no warnings ’once’;
my @fhpair = \do { local(*RDR, *WTR) };
bless $_, ’Tie::StdHandle’ for @fhpair;
bless(\@fhpair => $class)->OPEN(@cmd) || die;
return \@fhpair;

}

sub OPEN {
my ($self, @cmd) = @_;
$self->CLOSE if grep {defined} @{ $self->FILENO };
open2(@$self, @cmd);

}

sub FILENO {
my $self = shift;
[map { fileno $self->[$_] } 0,1];

}

for my $outmeth (qw(PRINT PRINTF WRITE)) {
no strict ’refs’;
*$outmeth = sub {

my $self = shift;
$self->[1]->$outmeth(@_);

};
}
for my $inmeth (qw(READ READLINE GETC)) {

no strict ’refs’;
*$inmeth = sub {

my $self = shift;
$self->[0]->$inmeth(@_);

};
}
for my $doppelmeth (qw(BINMODE CLOSE EOF)) {

no strict ’refs’;
*$doppelmeth = sub {

my $self = shift;
$self->[0]->$doppelmeth(@_) && $self->[1]->$doppelmeth(@_);

};
}
for my $deadmeth (qw(SEEK TELL)) {

no strict ’refs’;
*$deadmeth = sub {

croak("can’t $deadmeth a pipe");
};

}
1;

The final four loops are just incredibly snazzy, in our opinion. For an explanation
of what’s going on, look back at the section entitled “Closures as Function Tem-
plates” in Chapter 8, Refer ences.

Her e’s an even wackier set of classes. The package names should give you a clue
as to what they do.

use strict;
package Tie::DevNull;

sub TIEHANDLE {
my $class = shift;
my $fh = local *FH;
bless \$fh, $class;

}
for (qw(READ READLINE GETC PRINT PRINTF WRITE)) {

no strict ’refs’;
*$_ = sub { return };

}

package Tie::DevRandom;

sub READLINE { rand() . "\n"; }
sub TIEHANDLE {

my $class = shift;
my $fh = local *FH;
bless \$fh, $class;

}

Tying Filehandles 393

394 Chapter 14: Tied Var iables

sub FETCH { rand() }
sub TIESCALAR {

my $class = shift;
bless \my $self, $class;

}

package Tie::Tee;

sub TIEHANDLE {
my $class = shift;
my @handles;
for my $path (@_) {

open(my $fh, ">$path") || die "can’t write $path";
push @handles, $fh;

}
bless \@handles, $class;

}

sub PRINT {
my $self = shift;
my $ok = 0;
for my $fh (@$self) {

$ok += print $fh @_;
}
return $ok == @$self;

}

The Tie::Tee class emulates the standard Unix tee (1) program, which sends one
str eam of output to multiple differ ent destinations. The Tie::DevNull class emu-
lates the null device, /dev/null on Unix systems. And the Tie::DevRandom class pro-
duces random numbers either as a handle or as a scalar, depending on whether
you call TIEHANDLE or TIESCALAR! Her e’s how you call them:

package main;

tie *SCATTER, "Tie::Tee", qw(tmp1 - tmp2 >tmp3 tmp4);
tie *RANDOM, "Tie::DevRandom";
tie *NULL, "Tie::DevNull";
tie my $randy, "Tie::DevRandom";

for my $i (1..10) {
my $line = <RANDOM>;
chomp $line;
for my $fh (*NULL, *SCATTER) {

print $fh "$i: $line $randy\n";
}

}

This produces something like the following on your screen:

1: 0.124115571686165 0.20872819474074
2: 0.156618299751194 0.678171662366353
3: 0.799749050426126 0.300184963960792
4: 0.599474551447884 0.213935286029916

5: 0.700232143543861 0.800773751296671
6: 0.201203608274334 0.0654303290639575
7: 0.605381294683365 0.718162304090487
8: 0.452976481105495 0.574026269121667
9: 0.736819876983848 0.391737610662044
10: 0.518606540417331 0.381805078272308

But that’s not all! It wrote to your screen because of the - in the *SCATTER tie

above. But that line also told it to create files tmp1, tmp2, and tmp4, as well as to
append to file tmp3. (We also wrote to the *NULL filehandle in the loop, though of
course that didn’t show up anywhere inter esting, unless you’re inter ested in black
holes.)

A Subtle Untying Trap
If you intend to make use of the object retur ned fr om tie or tied, and the class
defines a destructor, ther e is a subtle trap you must guard against. Consider this
(admittedly contrived) example of a class that uses a file to log all values assigned
to a scalar:

package Remember;

sub TIESCALAR {
my $class = shift;
my $filename = shift;
open(my $handle, ">", $filename)

or die "Cannot open $filename: $!\n";
print $handle "The Start\n";
bless {FH => $handle, VALUE => 0}, $class;

}

sub FETCH {
my $self = shift;
return $self->{VALUE};

}

sub STORE {
my $self = shift;
my $value = shift;
my $handle = $self->{FH};
print $handle "$value\n";
$self->{VALUE} = $value;

}

sub DESTROY {
my $self = shift;
my $handle = $self->{FH};
print $handle "The End\n";
close $handle;

}

1;

A Subtle Untying Trap 395

396 Chapter 14: Tied Var iables

Her e is an example that makes use of our Remember class:

use strict;
use Remember;

my $fred;
$x = tie $fred, "Remember", "camel.log";
$fred = 1;
$fred = 4;
$fred = 5;
untie $fred;
system "cat camel.log";

This is the output when it is executed:

The Start
1
4
5
The End

So far, so good. Let’s add an extra method to the Remember class that allows com-
ments in the file—say, something like this:

sub comment {
my $self = shift;
my $message = shift;
print { $self->{FH} } $handle $message, "\n";

}

And here is the previous example, modified to use the comment method:

use strict;
use Remember;

my ($fred, $x);
$x = tie $fred, "Remember", "camel.log";
$fred = 1;
$fred = 4;
comment $x "changing...";
$fred = 5;
untie $fred;
system "cat camel.log";

Now the file will be empty, which probably wasn’t what you intended. Here’s
why. Tying a variable associates it with the object retur ned by the constructor. This
object normally has only one refer ence: the one hidden behind the tied variable
itself. Calling “untie” breaks the association and eliminates that refer ence. Since
ther e ar e no remaining refer ences to the object, the DESTROY method is triggered.

However, in the example above we stored a second refer ence to the object tied to
$x. That means that after the untie ther e will still be a valid refer ence to the
object. DESTROY won’t get triggered, and the file won’t get flushed and closed.
That’s why there was no output: the filehandle’s buffer was still in memory. It
won’t hit the disk until the program exits.

To detect this, you could use the -w command-line flag, or include the use warn-

ings "untie" pragma in the current lexical scope. Either technique would identify
a call to untie while there wer e still refer ences to the tied object remaining. If so,
Perl prints this warning:

untie attempted while 1 inner references still exist

To get the program to work properly and silence the warning, eliminate any extra
refer ences to the tied object befor e calling untie. You can do that explicitly:

undef $x;
untie $fred;

Often though you can solve the problem simply by making sure your variables go
out of scope at the appropriate time.

Tie Modules on CPAN
Befor e you get all inspired to write your own tie module, you should check to see
if someone’s already done it. There are lots of tie modules on CPAN, with more
every day. (Well, every month, anyway.) Table 14-1 lists some of them.

Table 14-1. Tie Modules on CPAN

Module Descr iption

GnuPG::Tie::Encrypt Ties a filehandle interface to encryption with the GNU Privacy
Guard.

IO::WrapTie Wraps tied objects in an IO::Handle inter face.

MLDBM Transpar ently stor es complex data values, not just flat strings, in a
DBM file.

Net::NISplusTied Ties hashes to NIS+ tables.

Tie::Cache::LRU Implements a least-recently used cache.

Tie::Const Pr ovides constant scalars and hashes.

Tie::Counter Enchants a scalar variable to increment upon each access.

Tie::CPHash Implements a case-preserving but case-insensitive hash.

Tie::DB_FileLock Pr ovides locking access to Berkeley DB 1.x.

Tie::DBI Ties hashes to DBI relational databases.

Tie::DB_Lock Ties hashes to databases using shared and exclusive locks.

Tie Modules on CPAN 397

398 Chapter 14: Tied Var iables

Table 14-1. Tie Modules on CPAN (continued)

Module Descr iption

Tie::Dict Ties a hash to an RPC dict server.

Tie::Dir Ties a hash for reading directories.

Tie::DirHandle Ties directory handles.

Tie::FileLRUCache Implements a lightweight, filesystem-based, persistent LRU cache.

Tie::FlipFlop Implements a tie that alternates between two values.

Tie::HashDefaults Lets a hash have default values.

Tie::HashHistory Tracks history of all changes to a hash.

Tie::IxHash Pr ovides order ed associative arrays for Perl.

Tie::LDAP Implements an interface to an LDAP database.

Tie::Persistent Pr ovides persistent data structures via tie.

Tie::Pick Randomly picks (and removes) an element from a set.

Tie::RDBM Ties hashes to relational databases.

Tie::SecureHash Supports namespace-based encapsulation.

Tie::STDERR Sends output of your STDERR to another process such as a mailer.

Tie::Syslog Ties a filehandle to automatically syslog its output.

Tie::TextDir Ties a directory of files.

Tie::TransactHash Edits a hash in transactions without changing the order during the
transaction.

Tie::VecArray Pr ovides an array interface to a bit vector.

Tie::Watch Places watch points on Perl variables.

Win32::TieRegistry Pr ovides power ful and easy ways to manipulate a Microsoft
Windows registry.

III
Perl as Technolog y

15
Unicode

If you do not yet know what Unicode is, you will soon—even if you skip reading
this chapter—because working with Unicode is becoming a necessity. (Some peo-
ple think of it as a necessary evil, but it’s really more of a necessary good. In
either case, it’s a necessary pain.)

Historically, people made up character sets to reflect what they needed to do in
the context of their own culture. Since people of all cultures are naturally lazy,
they’ve tended to include only the symbols they needed, excluding the ones they
didn’t need. That worked fine as long as we were only communicating with other
people of our own culture, but now that we’re starting to use the Internet for
cr oss-cultural communication, we’re running into problems with the exclusive
appr oach. It’s hard enough to figure out how to type accented characters on an
American keyboard. How in the world (literally) can one write a multilingual web
page?

Unicode is the answer, or at least part of the answer (see also XML). Unicode is an
inclusive rather than an exclusive character set. While people can and do haggle
over the various details of Unicode (and there are plenty of details to haggle over),
the overall intent is to make everyone sufficiently happy* with Unicode so that
they’ll willingly use Unicode as the international medium of exchange for textual
data. Nobody is forcing you to use Unicode, just as nobody is forcing you to read
this chapter (we hope). People will always be allowed to use their old exclusive
character sets within their own culture. But in that case (as we say), portability
suf fers.

* Or in some cases, insufficiently unhappy.

401

402 Chapter 15: Unicode

The Law of Conservation of Suffering says that if we reduce the suffering in one
place, suffering must increase elsewhere. In the case of Unicode, we must suffer
the migration from byte semantics to character semantics. Since, through an acci-
dent of history, Perl was invented by an American, Perl has historically confused
the notions of bytes and characters. In migrating to Unicode, Perl must somehow
unconfuse them.

Paradoxically, by getting Perl itself to unconfuse bytes and characters, we can
allow the Perl programmer to confuse them, relying on Perl to keep them straight,
just as we allow programmers to confuse numbers and strings and rely on Perl to
convert back and forth as necessary. To the extent possible, Perl’s approach to
Unicode is the same as its approach to everything else: Just Do The Right Thing.
Ideally, we’d like to achieve these four Goals:

Goal #1:
Old byte-oriented programs should not spontaneously break on the old byte-
oriented data they used to work on.

Goal #2:
Old byte-oriented programs should magically start working on the new char-
acter-oriented data when appropriate.

Goal #3:
Pr ograms should run just as fast in the new character-oriented mode as in the
old byte-oriented mode.

Goal #4:
Perl should remain one language, rather than forking into a byte-oriented Perl
and a character-oriented Perl.

Taken together, these Goals are practically impossible to reach. But we’ve come
remarkably close. Or rather, we’r e still in the process of coming remarkably close,
since this is a work in progr ess. As Unicode continues to evolve, so will Perl. But
our overarching plan is to provide a safe migration path that gets us where we
want to go with minimal casualties along the way. How we do that is the subject
of the next section.

Building Character
In releases of Perl prior to 5.6, all strings were viewed as sequences of bytes.* In
versions 5.6 and later, however, a string may contain characters wider than a byte.
We now view strings not as sequences of bytes, but as sequences of numbers in
the range 0 .. 2**32-1 (or in the case of 64-bit computers, 0 .. 2**64-1). These

* You may prefer to call them “octets”; that’s okay, but we think the two words are pretty much syn-
onymous these days, so we’ll stick with the blue-collar word.

numbers repr esent abstract characters, and the larger the number, the “wider” the
character, in some sense; but unlike many languages, Perl is not tied to any partic-
ular width of character repr esentation. Perl uses a variable-length encoding (based
on UTF-8), so these abstract character numbers may, or may not, be packed one
number per byte. Obviously, character number 18,446,744,073,709,551,615 (that
is, “\x{ffff_ffff_ffff_ffff}”) is never going to fit into a byte (in fact, it takes 13
bytes), but if all the characters in your string are in the range 0..127 decimal, then
they are certainly packed one per byte, since UTF-8 is the same as ASCII in the
lowest seven bits.

Perl uses UTF-8 only when it thinks it is beneficial, so if all the characters in your
string are in the range 0..255, ther e’s a good chance the characters are all packed
in bytes—but in the absence of other knowledge, you can’t be sure because inter-
nally Perl converts between fixed 8-bit characters and variable-length UTF-8 char-
acters as necessary. The point is, you shouldn’t have to worry about it most of the
time, because the character semantics are preserved at an abstract level regardless
of repr esentation.

In any event, if your string contains any character numbers larger than 255 deci-
mal, the string is certainly stored in UTF-8. More accurately, it is stored in Perl’s
extended version of UTF-8, which we call utf8, in honor of a pragma by that
name, but mostly because it’s easier to type. (And because “real” UTF-8 is only
allowed to contain character numbers blessed by the Unicode Consortium. Perl’s
utf8 is allowed to contain any character numbers you need to get your job done.
Perl doesn’t give a rip whether your character numbers are officially correct or just
corr ect.)

We said you shouldn’t worry about it most of the time, but people like to worry
anyway. Suppose you use a v-string to repr esent an IPv4 address:

$locaddr = v127.0.0.1; # Certainly stored as bytes.
$oreilly = v204.148.40.9; # Might be stored as bytes or utf8.
$badaddr = v2004.148.40.9; # Certainly stored as utf8.

Everyone can figure out that $badaddr will not work as an IP address. So it’s easy
to think that if O’Reilly’s network address gets forced into a UTF-8 repr esentation,
it will no longer work. But the characters in the string are abstract numbers, not
bytes. Anything that uses an IPv4 address, such as the gethostbyaddr function,
should automatically coerce the abstract character numbers back into a byte repr e-
sentation (and fail on $badaddr).

Building Character 403

404 Chapter 15: Unicode

The interfaces between Perl and the real world have to deal with the details of the
repr esentation. To the extent possible, existing interfaces try to do the right thing
without your having to tell them what to do. But you do occasionally have to give
instructions to some interfaces (such as the open function), and if you write your
own interface to the real world, it will need to be either smart enough to figure
things out for itself or at least smart enough to follow instructions when you want
it to behave differ ently than it would by default.*

Since Perl worries about maintaining transparent character semantics within the
language itself, the only place you need to worry about byte versus character
semantics is in your interfaces. By default, all your old Perl interfaces to the out-
side world are byte-oriented, so they produce and consume byte-oriented data.
That is to say, on the abstract level, all your strings are sequences of numbers in
the range 0..255, so if nothing in the program forces them into utf8 repr esenta-
tions, your old program continues to work on byte-oriented data just as it did
befor e. So put a check mark by Goal #1 above.

If you want your old program to work on new character-oriented data, you must
mark your character-oriented interfaces such that Perl knows to expect character-
oriented data from those interfaces. Once you’ve done this, Perl should automati-
cally do any conversions necessary to preserve the character abstraction. The only
dif ference is that you’ve introduced some strings into your program that are
marked as potentially containing characters higher than 255, so if you perfor m an
operation between a byte string and utf8 string, Perl will internally coerce the byte
string into a utf8 string before per forming the operation. Typically, utf8 strings are
coerced back to byte strings only when you send them to a byte interface, at
which point, if the string contains characters larger than 255, you have a problem
that can be handled in various ways depending on the interface in question. So
you can put a check mark by Goal #2.

Sometimes you want to mix code that understands character semantics with code
that has to run with byte semantics, such as I/O code that reads or writes fixed-
size blocks. In this case, you may put a use bytes declaration around the byte-ori-
ented code to force it to use byte semantics even on strings marked as utf8 strings.
You are then responsible for any necessary conversions. But it’s a way of enforc-
ing a stricter local reading of Goal #1, at the expense of a looser global reading of
Goal #2.

* On some systems, there may be ways of switching all your interfaces at once. If the -C command-
line switch is used, (or the global ${ˆWIDE_SYSTEM_CALLS} variable is set to 1), all system calls will use
the corresponding wide character APIs. (This is currently only implemented on Microsoft Windows.)
The current plan of the Linux community is that all interfaces will switch to UTF-8 mode if
$ENV{LC_CTYPE} is set to “UTF-8”. Other communities may take other approaches. Our mileage may
vary.

Goal #3 has largely been achieved, partly by doing lazy conversions between byte
and utf8 repr esentations and partly by being sneaky in how we implement poten-
tially slow features of Unicode, such as character property lookups in huge tables.

Goal #4 has been achieved by sacrificing a small amount of interface compatibility
in pursuit of the other Goals. By one way of looking at it, we didn’t fork into two
dif ferent Perls; but by another way of looking at it, revision 5.6 of Perl is a forked
version of Perl with regard to earlier versions, and we don’t expect people to
switch from earlier versions until they’re sur e the new version will do what they
want. But that’s always the case with new versions, so we’ll allow ourselves to put
a check mark by Goal #4 as well.

Effects of Character Semantics
The upshot of all this is that a typical built-in operator will operate on characters
unless it is in the scope of a use bytes pragma. However, even outside the scope
of use bytes, if all of the operands of the operator are stor ed as 8-bit characters
(that is, none of the operands are stor ed in utf8), then character semantics are
indistinguishable from byte semantics, and the result of the operator will be stored
in 8-bit form inter nally. This preserves backward compatibility as long as you don’t
feed your program any characters wider than Latin-1.

The utf8 pragma is primarily a compatibility device that enables recognition of
UTF-8 in literals and identifiers encountered by the parser. It may also be used for
enabling some of the more experimental Unicode support features. Our long-term
goal is to turn the utf8 pragma into a no-op.

The use bytes pragma will never turn into a no-op. Not only is it necessary for
byte-oriented code, but it also has the side effect of defining byte-oriented wrap-
pers around certain functions for use outside the scope of use bytes. As of this
writing, the only defined wrapper is for length, but there are likely to be more as
time goes by. To use such a wrapper, say:

use bytes (); # Load wrappers without importing byte semantics.
...
$charlen = length("\x{ffff_ffff}"); # Returns 1.
$bytelen = bytes::length("\x{ffff_ffff}"); # Returns 7.

Outside the scope of a use bytes declaration, Perl version 5.6 works (or at least, is
intended to work) like this:

• Strings and patterns may now contain characters that have an ordinal value
larger than 255:

use utf8;
$convergence = "☞ ☞";

Effects of Character Semantics 405

406 Chapter 15: Unicode

Pr esuming you have a Unicode-capable editor to edit your program, such
characters will typically occur directly within the literal strings as UTF-8 char-
acters. For now, you have to declare a use utf8 at the top of your program to
enable the use of UTF-8 in literals.

If you don’t have a Unicode editor, you can always specify a particular charac-
ter in ASCII with an extension of the \x notation. A character in the Latin-1
range may be written either as \x{ab} or as \xab, but if the number exceeds
two hexidecimal digits, you must use braces. Unicode characters are specified
by putting the hexadecimal code within braces after the \x. For instance, a
Unicode smiley face is \x{263A}. Ther e is no syntactic construct in Perl that
assumes Unicode characters are exactly 16 bits, so you may not use \u263A as
you can in other languages; \x{263A} is the closest equivalent.

For inserting named characters via \N{CHARNAME}, see the use charnames

pragma in Chapter 31, Pragmatic Modules.

• Identifiers within the Perl script may contain Unicode alphanumeric characters,
including ideographs:

use utf8;
$ ++; # A child is born.

Again, use utf8 is needed (for now) to recognize UTF-8 in your script. You
ar e curr ently on your own when it comes to using the canonical forms of
characters — Perl doesn’t (yet) attempt to canonicalize variable names for you.
We recommend that you canonicalize your programs to Normalization Form C,
since that’s what Perl will someday canonicalize to by default. See www.uni-
code.or g for the latest technical report on canonicalization.

• Regular expressions match characters instead of bytes. For instance, dot
matches a character instead of a byte. If the Unicode Consortium ever gets
ar ound to approving the Tengwar script, then (despite the fact that such char-
acters are repr esented in four bytes of UTF-8), this matches:

"\N{TENGWAR LETTER SILME NUQUERNA}" =˜ /ˆ.$/

The \C patter n is provided to force a match on a single byte (“char” in C,
hence \C). Use \C with care, since it can put you out of sync with the charac-
ter boundaries in your string, and you may get “Malformed UTF-8 character”
err ors. You may not use \C in square brackets, since it doesn’t repr esent any
particular character or set of characters.

• Character classes in regular expressions match characters instead of bytes and
match against the character properties specified in the Unicode properties
database. So \w can be used to match an ideograph:

" " =˜ /\w/

• Named Unicode properties and block ranges can be used as character classes
via the new \p (matches property) and \P (doesn’t match property) constructs.
For instance, \p{Lu} matches any character with the Unicode uppercase prop-
erty, while \p{M} matches any mark character. Single-letter properties may
omit the brackets, so mark characters can be matched by \pM also. Many
pr edefined character classes are available, such as \p{IsMirrored} and
\p{InTibetan}:

"\N{greek:Iota}" =˜ /\p{Lu}/

You may also use \p and \P within square bracket character classes. (In ver-
sion 5.6.0 of Perl, you need to use utf8 for character properties to work right.
This restriction will be lifted in the future.) See Chapter 5, Patter n Matching,
for details of matching on Unicode properties.

• The special pattern \X matches any extended Unicode sequence (a “combin-
ing character sequence” in Standardese), where the first character is a base
character and subsequent characters are mark characters that apply to the base
character. It is equivalent to (?:\PM\pM*):

"o\N{COMBINING TILDE BELOW}" =˜ /\X/

You may not use \X in square brackets, because it might match multiple char-
acters and it doesn’t match any particular character or set of characters.

• The tr/// operator transliterates characters instead of bytes. To tur n all charac-
ters outside the Latin-1 range into a question mark, you could say:

tr/\0-\x{10ffff}/\0-\xff?/; # utf8 to latin1 char

• Case translation operators use the Unicode case translation tables when pro-
vided character input. Note that uc translates to uppercase, while ucfirst

translates to titlecase (for languages that make the distinction). Naturally the
corr esponding backslash sequences have the same semantics:

$x = "\u$word"; # titlecase first letter of $word
$x = "\U$word"; # uppercase $word
$x = "\l$word"; # lowercase first letter of $word
$x = "\L$word"; # lowercase $word

Effects of Character Semantics 407

408 Chapter 15: Unicode

Be careful, because the Unicode case translation tables don’t attempt to pro-
vide round-trip mappings in every instance, particularly for languages that use
dif ferent numbers of characters for titlecase or uppercase than they do for the
equivalent lowercase letter. As they say in the standard, while the case proper-
ties themselves are nor mative, the case mappings are only informational.

• Most operators that deal with positions or lengths in the string will automati-
cally switch to using character positions, including chop, substr, pos, index,
rindex, sprintf, write, and length. Operators that deliberately don’t switch
include vec, pack, and unpack. Operators that really don’t care include chomp,
as well as any other operator that treats a string as a bucket of bits, such as
the default sort and the operators dealing with filenames.

use bytes;
$bytelen = length("I do ."); # 15 bytes
no bytes;
$charlen = length("I do ."); # but 9 characters

• The pack/unpack letters “c” and “C” do not change, since they’re often used for
byte-oriented formats. (Again, think “char” in the C language.) However,
ther e is a new “U” specifier that will convert between UTF-8 characters and
integers:

pack("U*", 1, 20, 300, 4000) eq v1.20.300.4000

• The chr and ord functions work on characters:

chr(1).chr(20).chr(300).chr(4000) eq v1.20.300.4000

In other words, chr and ord ar e like pack("U") and unpack("U"), not like
pack("C") and unpack("C"). In fact, the latter two are how you now emulate
byte-oriented chr and ord if you’re too lazy to use bytes.

• And finally, scalar reverse reverses by character rather than by byte:

"☞ ☞" eq reverse " ☞☞"

If you look in directory PATH_TO_PERLLIB/unicode, you’ll find a number of files that
have to do with defining the semantics above. The Unicode properties database
fr om the Unicode Consortium is in a file called Unicode.300 (for Unicode 3.0).
This file has already been processed by mktables.PL into lots of little .pl files in the
same directory (and in subdirectories Is/, In/, and To/), some of which are auto-
matically slurped in by Perl to implement things like \p (see the Is/ and In/ dir ec-
tories) and uc (see the To/ dir ectory). Other files are slurped in by modules like
the use charnames pragma (see Name.pl). But as of this writing, there are still a
number of files that are just sitting there waiting for you to write an access module
for them:

ArabLink.pl
ArabLnkGrp.pl
Bidir ectional.pl
Block.pl
Category.pl
CombiningClass.pl
Decomposition.pl
JamoShort.pl
Number.pl
To/Digit.pl

A much more readable summary of Unicode, with many hyperlinks, is in
PATH_TO_PERLLIB/unicode/Unicode3.html.

Note that when the Unicode consortium comes out with a new version, some of
these filenames are likely to change, so you’ll have to poke around. You can find
PATH_TO_PERLLIB with the following incantation:

% perl -MConfig -le ’print $Config{privlib}’

To find out just about everything there is to find out about Unicode, you should
check out The Unicode Standard, Version 3.0 (ISBN 0-201-61633-5).

Caution, Working
As of this writing (that is, with respect to version 5.6.0 of Perl), there are still some
caveats on use of Unicode. (Check your online docs for updates.)

• The existing regular expression compiler does not produce polymorphic
opcodes. This means that the determination of whether a particular pattern
will match Unicode characters is made when the pattern is compiled (based
on whether the pattern contains Unicode characters) and not when the match-
ing happens at run time. This needs to be changed to adaptively match Uni-
code if the string to be matched is Unicode.

• Ther e is currently no easy way to mark data read from a file or other external
source as being utf8. This will be a major area of focus in the near future and
is probably already fixed as you read this.

• Ther e is no method for automatically coercing input and output to some
encoding other than UTF-8. This is planned in the near future, however, so
check your online docs.

Caution, Working 409

410 Chapter 15: Unicode

• Use of locales with utf8 may lead to odd results. Currently, there is some
attempt to apply 8-bit locale information to characters in the range 0..255, but
this is demonstrably incorrect for locales that use characters above that range
(when mapped into Unicode). It will also tend to run slower. Avoidance of
locales is strongly encouraged.

Unicode is fun—you just have to define fun correctly.

16
Interprocess Communication

Computer processes have almost as many ways of communicating as people do.
The difficulties of interprocess communication should not be underestimated. It
doesn’t do you any good to listen for verbal cues when your friend is using only
body language. Likewise, two processes can communicate only when they agree
on the means of communication, and on the conventions built on top of that. As
with any kind of communication, the conventions to be agreed upon range from
lexical to pragmatic: everything from which lingo you’ll use, up to whose turn it is
to talk. These conventions are necessary because it’s very difficult to communicate
bar e semantics in the absence of context.

In our lingo, interprocess communication is usually pronounced IPC. The IPC
facilities of Perl range from the very simple to the very complex. Which facility
you should use depends on the complexity of the information to be communi-
cated. The simplest kind of information is almost no information at all: just the
awar eness that a particular event has happened at a particular point in time. In
Perl, these events are communicated via a signal mechanism modeled on the Unix
signal system.

At the other extreme, the socket facilities of Perl allow you to communicate with
any other process on the Internet using any mutually supported protocol you like.
Naturally, this freedom comes at a price: you have to go through a number of
steps to set up the connections and make sure you’r e talking the same language as
the process on the other end. This may in turn requir e you to adhere to any num-
ber of other strange customs, depending on local conventions. To be protocoligor-
ically correct, you might even be requir ed to speak a language like XML, or Java,
or Perl. Horrors.

411

412 Chapter 16: Interprocess Communication

Sandwiched in between are some facilities intended primarily for communicating
with processes on the same machine. These include good old-fashioned files,
pipes, FIFOs, and the various System V IPC syscalls. Support for these facilities
varies across platforms; modern Unix systems (including Apple’s Mac OS X)
should support all of them, and, except for signals and SysV IPC, most of the rest
ar e supported on any recent Microsoft operating systems, including pipes, forking,
file locking, and sockets.*

Mor e infor mation about porting in general can be found in the standard Perl docu-
mentation set (in whatever format your system displays it) under perlport.
Micr osoft-specific infor mation can be found under perlwin32 and perlfork, which
ar e installed even on non-Microsoft systems. For textbooks, we suggest the
following:

• The Perl Cookbook, by Tom Christiansen and Nathan Torkington (O’Reilly and
Associates, 1998), chapters 16 through 18.

• Advanced Programming in the UNIX Environment, by W. Richard Stevens
(Addison-Wesley, 1992).

• TCP/IP Illustrated, by W. Richard Stevens, Volumes I–III (Addison-Wesley,
1992–1996).

Signals
Perl uses a simple signal-handling model: the %SIG hash contains refer ences (either
symbolic or hard) to user-defined signal handlers. Certain events cause the operat-
ing system to deliver a signal to the affected process. The handler corresponding
to that event is called with one argument containing the name of the signal that
trigger ed it. To send a signal to another process, you use the kill function. Think
of it as sending a one-bit piece of information to the other process.† If that process
has installed a signal handler for that signal, it can execute code when it receives
the signal. But there’s no way for the sending process to get any sort of retur n
value, other than knowing that the signal was legally sent. The sender receives no
feedback saying what, if anything, the receiving process did with the signal.

We’ve classified this facility as a form of IPC, but in fact, signals can come from
various sources, not just other processes. A signal might also come from your own
pr ocess, or it might be generated when the user at the keyboard types a particular
sequence like Control-C or Control-Z, or it might be manufactured by the kernel
when a special event transpires, such as when a child process exits, or when your

* Well, except for AF_UNIX sockets.

† Actually, it’s more like five or six bits, depending on how many signals your OS defines and on
whether the other process makes use of the fact that you didn’t send a differ ent signal.

pr ocess runs out of stack space or hits a file size or memory limit. But your own
pr ocess can’t easily distinguish among these cases. A signal is like a package that
arrives mysteriously on your doorstep with no retur n addr ess. You’d best open it
car efully.

Since entries in the %SIG array can be hard refer ences, it’s common practice to use
anonymous functions for simple signal handlers:

$SIG{INT} = sub { die "\nOutta here!\n" };
$SIG{ALRM} = sub { die "Your alarm clock went off" };

Or you could create a named function and assign its name or refer ence to the
appr opriate slot in the hash. For example, to intercept interrupt and quit signals
(often bound to Control-C and Control-\ on your keyboard), set up a handler like
this:

sub catch_zap {
my $signame = shift;
our $shucks++;
die "Somebody sent me a SIG$signame!";

}
$shucks = 0;
$SIG{INT} = ’catch_zap’; # always means &main::catch_zap
$SIG{INT} = \&catch_zap; # best strategy
$SIG{QUIT} = \&catch_zap; # catch another, too

Notice how all we do in the signal handler is set a global variable and then raise
an exception with die. Whenever possible, try to avoid anything more complicated
than that, because on most systems the C library is not re-entrant. Signals are
deliver ed asynchr onously,* so calling any print functions (or even anything that
needs to malloc (3) more memory) could in theory trigger a memory fault and sub-
sequent core dump if you were alr eady in a related C library routine when the sig-
nal was delivered. (Even the die routine is a bit unsafe unless the process is
executing within an eval, which suppresses the I/O from die, which keeps it from
calling the C library. Probably.)

An even easier way to trap signals is to use the sigtrap pragma to install simple,
default signal handlers:

use sigtrap qw(die INT QUIT);
use sigtrap qw(die untrapped normal-signals

stack-trace any error-signals);

The pragma is useful when you don’t want to bother writing your own handler,
but you still want to catch dangerous signals and perfor m an orderly shutdown.
By default, some of these signals are so fatal to your process that your program

* Synchr onizing signal delivery with Perl-level opcodes is scheduled for a future release of Perl, which
should solve the matter of signals and core dumps.

Signals 413

414 Chapter 16: Interprocess Communication

will just stop in its tracks when it receives one. Unfortunately, that means that any
END functions for at-exit handling and DESTROY methods for object finalization are
not called. But they ar e called on ordinary Perl exceptions (such as when you call
die), so you can use this pragma to painlessly convert the signals into exceptions.
Even though you aren’t dealing with the signals yourself, your program still
behaves correctly. See the description of use sigtrap in Chapter 31, Pragmatic
Modules, for many more featur es of this pragma.

You may also set the %SIG handler to either of the strings “IGNORE” or “DEFAULT”, in
which case Perl will try to discard the signal or allow the default action for that
signal to occur (though some signals can be neither trapped nor ignored, such as
the KILL and STOP signals; see signal (3), if you have it, for a list of signals avail-
able on your system and their default behaviors).

The operating system thinks of signals as numbers rather than names, but Perl,
like most people, prefers symbolic names to magic numbers. To find the names of
the signals, list out the keys of the %SIG hash, or use the kill -l command if you
have one on your system. You can also use Perl’s standard Config module to
deter mine your operating system’s mapping between signal names and signal
numbers. See Config (3) for an example of this.

Because %SIG is a global hash, assignments to it affect your entire program. It’s
often more considerate to the rest of your program to confine your signal catching
to a restricted scope. Do this with a local signal handler assignment, which goes
out of effect once the enclosing block is exited. (But remember that local values
ar e visible in functions called from within that block.)

{
local $SIG{INT} = ’IGNORE’;
... # Do whatever you want here, ignoring all SIGINTs.
fn(); # SIGINTs ignored inside fn() too!
... # And here.

} # Block exit restores previous $SIG{INT} value.

fn(); # SIGINTs not ignored inside fn() (presumably).

Signaling Process Groups
Pr ocesses (under Unix, at least) are organized into process groups, generally corre-
sponding to an entire job. For example, when you fire off a single shell command
that consists of a series of filter commands that pipe data from one to the other,
those processes (and their child processes) all belong to the same process group.
That process group has a number corresponding to the process number of the
pr ocess gr oup leader. If you send a signal to a positive process number, it just

sends the signal to the process, but if you send a signal to a negative number, it
sends that signal to every process whose process group number is the correspond-
ing positive number, that is, the process number of the process group leader.
(Conveniently for the process group leader, the process group ID is just $$.)

Suppose your program wants to send a hang-up signal to all child processes it
started directly, plus any grandchildren started by those children, plus any great-
grandchildr en started by those grandchildren, and so on. To do this, your program
first calls setpgrp(0,0) to become the leader of a new process group, and any
pr ocesses it creates will be part of the new group. It doesn’t matter whether these
pr ocesses wer e started manually via fork, automaticaly via piped opens, or as
backgr ounded jobs with system("cmd &"). Even if those processes had children of
their own, sending a hang-up signal to your entire process group will find them all
(except for processes that have set their own process group or changed their UID
to give themselves diplomatic immunity to your signals).

{
local $SIG{HUP} = ’IGNORE’; # exempt myself
kill(HUP, -$$); # signal my own process group

}

Another interesting signal is signal number 0. This doesn’t actually affect the target
pr ocess, but instead checks that it’s alive and hasn’t changed its UID. That is, it
checks whether it’s legal to send a signal, without actually sending one.

unless (kill 0 => $kid_pid) {
warn "something wicked happened to $kid_pid";

}

Signal number 0 is the only signal that works the same under Microsoft ports of
Perl as it does in Unix. On Microsoft systems, kill does not actually deliver a sig-
nal. Instead, it forces the target process to exit with the status indicated by the sig-
nal number. This may be fixed someday. The magic 0 signal, however, still
behaves in the standard, nondestructive fashion.

Reaping Zombies
When a process exits, its parent is sent a CHLD signal by the kernel and the process
becomes a zombie* until the parent calls wait or waitpid. If you start another pro-
cess in Perl using anything except fork, Perl takes care of reaping your zombied
childr en, but if you use a raw fork, you’r e expected to clean up after yourself. On
many but not all kernels, a simple hack for autoreaping zombies is to set
$SIG{CHLD} to ’IGNORE’. A mor e flexible (but tedious) approach is to reap them

* Yes, that really is the technical term.

Signals 415

416 Chapter 16: Interprocess Communication

yourself. Because more than one child may have died before you get around to
dealing with them, you must gather your zombies in a loop until there aren’t any
mor e:

use POSIX ":sys_wait_h";
sub REAPER { 1 until waitpid(-1, WNOHANG) == -1) }

To run this code as needed, you can either set a CHLD signal handler for it:

$SIG{CHLD} = \&REAPER;

or, if you’r e running in a loop, just arrange to call the reaper every so often. This is
the best approach because it isn’t subject to the occasional core dump that signals
can sometimes trigger in the C library. However, it’s expensive if called in a tight
loop, so a reasonable compromise is to use a hybrid strategy where you minimize
the risk within the handler by doing as little as possible and waiting until outside
to reap zombies:

our $zombies = 0;
$SIG{CHLD} = sub { $zombies++ };
sub reaper {

my $zombie;
our %Kid_Status; # store each exit status
$zombies = 0;
while (($zombie = waitpid(-1, WNOHANG)) != -1) {

$Kid_Status{$zombie} = $?;
}

}
while (1) {

reaper() if $zombies;
...

}

This code assumes your kernel supports reliable signals. Old SysV traditionally
didn’t, which made it impossible to write correct signal handlers there. Ever since
way back in the 5.003 release, Perl has used the sigaction (2) syscall where avail-
able, which is a lot more dependable. This means that unless you’re running on an
ancient operating system or with an ancient Perl, you won’t have to reinstall your
handlers and risk missing signals. Fortunately, all BSD-flavored systems (including
Linux, Solaris, and Mac OS X) plus all POSIX-compliant systems provide reliable
signals, so the old broken SysV behavior is more a matter of historical note than of
curr ent concer n.

With these newer kernels, many other things will work better, too. For example,
“slow” syscalls (those that can block, like read, wait, and accept) will restart auto-
matically if interrupted by a signal. In the bad old days, user code had to remem-
ber to check explicitly whether each slow syscall failed with $! ($ERRNO) set to

EINTR and, if so, restart. This wouldn’t happen just from INT signals; even innocu-
ous signals like TSTP (fr om a Contr ol-Z) or CONT (fr om for egrounding the job)
would abort the syscall. Perl now restarts the syscall for you automatically if the
operating system allows it to. This is generally construed to be a feature.

You can check whether you have the more rigor ous POSIX-style signal behavior
by loading the Config module and checking whether $Config{d_sigaction} has a
true value. To find out whether slow syscalls are restartable, check your system
documentation on sigaction (2) or sigvec (3), or scrounge around your C sys/sig-
nal.h file for SV_INTERRUPT or SA_RESTART. If one or both symbols are found, you
pr obably have restartable syscalls.

Timing Out Slow Operations
A common use for signals is to impose time limits on long-running operations. If
you’r e on a Unix system (or any other POSIX-conforming system that supports the
ALRM signal), you can ask the kernel to send your process an ALRM at some point in
the future:

use Fcntl ’:flock’;
eval {

local $SIG{ALRM} = sub { die "alarm clock restart" };
alarm 10; # schedule alarm in 10 seconds
eval {

flock(FH, LOCK_EX) # a blocking, exclusive lock
or die "can’t flock: $!";

};
alarm 0; # cancel the alarm

};
alarm 0; # race condition protection
die if $@ && $@ !˜ /alarm clock restart/; # reraise

If the alarm hits while you’re waiting for the lock, and you simply catch the signal
and retur n, you’ll go right back into the flock because Perl automatically restarts
syscalls where it can. The only way out is to raise an exception through die and
then let eval catch it. (This works because the exception winds up calling the C
library’s long jmp (3) function, which is what really gets you out of the restarting
syscall.)

The nested exception trap is included because calling flock would raise an excep-
tion if flock is not implemented on your platform, and you need to make sure to
clear the alarm anyway. The second alarm 0 is provided in case the signal comes
in after running the flock but before getting to the first alarm 0. Without the sec-
ond alarm, you would risk a tiny race condition—but size doesn’t matter in race
conditions; they either exist or they don’t. And we prefer that they don’t.

Signals 417

418 Chapter 16: Interprocess Communication

Blocking Signals
Now and then, you’d like to delay receipt of a signal during some critical section
of code. You don’t want to blindly ignore the signal, but what you’re doing is too
important to interrupt. Perl’s %SIG hash doesn’t implement signal blocking, but the
POSIX module does, through its interface to the sigpr ocmask (2) syscall:

use POSIX qw(:signal_h);
$sigset = POSIX::SigSet->new;
$blockset = POSIX::SigSet->new(SIGINT, SIGQUIT, SIGCHLD);
sigprocmask(SIG_BLOCK, $blockset, $sigset)

or die "Could not block INT,QUIT,CHLD signals: $!\n";

Once the three signals are all blocked, you can do whatever you want without
fear of being bothered. When you’re done with your critical section, unblock the
signals by restoring the old signal mask:

sigprocmask(SIG_SETMASK, $sigset)
or die "Could not restore INT,QUIT,CHLD signals: $!\n";

If any of the three signals came in while blocked, they are deliver ed immediately.
If two or more dif ferent signals are pending, the order of delivery is not defined.
Additionally, no distinction is made between having received a particular signal
once while blocked and having received it many times.* For example, if nine child
pr ocesses exited while you were blocking CHLD signals, your handler (if you had
one) would still be called only once after you unblocked. That’s why, when you
reap zombies, you should always loop until they’re all gone.

Files
Perhaps you’ve never thought about files as an IPC mechanism before, but they
shoulder the lion’s share of interpr ocess communication — far mor e than all other
means combined. When one process deposits its precious data in a file and
another process later retrieves that data, those processes have communicated. Files
of fer something unique among all forms of IPC covered here: like a papyrus scroll
unearthed after millennia buried in the desert, a file can be unearthed and read
long after its writer’s personal end.† Factoring in persistence with comparative ease
of use, it’s no wonder that files remain popular.

Using files to transmit information from the dead past to some unknown future
poses few surprises. You write the file to some permanent medium like a disk, and
that’s about it. (You might tell a web server where to find it, if it contains HTML.)

* Traditionally, that is. Countable signals may be implemented on some real-time systems according to
the latest specs, but we haven’t seen these yet.

† Presuming that a process can have a personal end.

The interesting challenge is when all parties are still alive and trying to communi-
cate with one another. Without some agreement about whose turn it is to have
their say, reliable communication is impossible; agreement may be achieved
thr ough file locking, which is covered in the next section. In the section after that,
we discuss the special relationship that exists between a parent process and its
childr en, which allows related parties to exchange information through inherited
access to the same files.

Files certainly have their limitations when it comes to things like remote access,
synchr onization, reliability, and session management. Other sections of the chapter
cover various IPC mechanisms invented to address such limitations.

File Locking
In a multitasking environment, you need to be careful not to collide with other
pr ocesses that are trying to use the same file you’re using. As long as all processes
ar e just reading, there’s no problem, but as soon as even one process needs to
write to the file, complete chaos ensues unless some sort of locking mechanism
acts as traffic cop.

Never use the mere existence of a filename (that is, -e $file) as a locking indica-
tion, because a race condition exists between the test for existence of that file-
name and whatever you plan to do with it (like create it, open it, or unlink it). See
the section “Handling Race Conditions” in Chapter 23, Security, for more about
this.

Perl’s portable locking interface is the flock(HANDLE,FLAGS) function, described in
Chapter 29, Functions. Perl maximizes portability by using only the simplest and
most widespread locking features found on the broadest range of platforms. These
semantics are simple enough that they can be emulated on most systems, includ-
ing those that don’t support the traditional syscall of that name, such as System V
or Windows NT. (If you’re running a Microsoft system earlier than NT, though,
you’r e pr obably out of luck, as you would be if you’re running a system from
Apple before Mac OS X.)

Locks come in two varieties: shared (the LOCK_SH flag) and exclusive (the LOCK_EX

flag). Despite the suggestive sound of “exclusive”, processes aren’t requir ed to
obey locks on files. That is, flock only implements advisory locking, which means
that locking a file does not stop another process from reading or even writing the
file. Requesting an exclusive lock is just a way for a process to let the operating
system suspend it until all current lockers, whether shared or exclusive, are fin-
ished with it. Similarly, when a process asks for a shared lock, it is just suspending
itself until there is no exclusive locker. Only when all parties use the file-locking
mechanism can a contended file be accessed safely.

Files 419

420 Chapter 16: Interprocess Communication

Ther efor e, flock is a blocking operation by default. That is, if you can’t get the
lock you want immediately, the operating system suspends your process till you
can. Here’s how to get a blocking, shared lock, typically used for reading a file:

use Fcntl qw(:DEFAULT :flock);
open(FH, "< filename") or die "can’t open filename: $!";
flock(FH, LOCK_SH) or die "can’t lock filename: $!";
now read from FH

You can try to acquire a lock in a nonblocking fashion by including the LOCK_NB

flag in the flock request. If you can’t be given the lock right away, the function
fails and immediately retur ns false. Here’s an example:

flock(FH, LOCK_SH | LOCK_NB)
or die "can’t lock filename: $!";

You may wish to do something besides raising an exception as we did here, but
you certainly don’t dare do any I/O on the file. If you are refused a lock, you
shouldn’t access the file until you can get the lock. Who knows what scrambled
state you might find the file in? The main purpose of the nonblocking mode is to
let you go off and do something else while you wait. But it can also be useful for
pr oducing friendlier interactions by warning users that it might take a while to get
the lock, so they don’t feel abandoned:

use Fcntl qw(:DEFAULT :flock);
open(FH, "< filename") or die "can’t open filename: $!";
unless (flock(FH, LOCK_SH | LOCK_NB)) {

local $| = 1;
print "Waiting for lock on filename...";
flock(FH, LOCK_SH) or die "can’t lock filename: $!";
print "got it.\n"

}
now read from FH

Some people will be tempted to put that nonblocking lock into a loop. The main
pr oblem with nonblocking mode is that, by the time you get back to checking
again, someone else may have grabbed the lock because you abandoned your
place in line. Sometimes you just have to get in line and wait. If you’re lucky there
will be some magazines to read.

Locks are on filehandles, not on filenames.* When you close the file, the lock dis-
solves automatically, whether you close the file explicitly by calling close or
implicitly by reopening the handle or by exiting your process.

* Actually, locks aren’t on filehandles—they’r e on the file descriptors associated with the filehandles
since the operating system doesn’t know about filehandles. That means that all our die messages
about failing to get a lock on filenames are technically inaccurate. But error messages of the form “I
can’t get a lock on the file repr esented by the file descriptor associated with the filehandle originally
opened to the path filename, although by now filename may repr esent a dif ferent file entirely than
our handle does” would just confuse the user (not to mention the reader).

To get an exclusive lock, typically used for writing, you have to be more car eful.
You cannot use a regular open for this; if you use an open mode of <, it will fail on
files that don’t exist yet, and if you use >, it will clobber any files that do. Instead,
use sysopen on the file so it can be locked before getting overwritten. Once you’ve
safely opened the file for writing but haven’t yet touched it, successfully acquire
the exclusive lock and only then truncate the file. Now you may overwrite it with
the new data.

use Fcntl qw(:DEFAULT :flock);
sysopen(FH, "filename", O_WRONLY | O_CREAT)

or die "can’t open filename: $!";
flock(FH, LOCK_EX)

or die "can’t lock filename: $!";
truncate(FH, 0)

or die "can’t truncate filename: $!";
now write to FH

If you want to modify the contents of a file in place, use sysopen again. This time
you ask for both read and write access, creating the file if needed. Once the file is
opened, but before you’ve done any reading or writing, get the exclusive lock and
keep it around your entire transaction. It’s often best to release the lock by closing
the file because that guarantees all buffers are written before the lock is released.

An update involves reading in old values and writing out new ones. You must do
both operations under a single exclusive lock, lest another process read the (immi-
nently incorrect) value after (or even before) you do, but before you write. (We’ll
revisit this situation when we cover shared memory later in this chapter.)

use Fcntl qw(:DEFAULT :flock);

sysopen(FH, "counterfile", O_RDWR | O_CREAT)
or die "can’t open counterfile: $!";

flock(FH, LOCK_EX)
or die "can’t write-lock counterfile: $!";

$counter = <FH> || 0; # first time would be undef
seek(FH, 0, 0)

or die "can’t rewind counterfile : $!";
print FH $counter+1, "\n"

or die "can’t write counterfile: $!";

next line technically superfluous in this program, but
a good idea in the general case
truncate(FH, tell(FH))

or die "can’t truncate counterfile: $!";
close(FH)

or die "can’t close counterfile: $!";

You can’t lock a file you haven’t opened yet, and you can’t have a single lock that
applies to more than one file. What you can do, though, is use a completely sepa-
rate file to act as a sort of semaphore, like a traffic light, to provide controlled

Files 421

422 Chapter 16: Interprocess Communication

access to something else through regular shared and exclusive locks on the
semaphor e file. This approach has several advantages. You can have one lockfile
that controls access to multiple files, avoiding the kind of deadlock that occurs
when one process tries to lock those files in one order while another process is
trying to lock them in a differ ent order. You can use a semaphore file to lock an
entir e dir ectory of files. You can even control access to something that’s not even
in the filesystem, like a shared memory object or the socket upon which several
pr eforked servers would like to call accept.

If you have a DBM file that doesn’t provide its own explicit locking mechanism,
an auxiliary lockfile is the best way to control concurrent access by multiple
agents. Otherwise, your DBM library’s internal caching can get out of sync with
the file on disk. Before calling dbmopen or tie, open and lock the semaphore file.
If you open the database with O_RDONLY, you’ll want to use LOCK_SH for the lock.
Otherwise, use LOCK_EX for exclusive access to updating the database. (Again, this
only works if all participants agree to pay attention to the semaphore.)

use Fcntl qw(:DEFAULT :flock);
use DB_File; # demo purposes only; any db is fine

$DBNAME = "/path/to/database";
$LCK = $DBNAME . ".lockfile";

use O_RDWR if you expect to put data in the lockfile
sysopen(DBLOCK, $LCK, O_RDONLY | O_CREAT)

or die "can’t open $LCK: $!";

must get lock before opening database
flock(DBLOCK, LOCK_SH)

or die "can’t LOCK_SH $LCK: $!";

tie(%hash, "DB_File", $DBNAME, O_RDWR | O_CREAT)
or die "can’t tie $DBNAME: $!";

Now you can safely do whatever you’d like with the tied %hash. When you’re done
with your database, make sure you explicitly release those resources, and in the
opposite order that you acquired them:

untie %hash; # must close database before lockfile
close DBLOCK; # safe to let go of lock now

If you have the GNU DBM library installed, you can use the standard GDBM_File

module’s implicit locking. Unless the initial tie contains the GDBM_NOLOCK flag, the
library makes sure that only one writer may open a GDBM file at a time, and that
readers and writers do not have the database open at the same time.

Passing Filehandles
Whenever you create a child process using fork, that new process inherits all its
par ent’s open filehandles. Using filehandles for interprocess communication is eas-
iest to illustrate by using plain files first. Understanding how this works is essential
for mastering the fancier mechanisms of pipes and sockets described later in this
chapter.

The simplest example opens a file and starts up a child process. The child then
uses the filehandle already opened for it:

open(INPUT, "< /etc/motd") or die "/etc/motd: $!";
if ($pid = fork) { waitpid($pid,0) }
else {

defined($pid) or die "fork: $!";
while (<INPUT>) { print "$.: $_" }
exit; # don’t let child fall back into main code

}
INPUT handle now at EOF in parent

Once access to a file has been granted by open, it stays granted until the filehandle
is closed; changes to the file’s permissions or to the owner’s access privileges have
no effect on accessibility. Even if the process later alters its user or group IDs, or
the file has its ownership changed to a differ ent user or group, that doesn’t affect
filehandles that are alr eady open. Programs running under increased permissions
(like set-id programs or systems daemons) often open a file under their increased
rights and then hand off the filehandle to a child process that could not have
opened the file on its own.

Although this feature is of great convenience when used intentionally, it can also
cr eate security issues if filehandles accidentally leak from one program to the next.
To avoid granting implicit access to all possible filehandles, Perl automatically
closes any filehandles it has opened (including pipes and sockets) whenever you
explicitly exec a new program or implicitly execute one through a call to a piped
open, system, or qx// (backticks). The system filehandles STDIN, STDOUT, and STDERR

ar e exempt from this because their main purpose is to provide communications
linkage between programs. So one way of passing a filehandle to a new program
is to copy the filehandle to one of the standard filehandles:

open(INPUT, "< /etc/motd") or die "/etc/motd: $!";
if ($pid = fork) { wait }
else {

defined($pid) or die "fork: $!";
open(STDIN, "<&INPUT") or die "dup: $!";
exec("cat", "-n") or die "exec cat: $!";

}

Files 423

424 Chapter 16: Interprocess Communication

If you really want the new program to gain access to a filehandle other than these
thr ee, you can, but you have to do one of two things. When Perl opens a new file
(or pipe or socket), it checks the current setting of the $ˆF ($SYSTEM_FD_MAX) vari-
able. If the numeric file descriptor used by that new filehandle is greater than $ˆF,
the descriptor is marked as one to close. Otherwise, Perl leaves it alone, and new
pr ograms you exec will inherit access.

It’s not always easy to predict what file descriptor your newly opened filehandle
will have, but you can temporarily set your maximum system file descriptor to
some outrageously high number for the duration of the open:

open file and mark INPUT to be left open across execs
{

local $ˆF = 10_000;
open(INPUT, "< /etc/motd") or die "/etc/motd: $!";

} # old value of $ˆF restored on scope exit

Now all you have to do is get the new program to pay attention to the descriptor
number of the filehandle you just opened. The cleanest solution (on systems that
support this) is to pass a special filename that equates to a file descriptor. If your
system has a directory called /dev/fd or /pr oc/$$/fd containing files numbered from
0 thr ough the maximum number of supported descriptors, you can probably use
this strategy. (Many Linux operating systems have both, but only the /pr oc version
tends to be correctly populated. BSD and Solaris prefer /dev/fd. You’ll have to
poke around at your system to see which looks better for you.) First, open and
mark your filehandle as one to be left open across execs as shown in the previous
code, then fork like this:

if ($pid = fork) { wait }
else {

defined($pid) or die "fork: $!";
$fdfile = "/dev/fd/" . fileno(INPUT);
exec("cat", "-n", $fdfile) or die "exec cat: $!";

}

If your system supports the fcntl syscall, you may diddle the filehandle’s close-
on-exec flag manually. This is convenient for those times when you didn’t realize
back when you created the filehandle that you would want to share it with your
childr en.

use Fcntl qw/F_SETFD/;

fcntl(INPUT, F_SETFD, 0)
or die "Can’t clear close-on-exec flag on INPUT: $!\n";

You can also force a filehandle to close:

fcntl(INPUT, F_SETFD, 1)
or die "Can’t set close-on-exec flag on INPUT: $!\n";

You can also query the current status:

use Fcntl qw/F_SETFD F_GETFD/;

printf("INPUT will be %s across execs\n",
fcntl(INPUT, F_GETFD, 1) ? "closed" : "left open");

If your system doesn’t support file descriptors named in the filesystem, and you
want to pass a filehandle other than STDIN, STDOUT, or STDERR, you can still do so,
but you’ll have to make special arrangements with that program. Common strate-
gies for this are to pass the descriptor number through an environment variable or
a command-line option.

If the executed program is in Perl, you can use open to convert a file descriptor
into a filehandle. Instead of specifying a filename, use “&=” followed by the
descriptor number.

if (defined($ENV{input_fdno}) && $ENV{input_fdno}) =˜ /ˆ\d$/) {
open(INPUT, "<&=$ENV{input_fdno}")

or die "can’t fdopen $ENV{input_fdno} for input: $!";
}

It gets even easier than that if you’re going to be running a Perl subroutine or pro-
gram that expects a filename argument. You can use the descriptor-opening fea-
tur e of Perl’s regular open function (but not sysopen or three-argument open) to
make this happen automatically. Imagine you have a simple Perl program like this:

#!/usr/bin/perl -p
nl - number input lines
printf "%6d ", $.;

Pr esuming you’ve arranged for the INPUT handle to stay open across execs, you
can call that program this way:

$fdspec = ’<&=’ . fileno(INPUT);
system("nl", $fdspec);

or to catch the output:

@lines = ‘nl ’$fdspec’‘; # single quotes protect spec from shell

Whether or not you exec another program, if you use file descriptors inherited
acr oss fork, ther e’s one small gotcha. Unlike variables copied across a fork, which

Files 425

426 Chapter 16: Interprocess Communication

actually get duplicate but independent copies, file descriptors really ar e the same
in both processes. If one process reads data from the handle, the seek pointer (file
position) advances in the other process, too, and that data is no longer available to
either process. If they take turns reading, they’ll leapfrog over each other in the
file. This makes intuitive sense for handles attached to serial devices, pipes, or
sockets, since those tend to be read-only devices with ephemeral data. But this
behavior may surprise you with disk files. If this is a problem, reopen any files
that need separate tracking after the fork.

The fork operator is a concept derived from Unix, which means it might not be
implemented correctly on all non-Unix/non-POSIX platforms. Notably, fork works
on Microsoft systems only if you’re running Perl 5.6 (or better) on Windows 98 (or
later). Although fork is implemented via multiple concurrent execution streams
within the same program on these systems, these aren’t the sort of threads where
all data is shared by default; here, only file descriptors are. See also Chapter 17,
Thr eads.

Pipes
A pipe is a unidirectional I/O channel that can transfer a stream of bytes from one
pr ocess to another. Pipes come in both named and nameless varieties. You may be
mor e familiar with nameless pipes, so we’ll talk about those first.

Anonymous Pipes
Perl’s open function opens a pipe instead of a file when you append or prepend a
pipe symbol to the second argument to open. This turns the rest of the arguments
into a command, which will be interpreted as a process (or set of processes) that
you want to pipe a stream of data either into or out of. Here’s how to start up a
child process that you intend to write to:

open SPOOLER, "| cat -v | lpr -h 2>/dev/null"
or die "can’t fork: $!";

local $SIG{PIPE} = sub { die "spooler pipe broke" };
print SPOOLER "stuff\n";
close SPOOLER or die "bad spool: $! $?";

This example actually starts up two processes, the first of which (running cat) we
print to directly. The second process (running lpr) then receives the output of the
first process. In shell programming, this is often called a pipeline. A pipeline can
have as many processes in a row as you like, as long as the ones in the middle
know how to behave like filters ; that is, they read standard input and write stan-
dard output.

Perl uses your default system shell (/bin/sh on Unix) whenever a pipe command
contains special characters that the shell cares about. If you’re only starting one
command, and you don’t need—or don’t want—to use the shell, you can use the
multi-argument form of a piped open instead:

open SPOOLER, "|-", "lpr", "-h" # requires 5.6.1
or die "can’t run lpr: $!";

If you reopen your program’s standard output as a pipe to another program, any-
thing you subsequently print to STDOUT will be standard input for the new pro-
gram. So to page your program’s output,* you’d use:

if (-t STDOUT) { # only if stdout is a terminal
my $pager = $ENV{PAGER} || ’more’;
open(STDOUT, "| $pager") or die "can’t fork a pager: $!";

}
END {

close(STDOUT) or die "can’t close STDOUT: $!"
}

When you’re writing to a filehandle connected to a pipe, always explicitly close

that handle when you’re done with it. That way your main program doesn’t exit
befor e its offspring.

Her e’s how to start up a child process that you intend to read from:

open STATUS, "netstat -an 2>/dev/null |"
or die "can’t fork: $!";

while (<STATUS>) {
next if /ˆ(tcp|udp)/;
print;

}
close STATUS or die "bad netstat: $! $?";

You can open a multistage pipeline for input just as you can for output. And as
befor e, you can avoid the shell by using an alternate form of open:

open STATUS, "-|", "netstat", "-an" # requires 5.6.1
or die "can’t run netstat: $!";

But then you don’t get I/O redir ection, wildcard expansion, or multistage pipes,
since Perl relies on your shell to do those.

You might have noticed that you can use backticks to accomplish the same effect
as opening a pipe for reading:

print grep { !/ˆ(tcp|udp)/ } ‘netstat -an 2>&1‘;
die "bad netstat" if $?;

* That is, let them view it one screenful at a time, not set off random bird calls.

Pipes 427

428 Chapter 16: Interprocess Communication

While backticks are extr emely handy, they have to read the whole thing into
memory at once, so it’s often more efficient to open your own piped filehandle
and process the file one line or record at a time. This gives you finer control over
the whole operation, letting you kill off the child process early if you like. You can
also be more efficient by processing the input as it’s coming in, since computers
can interleave various operations when two or more processes are running at the
same time. (Even on a single-CPU machine, input and output operations can hap-
pen while the CPU is doing something else.)

Because you’re running two or more processes concurrently, disaster can strike
the child process any time between the open and the close. This means that the
par ent must check the retur n values of both open and close. Checking the open

isn’t good enough, since that will only tell you whether the fork was successful,
and possibly whether the subsequent command was successfully launched. (It can
tell you this only in recent versions of Perl, and only if the command is executed
dir ectly by the forked child, not via the shell.) Any disaster that happens after that
is reported from the child to the parent as a nonzero exit status. When the close

function sees that, it knows to retur n a false value, indicating that the actual status
value should be read from the $? ($CHILD_ERROR) variable. So checking the retur n
value of close is just as important as checking open. If you’r e writing to a pipe,
you should also be prepar ed to handle the PIPE signal, which is sent to you if the
pr ocess on the other end dies before you’r e done sending to it.

Talking to Your self
Another approach to IPC is to make your program talk to itself, in a manner of
speaking. Actually, your process talks over pipes to a forked copy of itself. It
works much like the piped open we talked about in the last section, except that
the child process continues executing your script instead of some other command.

To repr esent this to the open function, you use a pseudocommand consisting of a
minus. So the second argument to open looks like either “-|” or “|-”, depending
on whether you want to pipe from yourself or to yourself. As with an ordinary
fork command, the open function retur ns the child’s process ID in the parent pro-
cess but 0 in the child process. Another asymmetry is that the filehandle named by
the open is used only in the parent process. The child’s end of the pipe is hooked
to either STDIN or STDOUT as appropriate. That is, if you open a pipe to minus with
|-, you can write to the filehandle you opened, and your kid will find this in
STDIN:

if (open(TO, "|-")) {
print TO $fromparent;

}
else {

$tochild = <STDIN>;

exit;
}

If you open a pipe fr om minus with -|, you can read from the filehandle you
opened, which will retur n whatever your kid writes to STDOUT:

if (open(FROM, "-|")) {
$toparent = <FROM>;

}
else {

print STDOUT $fromchild;
exit;

}

One common application of this construct is to bypass the shell when you want to
open a pipe from a command. You might want to do this because you don’t want
the shell to interpret any possible metacharacters in the filenames you’re trying to
pass to the command. If you’re running release 5.6.1 or greater of Perl, you can
use the multi-argument form of open to get the same result.

Another use of a forking open is to safely open a file or command even while
you’r e running under an assumed UID or GID. The child you fork dr ops any spe-
cial access rights, then safely opens the file or command and acts as an intermedi-
ary, passing data between its more power ful par ent and the file or command it
opened. Examples can be found in the section “Accessing Commands and Files
Under Reduced Privileges”, in Chapter 23.

One creative use of a forking open is to filter your own output. Some algorithms
ar e much easier to implement in two separate passes than they are in just one
pass. Here’s a simple example in which we emulate the Unix tee (1) program by
sending our normal output down a pipe. The agent on the other end of the pipe
(one of our own subroutines) distributes our output to all the files specified:

tee("/tmp/foo", "/tmp/bar", "/tmp/glarch");

while (<>) {
print "$ARGV at line $. => $_";

}
close(STDOUT) or die "can’t close STDOUT: $!";

sub tee {
my @output = @_;
my @handles = ();
for my $path (@output) {

my $fh; # open will fill this in
unless (open ($fh, ">", $path)) {

warn "cannot write to $path: $!";
next;

}
push @handles, $fh;

}

Pipes 429

430 Chapter 16: Interprocess Communication

reopen STDOUT in parent and return
return if my $pid = open(STDOUT, "|-");
die "cannot fork: $!" unless defined $pid;

process STDIN in child
while (<STDIN>) {

for my $fh (@handles) {
print $fh $_ or die "tee output failed: $!";

}
}
for my $fh (@handles) {

close($fh) or die "tee closing failed: $!";
}
exit; # don’t let the child return to main!

}

This technique can be applied repeatedly to push as many filters on your output
str eam as you wish. Just keep calling functions that fork-open STDOUT, and have
the child read from its parent (which it sees as STDIN) and pass the massaged out-
put along to the next function in the stream.

Another interesting application of talking to yourself with fork-open is to capture
the output from an ill-mannered function that always splats its results to STDOUT.
Imagine if Perl only had printf and no sprintf. What you’d need would be some-
thing that worked like backticks, but with Perl functions instead of external com-
mands:

badfunc("arg"); # drat, escaped!
$string = forksub(\&badfunc, "arg"); # caught it as string
@lines = forksub(\&badfunc, "arg"); # as separate lines

sub forksub {
my $kidpid = open my $self, "-|";
defined $kidpid or die "cannot fork: $!";
shift->(@_), exit unless $kidpid;
local $/ unless wantarray;
return <$self>; # closes on scope exit

}

We’r e not claiming this is efficient; a tied filehandle would probably be a good bit
faster. But it’s a lot easier to code up if you’re in mor e of a hurry than your com-
puter is.

Bidirectional Communication
Although using open to connect to another command over a pipe works reason-
ably well for unidirectional communication, what about bidirectional communica-
tion? The obvious approach doesn’t actually work:

open(PROG_TO_READ_AND_WRITE, "| some program |") # WRONG!

and if you forget to enable warnings, then you’ll miss out entirely on the diagnos-
tic message:

Can’t do bidirectional pipe at myprog line 3.

The open function doesn’t allow this because it’s rather prone to deadlock unless
you’r e quite careful. But if you’re deter mined, you can use the standard
IPC::Open2 library module to attach two pipes to a subprocess’s STDIN and STDOUT.
Ther e’s also an IPC::Open3 module for tridirectional I/O (allowing you to also
catch your child’s STDERR), but this requir es either an awkward select loop or the
somewhat more convenient IO::Select module. But then you’ll have to avoid
Perl’s buffer ed input operations like <> (readline).

Her e’s an example using open2:

use IPC::Open2;
local (*Reader, *Writer);
$pid = open2(*Reader, *Writer, "bc -l");
$sum = 2;
for (1 .. 5) {

print Writer "$sum * $sum\n";
chomp($sum = <Reader>);

}
close Writer;
close Reader;
waitpid($pid, 0);
print "sum is $sum\n";

You can also autovivify lexical filehandles:

my ($fhread, $fhwrite);
$pid = open2($fhread, $fhwrite, "cat -u -n");

The problem with this in general is that standard I/O buffering is really going to
ruin your day. Even though your output filehandle is autoflushed (the library does
this for you) so that the process on the other end will get your data in a timely
manner, you can’t usually do anything to force it to retur n the favor. In this partic-
ular case, we were lucky: bc expects to operate over a pipe and knows to flush
each output line. But few commands are so designed, so this seldom works out
unless you yourself wrote the program on the other end of the double-ended
pipe. Even simple, apparently interactive programs like ftp fail here because they
won’t do line buffering on a pipe. They’ll only do it on a tty device.

The IO::Pty and Expect modules from CPAN can help with this because they pro-
vide a real tty (actually, a real pseudo-tty, but it acts like a real one). This gets you
line buffering in the other process without modifying its program.

Pipes 431

432 Chapter 16: Interprocess Communication

If you split your program into several processes and want these to all have a con-
versation that goes both ways, you can’t use Perl’s high-level pipe interfaces,
because these are all unidirectional. You’ll need to use two low-level pipe function
calls, each handling one direction of the conversation:

pipe(FROM_PARENT, TO_CHILD) or die "pipe: $!";
pipe(FROM_CHILD, TO_PARENT) or die "pipe: $!";
select((select(TO_CHILD), $| = 1))[0]); # autoflush
select((select(TO_PARENT), $| = 1))[0]); # autoflush

if ($pid = fork) {
close FROM_PARENT; close TO_PARENT;
print TO_CHILD "Parent Pid $$ is sending this\n";
chomp($line = <FROM_CHILD>);
print "Parent Pid $$ just read this: ‘$line’\n";
close FROM_CHILD; close TO_CHILD;
waitpid($pid,0);

} else {
die "cannot fork: $!" unless defined $pid;
close FROM_CHILD; close TO_CHILD;
chomp($line = <FROM_PARENT>);
print "Child Pid $$ just read this: ‘$line’\n";
print TO_PARENT "Child Pid $$ is sending this\n";
close FROM_PARENT; close TO_PARENT;
exit;

}

On many Unix systems, you don’t actually have to make two separate pipe calls to
achieve full duplex communication between parent and child. The socketpair

syscall provides bidirectional connections between related processes on the same
machine. So instead of two pipes, you only need one socketpair.

use Socket;
socketpair(Child, Parent, AF_UNIX, SOCK_STREAM, PF_UNSPEC)

or die "socketpair: $!";

or letting perl pick filehandles for you
my ($kidfh, $dadfh);
socketpair($kidfh, $dadfh, AF_UNIX, SOCK_STREAM, PF_UNSPEC)

or die "socketpair: $!";

After the fork, the parent closes the Parent handle, then reads and writes via the
Child handle. Meanwhile, the child closes the Child handle, then reads and writes
via the Parent handle.

If you’re looking into bidirectional communications because the process you’d like
to talk to implements a standard Internet service, you should usually just skip the
middleman and use a CPAN module designed for that exact purpose. (See the
“Sockets” section later for a list of a some of these.)

Named Pipes
A named pipe (often called a FIFO) is a mechanism for setting up a conversation
between unrelated processes on the same machine. The names in a “named” pipe
exist in the filesystem, which is just a funny way to say that you can put a special
file in the filesystem namespace that has another process behind it instead of a
disk.*

A FIFO is convenient when you want to connect a process to an unrelated one.
When you open a FIFO, your process will block until there’s a process on the
other end. So if a reader opens the FIFO first, it blocks until the writer shows
up — and vice versa.

To create a named pipe, use the POSIX mkfifo function — if you’r e on a POSIX
system, that is. On Microsoft systems, you’ll instead want to look into the
Win32::Pipe module, which, despite its possible appearance to the contrary, cre-
ates named pipes. (Win32 users create anonymous pipes using pipe just like the
rest of us.)

For example, let’s say you’d like to have your .signatur e file produce a differ ent
answer each time it’s read. Just make it a named pipe with a Perl program on the
other end that spits out random quips. Now every time any program (like a mailer,
newsr eader, finger program, and so on) tries to read from that file, that program
will connect to your program and read in a dynamic signature.

In the following example, we use the rarely seen -p file test operator to determine
whether anyone (or anything) has accidentally removed our FIFO.† If they have,
ther e’s no reason to try to open it, so we treat this as a request to exit. If we’d
used a simple open function with a mode of “> $fpath”, there would have been a
tiny race condition that would have risked accidentally creating the signature as a
plain file if it disappeared between the -p test and the open. We couldn’t use a “+<
$fpath” mode, either, because opening a FIFO for read-write is a nonblocking
open (this is only true of FIFOs). By using sysopen and omitting the O_CREAT flag,
we avoid this problem by never creating a file by accident.

use Fcntl; # for sysopen
chdir; # go home
$fpath = ’.signature’;
$ENV{PATH} .= ":/usr/games";

unless (-p $fpath) { # not a pipe
if (-e _) { # but a something else

die "$0: won’t overwrite .signature\n";

* You can do the same thing with Unix-domain sockets, but you can’t use open on those.

† Another use is to see if a filehandle is connected to a pipe, named or anonymous, as in -p STDIN.

Pipes 433

434 Chapter 16: Interprocess Communication

} else {
require POSIX;
POSIX::mkfifo($fpath, 0666) or die "can’t mknod $fpath: $!";
warn "$0: created $fpath as a named pipe\n";

}
}

while (1) {
exit if signature file manually removed
die "Pipe file disappeared" unless -p $fpath;
next line blocks until there’s a reader
sysopen(FIFO, $fpath, O_WRONLY)

or die "can’t write $fpath: $!";
print FIFO "John Smith (smith\@host.org)\n", ‘fortune -s‘;
close FIFO;
select(undef, undef, undef, 0.2); # sleep 1/5th second

}

The short sleep after the close is needed to give the reader a chance to read what
was written. If we just immediately loop back up around and open the FIFO again
befor e our reader has finished reading the data we just sent, then no end-of-file is
seen because there’s once again a writer. We’ll both go round and round until dur-
ing one iteration, the writer falls a little behind and the reader finally sees that elu-
sive end-of-file. (And we were worried about race conditions?)

System V IPC
Everyone hates System V IPC. It’s slower than paper tape, carves out insidious
little namespaces completely unrelated to the filesystem, uses human-hostile num-
bers to name its objects, and is constantly losing track of its own mind. Every so
often, your sysadmin has to go on a search-and-destr oy mission to hunt down
these lost SysV IPC objects with ipcs (1) and kill them with ipcr m (1), hopefully
befor e the system runs out of memory.

Despite all this pain, ancient SysV IPC still has a few valid uses. The three kinds of
IPC objects are shar ed memory, semaphores, and messages. For message passing,
sockets are the preferr ed mechanisms these days, and they’re a lot more portable,
too. For simple uses of semaphores, the filesystem tends to get used. As for shared
memory — well, now there’s a problem for you. If you have it, the more moder n
mmap (2) syscall fits the bill,* but the quality of the implementation varies from
system to system. It also requir es a bit of care to avoid letting Perl reallocate your
strings from where mmap (2) put them. But when programmers look into using
mmap (2), they hear these incoherent mumbles from the resident wizards about
how it suffers from dodgy cache coherency issues on systems without something
called a “unified buffer cache”—or maybe it was a “flycatcher unibus”—and,

* Ther e’s even an Mmap module on CPAN.

figuring the devil they know is better than the one they don’t, run quickly back to
the SysV IPC they know and hate for all their shared memory needs.

Her e’s a little program that demonstrates controlled access to a shared memory
buf fer by a brood of sibling processes. SysV IPC objects can also be shared among
unr elated pr ocesses on the same computer, but then you have to figure out how
they’r e going to find each other. To mediate safe access, we’ll create a semaphore
per piece.*

Every time you want to get or put a new value into the shared memory, you have
to go through the semaphore first. This can get pretty tedious, so we’ll wrap
access in an object class. IPC::Shareable goes one step further, wrapping its object
class in a tie inter face.

This program runs until you interrupt it with a Control-C or equivalent:

#!/usr/bin/perl -w
use v5.6.0; # or better
use strict;
use sigtrap qw(die INT TERM HUP QUIT);
my $PROGENY = shift(@ARGV) || 3;
eval { main() }; # see DESTROY below for why
die if $@ && $@ !˜ /ˆCaught a SIG/;
print "\nDone.\n";
exit;

sub main {
my $mem = ShMem->alloc("Original Creation at " . localtime);
my(@kids, $child);
$SIG{CHLD} = ’IGNORE’;
for (my $unborn = $PROGENY; $unborn > 0; $unborn--) {

if ($child = fork) {
print "$$ begat $child\n";
next;

}
die "cannot fork: $!" unless defined $child;
eval {

while (1) {
$mem->lock();
$mem->poke("$$ " . localtime)

unless $mem->peek =˜ /ˆ$$\b/o;
$mem->unlock();

}
};

* It would be more realistic to create a pair of semaphores for each bit of shared memory, one for
reading and the other for writing, and in fact, that’s what the IPC::Shareable module on CPAN does.
But we’re trying to keep things simple here. It’s worth admitting, though, that with a couple of
semaphor es, you could then make use of pretty much the only redeeming feature of SysV IPC: you
could perfor m atomic operations on entire sets of semaphores as one unit, which is occasionally
useful.

System V IPC 435

436 Chapter 16: Interprocess Communication

die if $@ && $@ !˜ /ˆCaught a SIG/;
exit; # child death

}
while (1) {

print "Buffer is ", $mem->get, "\n";
sleep 1;

}
}

And here’s the ShMem package, which that program uses. You can just tack it on to
the end of the program, or put it in its own file (with a “1;” at the end) and
require it from the main program. (The two IPC modules it uses in turn are found
in the standard Perl distribution.)

package ShMem;
use IPC::SysV qw(IPC_PRIVATE IPC_RMID IPC_CREAT S_IRWXU);
use IPC::Semaphore;
sub MAXBUF() { 2000 }

sub alloc { # constructor method
my $class = shift;
my $value = @_ ? shift : ’’;

my $key = shmget(IPC_PRIVATE, MAXBUF, S_IRWXU) or die "shmget: $!";
my $sem = IPC::Semaphore->new(IPC_PRIVATE, 1, S_IRWXU | IPC_CREAT)

or die "IPC::Semaphore->new: $!";
$sem->setval(0,1) or die "sem setval: $!";

my $self = bless {
OWNER => $$,
SHMKEY => $key,
SEMA => $sem,

} => $class;

$self->put($value);
return $self;

}

Now for the fetch and store methods. The get and put methods lock the buffer,
but peek and poke don’t, so the latter two should be used only while the object is
manually locked—which you have to do when you want to retrieve an old value
and store back a modified version, all under the same lock. The demo program
does this in its while (1) loop. The entire transaction must occur under the same
lock, or the testing and setting wouldn’t be atomic and might bomb.

sub get {
my $self = shift;
$self->lock;
my $value = $self->peek(@_);
$self->unlock;
return $value;

}

sub peek {
my $self = shift;
shmread($self->{SHMKEY}, my $buff=’’, 0, MAXBUF) or die "shmread: $!";
substr($buff, index($buff, "\0")) = ’’;
return $buff;

}
sub put {

my $self = shift;
$self->lock;
$self->poke(@_);
$self->unlock;

}
sub poke {

my($self,$msg) = @_;
shmwrite($self->{SHMKEY}, $msg, 0, MAXBUF) or die "shmwrite: $!";

}
sub lock {

my $self = shift;
$self->{SEMA}->op(0,-1,0) or die "semop: $!";

}
sub unlock {

my $self = shift;
$self->{SEMA}->op(0,1,0) or die "semop: $!";

}

Finally, the class needs a destructor so that when the object goes away, we can
manually deallocate the shared memory and the semaphore stor ed inside the
object. Otherwise, they’ll outlive their creator, and you’ll have to resort to ipcs and
ipcr m (or a sysadmin) to get rid of them. That’s why we went through the elabo-
rate wrappers in the main program to convert signals into exceptions: it that all
destructors get run, SysV IPC objects get deallocated, and sysadmins get off our
case.

sub DESTROY {
my $self = shift;
return unless $self->{OWNER} == $$; # avoid dup dealloc
shmctl($self->{SHMKEY}, IPC_RMID, 0) or warn "shmctl RMID: $!";
$self->{SEMA}->remove() or warn "sema->remove: $!";

}

Sockets
The IPC mechanisms discussed earlier all have one severe restriction: they’re
designed for communication between processes running on the same computer.
(Even though files can sometimes be shared across machines through mechanisms
like NFS, locking fails miserably on many NFS implementations, which takes away
most of the fun of concurrent access.) For general-purpose networking, sockets
ar e the way to go. Although sockets were invented under BSD, they quickly

Sockets 437

438 Chapter 16: Interprocess Communication

spr ead to other forms of Unix, and nowadays you can find a socket interface on
nearly every viable operating system out there. If you don’t have sockets on your
machine, you’re going to have tremendous difficulty using the Internet.

With sockets, you can do both virtual circuits (as TCP streams) and datagrams (as
UDP packets). You may be able to do even more, depending on your system. But
the most common sort of socket programming uses TCP over Internet-domain
sockets, so that’s the kind we cover here. Such sockets provide reliable connec-
tions that work a little bit like bidirectional pipes that aren’t restricted to the local
machine. The two killer apps of the Internet, email and web browsing, both rely
almost exclusively on TCP sockets.

You also use UDP heavily without knowing it. Every time your machine tries to
find a site on the Internet, it sends UDP packets to your DNS server asking it for
the actual IP address. You might use UDP yourself when you want to send and
receive datagrams. Datagrams are cheaper than TCP connections precisely because
they aren’t connection oriented; that is, they’re less like making a telephone call
and more like dropping a letter in the mailbox. But UDP also lacks the reliability
that TCP provides, making it more suitable for situations where you don’t care
whether a packet or two gets folded, spindled, or mutilated. Or for when you
know that a higher-level protocol will enforce some degree of redundancy or fail-
softness (which is what DNS does.)

Other choices are available but far less common. You can use Unix-domain sock-
ets, but they only work for local communication. Various systems support various
other non-IP-based protocols. Doubtless these are somewhat interesting to some-
one somewhere, but we’ll restrain ourselves from talking about them somehow.

The Perl functions that deal with sockets have the same names as the correspond-
ing syscalls in C, but their arguments tend to differ for two reasons: first, Perl file-
handles work differ ently fr om C file descriptors; and second, Perl already knows
the length of its strings, so you don’t need to pass that information. See Chapter 29
for details on each socket-related syscall.

One problem with ancient socket code in Perl was that people would use hard-
coded values for constants passed into socket functions, which destroys portabil-
ity. Like most syscalls, the socket-related ones quietly but politely retur n undef

when they fail, instead of raising an exception. It is therefor e essential to check
these functions’ retur n values, since if you pass them garbage, they aren’t going to
be very noisy about it. If you ever see code that does anything like explicitly set-
ting $AF_INET = 2, you know you’re in for big trouble. An immeasurably superior
appr oach is to use the Socket module or the even friendlier IO::Socket module,

both of which are standard. These modules provide various constants and helper
functions you’ll need for setting up clients and servers. For optimal success, your
socket programs should always start out like this (and don’t forget to add the -T

taint-checking switch to the shebang line for servers):

#!/usr/bin/perl -w
use strict;
use sigtrap;
use Socket; # or IO::Socket

As noted elsewhere, Perl is at the mercy of your C libraries for much of its system
behavior, and not all systems support all sorts of sockets. It’s probably safest to
stick with normal TCP and UDP socket operations. For example, if you want your
code to stand a chance of being portable to systems you haven’t thought of, don’t
expect there to be support for a reliable sequenced-packet protocol. Nor should
you expect to pass open file descriptors between unrelated processes over a local
Unix-domain socket. (Yes, you can really do that on many Unix machines—see
your local recvmsg (2) manpage.)

If you just want to use a standard Internet service like mail, news, domain name
service, FTP, Telnet, the Web, and so on, then instead of starting from scratch, try
using existing CPAN modules for these. Prepackaged modules designed for these
include Net::SMTP (or Mail::Mailer), Net::NNTP, Net::DNS, Net::FTP, Net::Telnet,
and the various HTTP-related modules. The libnet and libwww module suites both
comprise many individual networking modules. Module areas on CPAN you’ll
want to look at are section 5 on Networking and IPC, section 15 on WWW-r elated
modules, and section 16 on Server and Daemon Utilities.

In the sections that follow, we present several sample clients and servers without a
gr eat deal of explanation of each function used, as that would mostly duplicate the
descriptions we’ve already provided in Chapter 29.

Networking Clients
Use Internet-domain sockets when you want reliable client-server communication
between potentially differ ent machines.

To create a TCP client that connects to a server somewhere, it’s usually easiest to
use the standard IO::Socket::INET module:

use IO::Socket::INET;

$socket = IO::Socket::INET->new(PeerAddr => $remote_host,
PeerPort => $remote_port,
Proto => "tcp",
Type => SOCK_STREAM)

or die "Couldn’t connect to $remote_host:$remote_port : $!\n";

Sockets 439

440 Chapter 16: Interprocess Communication

send something over the socket,
print $socket "Why don’t you call me anymore?\n";

read the remote answer,
$answer = <$socket>;

and terminate the connection when we’re done.
close($socket);

A shorthand form of the call is good enough when you just have a host and port
combination to connect to, and are willing to use defaults for all other fields:

$socket = IO::Socket::INET->new("www.yahoo.com:80")
or die "Couldn’t connect to port 80 of yahoo: $!";

To connect using the basic Socket module:

use Socket;

create a socket
socket(Server, PF_INET, SOCK_STREAM, getprotobyname(’tcp’));

build the address of the remote machine
$internet_addr = inet_aton($remote_host)

or die "Couldn’t convert $remote_host into an Internet address: $!\n";
$paddr = sockaddr_in($remote_port, $internet_addr);

connect
connect(Server, $paddr)

or die "Couldn’t connect to $remote_host:$remote_port: $!\n";

select((select(Server), $| = 1)[0]); # enable command buffering

send something over the socket
print Server "Why don’t you call me anymore?\n";

read the remote answer
$answer = <Server>;

terminate the connection when done
close(Server);

If you want to close only your side of the connection, so that the remote end gets
an end-of-file, but you can still read data coming from the server, use the shutdown

syscall for a half-close:

no more writing to server
shutdown(Server, 1); # Socket::SHUT_WR constant in v5.6

Networking Servers
Her e’s a corr esponding server to go along with it. It’s pretty easy with the standard
IO::Socket::INET class:

use IO::Socket::INET;

$server = IO::Socket::INET->new(LocalPort => $server_port,
Type => SOCK_STREAM,
Reuse => 1,
Listen => 10) # or SOMAXCONN

or die "Couldn’t be a tcp server on port $server_port: $!\n";

while ($client = $server->accept()) {
$client is the new connection

}

close($server);

You can also write that using the lower-level Socket module:

use Socket;

make the socket
socket(Server, PF_INET, SOCK_STREAM, getprotobyname(’tcp’));

so we can restart our server quickly
setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, 1);

build up my socket address
$my_addr = sockaddr_in($server_port, INADDR_ANY);
bind(Server, $my_addr)

or die "Couldn’t bind to port $server_port: $!\n";

establish a queue for incoming connections
listen(Server, SOMAXCONN)

or die "Couldn’t listen on port $server_port: $!\n";

accept and process connections
while (accept(Client, Server)) {

do something with new Client connection
}

close(Server);

The client doesn’t need to bind to any address, but the server does. We’ve speci-
fied its address as INADDR_ANY, which means that clients can connect from any
available network interface. If you want to sit on a particular interface (like the
exter nal side of a gateway or firewall machine), use that interface’s real address
instead. (Clients can do this, too, but rarely need to.)

Sockets 441

442 Chapter 16: Interprocess Communication

If you want to know which machine connected to you, call getpeername on the
client connection. This retur ns an IP address, which you’ll have to translate into a
name on your own (if you can):

use Socket;
$other_end = getpeername(Client)

or die "Couldn’t identify other end: $!\n";
($port, $iaddr) = unpack_sockaddr_in($other_end);
$actual_ip = inet_ntoa($iaddr);
$claimed_hostname = gethostbyaddr($iaddr, AF_INET);

This is trivially spoofable because the owner of that IP address can set up their
reverse tables to say anything they want. For a small measure of additional confi-
dence, translate back the other way again:

@name_lookup = gethostbyname($claimed_hostname)
or die "Could not reverse $claimed_hostname: $!\n";

@resolved_ips = map { inet_ntoa($_) } @name_lookup[4 .. $#name_lookup];
$might_spoof = !grep { $actual_ip eq $_ } @resolved_ips;

Once a client connects to your server, your server can do I/O both to and from
that client handle. But while the server is so engaged, it can’t service any further
incoming requests from other clients. To avoid getting locked down to just one
client at a time, many servers immediately fork a clone of themselves to handle
each incoming connection. (Others fork in advance, or multiplex I/O between
several clients using the select syscall.)

REQUEST:
while (accept(Client, Server)) {

if ($kidpid = fork) {
close Client; # parent closes unused handle
next REQUEST;

}
defined($kidpid) or die "cannot fork: $!" ;

close Server; # child closes unused handle

select(Client); # new default for prints
$| = 1; # autoflush

per-connection child code does I/O with Client handle
$input = <Client>;
print Client "output\n"; # or STDOUT, same thing

open(STDIN, "<<&Client") or die "can’t dup client: $!";
open(STDOUT, ">&Client") or die "can’t dup client: $!";
open(STDERR, ">&Client") or die "can’t dup client: $!";

run the calculator, just as an example
system("bc -l"); # or whatever you’d like, so long as

it doesn’t have shell escapes!
print "done\n"; # still to client

close Client;
exit; # don’t let the child back to accept!

}

This server clones off a child with fork for each incoming request. That way it can
handle many requests at once, as long as you can create more processes. (You
might want to limit this.) Even if you don’t fork, the listen will allow up to
SOMAXCONN (usually five or more) pending connections. Each connection uses up
some resources, although not as much as a process. Forking servers have to be
car eful about cleaning up after their expired children (called “zombies” in Unix-
speak) because otherwise they’d quickly fill up your process table. The REAPER

code discussed in the section “Signals” will take care of that for you, or you may
be able to assign $SIG{CHLD} = ’IGNORE’.

Befor e running another command, we connect the standard input and output (and
err or) up to the client connection. This way any command that reads from STDIN

and writes to STDOUT can also talk to the remote machine. Without the reassign-
ment, the command couldn’t find the client handle—which by default gets closed
acr oss the exec boundary, anyway.

When you write a networking server, we str ongly suggest that you use the -T

switch to enable taint checking even if you aren’t running setuid or setgid. This is
always a good idea for servers and any other program that runs on behalf of
someone else (like all CGI scripts), because it lessens the chances that people
fr om the outside will be able to compromise your system. See the section “Han-
dling Insecure Data” in Chapter 23 for much more about all this.

One additional consideration when writing Internet programs: many protocols
specify that the line terminator should be CRLF, which can be specified various
ways: "\015\12", or "\xd\xa", or even chr(13).chr(10). As of version 5.6 of Perl,
saying v13.10 also produces the same string. (On many machines, you can also
use "\r\n" to mean CRLF, but don’t use "\r\n" if you want to be portable to Macs,
wher e the meanings of \r and \n ar e reversed!) Many Internet programs will in
fact accept a bare "\012" as a line terminator, but that’s because Internet programs
usually try to be liberal in what they accept and strict in what they emit. (Now if
only we could get people to do the same . . .)

Message Passing
As we mentioned earlier, UDP communication involves much lower overhead but
pr ovides no reliability, since there are no promises that messages will arrive in a
pr oper order — or even that they will arrive at all. UDP is often said to stand for
Unr eliable Datagram Protocol.

Sockets 443

444 Chapter 16: Interprocess Communication

Still, UDP offers some advantages over TCP, including the ability to broadcast or
multicast to a whole bunch of destination hosts at once (usually on your local sub-
net). If you find yourself getting overly concerned about reliability and starting to
build checks into your message system, then you probably should just use TCP to
start with. True, it costs more to set up and tear down a TCP connection, but if
you can amortize that over many messages (or one long message), it doesn’t much
matter.

Anyway, here’s an example of a UDP program. It contacts the UDP time port of
the machines given on the command line, or everybody it can find using the uni-
versal broadcast address if no arguments were supplied.* Not all machines have a
time server enabled, especially across firewall boundaries, but those that do will
send you back a 4-byte integer packed in network byte order that repr esents what
time that machine thinks it is. The time retur ned, however, is in the number of
seconds since 1900. You have to subtract the number of seconds between 1900
and 1970 to feed that time to the localtime or gmtime conversion functions.

#!/usr/bin/perl
clockdrift - compare other systems’ clocks with this one
without arguments, broadcast to anyone listening.
wait one-half second for an answer.

use v5.6.0; # or better
use warnings;
use strict;
use Socket;

unshift(@ARGV, inet_ntoa(INADDR_BROADCAST))
unless @ARGV;

socket(my $msgsock, PF_INET, SOCK_DGRAM, getprotobyname("udp"))
or die "socket: $!";

Some borked machines need this. Shouldn’t hurt anyone else.
setsockopt($msgsock, SOL_SOCKET, SO_BROADCAST, 1)

or die "setsockopt: $!";

my $portno = getservbyname("time", "udp")
or die "no udp time port";

for my $target (@ARGV) {
print "Sending to $target:$portno\n";
my $destpaddr = sockaddr_in($portno, inet_aton($target));
send($msgsock, "x", 0, $destpaddr)

or die "send: $!";
}

* If that doesn’t work, run ifconfig –a to find the proper local broadcast address.

daytime service returns 32-bit time in seconds since 1900
my $FROM_1900_TO_EPOCH = 2_208_988_800;
my $time_fmt = "N"; # and it does so in this binary format
my $time_len = length(pack($time_fmt, 1)); # any number’s fine

my $inmask = ’’; # string to store the fileno bits for select
vec($inmask, fileno($msgsock), 1) = 1;

wait only half a second for input to show up
while (select(my $outmask = $inmask, undef, undef, 0.5)) {

defined(my $srcpaddr = recv($msgsock, my $bintime, $time_len, 0))
or die "recv: $!";

my($port, $ipaddr) = sockaddr_in($srcpaddr);
my $sendhost = sprintf "%s [%s]",

gethostbyaddr($ipaddr, AF_INET) || ’UNKNOWN’,
inet_ntoa($ipaddr);

my $delta = unpack($time_fmt, $bintime) -
$FROM_1900_TO_EPOCH - time();

print "Clock on $sendhost is $delta seconds ahead of this one.\n";
}

Sockets 445

17
Threads

Parallel programming is much harder than it looks. Imagine taking a recipe from a
cookbook and converting it into something that several dozen chefs can work on
all at the same time. You can take two approaches.

One approach is to give each chef a private kitchen, complete with its own supply
of raw materials and utensils. For recipes that can be divided up into parts easily,
and for foods that can be transported from kitchen to kitchen easily, this approach
works well because it keeps the chefs out of each other’s kitchens.

Alter natively, you can just put all the chefs into one kitchen, and let them work
things out, like who gets to use the mixer when. This can get messy, especially
when the meat cleavers start to fly.

These two approaches correspond to two models of parallel programming on
computers. The first is the multiprocessing model typical of traditional Unix sys-
tems, in which each thread of control has its own set of resources, which taken
together we call a process. The second model is the multithreading model, in
which each thread of control shares resources with all other threads of control. Or
doesn’t share, as the case may be (and upon occasion must be).

We all know that chefs like to be in control; that’s okay, because chefs need to be
in control in order to accomplish what we want them to accomplish. But chefs
need to be organized, one way or another.

Perl supports both models of organization. In this chapter we’ll call them the pr o-
cess model and the thr ead model.

446

The Process Model
We’ll not discuss the process model in great detail here, simply because it’s perva-
sive throughout the rest of this book. Perl originated on Unix systems, so it is
steeped in the notion that each process does its own thing. If a process wants to
start some parallel processing, then logically it has to start a parallel process; that
is, it must fork a new heavyweight process, which by default shares little with the
par ent pr ocess except some file descriptors. (It may seem like parent and child are
sharing a lot more, but most of the state of the parent process is merely duplicated
in the child process and not really shared in a logical sense. The operating system
may of course exhibit laziness in enforcing that logical separation, in which case
we call it copy-on-write semantics, but we wouldn’t be doing the copy at all
unless there wer e a logical separation first.)

Historically, this industrial-strength view of multiprocessing has posed a bit of a
pr oblem on Microsoft systems, because Windows has not had a well-developed
multipr ocessing model (and what it does have in that regard, it doesn’t often rely
on for parallel programming). It has typically taken a multithreading approach
instead.

However, thr ough her oic ef forts, version 5.6 of Perl now implements the fork

operation on Windows by cloning a new interpreter object within the same pro-
cess. That means that most examples using fork in the rest of the book will now
work on Windows. The cloned interpreter shares immutable code with other inter-
pr eters but gets its own copy of data to play with. (There can still be problems
with C libraries that don’t understand threads, of course.)

This approach to multiprocessing has been christened ithr eads, short for “inter-
pr eter thr eads”. The initial impetus for implementing ithreads was to emulate fork

for Microsoft systems. However, we quickly realized that, although the other inter-
pr eters ar e running as distinct threads, they’re running in the same process, so it
would be easy to make these separate interpreters share data, even though they
don’t share by default.

This is the opposite of the typical threading model, in which everything is shared
by default, and you have to take pains not to share something. But you should not
view these two models as totally distinct from each other, because they are both
trying to bridge the same river; they’re just building from opposite shores. The
actual solution to any parallel processing problem is going to involve some degree
of sharing, together with some degree of selfishness.

So over the long run, the intent is to extend the ithreads model to allow as much
sharing as you need or want. However, as of this writing, the only user-visible

The Process Model 447

448 Chapter 17: Threads

inter face for ithreads is the fork call under Microsoft ports of Perl. We think that,
eventually, this approach will produce cleaner programs than the standard thread-
ing approach. Basically, it’s easier to run an economy where you assume everyone
owns what they own, rather than assuming that everyone owns everything. Not
that people aren’t expected to share in a capitalist economy, or peculate* in a
communist economy. These things tend toward the middle. Socialism happens.
But with large groups of people, sharing everything by default only works when
you have a “head chef” with a big meat cleaver who thinks he owns everything.

Of course, the actual government of any computer is run by that fascist dictator
known as the operating system. But a wise dictator knows when to let the people
think they’re capitalists — and when to let them think they’re communists.

The Thread Model
The thread model of multiprocessing was first introduced to Perl as an experimen-
tal feature in version 5.005. (By “thread model”, we mean threads that share data
resources by default, not the new ithreads of version 5.6.) In some senses, this
thr ead model is still an experimental feature even in 5.6, because Perl is a rich lan-
guage and multithreading can make a muddle of even the simplest language.
Ther e ar e still various nooks and crannies of Perl semantics that don’t interact very
well with the notion of everything being shared. The new ithreads model is an
attempt to bypass these problems, and at some future point, the current thread
model may be subsumed under the ithread model (when we get an interface to
ithr eads that says “share everything you can by default”). But despite its warts, the
curr ent “experimental” thread model continues to be useful in many real-world sit-
uations where the only alternative to being a guinea pig is even less desirable.
Reasonably robust applications can be written in threaded Perl, but you have to be
very careful. You should at least consider using fork instead, if you can think of a
way to solve your problem with pipes instead of shared data structures.

But some algorithms are easier to express if multiple tasks have easy and efficient
access to the same pool of data.† This makes for code that can be smaller and sim-
pler. And because the kernel does not have to copy page tables for data (even if
doing copy-on-write) at thread creation time, it should be faster to start a task this
way. Likewise, context switches can be faster if the kernel doesn’t need to swap
page tables. (In fact, for user-level threads, the kernel doesn’t get involved at all—
though of course user-level threads have issues that kernel threads don’t.)

* peculate: v.i., to swipe the People’s Property from the commons in the middle of the night; to
embezzle from the public something that is not necessarily money (˜L. peculiar, “not common”), cf
embrace, extend, GPL.

† The System V shared memory model discussed in the last chapter does not exactly qualify as “easy
and efficient”.

That’s the good news. Now for some more disclaimers. We alr eady mentioned that
thr eading is somewhat experimental in Perl, but even if it weren’t, programming
with threads is treacher ous. The ability of one execution stream to poke holes
willy-nilly into the data space of another exposes more opportunity for disaster
than you can possibly imagine. You might say to yourself, “That’s easy to fix, I’ll
just put locks on any shared data.” Okay, locking of shared data is indispensable,
but getting the locking protocols correct is notoriously difficult, with errors pro-
ducing deadlock or nondeterministic results. If you have timing problems in your
pr ogram, using threads will not only exacerbate them, but it will make them
harder to locate.

Not only are you responsible for keeping your own shared data straight, but you
ar e requir ed to keep the data straight of all the Perl modules and C libraries you
call into. Your Perl code can be 100% threadsafe, and if you call into a nonthread-
safe module or C subroutine without providing your own semaphore protection,
you’r e toast. You should assume any module is not threadsafe until proven other-
wise. That even includes some of the standard modules. Maybe even most of
them.

Have we discouraged you yet? No? Then we’ll point out that you’re pretty much at
the mercy of your operating system’s threading library when it comes to schedul-
ing and preemption policies. Some thread libraries only do thread switching on
blocking system calls. Some libraries block the whole process if a single thread
makes a blocking system call. Some libraries only switch threads on quantum
expiration (either thread or process). Some libraries only switch threads explicitly.

Oh, and by the way, if your process receives a signal, which thread the signal is
deliver ed to is completely system dependent.

To do thr ead pr ogramming in Perl, you must build a special version of Perl follow-
ing the directions given in the README.thr eads file in the Perl source directory.
This special Perl is pretty much guaranteed to run a bit slower than your standard
Perl executable.

Do not assume that just because you know how threads are programmed in other
models (POSIX, DEC, Microsoft, etc.) you know how threads work with Perl. As
with other things in Perl, Perl is Perl, not C++ or Java or whatnot. For example,
ther e ar e no real-time thread priorities (and no way to work around their
absence). There are also no mutexes. Just use regular locking or perhaps the
Thread::Semaphore module or the cond_wait facilities.

Still not discouraged? Good, because threads are really cool. You’r e scheduled to
have some fun.

The Thread Model 449

450 Chapter 17: Threads

The Thread Module
The current interface for Perl threads is defined by the Thread module. Addition-
ally, one new Perl keyword was added, the lock operator. We’ll talk about lock
later in this chapter. Other standard thread modules build on this basic interface.

The Thread module provides these class methods:

Method Use

new Construct a new Thread.
self Retur n my current Thread object.
list Retur n list of Thread objects.

And, for Thread objects, it provides these object methods:

Method Use

join Harvest a thread (propagate errors).
eval Harvest a thread (trap errors).
equal Compar e two threads for identity.
tid Retur n the internal thread ID.

In addition, the Thread module provides these importable functions:

Function Use

yield Tell the scheduler to run a differ ent thr ead.
async Construct a Thread via closure.
cond_signal Wake up exactly one thread that is cond_wait()ing on a variable.
cond_broadcast Wake up all threads that may be cond_wait()ing on a variable.
cond_wait Wait on a variable until awakened by a cond_signal() or

cond_broadcast() on that variable.

Thread creation

You can spawn a thread in one of two ways, either by using the Thread->new class
method or by using the async function. In either case, the retur ned value is a
Thread object. Thread->new takes a code refer ence indicating a function to run and
arguments to pass to that function:

use Thread;
...
$t = Thread->new(\&func, $arg1, $arg2);

Often you’ll find yourself wanting to pass a closure as the first argument without
supplying any additional arguments:

my $something;
$t = Thread->new(sub { say($something) });

For this special case, the async function provides some notational relief (that is,
syntactic sugar):

use Thread qw(async);
...
my $something;
$t = async {

say($something);
};

You’ll note that we explicitly import the async function. You may, of course, use
the fully qualified name Thread::async instead, but then your syntactic sugar isn’t
so sweet. Since async takes only a closure, anything you want to pass to it must be
a lexical variable in scope at the time.

Thread destruction

Once begun—and subject to the whims of your threading library—the thread will
keep running on its own until its top-level function (the function you passed to
the constructor) retur ns. If you want to terminate a thread early, just return fr om
within that top-level function.*

Now it’s all very well for your top-level subroutine to retur n, but who does it
retur n to ? The thread that spawned this thread has presumably gone on to do
other things and is no longer waiting at a method call for a response. The answer
is simple enough: the thread waits until someone issues a method call that does
wait for a retur n value. That method call is called join, because it conceptually
joins two threads back into one:

$retval = $t->join(); # harvest thread $t

The operation of join is reminiscent of waitpid on a child process. If the thread
has already shut down, the join method retur ns immediately with the retur n value
of the thread’s top-level subroutine. If the thread is not done, join acts as a block-
ing call that suspends the calling thread indefinitely. (There is no time-out facility.)
When the thread eventually completes, the join retur ns.

Unlike waitpid, however, which can only harvest the process’s own children, any
thr ead can join any other thread within the process. That is, it is not a necessity
for the joining thread be the main thread or the parent thread. The only restric-
tions are that a thread can’t join itself (which would be like officiating at your

* Don’t call exit! That would try to take down your entire process, and possibly succeed. But the pro-
cess won’t actually exit until all threads exit, and some of them may refuse to exit on an exit. Mor e
on that later.

The Thread Model 451

452 Chapter 17: Threads

own funeral), and a thread can’t join a thr ead that has already been joined (which
would be like two funeral directors fighting each other over the body). If you try
to do either of those things, an exception will be raised.

The retur n value of join doesn’t have to be a scalar value—it can also be a list:

use Thread ’async’;

$t1 = async {
my @stuff = getpwuid($>);
return @stuff;

};

$t2 = async {
my $motd = ‘cat /etc/motd‘;
return $motd;

};

@retlist = $t1->join();
$retval = $t2->join();

print "1st kid returned @retlist\n";
print "2nd kid returned $retval\n";

In fact, the retur n expr ession of a thread is always evaluated in list context, even if
join is called in a scalar context, in which case the last value of the list is retur ned.

Catching exceptions from join

If a thread terminates with an uncaught exception, this does not immediately kill
the whole program. That would be naughty. Instead, when a join is run on that
thr ead, the join itself raises the exception. Using join on a thread indicates a will-
ingness to propagate any exceptions raised by that thread. If you’d rather trap the
exception right then and there, use the eval method, which, like its built-in coun-
terpart, causes the exception to be put into $@:

$retval = $t->eval(); # catch join errors
if ($@) {

warn "thread failed: $@";
}
else {

print "thread returned $retval\n";
}

Although there’s no rule to this effect, you might want to adopt a practice of join-
ing a thread only from within the thread that created the one you’re joining. That
is, you harvest a child thread only from the parent thread that spawned it. This
makes it a little easier to keep track of which exceptions you might need to handle
wher e.

The detach method

As another alternative method of shutting down threads, if you don’t plan to join

a thr ead later to get its retur n value, you can call the detach method on it so that
Perl will clean it up for you. It can no longer be joined. It’s a little bit like when a
pr ocess is inherited by the init pr ogram under Unix, except that the only way to
do that under Unix is for the parent process to die.

The detach method does not “background” the thread; if you try to exit the main
pr ogram and a detached thread is still running, the exit will hang until the thread
exits on its own. Rather, detach just spares you from clean up. It merely tells Perl
not to keep the retur n value and exit status of the thread after it finishes. In a
sense, detach tells Perl to do an implicit join when the thread finishes and then
thr ow away the results. That can be important: if you neither join nor detach a
thr ead that retur ns some very large list, that storage will be lost until the end,
because Perl would have to hang onto it on the off chance (very off, in this case)
that someone would want to join that thread sometime in the future.

An exception raised in a detached child thread also no longer propagates up
thr ough a join, since there will never be one. Use eval {} wisely in the top-level
function, and find some other way to report errors.

Identifying threads

Every Perl thread has a distinguishing thread identification number, which the tid

object method retur ns:

$his_tidno = $t1->tid();

A thr ead can access its own thread object through the Thread->self call. Don’t
confuse that with the thread ID: to figure out its own thread ID, a thread does this:

$mytid = Thread->self->tid(); # $$ for threads, as it were.

To compar e one thread object with another, do any of these:

Thread::equal($t1, $t2)
$t1->equal($t2)
$t1->tid() == $td->tid()

Listing current threads

You can get a list of current thread objects in the current process using the
Thread->list class method call. The list includes both running threads and threads
that are done but haven’t been joined yet. You can do this from any thread.

for my $t (Thread->list()) {
printf "$t has tid = %d\n", $t->tid();

}

The Thread Model 453

454 Chapter 17: Threads

Yielding the processor

The Thread module supports an importable function named yield. Its job is to
cause the calling thread to surrender the processor. Unfortunately, details of what
this really does are completely dependent on which flavor of thread implementa-
tion you have. Nevertheless, it’s considered a nice gesture to relinquish control of
the CPU occasionally:

use Thread ’yield’;
yield();

You don’t have to use parentheses. This is even safer, syntactically speaking,
because it catches the seemingly inevitable “yeild” typo:

use strict;
use Thread ’yield’;
yeild; # Compiler wails, then bails.
yield; # Ok.

Data Access
What we’ve gone over so far isn’t really too hard, but we’re about to fix that.
Nothing we’ve done has actually exercised the parallel nature of thr eads. Access-
ing shared data changes all that.

Thr eaded code in Perl has the same constraints regarding data visibility as any
other bit of Perl code. Globals are still accessed via global symbol tables, and lexi-
cals are still accessed via some containing lexical scope (scratchpad).

However, the fact that multiple threads of control exist in the program throws a
clinker into the works. Two threads can’t be allowed to access the same global
variable simultaneously, or they may tromp on each other. (The result of the
tr omping depends on the nature of the access.) Similarly, two threads can’t be
allowed to access the same lexical variable simultaneously, because lexical
variables also behave like globals if they are declar ed outside the scope of clo-
sur es being used by threads. Starting threads via subroutine refer ences (using
Thread->new) rather than via closures (using async) can help limit access to lexi-
cals, if that’s what you want. (Sometimes it isn’t, though.)

Perl solves the problem for certain built-in special variables, like $! and $_ and @_

and the like, by making them thread-specific data. The bad news is that all your
basic, everyday package variables are unpr otected fr om tr omping.

The good news is that you don’t generally have to worry about your lexical vari-
ables at all, presuming they were declar ed inside the current thread, since each
thr ead will instantiate its own lexical scope upon entry, separate from any other

thr ead. You only have to worry about lexicals if they’re shar ed between threads,
by passing refer ences ar ound, for example, or by referring to lexicals from within
closur es running under multiple threads.

Synchronizing access with lock

When more than one agent can access the same item at the same time, collisions
happen, just like at an intersection. Careful locking is your only defense.

The built-in lock function is Perl’s red-light/gr een-light mechanism for access con-
tr ol. Although lock is a keyword of sorts, it’s a shy one, in that the built-in func-
tion is not used if the compiler has already seen a sub lock {} definition in user
code. This is for backward compatibility. CORE::lock is always the built-in, though.
(In a perl not built for threading, calling lock is not an error; it’s a harmless no-op,
at least in recent versions.)

Just as the flock operator only blocks other instances of flock, not the actual I/O,
so too the lock operator only blocks other instances of lock, not regular data
access. They are, in effect, advisory locks. Just like traffic lights.*

You can lock individual scalar variables and entire arrays and hashes as well.

lock $var;
lock @values;
lock %table;

However, using lock on an aggregate does not implicitly lock all that aggregate’s
scalar components:

lock @values; # in thread 1
...
lock $values[23]; # in thread 2 -- won’t block!

If you lock a refer ence, this automatically locks access to the refer ent. That is, you
get one derefer ence for free. This is handy because objects are always hidden
behind a refer ence, and you often want to lock objects. (And you almost never
want to lock refer ences.)

The problem with traffic lights, of course, is that they’re red half the time, and then
you have to wait. Likewise, lock is a blocking call—your thread will hang there
until the lock is granted. There is no time-out facility. There is no unlock facility,
either, because locks are dynamically scoped. They persist until their block, file, or
eval has finished. When they go out of scope, they are freed automatically.

* Some railroad crossing signals are mandatory (the ones with gates), and some folks think locks
should be mandatory too. But just picture a world in which every intersection has arms that go up
and down whenever the lights change.

The Thread Model 455

456 Chapter 17: Threads

Locks are also recursive. That means that if you lock a variable in one function,
and that function recurses while holding the lock, the same thread can successfully
lock the same variable again. The lock is finally dropped when all frames owning
the locks have exited.

Her e’s a simple demo of what can happen if you don’t have locking. We’ll force a
context switch using yield to show the kind of problem that can also happen acci-
dentally under preemptive scheduling:

use Thread qw/async yield/;
my $var = 0;
sub abump {

if ($var == 0) {
yield;
$var++;

}
}

my $t1 = new Thread \&abump;
my $t2 = new Thread \&abump;

for my $t ($t1, $t2) { $t->join }
print "var is $var\n";

That code always prints 2 (for some definition of always) because we decided to
do the bump after seeing its value was 0, but before we could do so, another
thr ead decided the same thing.

We can fix that collision by the trivial addition of a lock before we examine $var.
Now this code always prints 1:

sub abump {
lock $var;
if ($var == 0) {

yield;
$var++;

}
}

Remember that there’s no explicit unlock function. To contr ol unlocking, just add
another, nested scoping level so the lock is released when that scope terminates:

sub abump {
{

lock $var;
if ($var == 0) {

yield;
$var++;

}
} # lock released here!
other code with unlocked $var

}

Deadlock

Deadlock is the bane of thread programmers because it’s easy to do by accident
and hard to avoid even when you try to. Here’s a simple example of deadlock:

my $t1 = async {
lock $a; yield; lock $b;
$a++; $b++

};
my $t2 = async {

lock $b; yield; lock $a;
$b++; $a++

};

The solution here is for all parties who need a particular set of locks to grab them
in the same order.

It’s also good to minimize the duration of time you hold locks. (At least, it’s good
to do so for perfor mance reasons. But if you do it to reduce the risk of deadlock,
all you’re doing is making it harder to repr oduce and diagnose the problem.)

Locking subroutines

You can also put a lock on a subroutine:

lock &func;

Unlike locks on data, which are advisory only, subroutine locks are mandatory.
No one else but the thread with the lock may enter the subroutine.

Consider the following code, which contains race conditions involving the $done

variable. (The yields are for demonstration purposes only).

use Thread qw/async yield/;
my $done = 0;
sub frob {

my $arg = shift;
my $tid = Thread->self->tid;
print "thread $tid: frob $arg\n";
yield;
unless ($done) {

yield;
$done++;
frob($arg + 10);

}
}

If you run it this way:

my @t;
for my $i (1..3) {

push @t, Thread->new(\&frob, $i);
}

The Thread Model 457

458 Chapter 17: Threads

for (@t) { $_->join }
print "done is $done\n";

her e’s the output (well, sometimes—it’s not deterministic):

thread 1: frob 1
thread 2: frob 2
thread 3: frob 3
thread 1: frob 11
thread 2: frob 12
thread 3: frob 13
done is 3

However, if you run it this way:

for my $i (1..3) {
push @t, async {

lock &frob;
frob($i);

};
}
for (@t) { $_->join }
print "done is $done\n";

her e’s the output:

thread 1: frob 1
thread 1: frob 11
thread 2: frob 2
thread 3: frob 3
done is 1

The locked attribute

Although obeying a subroutine lock is mandatory, nothing forces anyone to lock
them in the first place. You could say that the placement of the lock is advisory.
But some subroutines would really like to be able to requir e that they be locked
befor e being called.

The locked subr outine attribute addresses this. It’s faster than calling lock &sub

because it’s known at compile time, not just at run time. But the behavior is the
same as when we locked it explicitly earlier. The syntax is as follows:

sub frob : locked {
as before

}

If you have a function prototype, it comes between the name and any attributes:

sub frob ($) : locked {
as before

}

Locking methods

Automatic locking on a subroutine is really cool, but sometimes it’s overkill. When
you’r e invoking an object method, it doesn’t generally matter if multiple methods
ar e running simultaneously as long as they’re all running on behalf of differ ent
objects. So you’d really like to lock the object that the method is being called on
instead. Adding a method attribute to the subroutine definition does this:

sub frob : locked method {
as before

}

If called as a method, the invoking object is locked, providing serial access to that
object, but allowing the method to be called on other objects. If the method isn’t
called on an object, the attribute still tries to do the right thing: if you call a locked
method as a class method (Package->new rather than $obj->new) the package’s
symbol table is locked. If you call a locked method as a normal subroutine, Perl
will raise an exception.

Condition var iables

A condition variable allows a thread to give up the processor until some criterion
is satisfied. Condition variables are meant as points of coordination between
thr eads when you need more contr ol than a mere lock provides. On the other
hand, you don’t really need more over head than the lock provides, and condition
variables are designed with this in mind. You just use ordinary locks plus ordinary
conditionals. If the condition fails, then you’ll have to take extraordinary measures
via the cond_wait function; but we optimize for success, since in a well-designed
application, we shouldn’t be bottlenecking on the current condition anyway.

Besides locking and testing, the basic operations on condition variables consist of
either sending or receiving a “signal” event (not a real signal in the %SIG sense).
Either you suspend your own execution to wait for an event to be received, or
you send an event to wake up other threads waiting for the particular condition.
The Thread module provides three importable functions to do this: cond_wait,
cond_signal, and cond_broadcast. These are the primitive mechanisms upon
which more abstract modules like Thread::Queue and Thread::Semaphore ar e
based. It’s often more convenient to use those abstractions, when possible.

The cond_wait function takes a variable already locked by the current thread,
unlocks that variable, and then blocks until another thread does a cond_signal or
cond_broadcast for that same locked variable.

The Thread Model 459

460 Chapter 17: Threads

The variable blocked by cond_wait is relocked after cond_wait retur ns. If multiple
thr eads ar e cond_waiting the same variable, all but one reblock because they can’t
regain the lock on the variable. Therefor e, if you’re only using cond_wait for syn-
chr onization, give up the lock as soon as possible.

The cond_signal function takes a variable already locked by the current thread
and unblocks one thread that’s currently in a cond_wait on that variable. If more
than one thread is blocked in a cond_wait on that variable, only one is unblocked,
and you can’t predict which one. If no threads are blocked in a cond_wait on that
variable, the event is discarded.

The cond_broadcast function works like cond_signal, but unblocks all threads
blocked in a cond_wait on the locked variable, not just one. (Of course, it’s still
the case that only one thread can have the variable locked at a time.)

The cond_wait function is intended to be a last-resort kind of thing that a thread
does only if the condition it wants isn’t met. The cond_signal and cond_broadcast

indicate that the condition is changing. The scheme is supposed to be this: lock,
then check to see whether the condition you want is met; if it is, fine, and if it
isn’t, cond_wait until it is fine. The emphasis should be on avoiding blocking if at
all possible. (Generally a good piece of advice when dealing with threads.)

Her e’s an example of passing control back and forth between two threads. Don’t
be fooled by the fact that the actual conditions are over on the right in statement
modifiers; cond_wait is never called unless the condition we’re waiting for is false.

use Thread qw(async cond_wait cond_signal);
my $wait_var = 0;
async {

lock $wait_var;
$wait_var = 1;
cond_wait $wait_var until $wait_var == 2;
cond_signal($wait_var);
$wait_var = 1;
cond_wait $wait_var until $wait_var == 2;
$wait_var = 1;
cond_signal($wait_var);

};

async {
lock $wait_var;
cond_wait $wait_var until $wait_var == 1;
$wait_var = 2;
cond_signal($wait_var);
cond_wait $wait_var until $wait_var == 1;
$wait_var = 2;
cond_signal($wait_var);
cond_wait $wait_var until $wait_var == 1;

};

Other Thread Modules
Several modules are built on top of the cond_wait primitive.

Queues

The standard Thread::Queue module provides a way to pass objects between
thr eads without worrying about locks or synchronization. This interface is much
easier:

Method Use

new Construct a new Thread::Queue.
enqueue Push one or more scalars on to the end of the queue.
dequeue Shift the first scalar off the front of the queue. The

dequeue method blocks if there are no items present.

Notice how similar a queue is to a regular pipe, except that instead of sending
bytes, you get to pass around full scalars, including refer ences and blessed objects!

Her e’s an example derived from the perlthrtut manpage:

use Thread qw/async/;
use Thread::Queue;

my $Q = Thread::Queue->new();
async {

while (defined($datum = $Q->dequeue)) {
print "Pulled $datum from queue\n";

}
};

$Q->enqueue(12);
$Q->enqueue("A", "B", "C");
$Q->enqueue($thr);
sleep 3;
$Q->enqueue(\%ENV);
$Q->enqueue(undef);

Her e’s what you get for output:

Pulled 12 from queue
Pulled A from queue
Pulled B from queue
Pulled C from queue
Pulled Thread=SCALAR(0x8117200) from queue
Pulled HASH(0x80dfd8c) from queue

Notice how $Q was in scope when the asynchronous thread was launched via an
async closur e. Thr eads ar e under the same scoping rules as anything else in Perl.
The example above would not have worked had $Q been declared after the call to
async.

The Thread Model 461

462 Chapter 17: Threads

Semaphores

Thread::Semaphore pr ovides you with threadsafe, counting semaphore objects to
implement your favorite p() and v() operations. Because most of us don’t associ-
ate these operations with the Dutch words passeer (“pass”) and verlaat (“leave”),
the module calls these operations “down” and “up” respectively. (In some of the
literatur e, they’r e called “wait” and “signal”.) The following methods are sup-
ported:

Method Use

new Construct a new Thread::Semaphore.
down Allocate one or more items.
up Deallocate one or more items.

The new method creates a new semaphore and initializes its count to the specified
number. If no number is specified, the semaphore’s count is set to 1. (The number
repr esents some pool of items that can “run out” if they’re all allocated.)

use Thread::Semaphore;
$mutex = Thread::Semaphore->new($MAX);

The down method decreases the semaphore’s count by the specified number, or by
1 if no number is given. It can be interpreted as an attempt to allocate some or all
of a resource. If the semaphore’s count drops below zero, this method blocks until
the semaphore’s count is equal to or larger than the amount you’re requesting. Call
it like this:

$mutex->down();

The up method increases the semaphore’s count by the specified number, or 1 if
no number is given. It can be interpreted as freeing up some quantity of a previ-
ously allocated resource. This unblocks at least one thread that was blocked trying
to down the semaphore, provided that the up raises the semaphore count above
what the down is trying to decrement it by. Call it like this:

$mutex->up();

Other standard threading modules

Thread::Signal allows you to start up a thread that is designated to receive your
pr ocess’s %SIG signals. This addresses the still-vexing problem that signals are
unr eliable as currently implemented in Perl and their imprudent use can cause
occasional core dumps.

These modules are still in development and may not produce the desired results
on your system. Then again, they may. If they don’t, it’s because someone like you
hasn’t fixed them yet. Perhaps someone like you should pitch in and help.

The Thread Model 463

18
Compiling

If you came here looking for a Perl compiler, you may be surprised to discover
that you already have one—your perl pr ogram (typically /usr/bin/perl) alr eady
contains a Perl compiler. That might not be what you were thinking, and if it
wasn’t, you may be pleased to know that we do also provide code generators
(which some well-meaning folks call “compilers”), and we’ll discuss those toward
the end of this chapter. But first we want to talk about what we think of as The
Compiler. Inevitably there’s going to be a certain amount of low-level detail in this
chapter that some people will be interested in, and some people will not. If you
find that you’re not, think of it as an opportunity to practice your speed-reading
skills.

Imagine that you’re a conductor who’s ordered the score for a large orchestral
work. When the box of music arrives, you find several dozen booklets, one for
each member of the orchestra with just their part in it. But curiously, your master
copy with all the parts is missing. Even more curiously, the parts you do have are
written out using plain English instead of musical notation. Before you can put
together a program for perfor mance, or even give the music to your orchestra to
play, you’ll first have to translate the prose descriptions into the normal system of
notes and bars. Then you’ll need to compile the individual parts into one giant
scor e so that you can get an idea of the overall program.

Similarly, when you hand the source code of your Perl script over to perl to exe-
cute, it is no more useful to the computer than the English description of the sym-
phony was to the musicians. Before your program can run, Perl needs to compile*

these English-looking directions into a special symbolic repr esentation. Your pro-
gram still isn’t running, though, because the compiler only compiles. Like the

* Or translate, or transform, or transfigure, or transmute, or transmogrify.

464

conductor’s score, even after your program has been converted to an instruction
for mat suitable for interpretation, it still needs an active agent to interpret those
instructions.

The Life Cyc le of a Perl Program
You can break up the life cycle of a Perl program into four distinct phases, each
with separate stages of its own. The first and the last are the most interesting ones,
and the middle two are optional. The stages are depicted in Figure 18-1.

Code
Generation

Parse Tree
Reconstruction

Compilation Execution

Figur e 18-1. The life cycle of a Perl program

1. The Compilation Phase

During phase 1, the compile phase, the Perl compiler converts your program
into a data structure called a parse tree. Along with the standard parsing tech-
niques, Perl employs a much more power ful one: it uses BEGIN blocks to
guide further compilation. BEGIN blocks are handed off to the interpreter to
be run as as soon as they are parsed, which effectively runs them in FIFO
order (first in, first out). This includes any use and no declarations; these are
really just BEGIN blocks in disguise. Any CHECK, INIT, and END blocks are sched-
uled by the compiler for delayed execution.

Lexical declarations are noted, but assignments to them are not executed. All
eval BLOCKs, s///e constructs, and noninterpolated regular expressions are
compiled here, and constant expressions are pre-evaluated. The compiler is
now done, unless it gets called back into service later. At the end of this
phase, the interpreter is again called up to execute any scheduled CHECK

blocks in LIFO order (last in, first out). The presence or absence of a CHECK

block determines whether we next go to phase 2 or skip over to phase 4.

The Life Cyc le of a Perl Program 465

466 Chapter 18: Compiling

2. The Code Generation Phase (optional)

CHECK blocks are installed by code generators, so this optional phase occurs
when you explicitly use one of the code generators (described later in “Code
Generators”). These convert the compiled (but not yet run) program into
either C source code or serialized Perl bytecodes—a sequence of values
expr essing inter nal Perl instructions. If you choose to generate C source code,
it can eventually produce a file called an executable image in native machine
language.*

At this point, your program goes into suspended animation. If you made an
executable image, you can go directly to phase 4; otherwise, you need to
reconstitute the freeze-dried bytecodes in phase 3.

3. The Parse Tree Reconstruction Phase (optional)

To reanimate the program, its parse tree must be reconstructed. This phase
exists only if code generation occurred and you chose to generate bytecode.
Perl must first reconstitute its parse trees from that bytecode sequence before
the program can run. Perl does not run directly from the bytecodes; that
would be slow.

4. The Execution Phase

Finally, what you’ve all been waiting for: running your program. Hence, this is
also called the run phase. The interpreter takes the parse tree (which it got
either directly from the compiler or indirectly from code generation and subse-
quent parse tree reconstruction) and executes it. (Or, if you generated an exe-
cutable image file, it can be run as a standalone program since it contains an
embedded Perl interpreter.)

At the start of this phase, before your main program gets to run, all scheduled
INIT blocks are executed in FIFO order. Then your main program is run. The
interpr eter can call back into the compiler as needed upon encountering an
eval STRING, a do FILE or require statement, an s///ee construct, or a pattern
match with an interpolated variable that is found to contain a legal code
assertion.

* Your original script is an executable file too, but it’s not machine language, so we don’t call it an
image. An image file is called that because it’s a verbatim copy of the machine codes your CPU
knows how to execute directly.

When your main program finishes, any delayed END blocks are finally exe-
cuted, this time in LIFO order. The very first one seen will execute last, and
then you’re done. (END blocks are skipped only if you exec or your process is
blown away by an uncaught catastrophic error. Ordinary exceptions are not
consider ed catastr ophic.

Now we’ll discuss these phases in greater detail, and in a differ ent order.

Compiling Your Code
Perl is always in one of two modes of operation: either it is compiling your pro-
gram, or it is executing it—never both at the same time. Throughout this book, we
refer to certain events as happening at compile time, or we say that “the Perl com-
piler does this and that”. At other points, we mention that something else occurs at
run time, or that “the Perl interpreter does this and that”. Although you can get by
with thinking of both the compiler and interpreter as simply “Perl”, understanding
which of these two roles Perl is playing at any given point is essential to under-
standing why many things happen as they do. The perl executable implements
both roles: first the compiler, then the interpreter. (Other roles are possible, too;
perl is also an optimizer and a code generator. Occasionally, it’s even a trickster—
but all in good fun.)

It’s also important to understand the distinction between compile phase and com-
pile time, and between run phase and run time. A typical Perl program gets one
compile phase, and then one run phase. A “phase” is a large-scale concept. But
compile time and run time are small-scale concepts. A given compile phase does
mostly compile-time stuff, but it also does some run-time stuff via BEGIN blocks. A
given run phase does mostly run-time stuff, but it can do compile-time stuff
thr ough operators like eval STRING.

In the typical course of events, the Perl compiler reads through your entire pro-
gram source before execution starts. This is when Perl parses the declarations,
statements, and expressions to make sure they’r e syntactically legal.* If it finds a
syntax error, the compiler attempts to recover from the error so it can report any
other errors later in the source. Sometimes this works, and sometimes it doesn’t;
syntax errors have a noisy tendency to trigger a cascade of false alarms. Perl bails
out in frustration after about 10 errors.

* No, there’s no formal syntax diagram like a BNF, but you’re welcome to peruse the perly.y file in the
Perl source tree, which contains the yacc (1) grammar Perl uses. We recommend that you stay out of
the lexer, which has been known to induce eating disorders in lab rats.

Compiling Your Code 467

468 Chapter 18: Compiling

In addition to the interpreter that processes the BEGIN blocks, the compiler pro-
cesses your program with the connivance of three notional agents. The lexer scans
for each minimal unit of meaning in your program. These are sometimes called
“lexemes”, but you’ll more often hear them referr ed to as tokens in texts about
pr ogramming languages. The lexer is sometimes called a tokener or a scanner, and
what it does is sometimes called lexing or tokenizing. The parser then tries to
make sense out of groups of these tokens by assembling them into larger con-
structs, such as expressions and statements, based on the grammar of the Perl lan-
guage. The optimizer rearranges and reduces these larger groupings into more
ef ficient sequences. It picks its optimizations carefully, not wasting time on
marginal optimizations, because the Perl compiler has to be blazing fast when
used as a load-and-go compiler.

This doesn’t happen in independent stages, but all at once with a lot of cross talk
between the agents. The lexer occasionally needs hints from the parser to know
which of several possible token types it’s looking at. (Oddly, lexical scope is one
of the things the lexical analyzer doesn’t understand, because that’s the other
meaning of “lexical”.) The optimizer also needs to keep track of what the parser
is doing, because some optimizations can’t happen until the parse has reached a
certain point, like finishing an expression, statement, block, or subroutine.

You may think it odd that the Perl compiler does all these things at once instead
of one after another, but it’s really just the same messy process you go through to
understand natural language on the fly, while you’re listening to it or reading it.
You don’t wait till the end of a chapter to figure out what the first sentence meant.
You could think of the following correspondences:

Computer Language Natural Language

Character Letter
Token Morpheme
Term Word
Expr ession Phrase
Statement Sentence
Block Paragraph
File Chapter
Pr ogram Story

Assuming the parse goes well, the compiler deems your input a valid story, er,
pr ogram. If you use the -c switch when running your program, it prints out a
“syntax OK” message and exits. Otherwise, the compiler passes the fruits of its
ef forts on to other agents. These “fruits” come in the form of a parse tree. Each

fruit on the tree — or node, as it’s called—repr esents one of Perl’s internal opcodes,
and the branches on the tree repr esent that tree’s historical growth pattern. Even-
tually, the nodes will be strung together linearly, one after another, to indicate the
execution order in which the run-time system will visit those nodes.

Each opcode is the smallest unit of executable instruction that Perl can think
about. You might see an expression like $a = -($b + $c) as one statement, but
Perl thinks of it as six separate opcodes. Laid out in a simplified format, the parse
tr ee for that expression would look like Figure 18-2. The numbers repr esent the
visitation order that the Perl run-time system will eventually follow.

6 assign

negate $a4 5

3 add

$b $c1 2

Figur e 18-2. Opcode visitation order of $a = –($b + $c)

Perl isn’t a one-pass compiler as some might imagine. (One-pass compilers are
gr eat at making things easy for the computer and hard for the programmer.) It’s
really a multipass, optimizing compiler consisting of at least three differ ent logical
passes that are interleaved in practice. Passes 1 and 2 run alternately as the com-
piler repeatedly scurries up and down the parse tree during its construction; pass 3
happens whenever a subroutine or file is completely parsed. Here are those
passes:

Pass 1: Bottom-Up Parsing
During this pass, the parse tree is built up by the yacc (1) parser using the
tokens it’s fed from the underlying lexer (which could be considered another
logical pass in its own right). Bottom-up just means that the parser knows
about the leaves of the tree before it knows about its branches and root. It
really does figure things out from bottom to top in Figure 18-2, since we drew
the root at the top, in the idiosyncratic fashion of computer scientists. (And
linguists.)

Compiling Your Code 469

470 Chapter 18: Compiling

As each opcode node is constructed, per-opcode sanity checks verify correct
semantics, such as the correct number and types of arguments used to call
built-in functions. As each subsection of the tree takes shape, the optimizer
considers what transformations it can apply to the entire subtr ee now beneath
it. For instance, once it knows that a list of values is being fed to a function
that takes a specific number of arguments, it can throw away the opcode that
records the number of arguments for functions that take a varying number of
arguments. A more important optimization, known as constant folding, is
described later in this section.

This pass also constructs the node visitation order used later for execution,
which is a really neat trick because the first place to visit is almost never the
top node. The compiler makes a temporary loop of opcodes, with the top
node pointing to the first opcode to visit. When the top-level opcode is incor-
porated into something bigger, that loop of opcodes is broken, only to make a
bigger loop with the new top node. Eventually the loop is broken for good
when the start opcode gets poked into some other structure such as a subrou-
tine descriptor. The subroutine caller can still find that first opcode despite its
being way down at the bottom of the tree, as it is in Figure 18-2. There’s no
need for the interpreter to recurse back down the parse tree to figure out
wher e to start.

Pass 2: Top-Down Optimizer
A person reading a snippet of Perl code (or of English code, for that matter)
cannot determine the context without examining the surrounding lexical ele-
ments. Sometimes you can’t decide what’s really going on until you have more
infor mation. Don’t feel bad, though, because you’re not alone: neither can the
compiler. In this pass, the compiler descends back down the subtree it’s just
built to apply local optimizations, the most notable of which is context propa-
gation. The compiler marks subjacent nodes with the appropriate contexts
(void, scalar, list, refer ence, or lvalue) imposed by the current node. Unwanted
opcodes are nulled out but not deleted, because it’s now too late to recon-
struct the execution order. We’ll rely on the third pass to remove them from
the provisional execution order determined by the first pass.

Pass 3: Peephole Optimizer
Certain units of code have their own storage space in which they keep lexi-
cally scoped variables. (Such a space is called a scratchpad in Perl lingo.)
These units include eval STRINGs, subroutines, and entire files. More impor-
tantly from the standpoint of the optimizer, they each have their own entry
point, which means that while we know the execution order from here on, we

can’t know what happened before, because the construct could have been
called from anywhere. So when one of these units is done being parsed, Perl
runs a peephole optimizer on that code. Unlike the previous two passes,
which walked the branch structure of the parse tree, this pass traverses the
code in linear execution order, since this is basically the last opportunity to do
so before we cut the opcode list off from the parser. Most optimizations were
alr eady per formed in the first two passes, but some can’t be.

Assorted late-term optimizations happen here, including stitching together the
final execution order by skipping over nulled out opcodes, and recognizing
when various opcode juxtapositions can be reduced to something simpler. The
recognition of chained string concatenations is one important optimization,
since you’d really like to avoid copying a string back and forth each time you
add a little bit to the end. This pass doesn’t just optimize; it also does a great
deal of “real” work: trapping barewords, generating warnings on questionable
constructs, checking for code unlikely to be reached, resolving pseudohash
keys, and looking for subroutines called before their prototypes had been
compiled.

Pass 4: Code Generation
This pass is optional; it isn’t used in the normal scheme of things. But if any
of the three code generators—B::Bytecode, B::C, and B::CC—are invoked, the
parse tree is accessed one final time. The code generators emit either serial-
ized Perl bytecodes used to reconstruct the parse tree later or literal C code
repr esenting the state of the compile-time parse tree.

Generation of C code comes in two differ ent flavors. B::C simply reconstructs
the parse tree and runs it using the usual runops() loop that Perl itself uses
during execution. B::CC pr oduces a linearized and optimized C equivalent of
the run-time code path (which resembles a giant jump table) and executes that
instead.

During compilation, Perl optimizes your code in many, many ways. It rearranges
code to make it more efficient at execution time. It deletes code that can never be
reached during execution, like an if (0) block, or the elsifs and the else in an
if (1) block. If you use lexically typed variables declared with my ClassName $var

or our ClassName $var, and the ClassName package was set up with the use fields

pragma, accesses to constant fields from the underlying pseudohash are typo-
checked at compile time and converted into array accesses instead. If you supply
the sort operator with a simple enough comparison routine, such as {$a <=> $b}
or {$b cmp $a}, this is replaced by a call to compiled C code.

Compiling Your Code 471

472 Chapter 18: Compiling

Perl’s most dramatic optimization is probably the way it resolves constant expres-
sions as soon as possible. For example, consider the parse tree shown in
Figur e 18-2. If nodes 1 and 2 had both been literals or constant functions, nodes 1
thr ough 4 would have been replaced by the result of that computation, something
like Figure 18-3.

3 assign

-42 $a1 2

Figur e 18-3. Constant folding

This is called constant folding. Constant folding isn’t limited to simple cases such
as turning 2**10 into 1024 at compile time. It also resolves function calls—both
built-ins and user-declar ed subr outines that meet the criteria from the section
“Inlining Constant Functions” in Chapter 6, Subr outines. Reminiscent of FORTRAN
compilers’ notorious knowledge of their own intrinsic functions, Perl also knows
which of its own built-ins to call during compilation. That’s why if you try to take
the log of 0.0 or the sqrt of a negative constant, you’ll incur a compilation error,
not a run-time error, and the interpreter is never run at all.*

Even arbitrarily complicated expressions are resolved early, sometimes triggering
the deletion of complete blocks such as the one here:

if (2 * sin(1)/cos(1) < 3 && somefn()) { whatever() }

No code is generated for what can never be evaluated. Because the first part is
always false, neither somefn nor whatever can ever be called. (So don’t expect to
goto labels inside that block, because it won’t even exist at run time.) If somefn
wer e an inlinable constant function, then even switching the evaluation order like
this:

if (somefn() && 2 * sin(1)/cos(1) < 3)) { whatever() }

wouldn’t change the outcome, since the entire expr ession still resolves at compile
time. If whatever wer e inlinable, it wouldn’t be called at run time, nor even during
compilation; its value would just be inserted as though it were a literal constant.

* Actually, we’re oversimplifying here. The interpreter does get run, because that’s how the constant
folder is implemented. But it is run immediately at compile time, similar to how BEGIN blocks are
executed.

You would then incur a warning about a “Useless use of a constant in void con-
text”. This might surprise you if you didn’t realize it was a constant. However, if
whatever wer e the last statement evaluated in a function called in a nonvoid con-
text (as determined by the optimizer), you wouldn’t see the warning.

You can see the final result of the constructed parse tree after all optimization
stages with perl -Dx. (The -D switch requir es a special, debugging-enabled build of
Perl). Also see the section on B::Deparse described below.

All in all, the Perl compiler works hard (but not too hard) to optimize code so that,
come run time, overall execution is sped up. It’s about time to get your program
running, so let’s do that now.

Executing Your Code
To the first approximation, Sparc programs only run on Sparc machines, Intel pro-
grams only run on Intel machines, and Perl programs only run on Perl machines.
A Perl machine possesses those attributes that a Perl program would find ideal in a
computer: memory that is automatically allocated and deallocated, fundamental
data types that are dynamic strings, arrays, and hashes, and have no size limits,
and systems that all behave pretty much the same way. The job of the Perl inter-
pr eter is to make whatever computer it happens to be running on appear to be
one of these idealistic Perl machines.

This fictitious machine presents the illusion of a computer specially designed to do
nothing but run Perl programs. Each opcode produced by the compiler is a funda-
mental command in this emulated instruction set. Instead of a hardware program
counter, the interpreter just keeps track of the current opcode to execute. Instead
of a hardware stack pointer, the interpreter has its own virtual stack. This stack is
very important because the Perl virtual machine (which we refuse to call a PVM) is
a stack-based machine. Perl opcodes are inter nally called PP codes (short for
“push-pop codes”) because they manipulate the interpreter’s virtual stack to find
all operands, process temporary values, and store all results.

If you’ve ever programmed in Forth or PostScript, or used an HP scientific calcula-
tor with RPN (“Reverse Polish Notation”) entry, you know how a stack machine
works. Even if you haven’t, the concept is simple: to add 3 and 4, you do things in
the order 3 4 + instead of the more conventional 3 + 4. What this means in terms
of the stack is that you push 3 and then 4 onto the stack, and + then pops both
arguments off the stack, adds them, and pushes 7 back onto the stack, where it
will sit until you do something else with it.

Executing Your Code 473

474 Chapter 18: Compiling

Compar ed with the Perl compiler, the Perl interpreter is a straightforward, almost
boring, program. All it does is step through the compiled opcodes, one at a time,
and dispatch them to the Perl run-time environment, that is, the Perl virtual
machine. It’s just a wad of C code, right?

Actually, it’s not boring at all. A Perl virtual machine keeps track of a great deal of
dynamic context on your behalf so that you don’t have to. Perl maintains quite a
few stacks, which you don’t have to understand, but which we’ll list here anyway
just to impress you:

operand stack
That’s the stack we already talked about.

save stack
Wher e localized values are saved pending restoration. Many internal routines
also localize values without your knowing it.

scope stack
The lightweight dynamic context that controls when the save stack should be
“popped”.

context stack
The heavyweight dynamic context; who called whom to get where you are
now. The caller function traverses this stack. Loop-control functions scan this
stack to find out which loop to control. When you peel back the context
stack, the scope stack gets peeled back appropriately, which restor es all your
local variables from the save stack, even if you left the earlier context by
nefarious methods such as raising an exception and long jmp (3)ing out.

jumpenv stack
The stack of long jmp (3) contexts that allows us to raise exceptions or exit
expeditiously.

retur n stack
Wher e we came from when we entered this subroutine.

mark stack
Wher e the current variadic argument list on the operand stack starts.

recursive lexical pad stacks
Wher e the lexical variables and other “scratch register” storage is kept when
subr outines ar e called recursively.

And of course, there’s the C stack on which all the C variables are stor ed. Perl
actually tries to avoid relying on C’s stack for the storage of saved values, since
long jmp (3) bypasses the proper restoration of such values.

All this is to say that the usual view of an interpreter, a program that interprets
another program, is really woefully inadequate to describe what’s going on here.
Yes, there’s some C code implementing some opcodes, but when we say “inter-
pr eter”, we mean something more than that, in the same way that when we say
“musician”, we mean something more than a set of DNA instructions for turning
notes into sounds. Musicians are real, live organisms and have “state”. So do inter-
pr eters.

Specifically, all this dynamic and lexical context, along with the global symbol
tables, plus the parse trees, plus a thread of execution, is what we call an inter-
pr eter. As a context for execution, an interpreter really starts its existence even
befor e the compiler starts, and can run in rudimentary form even as the compiler
is building up the interpreter’s context. In fact, that’s precisely what’s happening
when the compiler calls into the interpreter to execute BEGIN blocks and such. And
the interpreter can turn around and use the compiler to build itself up further.
Every time you define another subroutine or load another module, the particular
virtual Perl machine we call an interpreter is redefining itself. You can’t really say
that either the compiler or the interpreter is in control, because they’re cooperating
to control the bootstrap process we commonly call “running a Perl script”. It’s like
bootstrapping a child’s brain. Is it the DNA doing it or is it the neurons? A little of
both, we think, with some input from external programmers.

It’s possible to run multiple interpreters in the same process; they may or may not
shar e parse trees, depending on whether they were started by cloning an existing
interpr eter or by building a new interpreter from scratch. It’s also possible to run
multiple threads in a single interpreter, in which case they share not only parse
tr ees but also global symbols—see Chapter 17, Thr eads.

But most Perl programs use only a single Perl interpreter to execute their compiled
code. And while you can run multiple, independent Perl interpreters within one
pr ocess, the current API for this is only accessible from C.* Each individual Perl
interpr eter serves the role of a completely separate process, but doesn’t cost as
much to create as a whole new process does. That’s how Apache’s mod_perl

extension gets such great perfor mance: when you launch a CGI script under
mod_perl, that script has already been compiled into Perl opcodes, eliminating the
need for recompilation — but mor e importantly, eliminating the need to start a new
pr ocess, which is the real bottleneck. Apache initializes a new Perl interpreter in
an existing process and hands that interpreter the previously compiled code to
execute. Of course, there’s much more to it than that—ther e always is. For more
about mod_perl, see Writing Apache Modules with Perl and C (O’Reilly, 1999).

* With one exception, so far: revision 5.6.0 of Perl can do cloned interpreters in support of fork emu-
lation on Microsoft Windows. There may well be a Perl API to “ithreads”, as they’re called, by the
time you read this.

Executing Your Code 475

476 Chapter 18: Compiling

Many other applications such as nvi, vim, and innd can embed Perl interpreters;
we can’t hope to list them all here. There are a number of commercial products
that don’t even advertise that they have embedded Perl engines. They just use it
inter nally because it gets their job done in style.

Compiler Backends
So, if Apache can compile a Perl program now and execute it later, why can’t you?
Apache and other programs that contain embedded Perl interpreters have it
easy — they never store the parse tree to an external file. If you’re content with
that approach, and don’t mind using the C API to get at it, you can do the same
thing. See the section “Embedding Perl” in Chapter 21, Inter nals and Externals, to
lear n how to access Perl from an enclosing C framework.

If you don’t want to go that route, or have other needs, then there are a few
options available. Instead of feeding the opcode output from the Perl compiler
immediately into a Perl interpreter, you can invoke any of several alternative back-
ends instead. These backends can serialize and store the compiled opcodes to an
exter nal file or even convert them into a couple differ ent flavors of C code.

Please be aware that the code generators are all extremely experimental utilities
that shouldn’t be expected to work in a production environment. In fact, they
shouldn’t even be expected to work in a nonproduction environment except
maybe once in a blue moon. Now that we’ve set your expectations low enough
that any success at all will necessarily surpass them, it’s safe to tell you how the
backends work.

Some of the backend modules are code generators, like B::Bytecode, B::C, and
B::CC. Others are really code-analysis and debugging tools, like B::Deparse,
B::Lint, and B::Xref. Beyond those backends, the standard release includes sev-
eral other low-level modules of potential interest to would-be authors of Perl
code-development tools. Other backend modules can be found on CPAN, includ-
ing (as of this writing) B::Fathom, B::Graph, B::JVM::Jasmin, and B::Size.

When you’re using the Perl compiler for anything other than feeding the inter-
pr eter, the O module (that is, using the O.pm file) stands between the compiler and
assorted backend modules. You don’t call the backends directly; instead, you call
the middle end, which in turn calls the designated backend. So, if you had a mod-
ule called B::Backend, you would invoke it on a given script this way:

% perl -MO=Backend SCRIPTNAME

Some backends take options, specified as:

% perl -MO=Backend,OPTS SCRIPTNAME

Some backends already have their own frontends to invoke their middle ends for
you so you don’t have to remember their M.O. In particular, perlcc (1) invokes that
code generator, which can be cumbersome to fire up.

Code Generator s
The three current backends that convert Perl opcodes into some other format are
all emphatically experimental. (Yes, we said this before, but we don’t want you to
forget.) Even when they happen to produce output that runs correctly, the result-
ing programs may take more disk space, more memory, and more CPU time than
than they would ordinarily. This is an area of ongoing research and development.
Things will get better.

The Bytecode Generator
The B::Bytecode module writes the parse tree’s opcodes out in a platform-inde-
pendent encoding. You can take a Perl script compiled down to bytecodes and
copy that to any other machine with Perl installed on it.

The standard but currently experimental perlcc (1) command knows how to con-
vert Perl source code into a byte-compiled Perl program. All you have to do is:

% perlcc -b -o pbyscript srcscript

And now you should be able to directly “execute” the resulting pbyscript. The start
of that file looks somewhat like this:

#!/usr/bin/perl
use ByteLoader 0.03;
ˆCˆ@ˆEˆAˆCˆ@ˆ@ˆ@ˆAˆFˆ@ˆCˆ@ˆ@ˆ@ˆBˆFˆ@ˆCˆ@ˆ@ˆ@ˆCˆFˆ@ˆCˆ@ˆ@ˆ@
Bˆ@ˆ@ˆ@ˆH9ˆA8M-ˆ?M-ˆ?M-ˆ?M-ˆ?7M-ˆ?M-ˆ?M-ˆ?M-ˆ?6ˆ@ˆ@ˆ@ˆA6ˆ@
ˆGˆDˆDˆ@ˆ@ˆ@ˆKRˆ@ˆ@ˆ@ˆHSˆ@ˆ@ˆ@ˆHVˆ@M-2W<ˆFUˆ@ˆ@ˆ@ˆ@XˆY@Zˆ@
...

Ther e you find a small script header followed by purely binary data. This may
seem like deep magic, but its dweomer, er, dwimmer is at most a minor one. The
ByteLoader module uses a technique called a sour ce filter to alter the source code
befor e Perl gets a chance to see it. A source filter is a kind of prepr ocessor that
applies to everything below it in the current file. Instead of being limited to sim-
plistic transformations the way macro processors like cpp (1) and m4 (1) are, here
ther e ar e no constraints. Source filters have been used to augment Perl’s syntax, to
compr ess or encrypt source code, even to write Perl programs in Latin. E perlibus
unicode; cogito, ergo substr; carp dbm, et al. Er, caveat scriptor.

Code Generator s 477

478 Chapter 18: Compiling

The ByteLoader module is a source filter that knows how to disassemble the serial-
ized opcodes produced by B::Bytecode to reconstruct the original parse tree. The
reconstituted Perl code is spliced into the current parse tree without using the
compiler. When the interpreter hits those opcodes, it just executes them as though
they’d been there waiting for it all along.

The C Code Generator s
The remaining code generators, B::C and B::CC, both produce C code instead of
serialized Perl opcodes. The code they generate is far from readable, and if you try
to read it you’ll just go blind. It’s not something you can use to plug little trans-
lated Perl-to-C bits into a larger C program. For that, see Chapter 21.

The B::C module just writes out the C data structures needed to recr eate the entire
Perl run-time environment. You get a dedicated interpreter with all the compiler-
built data structures pre-initialized. In some senses, the code generated is like what
B::Bytecode pr oduces. Both are a straight translation of the opcode trees that the
compiler built, but where B::Bytecode lays them out in symbolic form to be recr e-
ated later and plugged into a running Perl interpreter, B::C lays those opcodes
down in C. When you compile this C code with your C compiler and link in the
Perl library, the resulting program won’t need a Perl interpreter installed on the
target system. (It might need some shared libraries, though, if you didn’t link
everything statically.) However, this program isn’t really any differ ent than the reg-
ular Perl interpreter that runs your script. It’s just precompiled into a standalone
executable image.

The B::CC module, however, tries to do more than that. The beginning of the C
source file it generates looks pretty much like what B::C pr oduced,* but eventu-
ally, any similarity ends. In the B::C code, you have a big opcode table in C that’s
manipulated just as the interpreter would do on its own, whereas in the C code
generated by B::CC is laid out in the order corresponding to the run-time flow of
your program. It even has a C function corresponding to each function in your
pr ogram. Some amount of optimization based on variable types is done; a few
benchmarks can run twice as fast as in the standard interpreter. This is the most
ambitious of the current code generators, the one that holds the greatest promise
for the future. By no coincidence, it is also the least stable of the three.

Computer science students looking for graduate thesis projects need look no fur-
ther. Ther e ar e plenty of diamonds in the rough waiting to be polished off her e.

* But then, so does everything once you’ve gone blind. Didn’t we warn you not to peek?

Code Development Tools
The O module has many interesting Modi Operandi beyond feeding the exasperat-
ingly experimental code generators. By providing relatively painless access to the
Perl compiler’s output, this module makes it easy to build other tools that need to
know everything about a Perl program.

The B::Lint module is named after lint (1), the C program verifier. It inspects pro-
grams for questionable constructs that often trip up beginners but don’t normally
trigger warnings. Call the module directly:

% perl -MO=Lint,all myprog

Only a few checks are curr ently defined, such as using an array in an implicit
scalar context, relying on default variables, and accessing another package’s (nom-
inally private) identifiers that start with _. See B::Lint (3) for details.

The B::Xref module generates cross-r efer ence listings of the declaration and use
of all variables (both global and lexically scoped), subroutines, and formats in a
pr ogram, br oken down by file and subroutine. Call the module this way:

% perl -MO=Xref myprog > myprof.pxref

For instance, here’s a partial report:

Subroutine parse_argv
Package (lexical)
$on i113, 114
$opt i113, 114
%getopt_cfg i107, 113
@cfg_args i112, 114, 116, 116

Package Getopt::Long
$ignorecase 101
&GetOptions &124

Package main
$Options 123, 124, 141, 150, 165, 169
%$Options 141, 150, 165, 169
&check_read &167
@ARGV 121, 157, 157, 162, 166, 166

This shows that the parse_argv subr outine had four lexical variables of its own; it
also accessed global identifiers from both the main package and from
Getopt::Long. The numbers are the lines where that item was used: a leading i

indicates that the item was first introduced at the following line number, and a
leading & means a subroutine was called there. Derefer ences ar e listed separately,
which is why both $Options and %$Options ar e shown.

Code Development Tools 479

480 Chapter 18: Compiling

The B::Deparse is a pretty printer that can demystify Perl code and help you
understand what transformations the optimizer has taken with your code. For
example, this shows what defaults Perl uses for various constructs:

% perl -MO=Deparse -ne ’for (1 .. 10) { print if -t }’
LINE: while (defined($_ = <ARGV>)) {

foreach $_ (1 .. 10) {
print $_ if -t STDIN;

}
}

The -p switch adds parentheses so you can see Perl’s idea of precedence:

% perl -MO=Deparse,-p -e ’print $a ** 3 + sqrt(2) / 10 ** -2 ** $c’
print((($a ** 3) + (1.4142135623731 / (10 ** (-(2 ** $c))))));

You can use -q to see what primitives interpolated strings are compiled into:

% perl -MO=Deparse,-q -e ’"A $name and some @ARGV\n"’
’A ’ . $name . ’ and some ’ . join($", @ARGV) . "\n";

And this shows how Perl really compiles a three-part for loop into a while loop:

% perl -MO=Deparse -e ’for ($i=0;$i<10;$i++) { $x++ }’
$i = 0;
while ($i < 10) {

++$x;
}
continue {

++$i
}

You could even call B::Deparse on a Perl bytecode file produced by perlcc -b, and
have it decompile that binary file for you. Serialized Perl opcodes may be a tad
tough to read, but strong encryption they are not.

Avant-Garde Compiler, Retro Interpreter
Ther e’s a right time to think about everything; sometimes that time is beforehand,
and sometimes it’s after. Sometimes it’s somewhere in the middle. Perl doesn’t pre-
sume to know when it’s the right time to think, so it gives the programmer a num-
ber of options for telling it when to think. Other times it knows that some sort of
thinking is necessary but doesn’t have any idea what it ought to think, so it needs
ways of asking your program. Your program answers these kinds of questions by
defining subroutines with names appropriate to what Perl is trying to find out.

Not only can the compiler call into the interpreter when it wants to be forward
thinking, but the interpreter can also call back to the compiler when it wants to

revise history. Your program can use several operators to call back into the com-
piler. Like the compiler, the interpreter can also call into named subroutines when
it wants to find things out. Because of all this give and take between the compiler,
the interpreter, and your program, you need to be aware of what things happen
when. First we’ll talk about when these named subroutines are trigger ed.

In Chapter 10, Packages, we saw how a package’s AUTOLOAD subr outine is triggered
when an undefined function in that package is called. In Chapter 12, Objects, we
met the DESTROY method which is invoked when an object’s memory is about to be
automatically reclaimed by Perl. And in Chapter 14, Tied Variables, we encoun-
ter ed the many functions implicitly called when a tied variable is accessed.

These subroutines all follow the convention that, if a subroutine is triggered auto-
matically by either the compiler or the interpreter, we write its name in uppercase.
Associated with the differ ent stages of your program’s lifetime are four other such
subr outines, named BEGIN, CHECK, INIT, and END. The sub keyword is optional
befor e their declarations. Perhaps they are better called “blocks”, because they’re
in some ways more like named blocks than real subroutines.

For instance, unlike regular subroutines, there’s no harm in declaring these blocks
multiple times, since Perl keeps track of when to call them, so you never have to
call them by name. (They are also unlike regular subroutines in that shift and pop

act as though you were in the main program, and so they act on @ARGV by default,
not @_.)

These four block types run in this order:

BEGIN

Runs ASAP (as soon as parsed) whenever encountered during compilation,
befor e compiling the rest of the file.

CHECK

Runs when compilation is complete, but before the program starts. (CHECK can
mean “checkpoint” or “double-check” or even just “stop”.)

INIT

Runs at the beginning of execution right before the main flow of your pro-
gram starts.

END

Runs at the end of execution right after the program finishes.

If you declare mor e than one of these by the same name, even in separate mod-
ules, the BEGINs all run before any CHECKs, which all run before any INITs, which
all run before any ENDs—which all run dead last, after your main program has
finished. Multiple BEGINs and INITs run in declaration order (FIFO), and the CHECKs
and ENDs run in inverse declaration order (LIFO).

Avant-Garde Compiler, Retro Interpreter 481

482 Chapter 18: Compiling

This is probably easiest to see in a demo:

#!/usr/bin/perl -l
print "start main running here";
die "main now dying here\n";
die "XXX: not reached\n";
END { print "1st END: done running" }
CHECK { print "1st CHECK: done compiling" }
INIT { print "1st INIT: started running" }
END { print "2nd END: done running" }
BEGIN { print "1st BEGIN: still compiling" }
INIT { print "2nd INIT: started running" }
BEGIN { print "2nd BEGIN: still compiling" }
CHECK { print "2nd CHECK: done compiling" }
END { print "3rd END: done running" }

When run, that demo program produces this output:

1st BEGIN: still compiling
2nd BEGIN: still compiling
2nd CHECK: done compiling
1st CHECK: done compiling
1st INIT: started running
2nd INIT: started running
start main running here
main now dying here
3rd END: done running
2nd END: done running
1st END: done running

Because a BEGIN block executes immediately, it can pull in subroutine declara-
tions, definitions, and importations before the rest of the file is even compiled.
These can alter how the compiler parses the rest of the current file, particularly if
you import subroutine definitions. At the very least, declaring a subroutine lets it
be used as a list operator, making parentheses optional. If the imported subroutine
is declared with a prototype, calls to it can be parsed like built-ins and can even
override built-ins of the same name in order to give them differ ent semantics. The
use declaration is just a BEGIN block with an attitude.

END blocks, by contrast, are executed as late as possible: when your program exits
the Perl interpreter, even if as a result of an untrapped die or other fatal exception.
Ther e ar e two situations in which an END block (or a DESTROY method) is skipped.
It isn’t run if, instead of exiting, the current process just morphs itself from one
pr ogram to another via exec. A process blown out of the water by an uncaught
signal also skips its END routines. (See the use sigtrap pragma described in
Chapter 31, Pragmatic Modules, for an easy way to convert catchable signals into
exceptions. For general information on signal handling, see “Signals” in
Chapter 16, Interpr ocess Communication.) To avoid all END pr ocessing, you can

call POSIX::_exit, say kill -9, $$, or just exec any innocuous program, such as
/bin/true on Unix systems.

Inside an END block, $? contains the status the program is going to exit with. You
can modify $? fr om within the END block to change the exit value of the program.
Bewar e of changing $? accidentally by running another program with system or
backticks.

If you have several END blocks within a file, they execute in reverse order of their
definition. That is, the last END block defined is the first one executed when your
pr ogram finishes. This reversal enables related BEGIN and END blocks to nest the
way you’d expect, if you pair them up. For example, if the main program and a
module it loads both have their own paired BEGIN and END subr outines, like so:

BEGIN { print "main begun" }
END { print "main ended" }
use Module;

and in that module, these declarations:

BEGIN { print "module begun" }
END { print "module ended" }

then the main program knows that its BEGIN will always happen first, and its END

will always happen last. (Yes, BEGIN is really a compile-time block, but similar
arguments apply to paired INIT and END blocks at run time.) This principle is
recursively true for any file that includes another when both have declarations like
these. This nesting property makes these blocks work well as package construc-
tors and destructors. Each module can have its own set-up and tear-down func-
tions that Perl will call automatically. This way the programmer doesn’t have to
remember that if a particular library is used, what special initialization or clean-up
code ought to be invoked, and when. The module’s declarations assure these
events.

If you think of an eval STRING as a call back fr om the interpreter to the compiler,
then you might think of a BEGIN as a call forwar d fr om the compiler into the inter-
pr eter. Both temporarily put the current activity on hold and switch modes of
operation. When we say that a BEGIN block is executed as early as possible, we
mean it’s executed just as soon as it is completely defined, even before the rest of
the containing file is parsed. BEGIN blocks are ther efor e executed during compile
time, never during run time. Once a BEGIN block has run, it is immediately unde-
fined and any code it used is retur ned to Perl’s memory pool. You couldn’t call a
BEGIN block as a subroutine even if you tried, because by the time it’s there, it’s
alr eady gone.

Avant-Garde Compiler, Retro Interpreter 483

484 Chapter 18: Compiling

Similar to BEGIN blocks, INIT blocks are run just before the Perl run time begins
execution, in “first in, first out” (FIFO) order. For example, the code generators
documented in perlcc make use of INIT blocks to initialize and resolve pointers to
XSUBs. INIT blocks are really just like BEGIN blocks, except they let the program-
mer distinguish construction that must happen at compile phase from construction
that must happen at run phase. When you’re running a script directly, that’s not
terribly important because the compiler gets invoked every time anyway; but
when compilation is separate from execution, the distinction can be crucial. The
compiler may only be invoked once, and the resulting executable may be invoked
many times.

Similar to END blocks, CHECK blocks are run just after the Perl compile phase ends
but before run phase begins, in LIFO order. CHECK blocks are useful for “winding
down” the compiler just as END blocks are useful for winding down your program.
In particular, the backends all use CHECK blocks as the hook from which to invoke
their respective code generators. All they need to do is put a CHECK block into their
own module, and it will run at the right time, so you don’t have to install a CHECK

into your program. For this reason, you’ll rarely write a CHECK block yourself,
unless you’re writing such a module.

Putting it all together, Table 18-1 lists various constructs with details on when they
compile and when they run the code repr esented by “...”.

Table 18-1. What Happens When

Block Compiles Tr aps Runs Tr aps Call
or Dur ing Compile Dur ing Run Tr igger
Expression Phase Er ror s Phase Er ror s Policy

use ... C No C No Now

no ... C No C No Now

BEGIN {...} C No C No Now

CHECK {...} C No C No Late

INIT {...} C No R No Early

END {...} C No R No Late

eval {...} C No R Yes Inline

eval "..." R Yes R Yes Inline

foo(...) C No R No Inline

sub foo {...} C No R No Call anytime

eval "sub {...}" R Yes R No Call later

s/pat/.../e C No R No Inline

s/pat/"..."/ee R Yes R Yes Inline

Now that you know the score, we hope you’ll be able to compose and perfor m
your Perl pieces with greater confidence.

Avant-Garde Compiler, Retro Interpreter 485

19
The Command-Line Interface

This chapter is about aiming Perl in the right direction before you fire it off. Ther e
ar e various ways to aim Perl, but the two primary ways are thr ough switches on
the command line and through environment variables. Switches are the more
immediate and precise way to aim a particular command. Environment variables
ar e mor e often used to set general policy.

Command Processing
It is fortunate that Perl grew up in the Unix world, because that means its invoca-
tion syntax works pretty well under the command interpreters of other operating
systems, too. Most command interpreters know how to deal with a list of words as
arguments and don’t care if an argument starts with a minus sign. There are, of
course, some sticky spots where you’ll get fouled up if you move from one system
to another. You can’t use single quotes under MS-DOS as you do under Unix, for
instance. And on systems like VMS, some wrapper code has to jump through
hoops to emulate Unix I/O redir ection. Wildcard interpretation is a wildcard. Once
you get past those issues, however, Perl treats its switches and arguments much
the same on any operating system.

Even when you don’t have a command interpreter per se, it’s easy to execute a
Perl program from another program written in any language. Not only can the call-
ing program pass arguments in the ordinary way, it can also pass information via
envir onment variables and, if your operating system supports them, inherited file
descriptors (see “Passing Filehandles” in Chapter 16, Interpr ocess Communication.
Even exotic argument-passing mechanisms can easily be encapsulated in a mod-
ule, then brought into your Perl program via a simple use dir ective.

486

Perl parses command-line switches in the standard fashion.* That is, it expects any
switches (words beginning with a minus) to come first on the command line. After
that usually comes the name of the script, followed by any additional arguments to
be passed into the script. Some of these additional arguments may themselves
look like switches, but if so, they must be processed by the script, because Perl
quits parsing switches as soon as it sees a nonswitch, or the special “--” switch
that says, “I am the last switch.”

Perl gives you some flexibility in where you place the source code for your pro-
gram. For small, quick-and-dirty jobs, you can program Perl entirely from the com-
mand line. For larger, mor e per manent jobs, you can supply a Perl script as a
separate file. Perl looks for a script to compile and run in any one of these three
ways:

1. Specified line by line via -e switches on the command line. For example:

% perl -e "print ’Hello, World.’"
Hello, World.

2. Contained in the file specified by the first filename on the command line. Sys-
tems supporting the #! notation on the first line of an executable script invoke
interpr eters this way on your behalf.

3. Passed in implicitly via standard input. This method works only when there
ar e no filename arguments; to pass arguments to a standard-input script you
must use method 2, explicitly specifying a “-” for the script name. For
example:

% echo "print qq(Hello, @ARGV.)" | perl - World
Hello, World.

With methods 2 and 3, Perl starts parsing the input file from the beginning—
unless you’ve specified a -x switch, in which case it scans for the first line starting
with #! and containing the word “perl”, and starts there instead. This is useful for
running a script embedded in a larger message. If so, you might indicate the end
of the script using the __END_ _ token.

Whether or not you use -x, the #! line is always examined for switches when the
line is parsed. That way, if you’re on a platfor m that allows only one argument
with the #! line, or worse, doesn’t even recognize the #! line as special, you can
still get consistent switch behavior regardless of how Perl was invoked, even if -x
was used to find the beginning of the script.

Warning: because older versions of Unix silently chop off ker nel interpr etation of
the #! line after 32 characters, some switches may end up getting to your program

* Pr esuming you agree that Unix is both standard and fashionable.

Command Processing 487

488 Chapter 19: The Command-Line Interface

intact, and others not; you could even get a “-” without its letter, if you’r e not
car eful. You probably want to make sure that all your switches fall either before or
after that 32-character boundary. Most switches don’t care whether they’re pro-
cessed redundantly, but getting a “-” instead of a complete switch would cause
Perl to try to read its source code from the standard input instead of from your
script. And a partial -I switch could also cause odd results. However, some
switches do care if they are processed twice, like combinations of -l and -0.
Either put all the switches after the 32-character boundary (if applicable), or
replace the use of -0DIGITS with BEGIN{ $/ = "\0DIGITS"; }. Of course, if you’re
not on a Unix system, you’re guaranteed not to have this particular problem.

Parsing of #! switches starts from where “perl” is first mentioned in the line. The
sequences “-*” and “- ” are specifically ignored for the benefit of emacs users, so
that, if you’re so inclined, you can say:

#!/bin/sh -- # -*- perl -*- -p
eval ’exec perl -S $0 ${1+"$@"}’

if 0;

and Perl will see only the -p switch. The fancy “-*- perl -*-” gizmo tells emacs
to start up in Perl mode; you don’t need it if you don’t use emacs. The -S mess is
explained later under the description of that switch.

A similar trick involves the env (1) program, if you have it:

#!/usr/bin/env perl

The previous examples use a relative path to the Perl interpreter, getting whatever
version is first in the user’s path. If you want a specific version of Perl, say,
perl5.6.1, place it directly in the #! line’s path, whether with the env pr ogram,
with the -S mess, or with a regular #! pr ocessing.

If the #! line does not contain the word “perl”, the program named after the #! is
executed instead of the Perl interpreter. For example, suppose you have an ordi-
nary Bourne shell script out there that says:

#!/bin/sh
echo "I am a shell script"

If you feed that file to Perl, then Perl will run /bin/sh for you. This is slightly
bizarr e, but it helps people on machines that don’t recognize #!, because — by set-
ting their SHELL envir onment variable — they can tell a program (such as a mailer)
that their shell is /usr/bin/perl, and Perl will then dispatch the program to the cor-
rect interpreter for them, even though their kernel is too stupid to do so.

But back to Perl scripts that are really Perl scripts. After locating your script, Perl
compiles the entire program into an internal form (see Chapter 18, Compiling). If
any compilation errors arise, execution does not even begin. (This is unlike the
typical shell script or command file, which might run part-way through before
finding a syntax error.) If the script is syntactically correct, it is executed. If the
script runs off the end without hitting an exit or die operator, an implicit exit(0)
is supplied by Perl to indicate successful completion to your caller. (This is unlike
the typical C program, where you’r e likely to get a random exit status if your pro-
gram just terminates in the normal way.)

#! and Quoting on Non-Unix Systems
Unix’s #! technique can be simulated on other systems:

Macintosh
A Perl program on a Macintosh will have the appropriate Creator and Type, so
that double-clicking them will invoke the Perl application.

MS-DOS
Cr eate a batch file to run your program, and codify it in ALTERNATIVE_SHEBANG.
See the dosish.h file in the top level of the Perl source distribution for more
infor mation about this.

OS/2
Put this line:

extproc perl -S -your_switches

as the first line in *.cmd file (-S works around a bug in cmd.exe ’s “extproc”
handling).

VMS
Put these lines:

% perl -mysw ’f$env("procedure")’ ’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’ ’p8’ !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where -mysw ar e any command-line switches you
want to pass to Perl. You can now invoke the program directly by typing perl

program, as a DCL procedur e by saying @program, or implicitly via DCL$PATH by
using just the name of the program. This incantation is a bit much to remem-
ber, but Perl will display it for you if you type in perl "-V:startperl". If you
can’t remember that—well, that’s why you bought this book.

Command Processing 489

490 Chapter 19: The Command-Line Interface

Win??
When using the ActiveState distribution of Perl under some variant of
Micr osoft’s Windows suite of operating systems (that is, Win95, Win98,
Win00,* WinNT, but not Win3.1), the installation procedur e for Perl modifies
the Windows Registry to associate the .pl extension with the Perl interpreter.

If you install another port of Perl, including the one in the Win32 directory of
the Perl distribution, then you’ll have to modify the Windows Registry your-
self.

Note that using a .pl extension means you can no longer tell the differ ence
between an executable Perl program and a “perl library” file. You could use
.plx for a Perl program instead to avoid this. This is much less of an issue
these days, since most Perl modules are now in .pm files.

Command interpreters on non-Unix systems often have extraordinarily differ ent
ideas about quoting than Unix shells have. You’ll need to learn the special charac-
ters in your command interpreter (*, \, and " ar e common) and how to protect
whitespace and these special characters to run one-liners via the -e switch. You
might also have to change a single % to a %%, or otherwise escape it, if that’s a spe-
cial character for your shell.

On some systems, you may have to change single quotes to double quotes. But
don’t do that on Unix or Plan9 systems, or anything running a Unix-style shell,
such as systems from the MKS Toolkit or from the Cygwin package produced by
the Cygnus folks, now at Redhat. Microsoft’s new Unix emulator called Interix is
also starting to look, ahem, interixing.

For example, on Unix and Mac OS X, use:

% perl -e ’print "Hello world\n"’

On Macintosh (pre Mac OS X), use:

print "Hello world\n"

then run “Myscript” or Shift-Command-R.

On VMS, use:

$ perl -e "print ""Hello world\n"""

or again with qq//:

$ perl -e "print qq(Hello world\n)"

* Er, pardon the technical difficulties . . .

And on MS-DOS et al., use:

A:> perl -e "print \"Hello world\n\""

or use qq// to pick your own quotes:

A:> perl -e "print qq(Hello world\n)"

The problem is that neither of those is reliable: it depends on the command inter-
pr eter you’r e using there. If 4DOS wer e the command shell, this would probably
work better:

perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

The CMD.EXE pr ogram seen on Windows NT seems to have slipped a lot of stan-
dard Unix shell functionality in when nobody was looking, but just try to find doc-
umentation for its quoting rules.

On the Macintosh,* all this depends on which environment you are using. The
MacPerl shell, or MPW, is much like Unix shells in its support for several quoting
variants, except that it makes free use of the Macintosh’s non-ASCII characters as
contr ol characters.

Ther e is no general solution to all of this. It’s just a mess. If you aren’t on a Unix
system but want to do command-line things, your best bet is to acquire a better
command interpreter than the one your vendor supplied you, which shouldn’t be
too hard.

Or just write it all in Perl, and forget the one-liners.

Location of Perl
Although this may seem obvious, Perl is useful only when users can easily find it.
When possible, it’s good for both /usr/bin/perl and /usr/local/bin/perl to be sym-
links to the actual binary. If that can’t be done, system administrators are str ongly
encouraged to put Perl and its accompanying utilities into a directory typically
found along a user’s standard PATH, or in some other obvious and convenient
place.

In this book, we use the standard #!/usr/bin/perl notation on the first line of the
pr ogram to mean whatever particular mechanism works on your system. If you
car e about running a specific version of Perl, use a specific path:

#!/usr/local/bin/perl5.6.0

* At least, prior to release of Mac OS X, which, happily enough, is a BSD-derived system.

Command Processing 491

492 Chapter 19: The Command-Line Interface

If you just want to be running at least some version number, but don’t mind
higher ones, place a statement like this near the top of your program:

use v5.6.0;

(Note: earlier versions of Perl use numbers like 5.005 or 5.004_05. Nowadays we
would think of those as 5.5.0 and 5.4.5, but versions of Perl older than 5.6.0 won’t
understand that notation.)

Switches
A single-character command-line switch without its own argument may always be
combined (bundled) with a switch following it.

#!/usr/bin/perl -spi.bak # same as -s -p -i.bak

Switches are also known as options or flags. Whatever you call them, here are the
ones Perl recognizes:

-- Terminates switch processing, even if the next argument starts with a minus. It
has no other effect.

-0OCTNUM
-0 Specifies the record separator ($/) as an octal number. If OCTNUM is not present,

the NUL character (that’s ASCII character 0, Perl’s "\0") is the separator. Other
switches may precede or follow the octal number. For example, if you have a
version of find (1) that can print filenames terminated by the null character,
you can say this:

% find . -name ’*.bak’ -print0 | perl -n0e unlink

The special value 00 makes Perl read files in paragraph mode, equivalent to
setting the $/ variable to "". The value 0777 makes Perl slurp in whole files at
once. This is equivalent to undefining the $/ variable. We use 0777 since there
is no ASCII character with that value. (Unfortunately, there is a Unicode char-
acter with that value, \N{LATIN SMALL LETTER O WITH STROKE AND ACUTE}, but
something tells us you won’t be delimiting your records with that.)

-a Turns on autosplit mode, but only when used with -n or -p. An implicit split
command to the @F array is done as the first thing inside the implicit while
loop produced by the -n and -p switches. So:

% perl -ane ’print pop(@F), "\n";’

is equivalent to:

LINE: while (<>) {
@F = split(’ ’);
print pop(@F), "\n";

}

A dif ferent field separator may be specified by passing a regular expression for
split to the -F switch. For example, these two calls are equivalent:

% awk -F: ’$7 && $7 !˜ /ˆ\/bin/’ /etc/passwd
% perl -F: -lane ’print if $F[6] && $F[6] !˜ m(ˆ/bin)’ /etc/passwd

-c Causes Perl to check the syntax of the script and then exit without executing
what it’s just compiled. Technically, it does a bit more than that: it will execute
any BEGIN or CHECK blocks and any use dir ectives, since these are consider ed
to occur before the execution of your program. It no longer executes any INIT

or END blocks, however. The older but rarely useful behavior may still be
obtained by putting:

BEGIN { $ˆC = 0; exit; }

at the end of your main script.

-C Enables Perl to use the native wide-character APIs on the target system, if sup-
ported (as of version 5.6.0 it works on Microsoft platforms only). The special
variable ${ˆWIDE_SYSTEM_CALLS} reflects the state of this switch.

-d Runs the script under the Perl debugger. See Chapter 20, The Perl Debugger.

-d:MODULE
Runs the script under the control of a debugging or tracing module installed in
the Perl library as Devel::MODULE. For example, -d:DProf executes the script
using the Devel::DProf pr ofiler. See also the debugging section in Chapter 20.

-DLETTERS
-DNUMBER

Sets debugging flags. (This only works if debugging is compiled into your ver-
sion of Perl as described below.) You may specify either a NUMBER that is the
sum of the bits you want, or a list of LETTERS. To see how it executes your
script, for instance, use -D14 or -Dslt. Another useful value is -D1024 or -Dx,
which lists your compiled syntax tree. And -D512 or -Dr displays compiled
regular expressions. The numeric value is available internally as the special
variable $ˆD. Table 19-1 lists the assigned bit values.

Table 19-1. -D Options

Bit Letter Meaning

1 p Tokenizing and parsing

2 s Stack snapshots

4 l Label stack processing

8 t Trace execution

16 o Method and overloading resolution

32 c String/numeric conversions

Command Processing 493

494 Chapter 19: The Command-Line Interface

Table 19-1. -D Options (continued)

Bit Letter Meaning

64 P Print prepr ocessor command for -P

128 m Memory allocation

256 f For mat pr ocessing

512 r Regex parsing and execution

1024 x Syntax tree dump

2048 u Tainting checks

4096 L Memory leaks (needs -DLEAKTEST when compiling Perl)

8192 H Hash dump—usurps values()

16384 X Scratchpad allocation

32768 D Cleaning up

65536 S Thr ead synchr onization

All these flags requir e a Perl executable that was specially built for debugging.
However, because this is not the default, you won’t be able to use the -D
switch at all unless you or your sysadmin built this special debugging version
of Perl. See the INSTALL file in the Perl source directory for details, but the
short story is that you need to pass -DDEBUGGING to your C compiler when
compiling Perl itself. This flag is automatically set if you include the -g option
when Configur e asks you about optimizer and debugger flags.

If you’re just trying to get a printout of each line of Perl code as it executes
(the way that sh -x pr ovides for shell scripts), you can’t use Perl’s -D switch.
Instead do this:

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS program)

See Chapter 20 for details and variations.

-e PERLCODE

May be used to enter one or more lines of script. If -e is used, Perl will not
look for the program’s filename in the argument list. The PERLCODE argument
is treated as if it ended with a newline, so multiple -e commands may be
given to build up a multiline program. (Make sur e to use semicolons where
you would in a normal program stored in a file.) Just because -e supplies a
newline on each argument doesn’t imply that you must use multiple -e
switches; if your shell supports multiline quoting like sh, ksh, or bash, you
may pass a multiline script as one -e argument:

$ perl -e ’print "Howdy, ";
print "@ARGV!\n";’ world

Howdy, world!

With csh it’s probably better to use multiple -e switches:

% perl -e ’print "Howdy, ";’ \
-e ’print "@ARGV!\n";’ world

Howdy, world!

Both implicit and explicit newlines count in the line numbering, so the second
print is on line 2 of the -e script in either case.

-FPATTERN
Specifies the pattern to split on when autosplitting via the -a switch (has no
ef fect otherwise). The pattern may be surrounded by slashes (//), double
quotes (""), or single quotes (’’). Otherwise, it will be automatically put in
single quotes. Remember that to pass quotes through a shell, you’ll have to
quote your quotes, and how you can do that depends on the shell.

-h Prints a summary of Perl’s command-line options.

-iEXTENSION
-i Specifies that files processed by the <> construct are to be edited in place. It

does this by renaming the input file, opening the output file by the original
name, and selecting that output file as the default for calls to print, printf,
and write.*

The EXTENSION is used to modify the name of the old file to make a backup
copy. If no EXTENSION is supplied, no backup is made and the current file is
overwritten. If the EXTENSION doesn’t contain a *, then that string is appended
to the end of the current filename. If the EXTENSION does contain one or more
* characters, then each * is replaced by the filename currently being pro-
cessed. In Perl terms, you could think of this as:

($backup = $extension) =˜ s/*/$file_name/g;

This allows you to use a prefix for the backup file, instead of—or even in
addition to—a suf fix:

% perl -pi’orig_*’ -e ’s/foo/bar/’ xyx # backup to ’orig_xyx’

You can even put backup copies of the original files into another directory
(pr ovided that the directory already exists):

% perl -pi’old/*.orig’ -e ’s/foo/bar/’ xyx # backup to ’old/xyx.orig’

* Technically, this isn’t really “in place”. It’s the same filename, but a differ ent physical file.

Command Processing 495

496 Chapter 19: The Command-Line Interface

These pairs of one-liners are equivalent:

% perl -pi -e ’s/foo/bar/’ xyx # overwrite current file
% perl -pi’*’ -e ’s/foo/bar/’ xyx # overwrite current file

% perl -pi’.orig’ -e ’s/foo/bar/’ xyx # backup to ’xyx.orig’
% perl -pi’*.orig’ -e ’s/foo/bar/’ xyx # backup to ’xyx.orig’

Fr om the shell, saying:

% perl -p -i.orig -e "s/foo/bar/;"

is the same as using the program:

#!/usr/bin/perl -pi.orig
s/foo/bar/;

which is convenient shorthand for the remarkably longer:

#!/usr/bin/perl
$extension = ’.orig’;
LINE: while (<>) {

if ($ARGV ne $oldargv) {
if ($extension !˜ /*/) {

$backup = $ARGV . $extension;
}
else {

($backup = $extension) =˜ s/*/$ARGV/g;
}
unless (rename($ARGV, $backup)) {

warn "cannot rename $ARGV to $backup: $!\n";
close ARGV;
next;

}
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;

}
s/foo/bar/;

}
continue {

print; # this prints to original filename
}
select(STDOUT);

This long code is virtually identical to the simple one-liner with the -i switch,
except that the -i for m doesn’t need to compare $ARGV to $oldargv to know
when the filename has changed. It does, however, use ARGVOUT for the
selected filehandle and restor e the old STDOUT as the default output filehandle
after the loop. Like the code above, Perl creates the backup file irrespective of
whether any output has truly changed. See the description of the eof function

for examples of how to use use eof without parentheses to locate the end of
each input file, in case you want to append to each file or to reset line num-
bering.

If, for a given file, Perl is unable to create the backup file as specified in the
EXTENSION, it will issue a warning to that effect and continue processing any
other remaining files listed.

You cannot use -i to create directories or to strip extensions from files. Nor
can you use it with a ˜ to indicate a home directory — which is just as well,
since some folks like to use that character for their backup files:

% perl -pi˜ -e ’s/foo/bar/’ file1 file2 file3...

Finally, the -i switch does not stop Perl from running if no filenames are
given on the command line. When this happens, no backup is made since the
original file cannot be determined, and processing proceeds from STDIN to
STDOUT as might be expected.

-IDIRECTORY
Dir ectories specified by -I ar e pr epended to @INC, which holds the search
path for modules. -I also tells the C prepr ocessor wher e to search for include
files. The C prepr ocessor is invoked with -P; by default it searches
/usr/include and /usr/lib/perl. Unless you’re going to be using the C prepr o-
cessor (and almost no one does any more), you’re better off using the use lib

dir ective within your script. Like use lib, however, the -I switch implicitly
adds platform-specific directories. See use lib in Chapter 31, Pragmatic Mod-
ules, for details.

-lOCTNUM
-l Enables automatic line-end processing. It has two effects: first, it automatically

chomps the line terminator when used with -n or -p, and second, it sets $\ to
the value of OCTNUM so that any print statements will have a line terminator of
ASCII value OCTNUM added back on. If OCTNUM is omitted, -l sets $\ to the cur-
rent value of $/, typically newline. So, to trim lines to 80 columns, say this:

% perl -lpe ’substr($_, 80) = ""’

Note that the assignment $\ = $/ is done when the switch is processed, so the
input record separator can be differ ent fr om the output record separator if the
-l switch is followed by a -0 switch:

% gnufind / -print0 | perl -ln0e ’print "found $_" if -p’

This sets $\ to newline and later sets $/ to the null character. (Note that 0
would have been interpreted as part of the -l switch had it followed the -l
dir ectly. That’s why we bundled the -n switch between them.)

Command Processing 497

498 Chapter 19: The Command-Line Interface

-m and -M
These switches load a MODULE as if you’d executed a use, unless you specify
-MODULE instead of MODULE, in which case they invoke no. For example,
-Mstrict is like use strict, while -M-strict is like no strict.

-mMODULE
Executes use MODULE () befor e executing your script.

-MMODULE
-M’MODULE ...’

Executes use MODULE befor e executing your script. The command is formed
by mere interpolation of the rest of the argument after the -M, so you can
use quotes to add extra code after the module name, for example,
-M’MODULE qw(foo bar)’.

-MMODULE=arg1,arg2...
A little built-in syntactic sugar means you can also say -Mmodule=foo,bar

as a shortcut for -M’module qw(foo bar)’. This avoids the need to use
quotes when importing symbols. The actual code generated by
-Mmodule=foo,bar is:

use module split(/,/, q{foo,bar})

Note that the = for m removes the distinction between -m and -M, but it’s
better to use the uppercase form to avoid confusion.

You may only use the -M and -m switches from a real command-line invoca-
tion of Perl, not as options picked up on the #! line. (Hey, if you’re gonna put
it in the file, why not just write the equivalent use or no instead?)

-n Causes Perl to assume the following loop around your script, which makes it
iterate over filename arguments much as sed -n or awk do:

LINE:
while (<>) {

... # your script goes here
}

You may use LINE as a loop label from within you script, even though you
can’t see the actual label in your file.

Note that the lines are not printed by default. See -p to have lines printed.
Her e is an efficient way to delete all files older than a week:

find . -mtime +7 -print | perl -nle unlink

This is faster than using the -exec switch of find (1) because you don’t have to
start a process on every filename found. By an amazing coincidence, BEGIN
and END blocks may be used to capture contr ol befor e or after the implicit
loop, just as in awk.

-p Causes Perl to assume the following loop around your script, which makes it
iterate over filename arguments much as sed does:

LINE:
while (<>) {

... # your script goes here
}
continue {

print or die "-p destination: $!\n";
}

You may use LINE as a loop label from within you script, even though you
can’t see the actual label in your file.

If a file named by an argument cannot be opened for some reason, Perl warns
you about it, and moves on to the next file. Note that the lines are printed
automatically. An error occurring during printing is treated as fatal. By yet
another amazing coincidence, BEGIN and END blocks may be used to capture
contr ol befor e or after the implicit loop, just as in awk.

-P Causes your script to be run through the C prepr ocessor befor e compilation
by Perl. (Since both comments and cpp (1) directives begin with the # charac-
ter, you should avoid starting comments with any words recognized by the C
pr eprocessor such as “if”, “else” or “define”.) Whether you use -P switch or
not, Perl still pays attention to #line dir ectives to control the line number and
filename, so any prepr ocessor can apprise Perl of these things. See the section
“Generating Perl in Other Languages” in Chapter 24, Common Practices.

-s Enables rudimentary switch-parsing for switches on the command line after
the script name but before any filename arguments or a “--” switch-pr ocess-
ing terminator. Any switch found is removed from @ARGV, and a variable by the
same name as the switch is set in Perl. Switch bundling is not allowed because
multicharacter switches are per mitted.

The following script prints “true” only when the script is invoked with a -foo

switch.

#!/usr/bin/perl -s
if ($foo) { print "true\n" }

If the switch is of the form -xxx=yyy, the $xxx variable is set to whatever fol-
lows the equals sign in that argument (“yyy” in this case). The following script
prints “true” if and only if the script is invoked with a -foo=bar switch.

#!/usr/bin/perl -s
if ($foo eq ’bar’) { print "true\n" }

Command Processing 499

500 Chapter 19: The Command-Line Interface

-S Makes Perl use the PATH envir onment variable to search for the script (unless
the name of the script contains directory separators).

Typically, this switch is used to help emulate #! startup on platforms that don’t
support #!. On many platforms that have a shell compatible with Bourne or C
shell, you can use this:

#!/usr/bin/perl
eval "exec /usr/bin/perl -S $0 $*"

if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which pro-
ceeds to try to execute the Perl script as a shell script. The shell executes the
second line as a normal shell command, and thus starts up the Perl interpreter.
On some systems, $0 doesn’t always contain the full pathname, so -S tells Perl
to search for the script if necessary. After Perl locates the script, it parses the
lines and ignores them because the variable $running_under_some_shell is
never true. A better construct than $* would be ${1+"$@"}, which handles
embedded spaces and such in the filenames but doesn’t work if the script is
being interpreted by csh. In order to start up sh instead of csh, some systems
have to replace the #! line with a line containing just a colon, which Perl will
politely ignore. Other systems can’t control that and need a totally devious
construct that will work under any of csh, sh, or perl, such as the following:

eval ’(exit $?0)’ && eval ’exec /usr/bin/perl -S $0 ${1+"$@"}’
& eval ’exec /usr/bin/perl -S $0 $argv:q’

if 0;

Yes, it’s ugly, but so are the systems that work* this way.

On some platforms, the -S switch also makes Perl append suffixes to the file-
name while searching for it. For example, on Win32 platforms, the .bat and
.cmd suf fixes ar e appended if a lookup for the original name fails and the
name does not already end in one of those suffixes. If your Perl was built with
debugging enabled, you can use Perl’s -Dp switch to watch how the search
pr ogresses.

If the filename supplied contains directory separators (even as just a relative
pathname, not an absolute one), and if the file is not found, those platforms
that implicitly append file extensions (not Unix) will do so and look for the
file with those extensions added, one by one.

On DOS-like platforms, if the script does not contain directory separators, it
will first be searched for in the current directory before being searched for in
the PATH. On Unix platforms, the script will be searched for strictly on the

* We use the term advisedly.

PATH, due to security concerns about accidentally executing something in the
curr ent working directory without explicitly requesting this.

-T Forces “taint” checks to be turned on so you can test them. Ordinarily these
checks are done only when running setuid or setgid. It’s a good idea to turn
them on explicitly for programs run on another’s behalf, such as CGI pro-
grams. See Chapter 23, Security.

Note that, for security reasons, Perl must see this option quite early; usually
this means it must appear early on the command line or in the #! line. If it’s
not early enough, Perl complains.

-u Causes Perl to dump core after compiling your script. You can then in theory
take this core dump and turn it into an executable file by using the undump
pr ogram (not supplied). This speeds startup at the expense of some disk
space (which you can minimize by stripping the executable). If you want to
execute a portion of your script before dumping, use Perl’s dump operator
instead. Note: availability of undump is platform specific; it may not be avail-
able for a specific port of Perl. It has been superseded by the new Perl-to-C
code generator, which is much more portable (but still experimental).

-U Allows Perl to do unsafe operations. Currently the only “unsafe” operations
ar e unlinking directories while running as superuser, and running setuid pro-
grams with fatal taint checks turned into warnings. Note that warnings must be
enabled to actually produce the taint-check warnings.

-v Prints the version and patch level of your Perl executable, along with a bit of
extra information.

-V Prints a summary of the major Perl configuration values and the current value
of @INC.

-V:NAME
Prints to STDOUT the value of the named configuration variable. The NAME may
contain regex characters, like “.” to match any character, or “.*” to match any
optional sequence of characters.

% perl -V:man.dir
man1dir=’/usr/local/man/man1’
man3dir=’/usr/local/man/man3’

% perl -V:’.*threads’
d_oldpthreads=’undef’
use5005threads=’define’
useithreads=’undef’
usethreads=’define’

Command Processing 501

502 Chapter 19: The Command-Line Interface

If you ask for a configuration variable that doesn’t exist, its value will be
reported as “UNKNOWN”. Configuration information is available from within a
pr ogram using the Config module, although patterns are not supported for the
hash subscripts:

% perl -MConfig -le ’print $Config{man1dir}’
/usr/local/man/man1

See the Config module in Chapter 32, Standar d Modules.

-w Prints warnings about variables that are mentioned only once and scalar val-
ues that are used before being set. Also warns about redefined subroutines,
and refer ences to undefined filehandles or filehandles opened read-only that
you are attempting to write on. Also warns you if you use values as numbers
that don’t look like numbers, if you use an array as though it were a scalar, if
your subroutines recurse more than 100 deep, and innumerable other things.
See every entry labelled “(W)” in Chapter 33, Diagnostic Messages.

This switch just sets the global $ˆW variable. It has no effect on lexical warn-
ings — see the -W and -X switches for that. You can enable or disable specific
war nings via the use warnings pragma, described in Chapter 31.

-W Unconditionally and permanently enables all warnings throughout the pro-
gram, even if warnings were disabled locally using no warnings or $ˆW = 0.
This includes all files loaded via use, require, or do. Think of it as the Perl
equivalent of the lint (1) command.

-xDIRECTORY
-x Tells Perl to extract a script that is embedded in a message. Leading garbage

will be discarded until the first line that starts with #! and contains the string
“perl”. Any meaningful switches on that line after the word “perl” will be
applied. If a directory name is specified, Perl will switch to that directory
befor e running the script. The -x switch controls the disposal of leading
garbage only, not trailing garbage. The script must be terminated with
__END_ _ or __DATA_ _ if there is trailing garbage to be ignored. (The script can
pr ocess any or all of the trailing garbage via the DATA filehandle if desired. It
could even in theory seek to the beginning of the file and process the leading
garbage.)

-X Unconditionally and permanently disables all warnings, the exact opposite of
what the -W flag does.

Environment Var iables
In addition to the various switches that explicitly modify Perl’s behavior, you can
set various environment variables to influence various underlying behaviors. How
you set up these environment variables is system dependent, but one trick you
should know if you use sh, ksh, or bash is that you can temporarily set an environ-
ment variable for a single command, as if it were a funny kind of switch. It has to
be set in front of the command:

$ PATH=’/bin:/usr/bin’ perl myproggie

You can do something similar with a subshell in csh and tcsh:

% (setenv PATH "/bin:/usr/bin"; perl myproggie)

Otherwise, you’d typically set environment variables in some file with a name
resembling .chsr c or .pr ofile in your home directory. Under csh and tcsh you’d say:

% setenv PATH ’/bin:/usr/bin’

And under sh, ksh, and bash you’d say:

$ PATH=’/bin:/usr/bin’; export PATH

Other systems will have other ways of setting these on a semi-permanent basis.
Her e ar e the environment variables Perl pays attention to:

HOME

Used if chdir is called without an argument.

LC_ALL, LC_CTYPE, LC_COLLATE, LC_NUMERIC, PERL_BADLANG
Envir onment variables that control how Perl handles data specific to particular
natural languages. See the online docs for perllocale.

LOGDIR

Used if chdir has no argument, but HOME is not set.

PATH

Used in executing subprocesses, and for finding the program if the -S switch
is used.

PERL5LIB

A colon-separated list of directories in which to look for Perl library files
befor e looking in the standard library and the current directory. Any architec-
tur e-specific dir ectories under the specified locations are automatically
included if they exist. If PERL5LIB is not defined, PERLLIB is consulted for back-
ward compatibility with older releases.

Environment Var iables 503

504 Chapter 19: The Command-Line Interface

When running taint checks (either because the program was running setuid or
setgid, or the -T switch was used), neither of these library variables is used.
Such programs must employ the use lib pragma for that purpose.

PERL5OPT

Default command-line switches. Switches in this variable are taken as if they
wer e on every Perl command line. Only the -[DIMUdmw] switches are allowed.
When running taint checks (because the program was running setuid or set-
gid, or the -T switch was used), this variable is ignored. If PERL5OPT begins
with -T, tainting will be enabled, causing any subsequent options to be
ignor ed.

PERL5DB

The command used to load the debugger code. The default is:

BEGIN { require ’perl5db.pl’ }

See Chapter 20 for more uses of this variable.

PERL5SHELL (Micr osoft ports only)
May be set to an alternative shell that Perl must use internally for executing
commands via backticks or system. Default is cmd.exe /x/c on WinNT and
command.com /c on Win95. The value is considered to be space separated. Pre-
cede any character that needs to be protected (like a space or backslash) with
a backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a high
degr ee of variability among users, leading to portability concerns. Besides, Perl
can use a shell that may not be fit for interactive use, and setting COMSPEC to
such a shell may interfer e with the proper functioning of other programs
(which usually look in COMSPEC to find a shell fit for interactive use).

PERLLIB

A colon-separated list of directories in which to look for Perl library files
befor e looking in the standard library and the current directory. If PERL5LIB is
defined, PERLLIB is not used.

PERL_DEBUG_MSTATS

Relevant only if Perl is compiled with the malloc function included with the
Perl distribution (that is, if perl -V:d_mymalloc yields “define”). If set, this
causes memory statistics to be displayed after execution. If set to an integer
gr eater than one, also causes memory statistics to be displayed after
compilation.

PERL_DESTRUCT_LEVEL

Relevant only if your Perl executable was built with debugging enabled, this
contr ols the behavior of global destruction of objects and other refer ences.

Apart from these, Perl itself uses no other environment variables, except to make
them available to the program being executed and to any child processes that pro-
gram launches. Some modules, standard or otherwise, may care about other envi-
ronment variables. For example, the use re pragma uses PERL_RE_TC and
PERL_RE_COLORS, the Cwd module uses PWD, and the CGI module uses the many envi-
ronment variables set by your HTTP daemon (that is, your web server) to pass
infor mation to the CGI script.

Pr ograms running setuid would do well to execute the following lines before
doing anything else, just to keep people honest:

$ENV{PATH} = ’/bin:/usr/bin’; # or whatever you need
$ENV{SHELL} = ’/bin/sh’ if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

See Chapter 23 for details.

Environment Var iables 505

20
The Perl Debugger

First of all, have you tried the use warnings pragma?

If you invoke Perl with the -d switch, your program will be run inside the Perl
debugger. This works like an interactive Perl environment, prompting for debug-
ger commands that let you examine source code, set breakpoints, dump out your
function-call stack, change the values of variables, and so on. Any command not
recognized by the debugger is directly executed (using eval) as Perl code in the
package of the code currently being debugged. (The debugger uses the DB pack-
age for its own state information, to avoid trampling yours.) This is so wonderfully
convenient that people often fire up the debugger just to test out Perl constructs
interactively. In that case, it doesn’t matter what program you tell Perl to debug, so
we’ll choose one without much meaning:

% perl -de 42

In Perl, the debugger is not a program completely separate from the one being
debugged, the way it usually is in a typical programming environment. Instead,
the -d flag tells the compiler to insert source information into the parse trees it’s
about to hand off to the interpreter. That means your code must first compile cor-
rectly for the debugger to work on it. If that is successful, the intrepr eter pr eloads
a special Perl library file containing the debugger itself.

% perl -d /path/to/program

The program will halt immediately before the first run-time executable statement
(but see the section “Using the Debugger” regarding compile-time statements) and
ask you to enter a debugger command. Whenever the debugger halts and shows
you a line of code, it displays the line that it’s about to execute, not the one just
executed.

506

As the debugger encounters a line, it first checks for a breakpoint, prints it (if the
debugger is in trace mode), perfor ms any actions (created with the a command
described later in “Debugger Commands”), and finally prompts the user if a break-
point is present or if the debugger is in single-step mode. If not, it evaluates the
line normally and continues to the next line.

Using the Debugger
The debugger prompt is something like:

DB<8>

or even:

DB<<17>>

wher e the number shows how many commands you’ve executed. A csh-like his-
tory mechanism allows you to access previous commands by number. For exam-
ple, !17 would repeat command number 17. The number of angle brackets
indicates the depth of the debugger. For example, you get more than one set of
brackets if you’re alr eady at a breakpoint and then print out the result of a func-
tion call that itself also has a breakpoint.

If you want to enter a multiline command, such as a subroutine definition with
several statements, you may escape the newline that would normally end the
debugger command with a backslash. Here’s an example:

DB<1> for (1..3) { \
cont: print "ok\n"; \
cont: }
ok
ok
ok

Let’s say you want to fire up the debugger on a little program of yours (let’s call it
camel_ flea) and stop it as soon as it gets down to a function named infested.
Her e’s how you’d do that:

% perl -d camel_flea

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(camel_flea:2): pests(’bactrian’, 4);
DB<1>

The debugger halts your program right before the first run-time executable state-
ment (but see below about compile-time statements) and asks you to enter a

Using the Debugger 507

508 Chapter 20: The Perl Debugger

command. Again, whenever the debugger stops to show you a line of code, it dis-
plays the line it’s about to execute, not the one it just executed. The line displayed
may not look exactly like it did in your source file, particularly if you’ve run it
thr ough any kind of prepr ocessor.

Now, you’d like to stop as soon as your program gets to the infested function, so
you establish a breakpoint there like so:

DB<1> b infested
DB<2> c

The debugger now continues until it hits that function, at which point it says this:

main::infested(camel_flea:8): my $bugs = int rand(3);

To look at a “window” of source code around the breakpoint, use the w command:

DB<2> w
5 }
6
7 sub infested {
8==>b my $bugs = int rand(3);
9: our $Master;
10: contaminate($Master);
11: warn "needs wash"
12 if $Master && $Master->isa("Human");
13
14: print "got $bugs\n";

DB<2>

As you see by the ==> marker, your current line is line 8, and by the b ther e, you
know it has a breakpoint on it. If you’‘ had set an action, there also would also
have been an a ther e. The line numbers with colons are breakable; the rest are
not.

To see who called whom, ask for a stack backtrace using the T command:

DB<2> T
$ = main::infested called from file ‘Ambulation.pm’ line 4
@ = Ambulation::legs(1, 2, 3, 4) called from file ‘camel_flea’ line 5
. = main::pests(’bactrian’, 4) called from file ‘camel_flea’ line 2

The initial character ($, @, or .) tells whether the function was called in a scalar,
list, or void context, respectively. There are thr ee lines because you were thr ee
functions deep when you ran the stack backtrace. Here’s what each line means:

• The first line says you were in the function main::infested when you ran the
stack trace. It tells you the function was called in a scalar context from line 4

of the file Ambulation.pm. It also shows that it was called without any argu-
ments whatsoever, meaning it was called as &infested instead of the normal
way, as infested().

• The second line shows that the function Ambulation::legs was called in list
context from line number 5 of the camel_ flea file, with those four arguments.

• The third line shows that main::pests was called in void context from line 2
of camel_ flea.

If you have compile-phase executable statements such as code from BEGIN and
CHECK blocks or use statements, these will not ordinarily be stopped by the debug-
ger, although requires and INIT blocks will, since they happen after the transition
to run phase (see Chapter 18, Compiling). Compile-phase statements can be traced
with the AutoTrace option set in PERLDB_OPTS.

You can exert a little control over the Perl debugger from within your Perl pro-
gram itself. You might do this, for example, to set an automatic breakpoint at a
certain subroutine whenever a particular program is run under the debugger. From
your own Perl code, however, you can transfer control back to the debugger using
the following statement, which is harmless if the debugger is not running:

$DB::single = 1;

If you set $DB::single to 2, it’s equivalent to the n command, whereas a value of 1
emulates the s command. The $DB::trace variable should be set to 1 to simulate
the t command.

Another way to debug a module is to set breakpoint on load ing:

DB<7> b load c:/perl/lib/Carp.pm
Will stop on load of ‘c:/perl/lib/Carp.pm’.

and then restart the debugger using the R command. For finer control, you can use
the b compile subname to stop as soon as possible after a particular subroutine is
compiled.

Debugger Commands
When you type commands into the debugger, you don’t need to terminate them
with a semicolon. Use a backslash to continue lines (but only in the debugger).

Since the debugger uses eval to execute commands, my, our, and local settings
will disappear once the command retur ns. If a debugger command coincides with
some function in your own program, simply precede the function call with any-
thing that doesn’t look like a debugger command, such as a leading ; or a +.

Debugger Commands 509

510 Chapter 20: The Perl Debugger

If the output of a debugger built-in command scrolls past your screen, just precede
the command with a leading pipe symbol so it’s run through your pager:

DB<1> |h

The debugger has plenty of commands, and we divide them (somewhat arbitrarily)
into stepping and running, breakpoints, tracing, display, locating code, automatic
command execution, and, of course, miscellaneous.

Perhaps the most important command is h, which provides help. If you type h h at
the debugger prompt, you’ll get a compact help listing designed to fit on one
scr een. If you type h COMMAND, you’ll get help on that debugger command.

Stepping and Running
The debugger operates by stepping thr ough your program line by line. The follow-
ing commands let you control what you skip over and where you stop.

s

s EXPR

The s debugger command single-steps through the program. That is, the
debugger will execute the next line of your program until another statement is
reached, descending into subroutine calls as necessary. If the next line to exe-
cute involves a function call, then the debugger stops at the first line inside
that function. If an EXPR is supplied that includes function calls, these will be
single-stepped, too.

n

n EXPR

The n command executes subroutine calls, without stepping through them,
until the beginning of the next statement at this same level (or higher). If an
EXPR is supplied that includes function calls, those functions will be executed
with stops before each statement.

<ENTER>

If you just hit enter at the debugger prompt, the previous n or s command is
repeated.

. The . command retur ns the internal debugger pointer to the line last executed
and prints out that line.

r This command continues until the currently executing subroutine retur ns. It
displays the retur n value if the PrintRet option is set, which it is by default.

Breakpoints
b

b LINE

b CONDITION

b LINE CONDITION

b SUBNAME

b SUBNAME CONDITION

b postpone SUBNAME

b postpone SUBNAME CONDITION

b compile SUBNAME

b load FILENAME

The b debugger command sets a br eakpoint befor e LINE, telling the debugger
to stop the program at that point so that you can poke around. If LINE is omit-
ted, sets a breakpoint on the line that’s about to execute. If CONDITION is speci-
fied, it’s evaluated each time the statement is reached: a breakpoint is trig-
ger ed only if CONDITION is true. Breakpoints may only be set on lines that
begin an executable statement. Note that conditions don’t use if:

b 237 $x > 30
b 237 ++$count237 < 11
b 33 /pattern/i

The b SUBNAME for m sets a (possibly conditional) breakpoint before the first
line of the named subroutine. SUBNAME may be a variable containing a code
refer ence; if so, CONDITION is not supported.

Ther e ar e several ways to set a breakpoint on code that hasn’t even been
compiled yet. The b postpone for m sets a (possibly conditional) breakpoint at
the first line of SUBNAME after it is compiled.

The b compile for m sets a breakpoint on the first statement to be executed
after SUBNAME is compiled. Note that unlike the postpone for m, this statement is
outside the subroutine in question because the subroutine hasn’t been called
yet, only compiled.

The b load for m sets a breakpoint on the first executed line of the file. The
FILENAME should be a full pathname as found in the %INC values.

d

d LINE

This command deletes the breakpoint at LINE; if omitted, it deletes the break-
point on the line about to execute.

Debugger Commands 511

512 Chapter 20: The Perl Debugger

D This command deletes all breakpoints.

L This command lists all the breakpoints and actions.

c

c LINE

This command continues execution, optionally inserting a one-time-only
br eakpoint at the specified LINE.

Tr acing
T This command produces a stack backtrace.

t

t EXPR

This command toggles trace mode, which prints out every line in your pro-
gram as it is evaluated. See also the AutoTrace option discussed later in this
chapter. If an EXPR is provided, the debugger will trace through its execution.
See also the later section “Unattended Execution”.

W

W EXPR

This command adds EXPR as a global watch expression. (A watch expression is
an expression that will cause a breakpoint when its value changes.) If no
EXPR is provided, all watch expressions are deleted.

Display
Perl’s debugger has several commands for examining data structures while your
pr ogram is stopped at a breakpoint.

p

p EXPR

This command is the same as print DB::OUT EXPR in the current package. In
particular, since this is just Perl’s own print function, nested data structures
and objects are not shown—use the x command for that. The DB::OUT handle
prints to your terminal (or perhaps an editor window) no matter where stan-
dard output may have been redir ected.

x

x EXPR

The x command evaluates its expression in list context and displays the result,
pr etty-printed. That is, nested data structures are printed out recursively and
with unviewable characters suitably encoded.

V

V PKG

V PKG VARS

This command displays all (or when you specify VARS, some) variables in the
specified PKG (defaulting to the main package) using a pretty printer. Hashes
show their keys and values, control characters are render ed legibly, nested
data structures print out in a legible fashion, and so on. This is similar to call-
ing the x command on each applicable variable, except that x works with lexi-
cal variables, too. Also, here you type the identifiers without a type specifier
such as $ or @, like this:

V Pet::Camel SPOT FIDO

In place of a variable name in VARS, you can use ˜PATTERN or !PATTERN to print
existing variables whose names either match or don’t match the specified pat-
ter n.

X

X VARS

This command is the same as V CURRENTPACKAGE, wher e CURRENTPACKAGE is the
package that the current line was compiled into.

H

H -NUMBER
This command displays the last NUMBER commands. Only commands longer
than one character are stor ed in the history. (Most of them would be s or n,
otherwise.) If NUMBER is omitted, all commands are listed.

Locating Code
Inside the debugger, you can extract and display parts of your program with these
commands.

l

l LINE

l SUBNAME

l MIN+INCR
l MIN-MAX

The l command lists next the few lines of your program, or the specified LINE

if provided, or the first few lines of the SUBNAME subr outine or code refer ence.

The l MIN+INCR for m lists INCR+1 lines, starting at MIN. The l MIN-MAX for m lists
lines MIN thr ough MAX.

Debugger Commands 513

514 Chapter 20: The Perl Debugger

- This command lists the previous few lines of your program.

w

w LINE

Lists a window (a few lines) around the given source LINE, or the current line
if no LINE is supplied.

f FILENAME

This command lets you view a differ ent pr ogram or eval statement. If the
FILENAME is not a full pathname as found in the values of %INC, it is interpr eted
as a regular expression to find the filename you mean.

/PATTERN/

This command searches forward in the program for PATTERN; the final / is
optional. The entire PATTERN is optional, too, and if omitted, repeats the previ-
ous search.

?PATTERN?

This command searches backward for PATTERN; the final ? is optional. It
repeats the previous search if PATTERN is omitted.

S

S PATTERN

S !PATTERN

The S command lists those subroutine names matching (or, with !, those not
matching) PATTERN. If no PATTERN is provided, all subroutines are listed.

Actions and Command Execution
Fr om inside the debugger, you can specify actions to be taken at particular times.
You can also launch external programs.

a

a COMMAND

a LINE

a LINE COMMAND

This command sets an action to take before LINE executes, or the current line
if LINE is omitted. For example, this prints out $foo every time line 53 is
reached:

a 53 print "DB FOUND $foo\n"

If no COMMAND is specified, the action on the specified LINE is deleted. With nei-
ther LINE nor COMMAND, the action on the current line is deleted.

A The A debugger command deletes all actions.

<

< ?

< EXPR

<< EXPR

The < EXPR for m specifies a Perl expression to be evaluated before every
debugger prompt. You can add another expression with the << EXPR for m, list
them with < ?, and delete them all with a plain <.

>

> ?

> EXPR

>> EXPR

The > commands behave just like their < cousins but are executed after the
debugger prompt instead of before.

{

{ ?

{ COMMAND

{{ COMMAND

The { debugger commands behave just like < but specify a debugger com-
mand to be executed before the debugger prompt instead of a Perl expres-
sion. A warning is issued if you appear to have accidentally entered a block of
code instead. If that’s what you really mean to do, write it with ;{ ... } or
even do { ... }.

!

! NUMBER

! -NUMBER

!PATTERN

A lone ! repeats the previous command. The NUMBER specifies which command
fr om the history to execute; for instance, ! 3 executes the third command
typed into the debugger. If a minus sign precedes the NUMBER, the commands
ar e counted backward: ! -3 executes the third-to-last command. If a PATTERN

(no slashes) is provided instead of a NUMBER, the last command that began with
PATTERN is executed. See also the recallCommand debugger option.)

!! CMD

This debugger command runs the external command CMD in a subprocess,
which will read from DB::IN and write to DB::OUT. See also the shellBang

debugger option. This command uses whatever shell is named in $ENV{SHELL},
which can sometimes interfer e with proper interpretation of status, signal, and
cor e dump information. If you want a consistent exit value from the
command, set $ENV{SHELL} to /bin/sh.

Debugger Commands 515

516 Chapter 20: The Perl Debugger

|

|DBCMD

||PERLCMD

The |DBCMD command runs the debugger command DBCMD, piping DB::OUT to
$ENV{PAGER}. This is often used with commands that would otherwise produce
long output, such as:

DB<1> |V main

Note that this is for debugger commands, not commands you’d type from your
shell. If you wanted to pipe the external command who thr ough your pager,
you could do something like this:

DB<1> !!who | more

The ||PERLCMD command is like |DBCMD, but DB::OUT is temporarily selected as
well, so any commands that call print, printf, or write without a filehandle
will also be sent down the pipe. For example, if you had a function that gen-
erated loads of output by calling print, you’d use this command instead of the
pr evious one to page through that output:

DB<1> sub saywho { print "Users: ", ‘who‘ }
DB<2> ||sawwho()

Miscellaneous Commands
q and ˆD

These commands quit the debugger. This is the recommended way to exit,
although typing exit twice sometimes works. Set the inhibit_exit option to
0 if you want to be able to step off the end of the program and remain in the
debugger anyway. You may also need to set $DB::finished to 0 if you want to
step through global destruction.

R Restart the debugger by execing a new session. The debugger tries to maintain
your history across sessions, but some internal settings and command-line
options may be lost. The following settings are curr ently pr eserved: history,
br eakpoints, actions, debugger options, and the Perl command-line options
-w, -I, and -e.

=

= ALIAS

= ALIAS VALUE

This command prints out the current value of ALIAS if no VALUE is given. With
a VALUE, it defines a new debugger command with the name ALIAS. If both
ALIAS and VALUE ar e omitted, all current aliases are listed. For example:

= quit q

An ALIAS should be a simple identifier, and should translate to a simple identi-
fier as well. You can do more sophisticated aliasing by adding your own
entries to %DB::aliases dir ectly. See “Debugger Customization” later in this
chapter.

man

man MANPAGE

This command calls your system’s default documentation viewer on the given
page or on the viewer itself if MANPAGE is omitted. If that viewer is man, the
curr ent %Config infor mation is used to invoke it. The “perl” prefix will be
automatically supplied for you when necessary; this lets you type man debug

and man op fr om the debugger.

On systems that do not normally have the man utility, the debugger invokes
perldoc; if you want to change that behavior, set $DB::doccmd to whatever
viewer you like. This may be set in an rc file or through direct assignment.

O

O OPTION ...

O OPTION? ...

O OPTION=VALUE...
The O command lets you manipulate debugger options, which are listed in
“Debugger Options” later in this chapter. The O OPTION for m sets each of the
listed debugger options to 1. If a question mark follows an OPTION, its current
value is displayed.

The O OPTION=VALUE for m sets the values; if VALUE has internal whitespace, it
should be quoted. For example, you could set O pager="less -MQeicsNfr" to
use less with those specific flags. You may use either single or double quotes,
but if you do, you must escape embedded instances of the same sort of quote
that you began with. You must also escape any backslash that immediately
pr ecedes the quote but is not meant to escape the quote itself. In other words,
just follow single-quoting rules irrespective of the quote actually used. The
debugger responds by showing you the value of the option just set, always
using single-quoted notation for its output:

DB<1> O OPTION=’this isn\’t bad’
OPTION = ’this isn\’t bad’

DB<2> O OPTION="She said, \"Isn’t it?\""
OPTION = ’She said, "Isn\’t it?"’

For historical reasons, the =VALUE is optional, but defaults to 1 only where safe
to do so—that is, mostly for Boolean options. It is better to assign a specific
VALUE using =. The OPTION can be abbreviated, but unless you’re trying to be
intentionally cryptic, it probably should not be. Several options can be set
together. See the section “Debugger Options” for a list of these.

Debugger Commands 517

518 Chapter 20: The Perl Debugger

Debugger Customization
The debugger probably contains enough configuration hooks that you’ll never
have to modify it yourself. You may change the behavior of debugger from within
the debugger using its O command, from the command line via the PERLDB_OPTS

envir onment variable, and by running any preset commands stored in rc files.

Editor Support for Debugging
The debugger’s command-line history mechanism doesn’t provide command-line
editing like many shells do: you can’t retrieve previous lines with ˆp, or move to
the beginning of the line with ˆa, although you can execute previous lines with
using the exclamation point syntax familiar to shell users. However, if you install
the Term::ReadKey and Term::ReadLine modules from CPAN, you will have full
editing capabilities similar to what GNU readline(3) provides.

If you have emacs installed on your system, it can interact with the Perl debugger
to provide an integrated software development environment reminiscent of its
interactions with C debuggers. Perl comes with a start file for making emacs act
like a syntax-directed editor that understands (some of) Perl’s syntax. Look in the
emacs dir ectory of the Perl source distribution. Users of vi should also look into
vim (and gvim, the mousey and windy version) for coloring of Perl keywords.

A similar setup by one of us (Tom) for interacting with any vendor-shipped vi and
the X11 window system is also available. This works similarly to the integrated
multiwindow support that emacs pr ovides, wher e the debugger drives the editor.
However, at the time of this writing, its eventual location in the Perl distribution is
uncertain. But we thought you should know of the possibility.

Customizing with Init Files
You can do some customization by setting up either a .perldb or perldb.ini file
(depending on your operating system), which contains initialization code. This init
file holds Perl code, not debugger commands, and is processed before the
PERLDB_OPTS envir onment variable is looked at. For instance, you could make
aliases by adding entries to the %DB::alias hash this way:

$alias{len} = ’s/ˆlen(.*)/p length($1)/’;
$alias{stop} = ’s/ˆstop (at|in)/b/’;
$alias{ps} = ’s/ˆps\b/p scalar /’;
$alias{quit} = ’s/ˆquit(\s*)/exit/’;
$alias{help} = ’s/ˆhelp\s*$/|h/’;

You can change options from within your init file using function calls into the
debugger’s internal API:

parse_options("NonStop=1 LineInfo=db.out AutoTrace=1 frame=2");

If your init file defines the subroutine afterinit, that function is called after
debugger initialization ends. The init file may be located in the current directory or
in the home directory. Because this file contains arbitrary Perl commands, for
security reasons, it must be owned by the superuser or the current user, and
writable by no one but its owner.

If you want to modify the debugger, copy perl5db.pl fr om the Perl library to
another name and hack it to your heart’s content. You’ll then want to set your
PERL5DB envir onment variable to say something like this:

BEGIN { require "myperl5db.pl" }

As a last resort, you could also use PERL5DB to customize the debugger by directly
setting internal variables or calling internal debugger functions. Be aware, though,
that any variables and functions not documented either here or else in the online
perldebug , perldebguts , or DB manpages are consider ed to be for internal use
only and are subject to change without notice.

Debugger Options
The debugger has numerous options that you can set with the O command, either
interactively or from the environment or from an init file.

recallCommand, ShellBang
The characters used to recall a command or spawn a shell. By default, both
ar e set to !.

pager

Pr ogram to use for output of pager-piped commands (those beginning with a
| character.) By default, $ENV{PAGER} will be used. Because the debugger
uses your current terminal characteristics for bold and underlining, if the cho-
sen pager does not pass escape sequences through unchanged, the output of
some debugger commands will not be readable when sent through the pager.

tkRunning

Run under the Tk module while prompting (with ReadLine).

signalLevel, warnLevel, dieLevel
Set the level of verbosity. By default, the debugger leaves your exceptions and
war nings alone because altering them can break correctly running programs.

To disable this default safe mode, set these values to something higher than 0.
At a level of 1, you get backtraces upon receiving any kind of warning (this is
often annoying) or exception (this is often valuable). Unfortunately, the

Debugger Customization 519

520 Chapter 20: The Perl Debugger

debugger cannot distinguish fatal exceptions from nonfatal ones. If dieLevel is
1, then your nonfatal exceptions are also traced and unceremoniously altered
if they came from evaled strings or from any kind of eval within modules
you’r e attempting to load. If dieLevel is 2, the debugger doesn’t care wher e
they came from: it usurps your exception handler and prints out a trace, and
then modifies all exceptions with its own embellishments. This may perhaps
be useful for some tracing purposes, but it tends to hopelessly confuse any
pr ogram that takes its exception handling seriously.

The debugger will attempt to print a message when any uncaught INT, BUS, or
SEGV signal arrives. If you’re in a slow syscall (like a wait or an accept, or a
read fr om your keyboard or a socket) and haven’t set up your own $SIG{INT}

handler, then you won’t be able to Control-C your way back to the debugger,
because the debugger’s own $SIG{INT} handler doesn’t understand that it
needs to raise an exception to long jmp (3) out of slow syscalls.

AutoTrace

Set the trace mode (similar to t command, but can be put into PERLDB_OPTS).

LineInfo

Assign the file or pipe to print line number info to. If it is a pipe (say,
|visual_perl_db), then a short message is used. This is the mechanism used to
interact with a slave editor or visual debugger, such as the special vi or emacs
hooks, or the ddd graphical debugger.

inhibit_exit

If 0, allows stepping off the end of the program.

PrintRet

Print retur n value after r command if set (default).

ornaments

Af fects scr een appearance of the command line (see the online docs for
Term::ReadLine). There is curr ently no way to disable ornaments, which can
render some output illegible on some displays or with some pagers. This is
consider ed a bug.

frame

Af fects printing of messages on entry and exit from subroutines. If frame & 2
is false, messages are printed on entry only. (Printing on exit might be useful
if interspersed with other messages.)

If frame & 4, arguments to functions are printed, plus context and caller info.
If frame & 8, overloaded stringify and tied FETCH ar e enabled on the printed
arguments. If frame & 16, the retur n value from the subroutine is printed.

The length at which the argument list is truncated is governed by the next
option.

maxTraceLen

Length to truncate the argument list when the frame option’s bit 4 is set.

The following options affect what happens with the V, X, and x commands:

arrayDepth, hashDepth
Print only the first n elements. If n is omitted, all of the elements will be
printed.

compactDump, veryCompact
Change the style of array and hash output. If compactDump is enabled, short
arrays may be printed on one line.

globPrint

Print contents of typeglobs.

DumpDBFiles

Display arrays holding debugged files.

DumpPackages

Display symbol tables of packages.

DumpReused

Display contents of “reused” addresses.

quote, HighBit, undefPrint
Change the style of string display. The default value for quote is auto; you can
enable double-quotish or single-quotish format by setting it to " or ’, respec-
tively. By default, characters with their high bit set are printed verbatim.

UsageOnly

Instead of showing the contents of a package’s variables, with this option
enabled, you get a rudimentary per-package memory usage dump based on
the total size of the strings found in package variables. Because the package
symbol table is used, lexical variables are ignor ed.

Unattended Execution
During startup, options are initialized from $ENV{PERLDB_OPTS}. You may place the
initialization options TTY, noTTY, ReadLine, and NonStop ther e.

If your init file contains:

parse_options("NonStop=1 LineInfo=tperl.out AutoTrace");

then your program will run without human intervention, putting trace information
into the file db.out. (If you interrupt it, you’d better reset LineInfo to /dev/tty if
you expect to see anything.)

Unattended Execution 521

522 Chapter 20: The Perl Debugger

The following options can be specified only at startup. To set them in your init
file, call parse_options("OPT=VAL").

TTY

The terminal to use for debugging I/O.

noTTY

If set, the debugger goes into NonStop mode and will not connect to a termi-
nal. If interrupted (or if control goes to the debugger via explicit setting of
$DB::signal or $DB::single fr om the Perl program), it connects to a terminal
specified in the TTY option at startup, or to a terminal found at run time using
the Term::Rendezvous module of your choice.

This module should implement a method named new that retur ns an object
with two methods: IN and OUT. These should retur n filehandles for the debug-
ger to use its input and output correspondingly. The new method should
inspect an argument containing the value of $ENV{PERLDB_NOTTY} at startup, or
"/tmp/perldbtty$$" otherwise. This file is not inspected for proper ownership
or wide-open write access, so security hazards are theor etically possible.

ReadLine

If false, ReadLine support in the debugger is disabled in order to debug appli-
cations that themselves use a ReadLine module.

NonStop

If set, the debugger goes into noninteractive mode until interrupted, or your
pr ogram sets $DB::signal or $DB::single.

Options can sometimes be uniquely abbreviated by the first letter, but we recom-
mend that you always spell them out in full, for legibility and future compatibility.

Her e’s an example of using the PERLDB_OPTS envir onment variable to set options
automatically.* It runs your program noninteractively, printing information on each
entry into a subroutine and for each line executed. Output from the debugger’s
trace are placed into the tperl.out file. This lets your program still use its regular
standard input and output, without the trace information getting in the way.

$ PERLDB_OPTS="NonStop frame=1 AutoTrace LineInfo=tperl.out" perl -d myprog

If you interrupt the program, you’ll need to quickly reset to O LineInfo=/dev/tty

or whatever makes sense on your platform. Otherwise, you won’t see the debug-
ger’s prompting.

* We’r e using sh shell syntax to show environment variable settings. Users of other shells should adjust
accordingly.

Debugger Support
Perl provides special debugging hooks at both compile time and run time for cre-
ating debugging environments such as the standard debugger. These hooks are
not to be confused with the perl -D options, which are usable only if your Perl
was built with -DDEBUGGING support.

For example, whenever you call Perl’s built-in caller function from the package
DB, the arguments that the corresponding stack frame was called with are copied
to the the @DB::args array. When you invoke Perl with the -d switch, the follow-
ing additional features are enabled:

• Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require ’perl5db.pl’} if
not present) before the first line of your program.

• The array @{"_<$filename"} holds the lines of $filename for all files compiled
by Perl. The same for evaled strings that contain subroutines or are curr ently
being executed. The $filename for evaled strings looks like (eval 34). Code
assertions in regular expressions look like (re_eval 19).

• The hash %{"_<$filename"} contains breakpoints and actions keyed by line
number. You can set individual entries as opposed to the whole hash. Perl
only cares about Boolean truth here, although the values used by perl5db.pl
have the form "$break_condition\0$action". Values in this hash are magical
in numeric context: they are zer os if the line is not breakable.

The same holds for evaluated strings that contain subroutines or are curr ently
being executed. The $filename for evaled strings looks like (eval 34) or
(re_eval 19).

• The scalar ${"_<$filename"} contains "_<$filename". This is also the case for
evaluated strings that contain subroutines or are curr ently being executed. The
$filename for evaled strings looks like (eval 34) or (re_eval 19).

• After each required file is compiled, but before it is executed, DB::post-

poned(*{"_<$filename"}) is called if the subroutine DB::postponed exists.
Her e, the $filename is the expanded name of the required file, as found in
the values of %INC.

• After each subroutine subname is compiled, the existence of $DB::post-

poned{subname} is checked. If this key exists, DB::postponed(subname) is called
if the DB::postponed subr outine also exists.

• A hash %DB::sub is maintained, whose keys are subr outine names and whose
values have the form filename:startline-endline. filename has the form
(eval 34) for subroutines defined inside evals, or (re_eval 19) for those
within regular expression code assertions.

Debugger Support 523

524 Chapter 20: The Perl Debugger

• When the execution of your program reaches a point that might hold a break-
point, the DB::DB() subr outine is called if any of the variables $DB::trace,
$DB::single, or $DB::signal is true. These variables are not localizable. This
featur e is disabled when executing inside DB::DB(), including functions called
fr om it unless $ˆD & (1<<30) holds true.

• When execution of the program reaches a subroutine call, a call to
&DB::sub(args) is made instead, with $DB::sub holding the name of the called
subr outine. This doesn’t happen if the subroutine was compiled in the DB

package.

Note that if &DB::sub needs external data for it to work, no subroutine call is possi-
ble until this is done. For the standard debugger, the $DB::deep variable (how
many levels of recursion deep into the debugger you can go before a mandatory
br eak) gives an example of such a dependency.

Wr iting Your Own Debugger
The minimal working debugger consists of one line:

sub DB::DB {}

which, since it does nothing whatsoever, can easily be defined via the PERL5DB

envir onment variable:

% PERL5DB="sub DB::DB {}" perl -d your-program

Another tiny debugger, slightly more useful, could be created like this:

sub DB::DB {print ++$i; scalar <STDIN>}

This little debugger would print the sequential number of each encountered state-
ment and would wait for you to hit a newline before continuing.

The following debugger, small though it may appear, is really quite functional:

{
package DB;
sub DB {}
sub sub {print ++$i, " $sub\n"; &$sub}

}

It prints the sequential number of the subroutine call and the name of the called
subr outine. Note that &DB::sub must be compiled from the package DB, as we’ve
done here.

If you base your new debugger on the current debugger, ther e ar e some hooks
that can help you customize it. At startup, the debugger reads your init file from

the current directory or your home directory. After the file is read, the debugger
reads the PERLDB_OPTS envir onment variable and parses this as the remainder of an
O ... line such as you might enter at the debugger prompt.

The debugger also maintains magical internal variables, such as @DB::dbline,
%DB::dbline, which are aliases for @{":::_<current_file"} %{"::_<cur-

rent_file"}. Her e current_file is the currently selected file, either explicitly cho-
sen with the debugger’s f command or implicitly by flow of execution.

Some functions can help with customization. DB::parse_options(STRING) parses a
line like the O option. DB::dump_trace(SKIP[, COUNT]) skips the specified number
of frames and retur ns a list containing information about the calling frames (all of
them, if COUNT is missing). Each entry is a refer ence to a hash with keys “context”
(either ., $, or @), “sub” (subr outine name, or info about eval), “args” (undef or a
refer ence to an array), “file”, and “line”. DB::print_trace(FH, SKIP[, COUNT[,

SHORT]]) prints formatted info about caller frames to the supplied filehandle. The
last two functions may be convenient as arguments to the debugger’s < and <<

commands.

You don’t need to learn all that—most of us haven’t. In fact, when we need to
debug a program, we usually just insert a few print statements here and there and
rerun the program.

On our better days, we’ll even remember to turn on war nings first. That often
spotlights the problem right away, thus saving a great deal of wear and tear on our
hair (what’s left of it). But when that doesn’t work, it’s nice to know that, waiting
for you patiently behind that -d switch, there is a lovely debugger that can do
dar n near anything except find your bug for you.

But if you’re going to remember one thing about customizing the debugger, per-
haps it is this: don’t limit your notion of bugs to things that make Perl unhappy.
It’s also a bug if your program makes you unhappy. Earlier, we showed you a cou-
ple of really simple custom debuggers. In the next section, we’ll show you an
example of a differ ent sort of custom debugger, one that may (or may not) help
you debug the bug known as “Is this thing ever gonna finish?”

The Perl Profiler
Do you want to make your program faster? Well, of course you do. But first you
should stop and ask yourself, “Do I really need to spend time making this program
faster?” Recreational optimization can be fun,* but normally there are better uses
for your time. Sometimes you just need to plan ahead and start the program when

* Or so says Nathan Torkington, who contributed this section of the book.

The Perl Profiler 525

526 Chapter 20: The Perl Debugger

you’r e going on a coffee break. (Or use it as an excuse for one.) But if your pro-
gram absolutely must run faster, you should begin by profiling it. A profiler can
tell you which parts of your program take the most time to execute, so you won’t
waste time optimizing a subroutine that has an insignificant effect on the overall
execution time.

Perl comes with a profiler, the Devel::DProf module. You can use it to profile the
Perl program in mycode.pl by typing:

perl -d:DProf mycode.pl

Even though we’ve called it a profiler — since that’s what it does—the mechanism
DProf employs is the very same one we discussed earlier in this chapter. DProf is
just a debugger that records the time Perl entered and left each subroutine.

When your profiled script terminates, DProf will dump the timing information to a
file called tmon.out. The dpr ofpp pr ogram that came with Perl knows how to ana-
lyze tmon.out and produce a report. You may also use dpr ofpp as a frontend for
the whole process with the -p switch (see described later).

Given this program:

outer();

sub outer {
for (my $i=0; $i < 100; $i++) { inner() }

}

sub inner {
my $total = 0;
for (my $i=0; $i < 1000; $i++) { $total += $i }

}

inner();

the output of dpr ofpp is:

Total Elapsed Time = 0.537654 Seconds
User+System Time = 0.317552 Seconds

Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
85.0 0.270 0.269 101 0.0027 0.0027 main::inner
2.83 0.009 0.279 1 0.0094 0.2788 main::outer

Note that the percentage numbers don’t add up to 100. In fact, in this case, they’re
pr etty far off, which should tip you off that you need to run the program longer.
As a general rule, the more profiling data you can collect, the better your statistical

sample. If we increase the outer loop to run 1000 times instead of 100 times, we’ll
get more accurate results:

Total Elapsed Time = 2.875946 Seconds
User+System Time = 2.855946 Seconds

Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
99.3 2.838 2.834 1001 0.0028 0.0028 main::inner
0.14 0.004 2.828 1 0.0040 2.8280 main::outer

The first line reports how long the program took to run, from start to finish. The
second line displays the total of two differ ent numbers: the time spent executing
your code (“user”) and the time spent in the operating system executing system
calls made by your code (“system”). (We’ll have to forgive a bit of false precision
in these numbers—the computer’s clock almost certainly does not tick every mil-
lionth of a second. It might tick every hundredth of a second if you’re lucky.)

The “user+system” times can be changed with command-line options to dpr ofpp.
-r displays elapsed time, -s displays system time only, and -u displays user time
only.

The rest of the report is a breakdown of the time spent in each subroutine. The
“Exclusive Times” line indicates that when subroutine outer called subroutine
inner, the time spent in inner didn’t count towards outer’s time. To change this,
causing inner’s time to be counted towards outer’s, give the -I option to dpr ofpp.

For each subroutine, the following is reported: %Time, the percentage of time spent
in this subroutine call; ExclSec, the time in seconds spent in this subroutine not
including those subroutines called from it; CumulS, the time in seconds spent in this
subr outine and those called from it; #Calls, the number of calls to the subroutine;
sec/call, the average time in seconds of each call to the subroutine not including
those called from it; Csec/c, the average time in seconds of each call to the sub-
routine and those called from it.

Of those, the most useful figure is %Time, which will tell you where your time
goes. In our case, the inner subr outine takes the most time, so we should try to
optimize that subroutine, or find an algorithm that will call it less. :-)

Options to dpr ofpp pr ovide access to other information or vary the way the times
ar e calculated. You can also make dpr ofpp run the script for you in the first place,
so you don’t have to remember the -d:DProf switch:

-p SCRIPT

Tells dpr ofpp that it should profile the given SCRIPT and then interpret its pro-
file data. See also -Q.

The Perl Profiler 527

528 Chapter 20: The Perl Debugger

-Q Used with -p to tell dpr ofpp to quit after profiling the script, without interpret-
ing the data.

-a Sort output alphabetically by subroutine name rather than by decreasing per-
centage of time.

-R Count anonymous subroutines defined in the same package separately. The
default behavior is to count all anonymous subroutines as one, named
main::_ _ANON_ _.

-I Display all subroutine times inclusive of child subroutine times.

-l Sort by number of calls to the subroutines. This may help identify candidates
for inlining.

-O COUNT

Show only the top COUNT subr outines. The default is 15.

-q Do not display column headers.

-T Display the subroutine call tree to standard output. Subroutine statistics are
not displayed.

-t Display the subroutine call tree to standard output. Subroutine statistics are
not displayed. A function called multiple (consecutive) times at the same call-
ing level is displayed once, with a repeat count.

-S Pr oduce output structured by the way your subroutines call one another:

main::inner x 1 0.008s
main::outer x 1 0.467s = (0.000 + 0.468)s
main::inner x 100 0.468s

Read this as follows: the top level of your program called inner once, and it
ran for 0.008s elapsed time, and the top level called outer once and it ran for
0.467s inclusively (0s in outer itself, 0.468s in the subroutines called from
outer) calling inner 100 times (which ran for 0.468s). Whew, got that?

Branches at the same level (for example, inner called once and outer called
once) are sorted by inclusive time.

-U Do not sort. Display in the order found in the raw profile.

-v Sort by average time spent in subroutines during each call. This may help
identify candidates for hand optimization by inlining subroutine bodies.

-g subroutine

Ignor e subr outines except subroutine and whatever is called from it.

Other options are described in dpr ofpp (1), its standard manpage.

DProf is not your only choice for profiler. CPAN also holds Devel::SmallProf,
which reports the time spent in each line of your program. That can help you fig-
ur e out if you’re using some particular Perl construct that is being surprisingly
expensive. Most of the built-in functions are pretty efficient, but it’s easy to acci-
dentally write a regular expression whose overhead increases exponentially with
the size of the input. See also the “Efficiency” section in Chapter 24, Common
Practices, for other helpful hints.

Now go take that coffee break. You’ll need it for the next chapter.

The Perl Profiler 529

21
Inter nals and Externals

As we discussed in Chapter 18, Compiling, perl (the program) contains both a
compiler and an interpreter for programs written in Perl (the language). The Perl
compiler/interpr eter is itself written in C. In this chapter, we’ll sketch how that C
pr ogram works from the perspective of someone who wants either to extend or to
embed Perl. When you extend Perl, you’re putting a chunk of C code (called the
extension) under the control of Perl, and when you embed Perl you’re putting a
Perl interpreter* under the control of a larger C program.

The brief coverage we provide here is no substitute for the online documentation
of Perl’s innards: see the documentation for perlguts, perlxs, perlxstut, perlcall,
perlapi, and h2xs, all bundled with Perl. Again, unless you’re extending or embed-
ding Perl, you will never need to know any of this stuff.

Pr esuming you need to know, what you need to know first is a bit about Perl’s
guts. You’ll also need to know C for most of what follows. You’ll need a C com-
piler to run the examples. If your end goal is to create a module for other people
to use, they’ll need a C compiler too. Many of these examples will only run on
Unix-like systems. Oh, and this material is subject to change in future releases of
Perl.

In other words, here be dragons.

* While we are car eful to distinguish the compiler from the interpreter when that distinction is impor-
tant, it gets a bit wearisome to keep saying “compiler/interpreter”, so we often just shorten that to
“interpr eter” to mean the whole glob of C code and data that functions like one instance of perl (the
pr ogram); when you’re embedding Perl, you can have multiple instances of the interpreter, but each
behaves like its own little perl.

530

How Perl Works
When the Perl compiler is fed a Perl program, the first task it perfor ms is lexical
analysis: breaking down the program into its basic syntactic elements (often called
tokens). If the program is:

print "Hello, world!\n";

the lexical analyzer breaks it down into three tokens: print, "Hello, world!\n",
and the final semicolon. The token sequence is then parsed, fixing the relationship
between the tokens. In Perl, the boundary between lexical analysis and parsing is
blurr ed mor e than in other languages. (Other computer languages, that is. If you
think about all the differ ent meanings new Critter might have depending on
whether there’s a Critter package or a subroutine named new, you’ll understand
why. On the other hand, we disambiguate these kinds of things all the time in
English.)

Once a program has been parsed and (presumably) understood, it is compiled
into a tree of opcodes repr esenting low-level operations, and finally that tree of
operations is executed—unless you invoked Perl with the -c (“check syntax”)
switch, which exits upon completing the compilation phase. It is during compila-
tion, not execution, that BEGIN blocks, CHECK blocks, and use statements are exe-
cuted.

Inter nal Data Types
As the tree of opcodes constituting a compiled Perl program is executed, Perl val-
ues are created, manipulated, and destroyed. The data types you’re familiar with in
Perl all have corresponding data types in the C under Perl’s hood, and you’ll need
to know about those types when you pass data between the two languages.

Thr ee C typedefs correspond to Perl’s three basic data types: the SV (scalar value),
AV (array value), and HV (hash value). In addition, an IV is a simple signed integer
type guaranteed to be large enough to hold either a pointer or an integer; and I32

and I16 ar e types guaranteed to be large enough to hold 32 bits and 16 bits,
respectively. For storing unsigned versions of these last three typedefs, there exist
UV, U32, and U16 typedefs as well. All of these typedefs can be manipulated with
the C functions described in the perlguts documentation. We sketch the behaviors
of some of those functions below:

• Ther e ar e four types of values that can be copied into an SV: an integer value
(IV), a double (NV), a string (PV), and another scalar (SV). There are dozens of
functions for SVs to let you create, modify, grow, and check for the truth or
definedness of the Perl scalars they repr esent. Perl refer ences ar e implemented
as an RV, a special type of SV.

Inter nal Data Types 531

532 Chapter 21: Internals and Externals

• When an AV is created, it can be created empty or populated with SVs, which
makes sense since an array is a collection of scalars.

• The HV has associated C functions for storing, fetching, deleting, and checking
for the existence of key/value pairs in the hash the HV repr esents.

• Ther e is also a GV (glob value), which can hold refer ences to any of the values
associated with a variable identifier: a scalar value, an array value, a hash
value, a subroutine, an I/O handle, or a format.

When you extend Perl, you will sometimes need to know about these values
when you create bindings to C functions. When you embed Perl, you’ll need to
know about these values when you exchange data with the Perl interpreter
included in your C program.

Extending Perl (Using C from Perl)
If you want to use C source code (or a C library) from Perl, you need to create a
library that can be either dynamically loaded or statically linked into your perl exe-
cutable. (Dynamic loading is usually preferr ed, to minimize the number of differ-
ent perl executables sitting around being differ ent.) You create that library by
cr eating an XS file (ending in .xs) containing a series of wrapper subroutines. The
wrapper subroutines are not Perl subroutines, however; they are in the XS lan-
guage, and we call such a subroutine an XSUB, for “eXternal SUBroutine”. An
XSUB can wrap a C function from an external library, a C function elsewhere in
the XS file, or naked C code in the XSUB itself. You then use the xsubpp utility
bundled with Perl to take the XS file and translate it into C code that can be com-
piled into a library that Perl will understand.

Assuming your operating system supports dynamic linking, the end result will be a
Perl module that behaves like any other module written in 100% pure Perl, but
runs compiled C code under the hood. It does this by pulling arguments from
Perl’s argument stack, converting the Perl values to the formats expected by a par-
ticular C function (specified through an XSUB declaration), calling the C function,
and finally transferring the retur n values of the C function back to Perl. These
retur n values may be passed back to Perl either by putting them on the Perl stack
or by modifying the arguments supplied from the Perl side. (If your system doesn’t
support dynamic linking, you have another hoop to jump through, and we’ll dis-
cuss that in the next section.)

The previous description is a somewhat simplified view of what really happens.
Since Perl allows more flexible calling conventions than C, XSUBs can do much
mor e in practice, such as checking input parameters for validity, throwing

exceptions, retur ning undef or an empty list, calling differ ent C functions based on
numbers and types of the arguments, or providing an object-oriented interface.
Again, see the perlxs and perlxstut manpages.

XS and XSUBs
XS is a convenience: there’s nothing stopping you from writing glue code directly
in C and linking it into your Perl executable. However, this would be tedious,
especially if you need to write glue for multiple C functions, or if you’re not famil-
iar with the Perl stack discipline and other arcana. XS lets you write a concise
description of what should be done by the glue, and the XS compiler xsubpp han-
dles the rest.

For people who don’t find XS convenient enough, the SWIG system automatically
generates simple XSUBs. See http://www.swig.or g for more infor mation.

The XS language allows you to describe the mapping between a C function and a
Perl function. It also allows you to create a Perl function that is a wrapper around
pur e C code that you write yourself. When XS is used merely to map between C
and Perl, the XSUB declaration is almost identical to a declaration of a C function.
In such circumstances, a tool called h2xs (bundled with Perl) is able to translate an
entir e C header file into a corresponding XS file that provides glue to the C func-
tions and macros.

The xsubpp tool creates the constructs necessary to let an XSUB manipulate Perl
values and the glue necessary to let Perl call the XSUB.

An XS file begins with any C code you want to include, which will often be noth-
ing more than a set of #include dir ectives. After a MODULE keyword, the remainder
of the file should be in the XS “language”, a combination of XS directives and
XSUB definitions. We’ll see an example of an entire XS file soon, but in the mean-
time here is a simple XSUB definition that allows a Perl program to access a C
library function called sin (3). The XSUB specifies the retur n type (a double length
floating-point number), the function name and argument list (with one argument
dubbed x), and the type of the argument (another double):

double
sin(x)

double x

Mor e complicated XSUBs will often contain other bits of XS code. Each section of
an XSUB starts with a keyword followed by a colon, such as INIT: or CLEANUP:.
However, the first two lines of an XSUB always contain the same data: a descrip-
tion of the retur n type and the name of the function and its parameters. Whatever
immediately follows these is considered to be an INPUT: section unless explicitly
marked with another keyword. The various keywords are all explained in the

Extending Perl (Using C from Perl) 533

534 Chapter 21: Internals and Externals

perlxs manpage, which you should read to learn about everything you can do with
XSUBs.

If your system does not have the capability to dynamically load shared libraries,
you can still use XSUBs, but you must statically link the XSUBs with the rest of
Perl, creating a new Perl executable (to sit around and be differ ent). The XSUB
build mechanism will check the system and build a shared library if possible, or
else a static library. Optionally, it can build a new statically linked executable with
that static library linked in. (But you might want to delay that to bundle all your
new extensions into a single executable sitting around being the same, as it were.)

If your system can link libraries dynamically but you still want to build a statically
linked executable, you can run make perl instead of make in the following exam-
ples. You should then run make test_static instead of make test to test your
extension.

The xsubpp pr ogram also needs to know how to convert from Perl’s data types to
C’s data types. Often it can guess, but with user-defined types you may need to
help it out by specifying the conversion in a typemap file. The default conversions
ar e stor ed in PATH-TO-PERLLIB/ExtUtils/typemap.

The typemap is split into three sections. The first section, labeled TYPEMAP, tells the
compiler which of the code fragments in the following two sections should be
used to map between C types and Perl values. The second section, INPUT, contains
C code specifying how Perl values should be converted to C types. The third sec-
tion, OUTPUT, contains C code specifying how to translate C types into Perl values.

Creating Extensions
A proper extension consists of several files: one containing the XS code, plus other
supporting files that help Perl figure out what to do with the XS code. You can
cr eate all of these files by hand, but it’s easier to use the h2xs tool, which creates a
skeletal extension that you can then flesh out:

h2xs -A -n Mytest

This creates a directory named Mytest, possibly under ext/ if that directory exists in
the current directory. Six files will be created in the Mytest dir ectory: MANIFEST,
Makefile.PL, Mytest.pm, Mytest.xs, test.pl, and Changes. We describe the first four
below.

MANIFEST
The MANIFEST file contains the names of all the files just created in the Mytest
dir ectory. If you add more files to your extension and intend to distribute it to
the wide world, add the filenames here. This is tested by some systems to
ensur e that your distribution is complete.

Makefile.PL
This is a Perl program that generates a Makefile (which is then passed to make
or an equivalent). Makefile.PL is described further in “Creating CPAN Mod-
ules” in Chapter 22, CPAN.

Mytest.pm
Users will use this module when they want to load your extension. You’r e
expected to fill in the blanks in the skeletal module created for you by h2xs:

package Mytest;

use strict;
use warnings;

require Exporter;
require DynaLoader;

our @ISA = qw(Exporter DynaLoader);
Items to export into callers namespace by default. Note: do not export
names by default without a very good reason. Use EXPORT_OK instead.
Do not simply export all your public functions/methods/constants.
our @EXPORT = qw(

);
our $VERSION = ’0.01’;

bootstrap Mytest $VERSION;

Preloaded methods go here.

Autoload methods go after __END_ _, and are processed by the autosplit program.

1;
__END_ _
Below is the stub of documentation for your module. You better edit it!

Most extension modules will require the Exporter and DynaLoader extensions.
After setting @ISA (for inheritance) and @EXPORT (to make functions available to
the package using the module), the initialization code tells Perl to bootstrap

the XS code. Perl then dynamically links the shared library into the perl pr o-
cess at run time.

Mytest.xs
The Mytest.xs file contains the XSUBs that tell Perl how to pass data to the
compiled C routines. Initially, Mytest.xs will look something like this:

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

MODULE = Mytest PACKAGE = Mytest

Extending Perl (Using C from Perl) 535

536 Chapter 21: Internals and Externals

Let’s edit the XS file by adding this to the end of the file:

void
hello()

CODE:
printf("Hello, world!\n");

When you run perl Makefile.PL, the Makefile that make needs will be created:

% perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Mytest

Running make will now produce output that looks something like this (some long
lines have been shortened for clarity and some extraneous lines have been
deleted):

% make
umask 0 && cp Mytest.pm ./blib/Mytest.pm
perl xsubpp -typemap typemap Mytest.xs >Mytest.tc && mv Mytest.tc Mytest.c
cc -c Mytest.c
Running Mkbootstrap for Mytest ()
chmod 644 Mytest.bs
LD_RUN_PATH="" ld -o ./blib/PA-RISC1.1/auto/Mytest/Mytest.sl -b Mytest.o
chmod 755 ./blib/PA-RISC1.1/auto/Mytest/Mytest.sl
cp Mytest.bs ./blib/PA-RISC1.1/auto/Mytest/Mytest.bs
chmod 644 ./blib/PA-RISC1.1/auto/Mytest/Mytest.bs
Manifying ./blib/man3/Mytest.3

We assume that the make pr ogram that Perl uses to build programs is called make.
Instead of running make in these examples, you may have to substitute whatever
make pr ogram Perl has been configured to use. You can find out what that pro-
gram is with:

% perl -V:make

Running make cr eated a dir ectory called blib (for “build library”) in the current
working directory. This directory will contain the shared library that we will build.
Once we’re sur e we know what we’re doing, we can install it from that directory
into its final resting place. Until then, we’ll have to explicitly add the blib dir ectory
to Perl’s @INC array by using the ExtUtils::testlib module. If we now create a
file called hello that looks like this:

use ExtUtils::testlib; # adds blib/* directories to @INC
use Mytest;
Mytest::hello();

we can burrow down from Perl into C:

% perl hello
Hello, world!

Once your extension is complete and passes all its tests, you can install it with
make install.

You will need write permission for your Perl library. (If you don’t have permission,
you can specify another directory as shown in “Installing CPAN modules” in
Chapter 22.)

XSUB Input and Output
Continuing with the previous example, we’ll add a second XSUB, which takes a
single numeric argument as input and retur ns 0 if the number is even, or 1 if the
number is odd:

int
is_even(x)

int x
CODE:

RETVAL = (x % 2 == 0);
OUTPUT:

RETVAL

The list of output parameters occurs at the very end of the function, just after the
OUTPUT: dir ective. The use of RETVAL tells Perl that you wish to send this value
back as the retur n value of the XSUB. Had we wanted the function to modify its
input parameter, we would have used x in place of RETVAL.

We can rebuild our new shared library with the same steps as before, generating a
Makefile fr om the Makefile.PL file and running make.

In order to verify that our extension works, we’ll create a test suite in test.pl. This
file is set up by h2xs to mimic the test script that Perl itself has. Within the script,
you may run tests to confirm that the extension behaves properly, printing ok

when it does and not ok when it doesn’t. Change the print statement in the BEGIN

block of test.pl to print "1..4\n";, and add the following code to the end of the
file:

print Mytest::is_even(0) == 1 ? "ok 2" : "not ok 2", "\n";
print Mytest::is_even(1) == 0 ? "ok 3" : "not ok 3", "\n";
print Mytest::is_even(2) == 1 ? "ok 4" : "not ok 4", "\n";

The test script will be executed when you type make test.

Extending Perl (Using C from Perl) 537

538 Chapter 21: Internals and Externals

Using Functions from an External C Librar y
So far, our two examples haven’t relied on any C code outside of the XS file. Now
we’ll use some functions from the C math library:

void
round(arg)

double arg
CODE:

if (arg > 0.0) {
arg = floor(arg + 0.5);

} else if (arg < 0.0) {
arg = ceil(arg - 0.5);

} else {
arg = 0.0;

}
OUTPUT:

arg

Note that the round we define above does not retur n a value, but instead changes
the value of its argument in place.

The floor (3) and ceil (3) functions are part of the C math library. If you were com-
piling a C program and needed to link in the math library, you’d append -lm to
the command line, so that’s what you put into the LIBS line in Makefile.PL:

’LIBS’ => [’-lm’], # Link in the ’m’ math library

Generate the Makefile and run make. Change the BEGIN block to run nine tests and
add the following to test.pl:

$i = -1.5; Mytest::round($i); print $i == -2.0 ? "ok 5" : "not ok 5", "\n";
$i = -1.1; Mytest::round($i); print $i == -1.0 ? "ok 6" : "not ok 6", "\n";
$i = 0.0; Mytest::round($i); print $i == 0.0 ? "ok 7" : "not ok 7", "\n";
$i = 0.5; Mytest::round($i); print $i == 1.0 ? "ok 8" : "not ok 8", "\n";
$i = 1.2; Mytest::round($i); print $i == 1.0 ? "ok 9" : "not ok 9", "\n";

Running make test should now print out that all nine tests are okay.

The perlxstut documentation bundled with Perl has several more examples of Perl
extensions, including an example that uses h2xs to automatically make an entire C
library available to Perl.

Embedding Perl (Using Perl from C)
You can access a Perl interpreter from C by embedding Perl inside your C pro-
gram. Since Perl is itself a C program, embedding consists of taking the important
chunks of Perl and integrating them into yours.

Note that embedding isn’t necessary if your only goal is to use a standalone Perl
pr ogram and you don’t mind launching a separate process to do so. You can use a
function like C’s popen (3) to exchange data between your C program and any
exter nal Perl program, just like you can use Perl’s open(PIPE, "| program") or the
IPC::Open2 and IPC::Open3 modules to exchange data between your Perl program
and any other program. But if you want to avoid the overhead of launching a sep-
arate process, you can embed an interpreter into your C program.

When developing long-running applications (say, for embedding in a web server),
it’s a good idea to maintain a single persistent interpreter rather than creating and
destr oying interpr eters over and over again. The major reason is speed, since Perl
will only be loaded into memory once. By using a persistent Perl interpreter,
Apache’s mod_perl module avoids loading Perl into memory anew every time
someone hits an Apache web page. The perlembed manpage provides an example
of a persistent interpreter, as well as an example of how a Perl program can man-
age multiple simultaneous interpreters (another big plus for web servers).

Compiling Embedded Prog rams
When you embed Perl in C, your C program will usually allocate, “run”, and deal-
locate a PerlInterpreter object, which is a C struct defined in the libperl library
that was built in the process of configuring Perl for your system. The libperl library
(along with EXTERN.h and perl.h, which you’ll also need) resides in a directory
that will vary from system to system. You should be able to find out the name of
that directory with:

% perl -MConfig -e "print $Config{archlib}"

You should compile your program in exactly the same way that your perl exe-
cutable was compiled. First, you’ll need to know what C compiler was used to
build Perl on your machine. You can learn that from:

% perl -MConfig -e "print $Config{cc}"

You can figure out what to put on the rest of the command line with the standard
ExtUtils::Embed module. If you had a C program named interp.c and your C com-
piler was cc, you could compile it for embedding as follows:

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

Adding a Perl Interpreter to Your C Prog ram
As it turns out, perl (the C program) is a good example of embedding Perl (the
language), so a simple demonstration of embedding can be found in the file

Embedding Perl (Using Perl from C) 539

540 Chapter 21: Internals and Externals

miniperlmain.c, included with the Perl source code. Here’s a nonportable version
of miniperlmain.c containing the essentials of embedding:

#include <EXTERN.h> /* from the Perl distribution */
#include <perl.h> /* from the Perl distribution */

static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

int main(int argc, char **argv, char **env)
{

my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);

}

When this is compiled with the command line above, you’ll be able to use interp
just like a regular Perl interpreter:

% interp -e "printf(’%x’, 3735928559)"
deadbeef

You can also execute Perl statements stored in a file by placing the filename in
argv[1] befor e calling perl_run.

Calling a Perl Subroutine from C
If a Perl program contains a subroutine that you want to call from a C program,
you can create a Perl interpreter and then use one of the functions beginning with
call_ documented in the perlcall manpage to invoke the subroutine. Let’s assume
this is our Perl program, called showtime.pl:

print "I shan’t be printed.";

sub showtime {
print time;

}

In this example, we’ll use call_argv to invoke the showtime subr outine fr om this C
pr ogram, called showtime.c:

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

int main(int argc, char **argv, char **env)
{

char *args[] = { NULL };
my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, NULL);

/*** skipping perl_run() ***/

call_argv("showtime", G_DISCARD | G_NOARGS, args);

perl_destruct(my_perl);
perl_free(my_perl);

}

Her e, we assume showtime is a Perl subroutine that takes no arguments (that’s the
G_NOARGS) and for which we can ignore the retur n value (that’s the G_DISCARD).
Those flags, and others, are discussed in perlcall. We compile and run showtime as
follows:

% cc -o showtime showtime.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘
% showtime showtime.pl
963852741

In this particular case, we don’t call perl_run, but in general it’s considered good
for m so that DESTROY methods and END blocks are executed at the right time.

If you want to pass arguments to the Perl subroutine, you can add strings to the
NULL-ter minated args list passed to call_argv. For other data types, or to examine
retur n values, you’ll need to manipulate the Perl stack. That’s touched on lightly
later; for the down and dirty, read the perlcall manpage bundled with Perl.

Evaluating a Perl Statement from C
Perl provides two functions for evaluating snippets of Perl code: eval_sv and
eval_ pv, described in the perlapi manpage. Arguably, these are the only routines
you’ll ever need to execute Perl code from within your C program. The code exe-
cuted can be as long as you wish, contain multiple statements, and employ use,
require, or do to include other Perl files.

eval_ pv lets you evaluate individual Perl strings and then extract variables for
coercion into C types. The following program, string.c, executes three Perl strings,
extracting an int fr om the first, a float fr om the second, and a char * fr om the
third:

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

main (int argc, char **argv, char **env)
{

STRLEN n_a;
char *embedding[] = { "", "-e", "0" };

Embedding Perl (Using Perl from C) 541

542 Chapter 21: Internals and Externals

my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, 3, embedding, NULL);
perl_run(my_perl);

/** Treat $a as an integer **/
eval_pv("$a = 3; $a **= 2", TRUE);
printf("a = %d\n", SvIV(get_sv("a", FALSE)));

/** Treat $a as a float **/
eval_pv("$a = 3.14; $a **= 2", TRUE);
printf("a = %f\n", SvNV(get_sv("a", FALSE)));

/** Treat $a as a string **/
eval_pv("$a = ’relreP kcaH rehtonA tsuJ’; $a = reverse($a);", TRUE);
printf("a = %s\n", SvPV(get_sv("a", FALSE), n_a));

perl_destruct(my_perl);
perl_free(my_perl);

}

All of the functions with Sv in their names convert Perl scalars to C types. They’re
described in the perlguts and perlapi manpages. If you compile and run this pro-
gram, you’ll see the results of using SvIV to create an int, SvNV to create a float,
and SvPV to create a C string:

a = 9
a = 9.859600
a = Just Another Hack Perler

In the previous example, we’ve created a global variable to temporarily store the
computed value of our evaluated expression. It is also possible (and in most cases
better form) to use the retur n value of eval_ pv instead of throwing it away:

SV *val = eval_pv("reverse ’relreP kcaH rehtonA tsuJ’", TRUE);
printf("%s\n", SvPV(val,n_a));

The perlembed manpage bundled with Perl includes a demonstration of eval_sv
that lets you make use of Perl’s regular expression capabilities from your C
pr ogram.

Fiddling with the Perl Stack from C
When trying to explain stacks, most computer science textbooks* mumble some-
thing about spring-loaded columns of cafeteria plates: the last thing you pushed
on the stack is the first thing you pop off. That’ll do for our purposes: your C pro-

* Plus the occasional Perl book.

gram will push some arguments onto “the Perl stack”, shut its eyes while some
magic happens, and then pop the results — the retur n value of your Perl subrou-
tine — off the stack.

We’ll present an example here without much explanation. To really understand
what’s going on, you’ll need to know how to convert between C types and Perl
types, with newSViv and sv_setnv and newAV and all their friends described in the
perlguts and perlapi manpages. Then you’ll need to read perlcall to learn how to
manipulate the Perl stack.

Because C has no built-in function for integer exponentiation, let’s make Perl’s **
operator available to it. (This is less useful than it sounds, since Perl implements **
with C’s pow (3) function.) First we’ll create an exponentiation function in a library
file called power.p l:

sub expo {
my ($a, $b) = @_;
return $a ** $b;

}

Now we’ll create a C program, power.c, with a function called PerlPower that
pushes the two arguments onto the stack, invokes expo, and pops the retur n value
out:

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

/* "Real programmers can write assembly code in any language." */

static void
PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(SP); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer */

/* pop the return value from stack */
printf ("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args */

}

Embedding Perl (Using Perl from C) 543

544 Chapter 21: Internals and Externals

int main (int argc, char **argv, char **env)
{
char *my_argv[] = { "", "power.pl" };

my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
perl_run(my_perl);

PerlPower(3, 4); /*** Compute 3 ** 4 ***/

perl_destruct(my_perl);
perl_free(my_perl);

}

You can compile power.c into power like so:

% cc -o power power.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘
% power
3 to the 4th power is 81.

Now your power pr ogram can sit around being differ ent too.

The Moral of the Story
You can sometimes write faster code in C, but you can always write code faster in
Perl. Since you can use each from the other, just combine their strengths as you
see fit. (And tell the dragons we said “Hi.”)

IV
Perl as Culture

22
CPAN

CPAN (the Comprehensive Perl Archive Network) is the central repository for
everything Perl. It contains the collected wisdom of the entire Perl community:
hundr eds of Perl modules and scripts, several books’ worth of documentation, and
the entire Perl distribution. If it’s written in Perl, and it’s helpful and free, it’s prob-
ably on CPAN. CPAN is mirror ed worldwide, and you can find a nearby mirror
with the CPAN multiplexer at http://www.perl.com/CPAN. The multiplexer will
remember which mirror you choose so that when you visit
http://www.perl.com/CPAN/ (note the trailing slash) you’ll be automatically redi-
rected to that mirror. Alter natively, you can start at www.cpan.or g. The interface is
dif ferent, but the data is the same.

Once you get to the main CPAN directory, you’ll see some subdirectories:

authors
This directory contains numerous subdirectories, one for each contributor of
softwar e. For example, if you wanted to find Lincoln Stein’s great CGI module*

and you happened to know for a fact that he wrote it, you could look in
authors/Lincoln_Stein. If you didn’t know he wrote it, you could look in the
modules dir ectory described below.

doc
This directory holds all manner of Perl documentation, including all of Perl’s
of ficial manpages in several differ ent arrangements and formats, such as text,
HTML, PostScript, and Perl’s native pod format, documented in Chapter 26,
Plain Old Documentation.

* Now part of the standard Perl distribution.

547

548 Chapter 22: CPAN

modules
This directory contains modules written either in Perl or in a combination of
both Perl and C. See the discussion of the modules dir ectory below.

ports
This directory contains the source code and sometimes also precompiled exe-
cutable images of Perl ports to operating systems that are not directly sup-
ported in the standard distribution, or for which compilers are notoriously
hard to come by. These ports are the individual efforts of their respective
authors and may not all function precisely as described in this book. These
days few systems should requir e special ports. The index document of this
dir ectory is interesting to look through anyway because it also includes infor-
mation detailing when each system vendor began shipping Perl.

scripts
This directory contains a small collection of diverse Perl programs from all
over the world. These are useful as standalone programs and perhaps as
examples (although the code isn’t subject to quality control checks). Right
now, there aren’t many programs listed, but we hope this area will become
richer in time. The Perl Power Tools project (PPT) is also to be found here.
PPT aims to recr eate all the standard Unix utilities in Perl. Most of the standard
ones are done already, plus some that aren’t standard.

sr c Within this directory, you will find the source code for the standard Perl distri-
bution. Actually, for two standard Perl distributions. One is marked stable, and
the other devel. (The index page for this directory explains the details.) These
ar e really just links to the appropriate versions. As of this writing, stable.tar.gz
is a symbolic link to perl-5.6.0.tar.gz,* but it will likely point to a higher ver-
sion number by the time you read this. This giant file contains the full source
code and documentation for Perl. Configuration and installation should be rel-
atively straightforward on most platforms. If not, see ports described earlier.

The CPAN modules Director y
Although CPAN contains the complete source code for Perl, plus a few binary dis-
tributions for systems bereft of C compilers, as well as a smattering of programs,
CPAN is best known for its collection of modules.

* The general scheme is that if the second number in the version is even, it’s a maintenance release; if
it’s odd, it’s a development release. The trailing .tar.gz extension, which is sometimes written .tgz,
indicates that it’s in the standard Internet format of a GNU-zipped tar archive, commonly known as a
“tarball”.

When we say “modules”, we mean three things: 100% pure Perl modules
(described in Chapter 11, Modules, and Chapter 12, Objects), extensions (modules
depending on C code, described in Chapter 21, Inter nals and Externals), and
pragmas (modules containing special instructions for the Perl compiler, described
in Chapter 31, Pragmatic Modules). There are also module bundles on CPAN. Bun-
dles are collections of modules that interoperate somehow and are typically the
result of a module developer wanting to provide a turnkey solution to a set of
pr oblems. If one module depends on another module (and possibly a particular
version), developers will often bundle the modules together. See Bundle-XML, for
instance.

One way to browse the CPAN modules is to visit http://sear ch.cpan.org, which
pr ovides a search engine frontend to CPAN. Another way is to visit your local
CPAN mirror and enter the modules dir ectory, wher e you’ll see three subdirecto-
ries: by-authors, by-category, and by-name. The by-name dir ectory may be the
most useful if your browser has search capabilities—although (lamentably) some
modules are only available in the author directories. If you search by category,
you’ll have the following choices:

Perl core modules, language extensions, and documentation tools
This includes pragmas and other standard modules, modules that help you
write Perl differ ently, modules related to the Perl compiler, source filters, and
modules related to Perl’s pod documentation format. This category also
includes modules for generating Java bytecode.

Development support
This category includes modules for creating modules and examining how Perl
runs programs.

Operating system interfaces and hardwar e drivers
Her e you’ll find modules for interacting with strange entities like operating
systems, PalmPilots, and serial ports.

Networking, device control, and interprocess communication
This includes modules that implement network protocols, manipulate network
data, operate modems, and control the appliances in your house.

Data types and data type utilities
This category has modules for math, statistics, algorithms, data structures (and
their persistent storage), dates and times, object-oriented programming, PDL
(the Perl Data Language, for serious number crunching), and POE (the Perl
Object Environment, an object-oriented, event-driven scheduler).

The CPAN modules Director y 549

550 Chapter 22: CPAN

Database interfaces
Her e you’ll find modules that let you operate several dozen database systems
fr om Perl, most of them with Perl’s DBI system. This includes the database-
specific DBD modules.

User interfaces (character and graphical)
This includes modules for manipulating user terminals (command-line editing
and curses (3)-style character graphics), as well as Perl/Tk and bindings to Gtk,
Gnome, Sx, and Qt for writing your own GUIs in Perl.

Inter faces to or emulations of other programming languages
This category has modules for using other programming languages from Perl
or letting you pretend that Perl is something it isn’t. If you’re inter ested in
using Perl from C or C from Perl, see Chapter 21.

Filenames, filesystems, and file locking
This includes modules for inspecting, creating, locking, and otherwise manipu-
lating files and directories.

String processing, language text processing, parsing, and searching
This category contains modules for manipulating text: hyphenating, wrapping,
parsing, stemming, and searching. This includes modules for manipulating
PostScript, fonts, XML, and RTF.

Option, argument, parameter, and configuration file processing
This category contains modules for processing command-line arguments (the
-x in myperlpr og -x) and for managing configuration files (like dot files).

Inter nationalization and locale
This includes modules for tailoring your Perl program for a particular country
and language.

Authentication, security, and encryption
Her e you’ll find modules for managing user passwords, computing message
digests, encrypting data, and authenticating users.

World Wide Web, HTML, HTTP, CGI, MIME
This category has modules that let you create CGI-based web pages, web
robots, and web-based content management systems. Other modules let you
manage cookies, parse HTML and MIME messages, and manipulate web
caches. There is also a special section just for Perl modules that you can
embed into the Apache web server.

Server and daemon utilities
This includes modules for creating network and event servers.

Ar chiving, compr ession, and conversion
Her e you’ll find modules for zipping and tarring files, and converting between
file formats (even the Apple II file format).

Images, pixmap, and bitmap manipulation, drawing, and graphing
This category contains modules for creating graphs, GIFs, VRML, and for
working with the Gimp.

Mail and Usenet news
In this category, you’ll find modules for sending, receiving, and filtering mail
and netnews.

Contr ol flow utilities
This category contains modules for executing Perl code at odd times.

Filehandle, directory handle, and input/output stream utilities
Her e ar e modules for input from and output to files, including log files.
Includes all IO:: modules and an Expect module for automating conversations
with network services or other interactive programs.

Micr osoft Windows modules
This includes modules for manipulating the Windows registry, ASP, ODBC,
OLE, and other technologies specific to Windows.

Miscellaneous modules
Her e you’ll find modules for astronomy, biology, chemistry, validating credit
cards (or invalidating credit cards), mortgage amortizations, audio, video,
MIDI, weather, and games.

Using CPAN Modules
Most modules that you’ll find on CPAN are in “tarball” form. That is, they have a
file extension ending in .tar.gz, and expand into a directory with the module code
and any auxiliary files, usually including a README and a Makefile.PL file.

Ther e ar e four steps for making CPAN modules available to your programs:
decompr ession, unpacking, building, and installation. How each of those steps
work depend on your operating system and the module being installed, so we
can’t give you a foolproof recipe that will work all the time. When in doubt, read
the README and INSTALL files that were hopefully distributed with the module.
Also read the perlmodinstall manpage.

Using CPAN Modules 551

552 Chapter 22: CPAN

But you may never have to think about the installation procedur e if you use the
CPAN module (bundled with the Perl distribution) or PPM (the Perl Package Man-
ager, bundled with the ActiveState distribution of Perl). To use the CPAN module
(not to be confused with CPAN itself), type:

% perl -MCPAN -e "shell"

at your command line to begin the configuration process. After you’ve answered a
variety of questions about how you’d like to retrieve files, you can install a module
by typing:

install Some::Module

in the CPAN module’s shell, or by typing:

% perl -MCPAN -e "install ’Some::Module’"

fr om your normal command line.

If you don’t have the convenience of either the CPAN module or PPM, you’ll need
to go through the steps in the following sections by hand. Instructions are pro-
vided for Unix, Windows, and Macintosh; for other operating systems, consult the
perlmodinstall manpage.

Decompressing and Unpacking CPAN Modules
Most of the thousands of utilities on CPAN are compr essed so that they take up
less space. Once you’ve retrieved a module tarball, you first need to turn it into a
dir ectory tr ee on your system by decompressing (“unzipping”) and unpacking the
tarball. On Unix, you can use gzip and tar to do this. (On many systems, tar will
do both.) On Windows, WinZip will both decompress and unpack tarballs. On a
Macintosh, you can either use Stuf fIt and Dr opStuff, MacGzip, or suntar.

Building CPAN Modules
A minority of CPAN modules come with C code that you’ll need to compile for
your system, which is naturally a problem for systems that lack a C compiler. The
standard procedur e for building a CPAN module (with or without C code) is the
following three commands, executed from the command line. (If you don’t have a
command line, or a make-equivalent, you’ll need to resort to more drastic, system-
dependent measures. Windows users have a command line but might need to use
the nmake utility instead of make.)

% perl Makefile.PL

% make

% make test

The perl Makefile.PL command will try to create a Makefile, which the subsequent
make command uses to determine what utilities need to be built and in what
order. The final command, make test, runs the test suite that the module author
hopefully included.

Installing CPAN Modules into the Perl Librar y
Pr esuming you’ve followed the previous steps, you now have a module that has
been built and tested, but not yet installed into Perl’s library. When Perl was
installed on your system, a lib dir ectory was created to hold modules, pragmas,
and related files. That’s the Perl library, which is usually something like
/usr/local/lib/perl5 on Unix systems and C:\PERL\LIB by default on Windows sys-
tems. Modules installed after Perl was built are stor ed in the site_ perl subdir ectory
of the Perl library. You can see the names of all your library directories (and a
bunch of other stuff) by saying:

% perl -V

To install the module, type:

% make install

Superuser access is normally requir ed, even for installing modules into your site-
specific Perl library directories.

With a little work, you can install the module in a directory outside your Perl
library (such as your home directory). If you would normally have typed perl
Makefile.PL to create a Makefile, you could instead use this incantation:

% perl Makefile.PL LIB=/my/dir/perllib \
INSTALLMAN1DIR=/my/dir/man/man1 \
INSTALLMAN3DIR=/my/dir/man/man3 \

INSTALLBIN=/my/dir/bin \
INSTALLSCRIPT=/my/dir/scripts

This will install the modules somewhere in the /my/dir/perllib dir ectory and any
remaining files where they need to go. (If you find yourself typing this a lot, you
could even write a little Perl program to do it for you. Perl is good for things like
that.)

Then you can have Perl search your special directory for modules by adding:

use lib "/my/dir/perllib";

befor e your program attempts to load in the module. You may also set the
PERL5LIB envir onment variable to that directory, or use Perl’s -I switch. See the
use lib pragma in Chapter 31 for examples of doing this.

Using CPAN Modules 553

554 Chapter 22: CPAN

Creating CPAN Modules
If you have a module that you think others might find useful, consider making the
world a better place by uploading it to CPAN. The server that handles new module
submissions is called PAUSE (the Perl Authors Upload Server) and can be found at
https://pause.kbx.de/pause/. Befor e you can upload your module, you’ll have to get
a PAUSE account. This is about as close as you can get to being a “register ed Perl
developer”.

If you call yourself a register ed Perl developer, you should know enough to docu-
ment your modules. Perl has a convention of embedding documentation inside
your source code. (That way, you never lose it.) This embedded documentation is
in a format called “pod” (for Plain Old Documentation) and is described in
Chapter 26.

You should consider making your module thread safe. See Chapter 17, Thr eads.

You should also worry a little bit about whether your cute little module does
things that could break the security of people who use it, because other folks may
have some Really Good Reasons to be more concer ned about security than you
ar e (yet). See Chapter 23, Security, for all about how to avoid being responsible
for the outbreak of World War III and other such nuisances.

Modules meant to be distributed on CPAN should include a Perl program named
Makefile.PL that, when run, generates a Makefile, and a README file briefly
explaining what the module is and how to install it. The Makefile will expect your
module to include a test suite as well. You can create all these files at once with
the h2xs utility:

h2xs -X -n Foo::Bar

(Substitute -A for -X if you’re building a module that has an XS component. XS is
described in Chapter 21.) The h2xs pr ogram cr eates a single directory with skeletal
files for you to flesh out. When you’ve finished, you can upload the tarballed
dir ectory to PAUSE.

The Makefile.PL generated by h2xs will look something like this:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
WriteMakefile(

NAME => ’Mytest’,
VERSION_FROM => ’Mytest.pm’, # finds $VERSION
LIBS => [’’], # e.g., ’-lm’
DEFINE => ’’, # e.g., ’-DHAVE_SOMETHING’
INC => ’’, # e.g., ’-I/usr/include/other’

);

The first thing Makefile.PL does is to pull in the ExtUtils::MakeMaker module.
MakeMaker’s WriteMakefile function has oodles of options (where oodles is defined
as approximately 88) to help you customize what happens after the user down-
loads your module from CPAN and types perl MakeFile.PL to begin building it. The
nice thing about all this is that, since the user is presumably running the perl that
will be used later, you have a wealth of configuration information available (via
the Config module or the $ˆO special variable) to help you decide how to drive
MakeMaker. On the other hand, MakeMaker is really good at finding decent defaults
for almost everything, so the skeletal file written h2xs may well be all you need,
with perhaps a tweak or two. For more on this, see the extensive online docs for
ExtUtils::MakeMaker.

When writing a Perl module for general consumption, you should allow for the
possibility that the user’s version of Perl may differ from yours. You should always
put an English description of any dependencies (particular versions of Perl, or sys-
tem requir ements, or other modules) into the README file. However, even that
may not be sufficient, since someone using the slick CPAN module to automatically
download and install your module might never see the warning. So you should
check those dependencies in Makefile.PL. Her e’s how you might ensure that the
person who downloaded your module is running Perl 5.6 or greater:

eval { require 5.6.0 }
or die <<’EOD’;

############
This module requires lvaluable subroutines, which are not available
in versions of Perl earlier than 5.6. Please upgrade!
############
EOD

Inter nal Testing
The standard instructions for installing a module tell the user to run make test after
building the module with make. So please include a decent test script with any
module that you upload to CPAN. You should emulate the ok/not ok style that Perl
uses in its own test suite, so that it’s easy for the user to determine the outcome of
each test case. The test.pl file generated by h2xs will help get you started.
Chapter 21 has some examples of tests that you can add to the end of test.pl.

If you have many test cases, you might want to mimic Perl’s test suite by creating
a subdir ectory named t/ in the module’s directory and appending .t to the names
of your differ ent test scripts. When you run make test, all test files will be executed
automatically.

Creating CPAN Modules 555

556 Chapter 22: CPAN

Exter nal Testing
Modules uploaded to CPAN are tested by a variety of volunteers on differ ent plat-
for ms. These CPAN testers are notified by mail of each new upload, and reply to
the list with PASS, FAIL, NA (not applicable to this platform), or UNKNOWN (unknown),
along with any relevant notations. You can find the mailing list for CPAN testers at
cpan-testers@perl.or g; test results are posted at http://testers.cpan.or g/.

That’s all just the preliminary testing, of course. The real testing begins when
someone plugs your little module into a web server that’s cranking out a million
pages a day. Or uses your module to help design the airplane you’ll be riding in
someday soon.

So go ahead, skip writing those pesky little tests. See if we care . . .

23
Secur ity

Whether you’re dealing with a user sitting at the keyboard typing commands or
someone sending information across the network, you need to be careful about
the data coming into your programs, since the other person may, either mali-
ciously or accidentally, send you data that will do more har m than good. Perl pro-
vides a special security-checking mechanism called taint mode, whose purpose is
to isolate tainted data so that you won’t use it to do something you didn’t intend
to do. For instance, if you mistakenly trust a tainted filename, you might end up
appending an entry to your password file when you thought you were appending
to a log file. The mechanism of tainting is covered in the section “Handling Inse-
cur e Data”.

In multitasking environments, offstage actions by unseen actors can affect the
security of your own program. If you presume exclusive ownership of external
objects (especially files) as though yours were the only process on the system, you
expose yourself to errors substantially subtler than those that come from directly
handling data or code of dubious provenance. Perl helps you out a little here by
detecting some situations that are beyond your control, but for those that you can
contr ol, the key is understanding which approaches are proof against unseen med-
dlers. The section “Handling Timing Glitches” discusses these matters.

If the data you get from a stranger happens to be a bit of source code to execute,
you need to be even more car eful than you would with their data. Perl provides
checks to intercept stealthy code masquerading as data so you don’t execute it
unintentionally. If you do want to execute foreign code, though, the Safe module
lets you quarantine suspect code where it can’t do any harm and might possibly
do some good. These are the topics of the section “Handling Insecure Code”.

557

558 Chapter 23: Security

Handling Insecure Data
Perl makes it easy to program securely even when your program is being used by
someone less trustworthy than the program itself. That is, some programs need to
grant limited privileges to their users, without giving away other privileges. Setuid
and setgid programs fall into this category on Unix, as do programs running in
various privileged modes on other operating systems that support such notions.
Even on systems that don’t, the same principle applies to network servers and to
any programs run by those servers (such as CGI scripts, mailing list processors,
and daemons listed in /etc/inetd.conf). All such programs requir e a higher level of
scrutiny than normal.

Even programs run from the command line are sometimes good candidates for
taint mode, especially if they’re meant to be run by a privileged user. Programs
that act upon untrusted data, like those that generate statistics from log files or use
LWP::* or Net::* to fetch remote data, should probably run with tainting explicitly
tur ned on; programs that are not prudent risk being turned into “Trojan horses”.
Since programs don’t get any kind of thrill out of risk taking, there’s no particular
reason for them not to be careful.

Compar ed with Unix command-line shells, which are really just frameworks for
calling other programs, Perl is easy to program securely because it’s straightfor-
ward and self-contained. Unlike most shell programming languages, which are
based on multiple, mysterious substitution passes on each line of the script, Perl
uses a more conventional evaluation scheme with fewer hidden snags. Addition-
ally, because the language has more built-in functionality, it can rely less upon
exter nal (and possibly untrustworthy) programs to accomplish its purposes.

Under Unix, Perl’s home town, the preferr ed way to compromise system security
was to cajole a privileged program into doing something it wasn’t supposed to do.
To stave off such attacks, Perl developed a unique approach for coping with hos-
tile environments. Perl automatically enables taint mode whenever it detects its
pr ogram running with differing real and effective user or group IDs.* Even if the
file containing your Perl script doesn’t have the setuid or setgid bits turned on, that
script can still find itself executing in taint mode. This happens if your script was
invoked by another program that was itself running under differing IDs. Perl pro-
grams that weren’t designed to operate under taint mode tend to expire prema-

* The setuid bit in Unix permissions is mode 04000, and the setgid bit is 02000; either or both may be
set to grant the user of the program some of the privileges of the owner (or owners) of the program.
(These are collectively known as set-id programs.) Other operating systems may confer special privi-
leges on programs in other ways, but the principle is the same.

tur ely when caught violating safe tainting policy. This is just as well, since these
ar e the sorts of shenanigans that were historically perpetrated on shell scripts to
compr omise system security. Perl isn’t that gullible.

You can also enable taint mode explicitly with the -T command-line switch. You
should do this for daemons, servers, and any programs that run on behalf of
someone else, such as CGI scripts. Programs that can be run remotely and anony-
mously by anyone on the Net are executing in the most hostile of environments.
You should not be afraid to say “No!” occasionally. Contrary to popular belief, you
can exercise a great deal of prudence without dehydrating into a wrinkled prude.

On the more security-conscious sites, running all CGI scripts under the -T flag isn’t
just a good a idea: it’s the law. We’r e not claiming that running in taint mode is
suf ficient to make your script secure. It’s not, and it would take a whole book just
to mention everything that would. But if you aren’t executing your CGI scripts
under taint mode, you’ve needlessly abandoned the strongest protection Perl can
give you.

While in taint mode, Perl takes special precautions called taint checks to prevent
traps both obvious and subtle. Some of these checks are reasonably simple, such
as verifying that dangerous environment variables aren’t set and that directories in
your path aren’t writable by others; careful programmers have always used checks
like these. Other checks, however, are best supported by the language itself, and it
is these checks especially that contribute to making a privileged Perl program
mor e secur e than the corresponding C program, or a Perl CGI script more secur e
than one written in any language without taint checks. (Which, as far as we know,
is any language other than Perl.)

The principle is simple: you may not use data derived from outside your program
to affect something else outside your program — at least, not by accident. Anything
that comes from outside your program is marked as tainted, including all com-
mand-line arguments, environment variables, and file input. Tainted data may not
be used directly or indirectly in any operation that invokes a subshell, nor in any
operation that modifies files, directories, or processes. Any variable set within an
expr ession that has previously refer enced a tainted value becomes tainted itself,
even if it is logically impossible for the tainted value to influence the variable.
Because taintedness is associated with each scalar, some individual values in an
array or hash might be tainted and others might not. (Only the values in a hash
can be tainted, though, not the keys.)

The following code illustrates how tainting would work if you executed all these
statements in order. Statements marked “Insecure” will trigger an exception,
wher eas those that are “OK” will not.

Handling Insecure Data 559

560 Chapter 23: Security

$arg = shift(@ARGV); # $arg is now tainted (due to @ARGV).
$hid = "$arg, ’bar’"; # $hid also tainted (due to $arg).
$line = <>; # Tainted (reading from external file).
$path = $ENV{PATH}; # Tainted due to %ENV, but see below.
$mine = ’abc’; # Not tainted.

system "echo $mine"; # Insecure until PATH set.
system "echo $arg"; # Insecure: uses sh with tainted $arg.
system "echo", $arg; # OK once PATH set (doesn’t use sh).
system "echo $hid"; # Insecure two ways: taint, PATH.

$oldpath = $ENV{PATH}; # $oldpath is tainted (due to $ENV).
$ENV{PATH} = ’/bin:/usr/bin’; # (Makes it OK to execute other programs.)
$newpath = $ENV{PATH}; # $newpath is NOT tainted.

delete @ENV{qw{IFS
CDPATH
ENV
BASH_ENV}}; # Makes %ENV safer.

system "echo $mine"; # OK, is secure once path is reset.
system "echo $hid"; # Insecure via tainted $hid.

open(OOF, "< $arg"); # OK (read-only opens not checked).
open(OOF, "> $arg"); # Insecure (trying to write to tainted arg).

open(OOF, "echo $arg|") # Insecure due to tainted $arg, but...
or die "can’t pipe from echo: $!";

open(OOF,"-|") # Considered OK: see below for taint
or exec "echo", $arg # exemption on exec’ing a list.
or die "can’t exec echo: $!";

open(OOF,"-|", "echo", $arg # Same as previous, likewise OKish.
or die "can’t pipe from echo: $!";

$shout = ‘echo $arg‘; # Insecure via tainted $arg.
$shout = ‘echo abc‘; # $shout is tainted due to backticks.
$shout2 = ‘echo $shout‘; # Insecure via tainted $shout.

unlink $mine, $arg; # Insecure via tainted $arg.
umask $arg; # Insecure via tainted $arg.

exec "echo $arg"; # Insecure via tainted $arg passed to shell.
exec "echo", $arg; # Considered OK! (But see below.)
exec "sh", ’-c’, $arg; # Considered OK, but isn’t really!

If you try to do something insecure, you get an exception (which unless trapped,
becomes a fatal error) such as “Insecure dependency” or “Insecure $ENV{PATH}”.
See the section “Cleaning Up Your Environment” later.

If you pass a LIST to a system, exec, or pipe open, the arguments are not inspected
for taintedness, because with a LIST of arguments, Perl doesn’t need to invoke the
potentially dangerous shell to run the command. You can still easily write an inse-
cur e system, exec, or pipe open using the LIST for m, as demonstrated in the final
example above. These forms are exempt from checking because you are pre-
sumed to know what you’re doing when you use them.

Sometimes, though, you can’t tell how many arguments you’re passing. If you sup-
ply these functions with an array* that contains just one element, then it’s just as
though you passed one string in the first place, so the shell might be used. The
solution is to pass an explicit path in the indirect-object slot:

system @args; # Won’t call the shell unless @args == 1.
system { $args[0] } @args; # Bypasses shell even with one-argument list.

Detecting and Laundering Tainted Data
To test whether a scalar variable contains tainted data, you can use the following
is_tainted function. It makes use of the fact that eval STRING raises an exception
if you try to compile tainted data. It doesn’t matter that the $nada variable used in
the expression to compile will always be empty; it will still be tainted if $arg is
tainted. The outer eval BLOCK isn’t doing any compilation. It’s just there to catch
the exception raised if the inner eval is given tainted data. Since the $@ variable is
guaranteed to be nonempty after each eval if an exception was raised and empty
otherwise, we retur n the result of testing whether its length was zero:

sub is_tainted {
my $arg = shift;
my $nada = substr($arg, 0, 0); # zero-length
local $@; # preserve caller’s version
eval { eval "# $nada" };
return length($@) != 0;

}

But testing for taintedness only gets you so far. Usually you know perfectly well
which variables contain tainted data—you just have to clear the data’s taintedness.
The only official way to bypass the tainting mechanism is by refer encing sub-
matches retur ned by an earlier regular expression match.† When you write a pat-
ter n that contains capturing parentheses, you can access the captured substrings
thr ough match variables like $1, $2, and $+, or by evaluating the pattern in list
context. Either way, the presumption is that you knew what you were doing when

* Or a function that produces a list.

† An unof ficial way is by storing the tainted string as the key to a hash and fetching back that key.
Because keys aren’t really full SVs (internal name scalar values), they don’t carry the taint property.
This behavior may be changed someday, so don’t rely on it. Be careful when handling keys, lest you
unintentionally untaint your data and do something unsafe with them.

Handling Insecure Data 561

562 Chapter 23: Security

you wrote the pattern and wrote it to weed out anything dangerous. So you need
to give it some real thought—never blindly untaint, or else you defeat the entire
mechanism.

It’s better to verify that the variable contains only good characters than to check
whether it contains any bad characters. That’s because it’s far too easy to miss bad
characters that you never thought of. For example, here’s a test to make sure
$string contains nothing but “word” characters (alphabetics, numerics, and under-
scor es), hyphens, at signs, and dots:

if ($string =˜ /ˆ([-\@\w.]+)$/) {
$string = $1; # $string now untainted.

}
else {

die "Bad data in $string"; # Log this somewhere.
}

This renders $string fairly secure to use later in an external command, since /\w+/

doesn’t normally match shell metacharacters, nor are those other characters going
to mean anything special to the shell.* Had we used /(.+)/s instead, it would
have been unsafe because that pattern lets everything through. But Perl doesn’t
check for that. When untainting, be exceedingly careful with your patterns. Laun-
dering data by using regular expressions is the only appr oved inter nal mechanism
for untainting dirty data. And sometimes it’s the wrong approach entirely. If you’re
in taint mode because you’re running set-id and not because you intentionally
tur ned on -T, you can reduce your risk by forking a child of lesser privilege; see
the section “Cleaning Up Your Environment”.

The use re ’taint’ pragma disables the implicit untainting of any pattern matches
thr ough the end of the current lexical scope. You might use this pragma if you just
want to extract a few substrings from some potentially tainted data, but since you
ar en’t being mindful of security, you’d prefer to leave the substrings tainted to
guard against unfortunate accidents later.

Imagine you’re matching something like this, where $fullpath is tainted:

($dir, $file) = $fullpath =˜ m!(.*/)(.*)!s;

By default, $dir and $file would now be untainted. But you probably didn’t want
to do that so cavalierly, because you never really thought about the security issues.
For example, you might not be terribly happy if $file contained the string “; rm

-rf * ;”, just to name one rather egregious example. The following code leaves
the two result variables tainted if $fullpath was tainted:

* Unless you were using an intentionally broken locale. Perl assumes that your system’s locale defini-
tions are potentially compromised. Hence, when running under the use locale pragma, patterns
with a symbolic character class in them, such as \w or [[:alpha:]], produce tainted results.

{
use re ’taint’;
($dir, $file) = $fullpath =˜ m!(.*/)(.*)!s;

}

A good strategy is to leave submatches tainted by default over the whole source
file and only selectively permit untainting in nested scopes as needed:

use re ’taint’;
remainder of file now leaves $1 etc tainted
{

no re ’taint’;
this block now untaints re matches
if ($num =˜ /ˆ(\d+)$/) {

$num = $1;
}

}

Input from a filehandle or a directory handle is automatically tainted, except when
it comes from the special filehandle, DATA. If you want to, you can mark other han-
dles as trusted sources via the IO::Handle module’s untaint function:

use IO::Handle;

IO::Handle::untaint(*SOME_FH); # Either procedurally
SOME_FH->untaint(); # or using the OO style.

Turning off tainting on an entire filehandle is a risky move. How do you really
know it’s safe? If you’re going to do this, you should at least verify that nobody
but the owner can write to the file.* If you’re on a Unix filesystem (and one that
prudently restricts chown (2) to the superuser), the following code works:

use File::stat;
use Symbol ’qualify_to_ref’;
sub handle_looks_safe(*) {

my $fh = qualify_to_ref(shift, caller);
my $info = stat($fh);
return unless $info;

owner neither superuser nor "me", whose
real uid is in the $< variable
if ($info->uid != 0 && $info->uid != $<) {

return 0;
}

check whether group or other can write file.
use 066 to detect for readability also
if ($info->mode & 022) {

return 0;

* Although you can untaint a directory handle, too, this function only works on a filehandle. That’s
because given a directory handle, there’s no portable way to extract its file descriptor to stat.

Handling Insecure Data 563

564 Chapter 23: Security

}
return 1;

}

use IO::Handle;
SOME_FH->untaint() if handle_looks_safe(*SOME_FH);

We called stat on the filehandle, not the filename, to avoid a dangerous race con-
dition. See the section “Handling Race Conditions” later in this chapter.

Note that this routine is only a good start. A slightly more paranoid version would
check all parent directories as well, even though you can’t reliably stat a dir ectory
handle. But if any parent directory is world-writable, you know you’re in trouble
whether or not there are race conditions.

Perl has its own notion of which operations are danger ous, but it’s still possible to
get into trouble with other operations that don’t care whether they use tainted val-
ues. It’s not always enough to be careful of input. Perl output functions don’t test
whether their arguments are tainted, but in some environments, this matters. If you
ar en’t car eful of what you output, you might just end up spitting out strings that
have unexpected meanings to whoever is processing the output. If you’re running
on a terminal, special escape and control codes could cause the viewer’s terminal
to act strangely. If you’re in a web environment and you blindly spit back out data
that was given to you, you could unknowingly produce HTML tags that would
drastically alter the page’s appearance. Worse still, some markup tags can even
execute code back on the browser.

Imagine the common case of a guest book where visitors enter their own mes-
sages to be displayed when others come calling. A malicious guest could supply
unsightly HTML tags or put in <SCRIPT>...</SCRIPT> sequences that execute code
(like JavaScript) back in the browsers of subsequent guests.

Just as you should carefully check for only good characters when inspecting
tainted data that accesses resources on your own system, you should apply the
same care in a web environment when presenting data supplied by a user. For
example, to strip the data of any character not in the specified list of good charac-
ters, try something like this:

$new_guestbook_entry =˜ tr[_a-zA-Z0-9 ,./!?()@+*-][]dc;

You certainly wouldn’t use that to clean up a filename, since you probably don’t
want filenames with spaces or slashes, just for starters. But it’s enough to keep
your guest book free of sneaky HTML tags and entities. Each data-laundering case
is a little bit differ ent, so always spend time deciding what is and what is not per-
mitted. The tainting mechanism is intended to catch stupid mistakes, not to
remove the need for thought.

Cleaning Up Your Environment
When you execute another program from within your Perl script, no matter how,
Perl checks to make sure your PATH envir onment variable is secure. Since it came
fr om your environment, your PATH starts out tainted, so if you try to run another
pr ogram, Perl raises an “Insecure $ENV{PATH}” exception. When you set it to a
known, untainted value, Perl makes sure that each directory in that path is non-
writable by anyone other than the directory’s owner and group; otherwise, it raises
an “Insecure directory” exception.

You may be surprised to find that Perl cares about your PATH even when you spec-
ify the full pathname of the command you want to execute. It’s true that with an
absolute filename, the PATH isn’t used to find the executable to run. But there’s no
reason to trust the program you’re running not to turn right around and execute
some other pr ogram and get into trouble because of the insecure PATH. So Perl
forces you to set a secure PATH befor e you call any program, no matter how you
say to call it.

The PATH isn’t the only environment variable that can bring grief. Because some
shells use the variables IFS, CDPATH, ENV, and BASH_ENV, Perl makes sure that those
ar e all either empty or untainted before it will run another command. Either set
these variables to something known to be safe, or else delete them from the envi-
ronment altogether:

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV safer

Featur es convenient in a normal environment can become security concerns in a
hostile one. Even if you remember to disallow filenames containing newlines, it’s
important to understand that open accesses more than just named files. Given
appr opriate or namentation on the filename argument, one- or two-argument calls
to open can also run arbitrary external commands via pipes, fork extra copies of
the current process, duplicate file descriptors, and interpret the special filename
“-” as an alias for standard input or output. It can also ignore leading and trailing
whitespace that might disguise such fancy arguments from your check patterns.
While it’s true that Perl’s taint checking will catch tainted arguments used for pipe
opens (unless you use a separated argument list) and any file opens that aren’t
read-only, the exception this raises is still likely to make your program misbehave.

If you intend to use any externally derived data as part of a filename to open, at
least include an explicit mode separated by a space. It’s probably safest, though,
to use either the low-level sysopen or the three-argument form of open:

Magic open--could be anything
open(FH, $file) or die "can’t magic open $file: $!";

Handling Insecure Data 565

566 Chapter 23: Security

Guaranteed to be a read-only file open and not a pipe
or fork, but still groks file descriptors and "-",
and ignores whitespace at either end of name.
open(FH, "< $file") or die "can’t open $file: $!";

WYSIWYG open: disables all convenience features.
open(FH, "<", $file) or die "can’t open $file: $!";

Same properties as WYSIWYG 3-arg version.
require Fcntl;
sysopen(FH, $file, O_RDONLY) or die "can’t sysopen $file: $!";

Even these steps aren’t quite good enough. Perl doesn’t prevent you from opening
tainted filenames for reading, so you need to be careful of what you show people.
A program that opens an arbitrary, user-supplied filename for reading and then
reveals that file’s contents is still a security problem. What if it’s a private letter?
What if it’s your system password file? What if it’s salary information or your stock
portfolio?

Look closely at filenames provided by a potentially hostile user* befor e opening
them. For example, you might want to verify that there are no sneaky directory
components in the path. Names like “../../../../../../../etc/passwd” are noto-
rious tricks of this sort. You can protect yourself by making sure ther e ar e no
slashes in the pathname (assuming that’s your system’s directory separator).
Another common trick is to put newlines or semicolons into filenames that will
later be interpreted by some poor, witless command-line interpreter that can be
fooled into starting a new command in the middle of the filename. This is why
taint mode discourages uninspected external commands.

Accessing Commands and Files Under
Reduced Privileges
The following discussion pertains to some nifty security facilities of Unix-like sys-
tems. Users of other systems may safely (or rather, unsafely) skip this section.

If you’re running set-id, try to arrange that, whenever possible, you do dangerous
operations with the privileges of the user, not the privileges of the program. That
is, whenever you’re going to call open, sysopen, system, backticks, and any other
file or process operations, you can protect yourself by setting your effective UID
or GID back to the real UID or GID. In Perl, you can do this for setuid scripts by
saying $> = $< (or $EUID = $UID if you use English) and for setgid scripts by say-
ing $(= $) ($EGID = $GID). If both IDs are set, you should reset both. However,

* And on the Net, the only users you can trust not to be potentially hostile are the ones who are being
actively hostile instead.

sometimes this isn’t feasible, because you might still need those increased privi-
leges later in your program.

For those cases, Perl provides a reasonably safe way to open a file or pipe from
within a set-id program. First, fork a child using the special open syntax that con-
nects the parent and child by a pipe. In the child, reset the user and group IDs
back to their original or known safe values. You also get to modify any of the
child’s per-pr ocess attributes without affecting the parent, letting you change the
working directory, set the file creation mask, or fiddle with environment variables.
No longer executing under extra privileges, the child process at last calls open and
passes whatever data it manages to access on behalf of the mundane but
demented user back up to its powerful but justly paranoid parent.

Even though system and exec don’t use the shell when you supply them with
mor e than one argument, the backtick operator admits no such alternative calling
convention. Using the forking technique, we easily emulate backticks without fear
of shell escapes, and with reduced (and therefor e safer) privileges:

use English; # to use $UID, etc
die "Can’t fork open: $!" unless defined($pid = open(FROMKID, "-|"));
if ($pid) { # parent

while (<FROMKID>) {
do something

}
close FROMKID;

}
else {

$EUID = $UID; # setuid(getuid())
$EGID = $GID; # setgid(getgid()), and initgroups(2) on getgroups(2)
chdir("/") or die "can’t chdir to /: $!";
umask(077);
$ENV{PATH} = "/bin:/usr/bin";
exec ’myprog’, ’arg1’, ’arg2’;
die "can’t exec myprog: $!";

}

This is by far the best way to call other programs from a set-id script. You make
sur e never to use the shell to execute anything, and you drop your privileges
befor e you yourself exec the program. (But because the list forms of system, exec,
and pipe open ar e specifically exempted from taint checks on their arguments, you
must still be careful of what you pass in.)

If you don’t need to drop privileges, and just want to implement backticks or a
pipe open without risking the shell intercepting your arguments, you could use
this:

open(FROMKID, "-|") or exec("myprog", "arg1", "arg2")
or die "can’t run myprog: $!";

Handling Insecure Data 567

568 Chapter 23: Security

and then just read from FROMKID in the parent. As of the 5.6.1 release of Perl, you
can write that as:

open(FROMKID, "-|", "myprog", "arg1", "arg2");

The forking technique is useful for more than just running commands from a set-id
pr ogram. It’s also good for opening files under the ID of whoever ran the pro-
gram. Suppose you had a setuid program that needed to open a file for writing.
You don’t want to run the open under your extra privileges, but you can’t perma-
nently drop them, either. So arrange for a forked copy that’s dropped its privileges
to do the open for you. When you want to write to the file, write to the child, and
it will then write to the file for you.

use English;

defined ($pid = open(SAFE_WRITER, "|-"))
or die "Can’t fork: $!";

if ($pid) {
you’re the parent. write data to SAFE_WRITER child
print SAFE_WRITER "@output_data\n";
close SAFE_WRITER

or die $! ? "Syserr closing SAFE_WRITER writer: $!"
: "Wait status $? from SAFE_WRITER writer";

}
else {

you’re the child, so drop extra privileges
($EUID, $EGID) = ($UID, $GID);

open the file under original user’s rights
open(FH, "> /some/file/path")

or die "can’t open /some/file/path for writing: $!";

copy from parent (now stdin) into the file
while (<STDIN>) {

print FH $_;
}
close(FH) or die "close failed: $!";
exit; # Don’t forget to make the SAFE_WRITER disappear.

}

Upon failing to open the file, the child prints an error message and exits. When
the parent writes to the now-defunct child’s filehandle, it triggers a broken pipe
signal (SIGPIPE), which is fatal unless trapped or ignored. See the section “Signals”
in Chapter 16, Interpr ocess Communication.

Handling Timing Glitches
Sometimes your program’s behavior is exquisitely sensitive to the timing of exter-
nal events beyond your control. This is always a concern when other programs,
particularly inimical ones, might be vying with your program for the same
resources (such as files or devices). In a multitasking environment, you cannot
pr edict the order in which processes waiting to run will be granted access to the
pr ocessor. Instruction streams among all eligible processes are interleaved, so first
one process gets some CPU, and then another process, and so on. Whose turn it is
to run, and how long they’re allowed to run, appears to be random. With just one
pr ogram that’s not a problem, but with several programs sharing common
resources, it can be.

Thr ead pr ogrammers ar e especially sensitive to these issues. They quickly learn
not to say:

$var++ if $var == 0;

when they should say:

{
lock($var);
$var++ if $var == 0;

}

The former produces unpredictable results when multiple execution threads
attempt to run this code at the same time. (See Chapter 17, Thr eads.) If you think
of files as shared objects, and processes as threads contending for access to those
shar ed objects, you can see how the same issues arise. A process, after all, is really
just a thread with an attitude. Or vice versa.

Timing unpredictabilities affect both privileged and nonprivileged situations. We’ll
first describe how to cope with a long-standing bug in old Unix kernels that
af fects any set-id program. Then we’ll move on to discuss race conditions in gen-
eral, how they can turn into security holes, and steps you can take to avoid falling
into these holes.

Unix Ker nel Secur ity Bugs
Beyond the obvious problems that stem from giving special privileges to inter-
pr eters as flexible and inscrutable as shells, older versions of Unix have a kernel
bug that makes any set-id script insecure befor e it ever gets to the interpreter. The
pr oblem is not the script itself, but a race condition in what the kernel does when
it finds a set-id executable script. (The bug doesn’t exist on machines that don’t

Handling Timing Glitches 569

570 Chapter 23: Security

recognize #! in the kernel.) When a kernel opens such a file to see which inter-
pr eter to run, there’s a delay before the (now set-id) interpreter starts up and
reopens the file. That delay gives malicious entities a chance to change the file,
especially if your system supports symbolic links.

Fortunately, sometimes this kernel “feature” can be disabled. Unfortunately, there
ar e a couple of differ ent ways to disable it. The system can outlaw scripts with the
set-id bits set, which doesn’t help much. Alternatively, it can ignore the set-id bits
on scripts. In the latter case, Perl can emulate the setuid and setgid mechanism
when it notices the (otherwise useless) set-id bits on Perl scripts. It does this via a
special executable called suidperl, which is automatically invoked for you if it’s
needed.*

However, if the kernel set-id script feature isn’t disabled, Perl will complain loudly
that your setuid script is insecure. You’ll either need to disable the kernel set-id
script “feature”, or else put a C wrapper around the script. A C wrapper is just a
compiled program that does nothing except call your Perl program. Compiled pro-
grams are not subject to the kernel bug that plagues set-id scripts.

Her e’s a simple wrapper, written in C:

#define REAL_FILE "/path/to/script"
main(ac, av)

char **av;
{

execv(REAL_FILE, av);
}

Compile this wrapper into an executable image and then make it rather than your
script set-id. Be sure to use an absolute filename, since C isn’t smart enough to do
taint checking on your PATH.

(Another possible approach is to use the experimental C code generator for the
Perl compiler. A compiled image of your script will not have the race condition.
See Chapter 18, Compiling.)

Vendors in recent years have finally started to provide systems free of the set-id
bug. On such systems, when the kernel gives the name of the set-id script to the
interpr eter, it no longer uses a filename subject to meddling, but instead passes a
special file repr esenting the file descriptor, like /dev/fd/3. This special file is
alr eady opened on the script so that there can be no race condition for evil scripts

* Needed and per mitted—if Perl detects that the filesystem on which the script resides was mounted
with the nosuid option, that option will still be honored. You can’t use Perl to sneak around your
sysadmin’s security policy this way.

to exploit.* Most modern versions of Unix use this approach to avoid the race con-
dition inherent in opening the same filename twice.

Handling Race Conditions
Which runs us right into the topic of race conditions. What are they really? Race
conditions turn up frequently in security discussions. (Although less often than
they turn up in insecur e pr ograms. Unfortunately.) That’s because they’re a fertile
source of subtle programming errors, and such errors can often be turned into
security exploits (the polite term for screwing up someone’s security). A race con-
dition exists when the result of several interrelated events depends on the ordering
of those events, but that order cannot be guaranteed due to nondeterministic tim-
ing effects. Each event races to be the first one done, and the final state of the sys-
tem is anybody’s guess.

Imagine you have one process overwriting an existing file, and another process
reading that same file. You can’t predict whether you read in old data, new data,
or a haphazard mixture of the two. You can’t even know whether you’ve read all
the data. The reader could have won the race to the end of the file and quit.
Meanwhile, if the writer kept going after the reader hit end-of-file, the file would
gr ow past where the reader stopped reading, and the reader would never know it.

Her e the solution is simple: just have both parties flock the file. The reader typi-
cally requests a shared lock, and the writer typically requests an exclusive one. So
long as all parties request and respect these advisory locks, reads and writes can-
not be interleaved, and there’s no chance of mutilated data. See the section “File
Locking” in Chapter 16.

You risk a far less obvious form of race condition every time you let operations on
a filename govern subsequent operations on that file. When used on filenames
rather than filehandles, the file test operators repr esent something of a garden path
leading straight into a race condition. Consider this code:

if (-e $file) {
open(FH, "< $file")

or die "can’t open $file for reading: $!";
}
else {

open(FH, "> $file")
or die "can’t open $file for writing: $!";

}

* On these systems, Perl should be compiled with -DSETUID_SCRIPTS_ARE_SECURE_NOW. The Configur e
pr ogram that builds Perl tries to figure this out for itself, so you should never have to specify this
explicitly.

Handling Timing Glitches 571

572 Chapter 23: Security

The code looks just about as straightforward as it gets, but it’s still subject to races.
Ther e’s no guarantee that the answer retur ned by the -e test will still be valid by
the time either open is called. In the if block, another process could have
removed the file before it could be opened, and you wouldn’t find the file you
thought was going to be there. In the else block, another process could have cre-
ated the file before the second open could get its turn to create the file, so the file
that you thought would not be there, would be. The simple open function creates
new files but overwrites existing ones. You may think you want to overwrite any
existing file, but consider that the existing file might be a newly created alias or
symbolic link to a file elsewhere on the system that you very much don’t want to
overwrite. You may think you know what a filename means at any particular
instant, but you can never really be sure, as long as any other processes with
access to the file’s directory are running on the same system.

To fix this problem of overwriting, you’ll need to use sysopen, which provides
individual controls over whether to create a new file or to clobber an existing one.
And we’ll ditch that -e file existence test since it serves no useful purpose here
and only increases our exposure to race conditions.

use Fcntl qw/O_WRONLY O_CREAT O_EXCL/;
open(FH, "<", $file)

or sysopen(FH, $file, O_WRONLY | O_CREAT | O_EXCL)
or die "can’t create new file $file: $!";

Now even if the file somehow springs into existence between when open fails and
when sysopen tries to open a new file for writing, no harm is done, because with
the flags provided, sysopen will refuse to open a file that already exists.

If someone is trying to trick your program into misbehaving, there’s a good chance
they’ll go about it by having files appear and disappear when you’re not expect-
ing. One way to reduce the risk of deception is by promising yourself you’ll never
operate on a filename more than once. As soon as you have the file opened, for-
get about the filename (except maybe for error messages), and operate only on
the handle repr esenting the file. This is much safer because, even though someone
could play with your filenames, they can’t play with your filehandles. (Or if they
can, it’s because you let them—see “Passing Filehandles” in Chapter 16.)

Earlier in this chapter, we showed a handle_looks_safe function which called
Perl’s stat function on a filehandle (not a filename) to check its ownership and
per missions. Using the filehandle is critical to correctness — if we had used the
name of the file, there would have been no guarantee that the file whose
attributes we were inspecting was the same one we just opened (or were about to
open). Some pesky evil doer could have deleted our file and quickly replaced it

with a file of nefarious design, sometime between the stat and the open. It
wouldn’t matter which was called first; there’d still be the opportunity for foul play
between the two. You may think that the risk is very small because the window is
very short, but there are many cracking scripts out in the world that will be per-
fectly happy to run your program thousands of times to catch it the one time it
wasn’t careful enough. A smart cracking script can even lower the priority of your
pr ogram so it gets interrupted more often than usual, just to speed things up a lit-
tle. People work hard on these things—that’s why they’re called exploits.

By calling stat on a filehandle that’s already open, we only access the filename
once and so avoid the race condition. A good strategy for avoiding races between
two events is to somehow combine both into one, making the operation atomic.*

Since we access the file by name only once, there can’t be any race condition
between multiple accesses, so it doesn’t matter whether the name changes. Even if
our cracker deletes the file we opened (yes, that can happen) and puts a differ ent
one there to trick us with, we still have a handle to the real, original file.

Temporar y Files
Apart from allowing buffer overruns (which Perl scripts are virtually immune to)
and trusting untrustworthy input data (which taint mode guards against), creating
temporary files improperly is one of the most frequently exploited security holes.
Fortunately, temp file attacks usually requir e crackers to have a valid user account
on the system they’re trying to crack, which drastically reduces the number of
potential bad guys.

Car eless or casual programs use temporary files in all kinds of unsafe ways, like
placing them in world-writable directories, using predictable filenames, and not
making sure the file doesn’t already exist. Whenever you find a program with code
like this:

open(TMP, ">/tmp/foo.$$")
or die "can’t open /tmp/foo.$$: $!";

you’ve just found all three of those errors at once. That program is an accident
waiting to happen.

The way the exploit plays out is that the cracker first plants a file with the same
name as the one you’ll use. Appending the PID isn’t enough for uniqueness; sur-

* Yes, you may still perfor m atomic operations in a nuclear-fr ee zone. When Democritus gave the
word “atom” to the indivisible bits of matter, he meant literally something that could not be cut: a-
(not) + tomos (cuttable). An atomic operation is an action that can’t be interrupted. (Just you try
interrupting an atomic bomb sometime.)

Handling Timing Glitches 573

574 Chapter 23: Security

prising though it may sound, guessing PIDs really isn’t difficult.* Now along comes
the program with the careless open call, and instead of creating a new temporary
file for its own purposes, it overwrites the cracker’s file instead.

So what harm can that do? A lot. The cracker’s file isn’t really a plain file, you see.
It’s a symbolic link (or sometimes a hard link), probably pointing to some critical
file that crackers couldn’t normally write to on their own, such as /etc/passwd. The
pr ogram thought it opened a brand new file in /tmp, but it clobbered an existing
file somewhere else instead.

Perl provides two functions that address this issue, if properly used. The first is
POSIX::tmpnam, which just retur ns a filename that you’re expected to open for
yourself:

Keep trying names until we get one that’s brand new.
use POSIX;
do {

$name = tmpnam();
} until sysopen(TMP, $name, O_RDWR | O_CREAT | O_EXCL, 0600);
Now do I/O using TMP handle.

The second is IO::File::new_tmpfile, which gives you back an already opened
handle:

Or else let the module do that for us.
use IO::File;
my $fh = IO::File::new_tmpfile(); # this is POSIX’s tmpfile(3)
Now do I/O using $fh handle.

Neither approach is perfect, but of the two, the first is the better approach. The
major problem with the second one is that Perl is subject to the foibles of what-
ever implementation of tmpfile (3) happens to be in your system’s C library, and
you have no guarantee that this function doesn’t do something just as dangerous
as the open we’r e trying to fix. (And some, sadly enough, do.) A minor problem is
that it doesn’t give you the name of the file at all. Although it’s better if you can
handle a temp file without a name—because that way you’ll never provoke a race
condition by trying to open it again—often you can’t.

The major problem with the first approach is that you have no control over the
location of the pathname, as you do with the C library’s mkstemp (3) function. For
one thing, you never want to put the file on an NFS-mounted filesystem. The
O_EXCL flag is not guaranteed to work correctly under NFS, so multiple processes
that request an exclusive create at nearly the same time might all succeed. For
another, because the path retur ned is probably in a directory others can write to,
someone could plant a symbolic link pointing to a nonexistent file, forcing you to

* Unless you’re on a system like OpenBSD, which randomizes new PID assignments.

cr eate your file in a location they prefer.* If you have any say in it, don’t put temp
files in a directory that anyone else can write to. If you must, make sure to use the
O_EXCL flag to sysopen, and try to use directories with the owner-delete-only flag
(the sticky bit) set on them.

As of version 5.6.1 of Perl, there is a third way. The standard File::Temp module
takes into account all the difficulties we’ve mentioned. You might use the default
options like this:

use File::Temp "tempfile";
$handle = tempfile();

Or you might specify some of the options like this:

use File::Temp "tempfile";
($handle, $filename) = tempfile("plughXXXXXX",

DIR => "/var/spool/adventure",
SUFFIX = ’.dat’);

The File::Temp module also provides security-conscious emulations of the other
functions we’ve mentioned (though the native interface is better because it gives
you an opened filehandle, not just a filename, which is subject to race conditions).
See Chapter 32, Standar d Modules, for a longer description of the options and
semantics of this module.

Once you have your filehandle, you can do whatever you want with it. It’s open
for both reading and writing, so you can write to the handle, seek back to the
beginning, and then if you want, overwrite what you’d just put there or read it
back again. The thing you really, really want to avoid doing is ever opening that
filename again, because you can’t know for sure that it’s really the same file you
opened the first time around.†

When you launch another program from within your script, Perl normally closes
all filehandles for you to avoid another vulnerability. If you use fcntl to clear your
close-on-exec flag (as demonstrated at the end of the entry on open in Chapter 29,
Functions), other programs you call will inherit this new, open file descriptor. On
systems that support the /dev/fd/ dir ectory, you could provide another program
with a filename that really means the file descriptor by constructing it this way:

$virtname = "/dev/fd/" . fileno(TMP);

* A solution to this, which works only under some operating systems, is to call sysopen and OR in the
O_NOFOLLOW flag. This makes the function fail if the final component of the path is a symbolic link.

† Except afterwards by doing a stat on both filehandles and comparing the first two retur n values of
each (the device/inode pair). But it’s too late by then because the damage is already done. All you
can do is detect the damage and abort (and maybe sneakily send email to the system administrator).

Handling Timing Glitches 575

576 Chapter 23: Security

If you only needed to call a Perl subroutine or program that’s expecting a filename
as an argument, and you knew that subroutine or program used regular open for it,
you could pass the handle using Perl’s notation for indicating a filehandle:

$virtname = "=&" . fileno(TMP);

When that file “name” is passed with a regular Perl open of one or two arguments
(not three, which would dispel this useful magic), you gain access to the dupli-
cated descriptor. In some ways, this is more portable than passing a file from
/dev/fd/, because it works everywhere that Perl works; not all systems have a
/dev/fd/ dir ectory. On the other hand, the special Perl open syntax for accessing file
descriptors by number works only with Perl programs, not with programs written
in other languages.

Handling Insecure Code
Taint checking is just the sort of security blanket you need if you want to catch
bogus data you ought to have caught yourself, but didn’t think to catch before
passing off to the system. It’s a bit like the optional warnings Perl can give you—
they may not indicate a real problem, but on average the pain of dealing with the
false positives is less than the pain of not dealing with the false negatives. With
tainting, the latter pain is even more insistent, because using bogus data doesn’t
just give the wrong answers; it can blow your system right out of the water, along
with your last two years of work. (And maybe your next two, if you didn’t make
good backups.) Taint mode is useful when you trust yourself to write honest code
but don’t necessarily trust whoever is feeding you data not to try to trick you into
doing something regr ettable.

Data is one thing. It’s quite another matter when you don’t even trust the code
you’r e running. What if you fetch an applet off the Net and it contains a virus, or a
time bomb, or a Trojan horse? Taint checking is useless here because the data
you’r e feeding the program may be fine—it’s the code that’s untrustworthy. You’r e
placing yourself in the position of someone who receives a mysterious device
fr om a stranger, with a note that says, “Just hold this to your head and pull the
trigger.” Maybe you think it will dry your hair, but you might not think so for very
long.

In this realm, prudence is synonymous with paranoia. What you want is a system
that lets you impose a quarantine on suspicious code. The code can continue to
exist, and even perfor m certain functions, but you don’t let it wander around
doing just anything it feels like. In Perl, you can impose a kind of quarantine using
the Safe module.

Safe Compar tments
The Safe module lets you set up a sandbox, a special compartment in which all
system operations are trapped, and namespace access is carefully controlled. The
low-level, technical details of this module are in a state of flux, so here we’ll take a
mor e philosophical approach.

Restr icting namespace access

At the most basic level, a Safe object is like a safe, except the idea is to keep the
bad people in, not out. In the Unix world, there is a syscall known as chr oot (2)
that can permanently consign a process to running only in a subdirectory of the
dir ectory structur e—in its own private little hell, if you will. Once the process is
put there, there is no way for it to reach files outside, because there’s no way for it
to name files outside.* A Safe object is a little like that, except that instead of
being restricted to a subset of the filesystem’s directory structure, it’s restricted to a
subset of Perl’s package structure, which is hierarchical just as the filesystem is.

Another way to look at it is that the Safe object is like one of those observation
rooms with one-way mirrors that the police put suspicious characters into. People
on the outside can look into the room, but those inside can’t see out.

When you create a Safe object, you may give it a package name if you want. If
you don’t, a new one will be chosen for you:

use Safe;
my $sandbox = Safe->new("Dungeon");
$Dungeon::foo = 1; # Direct access is discouraged, though.

If you fully qualify variables and functions using the package name supplied to the
new method, you can access them in that package from the outside, at least in the
curr ent implementation. This may change however, since the current plan is to
clone the symbol table into a new interpreter. Slightly more upward compatible
might be to set things up first before creating the Safe, as shown below. This is
likely to continue working and is a handy way to set up a Safe that has to start off
with a lot of “state”. (Admittedly, $Dungeon::foo isn’t a lot of state.)

use Safe;
$Dungeon::foo = 1; # Still direct access, still discouraged.
my $sandbox = Safe->new("Dungeon");

* Some sites do this for executing all CGI scripts, using loopback, read-only mounts. It’s something of
a pain to set up, but if someone ever escapes, they’ll find there’s nowhere to go.

Handling Insecure Code 577

578 Chapter 23: Security

But Safe also provides a way to access the compartment’s globals even if you
don’t know the name of the compartment’s package. So for maximal upward com-
patibility (though less than maximal speed), we suggest you use the reval method:

use Safe;
my $sandbox = Safe->new();
$sandbox->reval(’$foo = 1’);

(In fact, that’s the same method you’ll use to run suspicious code.) When you pass
code into the compartment to compile and run, that code thinks that it’s really liv-
ing in the main package. What the outside world calls $Dungeon::foo, the code
inside thinks of as $main::foo, or $::foo, or just $foo if you aren’t running under
use strict. It won’t work to say $Dungeon::foo inside the compartment, because
that would really access $Dungeon::Dungeon::foo. By giving the Safe object its
own notion of main, variables and subroutines in the rest of your program are pro-
tected.

To compile and run code inside the compartment, use the reval (“r estricted eval”)
method, passing the code string as its argument. Just as with any other eval STRING
construct, compilation errors and run-time exceptions in reval don’t kill your pro-
gram. They just abort the reval and leave the exception in $@, so make sure to
check it after every reval call.

Using the initializations given earlier, this code will print out that “foo is now 2”:

$sandbox->reval(’$foo++; print "foo is now $main::foo\n"’);
if ($@) {

die "Couldn’t compile code in box: $@";
}

If you just want to compile code and not run it, wrap your string in a subroutine
declaration:

$sandbox->reval(q{
our $foo;
sub say_foo {

print "foo is now $main::foo\n";
}

}, 1);
die if $@; # check compilation

This time we passed reval a second argument which, since it’s true, tells reval to
compile the code under the strict pragma. From within the code string, you can’t
disable strictness, either, because importing and unimporting are just two of the
things you can’t normally do in a Safe compartment. There are a lot of things you
can’t do normally in a Safe compartment — see the next section.

Once you’ve created the say_foo function in the compartment, these are pretty
much the same:

$sandbox->reval(’say_foo()’); # Best way.
die if $@;

$sandbox->varglob(’say_foo’)->(); # Call through anonymous glob.

Dungeon::say_foo(); # Direct call, strongly discouraged.

Restr icting operator access

The other important thing about a Safe object is that Perl limits the available oper-
ations within the sandbox. (You might well let your kid take a bucket and shovel
into the sandbox, but you’d probably draw the line at a bazooka.) It’s not enough
to protect just the rest of your program; you need to protect the rest of your com-
puter, too.

When you compile Perl code in a Safe object, either with reval or rdo (the
restricted version of the do FILE operator), the compiler consults a special, per-
compartment access-control list to decide whether each individual operation is
deemed safe to compile. This way you don’t have to stress out (much) worrying
about unforeseen shell escapes, opening files when you didn’t mean to, strange
code assertions in regular expressions, or most of the external access problems
folks normally fret about. (Or ought to.)

The interface for specifying which operators should be permitted or restricted is
curr ently under redesign, so we only show how to use the default set of them
her e. For details, consult the online documentation for the Safe module.

The Safe module doesn’t offer complete protection against denial-of-service
attacks, especially when used in its more per missive modes. Denial-of-service
attacks consume all available system resources of some type, denying other pro-
cesses access to essential system facilities. Examples of such attacks include filling
up the kernel process table, dominating the CPU by running forever in a tight
loop, exhausting available memory, and filling up a filesystem. These problems are
very difficult to solve, especially portably. See the end of the section “Code Mas-
querading as Data” for more discussion of denial-of-service attacks.

Safe examples

Imagine you’ve got a CGI program that manages a form into which the user may
enter an arbitrary Perl expression and get back the evaluated result.* Like all exter-
nal input, the string comes in tainted, so Perl won’t let you eval it yet—you’ll first

* Please don’t laugh. We really have seen web pages that do this. Without a Safe !

Handling Insecure Code 579

580 Chapter 23: Security

have to untaint it with a pattern match. The problem is that you’ll never be able to
devise a pattern that can detect all possible threats. And you don’t dare just untaint
whatever you get and send it through the built-in eval. (If you do that, we will be
tempted to break into your system and delete the script.)

That’s where reval comes in. Here’s a CGI script that processes a form with a sin-
gle form field, evaluates (in scalar context) whatever string it finds there, and
prints out the formatted result:

#!/usr/bin/perl -lTw
use strict;
use CGI::Carp ’fatalsToBrowser’;
use CGI qw/:standard escapeHTML/;
use Safe;

print header(-type => "text/html;charset=UTF-8"),
start_html("Perl Expression Results");

my $expr = param("EXPR") =˜ /ˆ([ˆ;]+)/
? $1 # return the now-taintless portion
: croak("no valid EXPR field in form");

my $answer = Safe->new->reval($expr);
die if $@;

print p("Result of", tt(escapeHTML($expr)),
"is", tt(escapeHTML($answer)));

Imagine some evil user feeding you “print ‘cat /etc/passwd‘” (or worse) as the
input string. Thanks to the restricted environment that disallows backticks, Perl
catches the problem during compilation and retur ns immediately. The string in $@

is “quoted execution (‘‘, qx) trapped by operation mask”, plus the customary
trailing information identifying where the problem happened.

Because we didn’t say otherwise, the compartments we’ve been creating all used
the default set of allowable operations. How you go about declaring specific oper-
ations permitted or forbidden isn’t important here. What is important is that this is
completely under the control of your program. And since you can create multiple
Safe objects in your program, you can confer various degrees of trust upon vari-
ous chunks of code, depending on where you got them from.

If you’d like to play around with Safe, her e’s a little interactive Perl calculator. It’s
a calculator in that you can feed it numeric expressions and immediately see their
results. But it’s not limited to numbers alone. It’s more like the looping example
under eval in Chapter 29, where you can take whatever they give you, evaluate it,
and give them back the result. The differ ence is that the Safe version doesn’t exe-
cute just anything you feel like. You can run this calculator interactively at your
ter minal, typing in little bits of Perl code and checking the answers, to get a feel
for what sorts of protection Safe pr ovides.

#!/usr/bin/perl -w
safecalc - demo program for playing with Safe
use strict;
use Safe;
my $sandbox = Safe->new();
while (1) {

print "Input: ";
my $expr = <STDIN>;
exit unless defined $expr;
chomp($expr);
print "$expr produces ";
local $SIG{__WARN_ _} = sub { die @_ };
my $result = $sandbox->reval($expr, 1);
if ($@ =˜ s/at \(eval \d+\).*//) {

printf "[%s]: %s", $@ =˜ /trapped by operation mask/
? "Security Violation" : "Exception", $@;

}
else {

print "[Normal Result] $result\n";
}

}

Warning: the Safe module is currently being redesigned to run each compartment
within a completely independent Perl interpreter inside the same process. (This is
the strategy that Apache’s mod_perl employs when running precompiled Perl
scripts.) Details are still hazy at this time, but our crystal ball suggests that blindly
poking at things inside the compartment using a named package won’t get you
very far after the impending rewrite. If you’re running a version of Perl later than
5.6, check the release notes in perldelta (1) to see what’s changed, or consult the
documentation for the Safe module itself. (Of course, you always do that anyway,
right?)

Code Masquerading as Data
Safe compartments are available for when the really scary stuff is going down, but
that doesn’t mean you should let down your guard totally when you’re doing the
everyday stuff around home. You need to cultivate an awareness of your sur-
roundings and look at things from the point of view of someone wanting to break
in. You need to take proactive steps like keeping things well lit and trimming the
bushes that can hide various lurking problems.

Perl tries to help you in this area, too. Perl’s conventional parsing and execution
scheme avoids the pitfalls that shell programming languages often fall prey to.
Ther e ar e many extremely powerful features in the language, but by design,
they’r e syntactically and semantically bounded in ways that keep things under the
contr ol of the programmer. With few exceptions, Perl evaluates each token only
once. Something that looks like it’s being used as a simple data variable won’t
suddenly go rooting around in your filesystem.

Handling Insecure Code 581

582 Chapter 23: Security

Unfortunately, that sort of thing can happen if you call out to the shell to run other
pr ograms for you, because then you’re running under the shell’s rules instead of
Perl’s. The shell is easy to avoid, though—just use the list argument forms of the
system, exec, or piped open functions. Although backticks don’t have a list-argu-
ment form that is proof against the shell, you can always emulate them as
described in the section “Accessing Commands and Files Under Reduced Privi-
leges”. (While there’s no syntactic way to make backticks take an argument list, a
multi-argument form of the underlying readpipe operator is in development; but as
of this writing, it isn’t quite ready for prime time.)

When you use a variable in an expression (including when you interpolate it into
a double-quoted string), there’s No Chance that the variable will contain Perl code
that does something you aren’t intending.* Unlike the shell, Perl never needs
defensive quotes around variables, no matter what might be in them.

$new = $old; # No quoting needed.
print "$new items\n"; # $new can’t hurt you.

$phrase = "$new items\n"; # Nor here, neither.
print $phrase; # Still perfectly ok.

Perl takes a “what you see is what you get” approach. If you don’t see an extra
level of interpolation, then it doesn’t happen. It is possible to interpolate arbitrary
Perl expressions into strings, but only if you specifically ask Perl to do that. (Even
so, the contents are still subject to taint checking if you’re in taint mode.)

$phrase = "You lost @{[1 + int rand(6)]} hit points\n";

Interpolation is not recursive, however. You can’t just hide an arbitrary expression
in a string:

$count = ’1 + int rand(6)’; # Some random code.
$saying = "$count hit points"; # Merely a literal.
$saying = "@{[$count]} hit points"; # Also a literal.

Both assignments to $saying would produce “1 + int rand(6) hit points”, with-
out evaluating the interpolated contents of $count as code. To get Perl to do that,
you have to call eval STRING explicitly:

$code = ’1 + int rand(6)’;
$die_roll = eval $code;
die if $@;

If $code wer e tainted, that eval STRING would raise its own exception. Of course,
you almost never want to evaluate random user code—but if you did, you should
look into using the Safe module. You may have heard of it.

* Although if you’re generating a web page, it’s possible to emit HTML tags, including JavaScript code,
that might do something that the remote browser isn’t expecting.

Ther e is one place where Perl can sometimes treat data as code; namely, when the
patter n in a qr//, m//, or s/// operator contains either of the new regular expres-
sion assertions, (?{ CODE }) or (??{ CODE }). These pose no security issues when
used as literals in pattern matches:

$cnt = $n = 0;
while ($data =˜ /(\d+ (?{ $n++ }) | \w+)/gx) {

$cnt++;
}
print "Got $cnt words, $n of which were digits.\n";

But existing code that interpolates variables into matches was written with the
assumption that the data is data, not code. The new constructs might have intro-
duced a security hole into previously secure programs. Therefor e, Perl refuses to
evaluate a pattern if an interpolated string contains a code assertion, and raises an
exception instead. If you really need that functionality, you can always enable it
with the lexically scoped use re ’eval’ pragma. (You still can’t use tainted data
for an interpolated code assertion, though.)

A completely differ ent sort of security concern that can come up with regular
expr essions is denial-of-service problems. These can make your program quit too
early, or run too long, or exhaust all available memory—and sometimes even
dump core, depending on the phase of the moon.

When you process user-supplied patterns, you don’t have to worry about inter-
pr eting random Perl code. However, the regular expression engine has its own lit-
tle compiler and interpreter, and the user-supplied pattern is capable of giving the
regular expression compiler heartburn. If an interpolated pattern is not a valid pat-
ter n, a run-time exception is raised, which is fatal unless trapped. If you do try to
trap it, make sure to use only eval BLOCK, not eval STRING, because the extra eval-
uation level of the latter would in fact allow the execution of random Perl code.
Instead, do something like this:

if (not eval { "" =˜ /$match/; 1 }) {
(Now do whatever you want for a bad pattern.)

}
else {

We know pattern is at least safe to compile.
if ($data =˜ /$match/) { ... }

}

A mor e tr oubling denial-of-service problem is that given the right data and the
right search pattern, your program can appear to hang forever. That’s because
some pattern matches requir e exponential time to compute, and this can easily
exceed the MTBF rating on our solar system. If you’re especially lucky, these com-
putationally intensive patterns will also requir e exponential storage. If so, your
pr ogram will exhaust all available virtual memory, bog down the rest of the

Handling Insecure Code 583

584 Chapter 23: Security

system, annoy your users, and either die with an orderly “Out of memory!” err or or
else leave behind a really big core dump file, though perhaps not as large as the
solar system.

Like most denial-of-service attacks, this one is not easy to solve. If your platform
supports the alarm function, you could time out the pattern match. Unfortunately,
Perl cannot (currently) guarantee that the mere act of handling a signal won’t ever
trigger a core dump. (This is scheduled to be fixed in a future release.) You can
always try it, though, and even if it the signal isn’t handled gracefully, at least the
pr ogram won’t run forever.

If your system supports per-pr ocess resource limits, you could set these in your
shell before calling the Perl program, or use the BSD::Resource module from CPAN
to do so directly from Perl. The Apache web server allows you to set time, mem-
ory, and file size limits on CGI scripts that it launches.

Finally, we hope we’ve left you with some unresolved feelings of insecurity.
Remember, just because you’re paranoid doesn’t mean they’re not out to get you.
So you might as well enjoy it.

24
Common Practices

Ask almost any Perl programmer, and they’ll be glad to give you reams of advice
on how to program. We’r e no differ ent (in case you hadn’t noticed). In this chap-
ter, rather than trying to tell you about specific features of Perl, we’ll go at it from
the other direction and use a more scattergun approach to describe idiomatic Perl.
Our hope is that, by putting together various bits of things that seemingly aren’t
related, you can soak up some of the feeling of what it’s like to actually “think
Perl”. After all, when you’re programming, you don’t write a bunch of expressions,
then a bunch of subroutines, then a bunch of objects. You have to go at every-
thing all at once, more or less. So this chapter is a bit like that.

Ther e is, however, a rudimentary organization to the chapter, in that we’ll start
with the negative advice and work our way towards the positive advice. We don’t
know if that will make you feel any better, but it makes us feel better.

Common Goofs for Novices
The biggest goof of all is forgetting to use warnings, which identifies many errors.
The second biggest goof is forgetting to use strict when it’s appropriate. These
two pragmas can save you hours of head-banging when your program starts get-
ting bigger. (And it will.) Yet another faux pas is to forget to consult the online
FAQ. Suppose you want to find out if Perl has a round function. You might try
searching the FAQ first:

% perlfaq round

Apart from those “metagoofs”, there are several kinds of programming traps. Some
traps almost everyone falls into, and other traps you’ll fall into only if you come
fr om a particular culture that does things differ ently. We’ve separated these out in
the following sections.

585

586 Chapter 24: Common Practices

Univer sal Blunder s
• Putting a comma after the filehandle in a print statement. Although it looks

extr emely regular and pretty to say:

print STDOUT, "goodbye", $adj, "world!\n"; # WRONG

this is nonetheless incorrect, because of that first comma. What you want
instead is the indirect object syntax:

print STDOUT "goodbye", $adj, "world!\n"; # ok

The syntax works this way so that you can say:

print $filehandle "goodbye", $adj, "world!\n";

wher e $filehandle is a scalar holding the name of a filehandle at run time.
This is distinct from:

print $notafilehandle, "goodbye", $adj, "world!\n";

wher e $notafilehandle is simply a string that is part of the list of things to be
printed. See “indirect object” in the Glossary.

• Using == instead of eq and != instead of ne. The == and != operators are
numeric tests. The other two are string tests. The strings "123" and "123.00"

ar e equal as numbers, but not equal as strings. Also, any nonnumeric string is
numerically equal to zero. Unless you are dealing with numbers, you almost
always want the string comparison operators instead.

• Forgetting the trailing semicolon. Every statement in Perl is terminated by a
semicolon or the end of a block. Newlines aren’t statement terminators as they
ar e in awk, Python, or FORTRAN. Remember that Perl is like C.

A statement containing a here document is particularly prone to losing its
semicolon. It ought to look like this:

print <<’FINIS’;
A foolish consistency is the hobgoblin of little minds,
adored by little statesmen and philosophers and divines.

--Ralph Waldo Emerson
FINIS

• Forgetting that a BLOCK requir es braces. Naked statements are not BLOCKs. If
you are creating a control structure such as a while or an if that requir es one
or more BLOCKs, you must use braces around each BLOCK. Remember that Perl
is not like C.

• Not saving $1, $2, and so on, across regular expressions. Remember that every
new m/atch/ or s/ubsti/tution/ will set (or clear, or mangle) your $1,
$2 . . . variables, as well as $‘, $&, and $’. One way to save them right away is
to evaluate the match within a list context, as in:

my ($one, $two) = /(\w+) (\w+)/;

• Not realizing that a local also changes the variable’s value as seen by other
subr outines called within the scope of the local. It’s easy to forget that local is
a run-time statement that does dynamic scoping, because there’s no equivalent
in languages like C. See the section “Scoped Declarations” in Chapter 4, State-
ments and Declarations. Usually you want a my anyway.

• Losing track of brace pairings. A good text editor will help you find the pairs.
Get one. (Or two.)

• Using loop control statements in do {} while. Although the braces in this con-
tr ol structur e look suspiciously like part of a loop BLOCK, they aren’t.

• Saying @foo[1] when you mean $foo[1]. The @foo[1] refer ence is an array
slice, meaning an array consisting of the single element $foo[1]. Sometimes
this doesn’t make any differ ence, as in:

print "the answer is @foo[1]\n";

but it makes a big differ ence for things like:

@foo[1] = <STDIN>;

which will slurp up all the rest of STDIN, assign the first line to $foo[1], and
discard everything else. This is probably not what you intended. Get into the
habit of thinking that $ means a single value, while @ means a list of values,
and you’ll do okay.

• Forgetting the parentheses of a list operator like my:

my $x, $y = (4, 8); # WRONG
my ($x, $y) = (4, 8); # ok

• Forgetting to select the right filehandle before setting $ˆ, $˜, or $|. These vari-
ables depend on the currently selected filehandle, as determined by
select(FILEHANDLE). The initial filehandle so selected is STDOUT. You should
really be using the filehandle methods from the FileHandle module instead.
See Chapter 28, Special Names.

Common Goofs for Novices 587

588 Chapter 24: Common Practices

Frequently Ignored Advice
Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differ ently in a list context than they
do in a scalar one. For instance:

($x) = (4, 5, 6); # List context; $x is set to 4
$x = (4, 5, 6); # Scalar context; $x is set to 6

@a = (4, 5, 6);
$x = @a; # Scalar context; $x is set to 3 (the array list)

• Avoid barewords if you can, especially all lowercase ones. You can’t tell just
by looking at it whether a word is a function or a bareword string. By using
quotes on strings and parentheses around function call arguments, you won’t
ever get them confused. In fact, the pragma use strict at the beginning of
your program makes barewords a compile-time error — probably a good thing.

• You can’t tell just by looking which built-in functions are unary operators (like
chop and chdir), which are list operators (like print and unlink), and which
ar e argumentless (like time). You’ll want to learn them by reading Chapter 29,
Functions. As always, use parentheses if you aren’t sure—or even if you aren’t
sur e you’r e sur e. Note also that user-defined subroutines are by default list
operators, but they can be declared as unary operators with a prototype of ($)
or argumentless with a prototype of ().

• People have a hard time remembering that some functions default to $_, or
@ARGV, or whatever, while others do not. Take the time to learn which are
which, or avoid default arguments.

• <FH> is not the name of a filehandle, but an angle operator that does a line-
input operation on the handle. This confusion usually manifests itself when
people try to print to the angle operator:

print <FH> "hi"; # WRONG, omit angles

• Remember also that data read by the angle operator is assigned to $_ only
when the file read is the sole condition in a while loop:

while (<FH>) { } # Data assigned to $_.
<FH>; # Data read and discarded!

• Don’t use = when you need =˜; the two constructs are quite differ ent:

$x = /foo/; # Searches $_ for "foo", puts result in $x
$x =˜ /foo/; # Searches $x for "foo", discards result

• Use my for local variables whenever you can get away with it. Using local

mer ely gives a temporary value to a global variable, which leaves you open to
unfor eseen side effects of dynamic scoping.

• Don’t use local on a module’s exported variables. If you localize an exported
variable, its exported value will not change. The local name becomes an alias
to a new value but the external name is still an alias for the original.

C Traps
Cer ebral C programmers should take note of the following:

• Curlies are requir ed for if and while blocks.

• You must use elsif rather than “else if” or “elif ”. Syntax like this:

if (expression) {
block;

}
else if (another_expression) { # WRONG

another_block;
}

is illegal. The else part is always a block, and a naked if is not a block. You
mustn’t expect Perl to be exactly the same as C. What you want instead is:

if (expression) {
block;

}
elsif (another_expression) {

another_block;
}

Note also that “elif” is “file” spelled backward. Only Algol-ers would want a
keyword that was the same as another word spelled backward.

• The break and continue keywords from C become in Perl last and next,
respectively. Unlike in C, these do not work within a do {} while construct.

• Ther e’s no switch statement. (But it’s easy to build one on the fly; see “Bare
Blocks” and “Case Structures” in Chapter 4.)

• Variables begin with $, @, or % in Perl.

• Comments begin with #, not /*.

• You can’t take the address of anything, although a similar operator in Perl is
the backslash, which creates a refer ence.

• ARGV must be capitalized. $ARGV[0] is C’s argv[1], and C’s argv[0] ends up in
$0.

• Syscalls such as link, unlink, and rename retur n true for success, not 0.

• The signal handlers in %SIG deal with signal names, not numbers.

Common Goofs for Novices 589

590 Chapter 24: Common Practices

Shell Traps
Sharp shell programmers should take note of the following:

• Variables are prefixed with $, @, or % on the left side of the assignment as well
as the right. A shellish assignment like:

camel=’dromedary’; # WRONG

won’t be parsed the way you expect. You need:

$camel=’dromedary’; # ok

• The loop variable of a foreach also requir es a $. Although csh likes:

foreach hump (one two)
stuff_it $hump

end

in Perl, this is written as:

foreach $hump ("one", "two") {
stuff_it($hump);

}

• The backtick operator does variable interpolation without regard to the pres-
ence of single quotes in the command.

• The backtick operator does no translation of the retur n value. In Perl, you
have to trim the newline explicitly, like this:

chomp($thishost = ‘hostname‘);

• Shells (especially csh) do several levels of substitution on each command line.
Perl does interpolation only within certain constructs such as double quotes,
backticks, angle brackets, and search patterns.

• Shells tend to interpret scripts a little bit at a time. Perl compiles the entire
pr ogram befor e executing it (except for BEGIN blocks, which execute before
the compilation is done).

• Program arguments are available via @ARGV, not $1, $2, and so on.

• The environment is not automatically made available as individual scalar vari-
ables. Use the standard Env module if you want that to happen.

Previous Perl Traps
Penitent Perl 4 (and Prior) Programmers should take note of the following changes
between release 4 and release 5 that might affect old scripts:

• @ now always interpolates an array in double-quotish strings. Some programs
may now need to use backslashes to protect any @ that shouldn’t interpolate.

• Bar ewords that used to look like strings to Perl will now look like subroutine
calls if a subroutine by that name is defined before the compiler sees them.
For example:

sub SeeYa { die "Hasta la vista, baby!" }
$SIG{’QUIT’} = SeeYa;

In prior versions of Perl, that code would set the signal handler. Now, it actu-
ally calls the function! You may use the -w switch to find such risky usage or
use strict to outlaw it.

• Identifiers starting with “_” are no longer forced into package main, except for
the bare underscor e itself (as in $_, @_, and so on).

• A double colon is now a valid package separator in an identifier. Thus, the
statement:

print "$a::$b::$c\n";

now parses $a:: as the variable refer ence, wher e in prior versions only the $a

was considered to be the variable refer ence. Similarly:

print "$var::abc::xyz\n";

is now interpreted as a single variable $var::abc::xyz, wher eas in prior ver-
sions, the variable $var would have been followed by the constant text
::abc::xyz.

• s’$pattern’replacement’ now perfor ms no interpolation on $pattern. (The $

would be interpreted as an end-of-line assertion.) This behavior occurs only
when using single quotes as the substitution delimiter; in other substitutions,
$pattern is always interpolated.

• The second and third arguments of splice ar e now evaluated in scalar context
rather than in list context.

• These are now semantic errors because of precedence:

shift @list + 20; # Now parses like shift(@list + 20), illegal!
$n = keys %map + 20; # Now parses like keys(%map + 20), illegal!

Because if those were to work, then this couldn’t:

sleep $dormancy + 20;

Common Goofs for Novices 591

592 Chapter 24: Common Practices

• The precedence of assignment operators is now the same as the precedence
of assignment. Previous versions of Perl mistakenly gave them the precedence
of the associated operator. So you now must parenthesize them in expressions
like:

/foo/ ? ($a += 2) : ($a -= 2);

Otherwise:

/foo/ ? $a += 2 : $a -= 2;

would be erroneously parsed as:

(/foo/ ? $a += 2 : $a) -= 2;

On the other hand:

$a += /foo/ ? 1 : 2;

now works as a C programmer would expect.

• open FOO || die is incorrect. You need parentheses around the filehandle,
because open has the precedence of a list operator.

• The elements of argument lists for formats are now evaluated in list context.
This means you can interpolate list values now.

• You can’t do a goto into a block that is optimized away. Darn.

• It is no longer legal to use whitespace as the name of a variable or as a delim-
iter for any kind of quote construct. Double darn.

• The caller function now retur ns a false value in scalar context if there is no
caller. This lets modules determine whether they’re being requir ed or run
dir ectly.

• m//g now attaches its state to the searched string rather than the regular
expr ession. See Chapter 5, Patter n Matching, for further details.

• reverse is no longer allowed as the name of a sort subr outine.

• taintperl is no longer a separate executable. Ther e is now a -T switch to turn
on tainting when it isn’t turned on automatically.

• Double-quoted strings may no longer end with an unescaped $ or @.

• The archaic if BLOCK BLOCK syntax is no longer supported.

• Negative array subscripts now count from the end of the array.

• The comma operator in a scalar context is now guaranteed to give a scalar
context to its arguments.

• The ** operator now binds more tightly than unary minus.

• Setting $#array lower now discards array elements immediately.

• delete is not guaranteed to retur n the deleted value for tied arrays, since this
capability may be onerous for some modules to implement.

• The construct "this is $$x", which used to interpolate the process ID at that
point, now tries to derefer ence $x. $$ by itself still works fine, however.

• The behavior of foreach when it iterates over a list that is not an array has
changed slightly. It used to assign the list to a temporary array but now, for
ef ficiency, no longer does so. This means that you’ll now be iterating over the
actual values, not copies of the values. Modifications to the loop variable can
change the original values, even after the grep! For instance:

% perl4 -e ’@a = (1,2,3); for (grep(/./, @a)) { $_++ }; print "@a\n"’
1 2 3
% perl5 -e ’@a = (1,2,3); for (grep(/./, @a)) { $_++ }; print "@a\n"’
2 3 4

To retain prior Perl semantics, you’d need to explicitly assign your list to a
temporary array and then iterate over that. For example, you might need to
change:

foreach $var (grep /x/, @list) { ... }

to:

foreach $var (my @tmp = grep /x/, @list) { ... }

Otherwise changing $var will clobber the values of @list. (This most often
happens when you use $_ for the loop variable and call subroutines in the
loop that don’t properly localize $_.)

• Some error messages and warnings will be differ ent.

• Some bugs may have been inadvertently removed.

Efficienc y
While most of the work of programming may be simply getting your program
working properly, you may find yourself wanting more bang for the buck out of
your Perl program. Perl’s rich set of operators, data types, and control constructs
ar e not necessarily intuitive when it comes to speed and space optimization. Many
trade-of fs wer e made during Perl’s design, and such decisions are buried in the
guts of the code. In general, the shorter and simpler your code is, the faster it
runs, but there are exceptions. This section attempts to help you make it work just
a wee bit better.

Efficienc y 593

594 Chapter 24: Common Practices

If you want it to work a lot better, you can play with the Perl compiler backend
described in Chapter 18, Compiling, or rewrite your inner loop as a C extension as
illustrated in Chapter 21, Inter nals and Externals.

Note that optimizing for time may sometimes cost you in space or programmer
ef ficiency (indicated by conflicting hints below). Them’s the breaks. If program-
ming was easy, they wouldn’t need something as complicated as a human being to
do it, now would they?

Time Efficienc y
• Use hashes instead of linear searches. For example, instead of searching

thr ough @keywords to see if $_ is a keyword, construct a hash with:

my %keywords;
for (@keywords) {

$keywords{$_}++;
}

Then you can quickly tell if $_ contains a keyword by testing $keyword{$_} for
a nonzer o value.

• Avoid subscripting when a foreach or list operator will do. Not only is sub-
scripting an extra operation, but if your subscript variable happens to be in
floating point because you did arithmetic, an extra conversion from floating
point back to integer is necessary. There’s often a better way to do it. Consider
using foreach, shift, and splice operations. Consider saying use integer.

• Avoid goto. It scans outward from your current location for the indicated label.

• Avoid printf when print will do.

• Avoid $& and its two buddies, $‘ and $’. Any occurrence in your program
causes all matches to save the searched string for possible future refer ence.
(However, once you’ve blown it, it doesn’t hurt to have more of them.)

• Avoid using eval on a string. An eval of a string (although not of a BLOCK)
forces recompilation every time through. The Perl parser is pretty fast for a
parser, but that’s not saying much. Nowadays there’s almost always a better
way to do what you want anyway. In particular, any code that uses eval

mer ely to construct variable names is obsolete since you can now do the same
dir ectly using symbolic refer ences:

no strict ’refs’;
$name = "variable";
$$name = 7; # Sets $variable to 7

• Avoid eval STRING inside a loop. Put the loop into the eval instead, to avoid
redundant recompilations of the code. See the study operator in Chapter 29
for an example of this.

• Avoid run-time-compiled patterns. Use the /pattern/o (once only) pattern
modifier to avoid pattern recompilation when the pattern doesn’t change over
the life of the process. For patterns that change occasionally, you can use the
fact that a null pattern refers back to the previous pattern, like this:

"foundstring" =˜ /$currentpattern/; # Dummy match (must succeed).
while (<>) {

print if //;
}

Alter natively, you can precompile your regular expression using the qr quote
construct. You can also use eval to recompile a subroutine that does the
match (if you only recompile occasionally). That works even better if you
compile a bunch of matches into a single subroutine, thus amortizing the sub-
routine call overhead.

• Short-circuit alternation is often faster than the corresponding regex. So:

print if /one-hump/ || /two/;

is likely to be faster than:

print if /one-hump|two/;

at least for certain values of one-hump and two. This is because the optimizer
likes to hoist certain simple matching operations up into higher parts of the
syntax tree and do very fast matching with a Boyer-Moor e algorithm. A com-
plicated pattern tends to defeat this.

• Reject common cases early with next if. As with simple regular expressions,
the optimizer likes this. And it just makes sense to avoid unnecessary work.
You can typically discard comment lines and blank lines even before you do a
split or chop:

while (<>) {
next if /ˆ#/;
next if /ˆ$/;
chop;
@piggies = split(/,/);
...

}

• Avoid regular expressions with many quantifiers or with big {MIN,MAX} num-
bers on parenthesized expressions. Such patterns can result in exponentially
slow backtracking behavior unless the quantified subpatterns match on their
first “pass”. You can also use the (?>...) construct to force a subpattern to
either match completely or fail without backtracking.

Efficienc y 595

596 Chapter 24: Common Practices

• Try to maximize the length of any nonoptional literal strings in regular expres-
sions. This is counterintuitive, but longer patterns often match faster than
shorter patterns. That’s because the optimizer looks for constant strings and
hands them off to a Boyer-Moor e search, which benefits from longer strings.
Compile your pattern with Perl’s -Dr debugging switch to see what Dr. Perl
thinks the longest literal string is.

• Avoid expensive subroutine calls in tight loops. There is overhead associated
with calling subroutines, especially when you pass lengthy parameter lists or
retur n lengthy values. In order of increasing desperation, try passing values by
refer ence, passing values as dynamically scoped globals, inlining the subrou-
tine, or rewriting the whole loop in C. (Better than all of those solutions is if
you can define the subroutine out of existence by using a smarter algorithm.)

• Avoid getc for anything but single-character terminal I/O. In fact, don’t use it
for that either. Use sysread.

• Avoid frequent substrs on long strings, especially if the string contains UTF-8.
It’s okay to use substr at the front of a string, and for some tasks you can
keep the substr at the front by “chewing up” the string as you go with a four-
argument substr, replacing the part you grabbed with "":

while ($buffer) {
process(substr($buffer, 0, 10, ""));

}

• Use pack and unpack instead of multiple substr invocations.

• Use substr as an lvalue rather than concatenating substrings. For example, to
replace the fourth through seventh characters of $foo with the contents of the
variable $bar, don’t do this:

$foo = substr($foo,0,3) . $bar . substr($foo,7);

Instead, simply identify the part of the string to be replaced and assign into it,
as in:

substr($foo, 3, 4) = $bar;

But be aware that if $foo is a huge string and $bar isn’t exactly the length of
the “hole”, this can do a lot of copying too. Perl tries to minimize that by
copying from either the front or the back, but there’s only so much it can do if
the substr is in the middle.

• Use s/// rather than concatenating substrings. This is especially true if you
can replace one constant with another of the same size. This results in an in-
place substitution.

• Use statement modifiers and equivalent and and or operators instead of full-
blown conditionals. Statement modifiers (like $ring = 0 unless $engaged) and
logical operators avoid the overhead of entering and leaving a block. They can
often be more readable too.

• Use $foo = $a || $b || $c. This is much faster (and shorter to say) than:

if ($a) {
$foo = $a;

}
elsif ($b) {

$foo = $b;
}
elsif ($c) {

$foo = $c;
}

Similarly, set default values with:

$pi ||= 3;

• Group together any tests that want the same initial string. When testing a
string for various prefixes in anything resembling a switch structure, put
together all the /ˆa/ patter ns, all the /ˆb/ patter ns, and so on.

• Don’t test things you know won’t match. Use last or elsif to avoid falling
thr ough to the next case in your switch statement.

• Use special operators like study, logical string operations, pack ’u’, and
unpack ’%’ for mats.

• Bewar e of the tail wagging the dog. Misstatements resembling (<STDIN>)[0]

can cause Perl much unnecessary work. In accordance with Unix philosophy,
Perl gives you enough rope to hang yourself.

• Factor operations out of loops. The Perl optimizer does not attempt to remove
invariant code from loops. It expects you to exercise some sense.

• Strings can be faster than arrays.

• Arrays can be faster than strings. It all depends on whether you’re going to
reuse the strings or arrays and which operations you’re going to perfor m.
Heavy modification of each element implies that arrays will be better, and
occasional modification of some elements implies that strings will be better.
But you just have to try it and see.

• my variables are faster than local variables.

Efficienc y 597

598 Chapter 24: Common Practices

• Sorting on a manufactured key array may be faster than using a fancy sort
subr outine. A given array value will usually be compared multiple times, so if
the sort subroutine has to do much recalculation, it’s better to factor out that
calculation to a separate pass before the actual sort.

• If you’r e deleting characters, tr/abc//d is faster than s/[abc]//g.

• print with a comma separator may be faster than concatenating strings. For
example:

print $fullname{$name} . " has a new home directory " .
$home{$name} . "\n";

has to glue together the two hashes and the two fixed strings before passing
them to the low-level print routines, whereas:

print $fullname{$name}, " has a new home directory ",
$home{$name}, "\n";

doesn’t. On the other hand, depending on the values and the architectur e, the
concatenation may be faster. Try it.

• Prefer join("", ...) to a series of concatenated strings. Multiple concatena-
tions may cause strings to be copied back and forth multiple times. The join

operator avoids this.

• split on a fixed string is generally faster than split on a pattern. That is, use
split(/ /, ...) rather than split(/ +/, ...) if you know there will only be
one space. However, the patterns /\s+/, /ˆ/, and / / ar e specially optimized,
as is the special split on whitespace.

• Pre-extending an array or string can save some time. As strings and arrays
gr ow, Perl extends them by allocating a new copy with some room for growth
and copying in the old value. Pre-extending a string with the x operator or an
array by setting $#array can prevent this occasional overhead and reduce
memory fragmentation.

• Don’t undef long strings and arrays if they’ll be reused for the same purpose.
This helps prevent reallocation when the string or array must be re-extended.

• Prefer "\0" x 8192 over unpack("x8192",()).

• system("mkdir ...") may be faster on multiple directories if the mkdir syscall
isn’t available.

• Avoid using eof if retur n values will already indicate it.

• Cache entries from files (like passwd and gr oup files) that are apt to be reused.
It’s particularly important to cache entries from the network. For example, to
cache the retur n value from gethostbyaddr when you are converting numeric
addr esses (like 204.148.40.9) to names (like “www.oreilly.com”), you can use
something like:

sub numtoname {
local ($_) = @_;
unless (defined $numtoname{$_}) {

my (@a) = gethostbyaddr(pack(’C4’, split(/\./)),2);
$numtoname{$_} = @a > 0 ? $a[0] : $_;

}
return $numtoname{$_};

}

• Avoid unnecessary syscalls. Operating system calls tend to be rather expen-
sive. So for example, don’t call the time operator when a cached value of $now
would do. Use the special _ filehandle to avoid unnecessary stat (2) calls. On
some systems, even a minimal syscall may execute a thousand instructions.

• Avoid unnecessary system calls. The system function has to fork a subprocess
in order to execute the program you specify—or worse, execute a shell to
execute the program. This can easily execute a million instructions.

• Worry about starting subprocesses, but only if they’re frequent. Starting a sin-
gle pwd, hostname, or find pr ocess isn’t going to hurt you much—after all, a
shell starts subprocesses all day long. We do occasionally encourage the tool-
box approach, believe it or not.

• Keep track of your working directory yourself rather than calling pwd repeat-
edly. (A standard module is provided for this. See Cwd in Chapter 30, The Stan-
dar d Perl Library.)

• Avoid shell metacharacters in commands—pass lists to system and exec wher e
appr opriate.

• Set the sticky bit on the Perl interpreter on machines without demand paging:

chmod +t /usr/bin/perl

• Allowing built-in functions’ arguments to default to $_ doesn’t make your pro-
gram faster.

Space Efficienc y
• You can use vec for compact integer array storage if the integers are of fixed

width. (Integers of variable width can be stored in a UTF-8 string.)

Efficienc y 599

600 Chapter 24: Common Practices

• Prefer numeric values over equivalent string values—they requir e less
memory.

• Use substr to store constant-length strings in a longer string.

• Use the Tie::SubstrHash module for very compact storage of a hash array, if
the key and value lengths are fixed.

• Use __END_ _ and the DATA filehandle to avoid storing program data as both a
string and an array.

• Prefer each to keys wher e order doesn’t matter.

• Delete or undef globals that are no longer in use.

• Use some kind of DBM to store hashes.

• Use temp files to store arrays.

• Use pipes to offload processing to other tools.

• Avoid list operations and entire file slurps.

• Avoid using tr///. Each tr/// expr ession must store a sizable translation
table.

• Don’t unroll your loops or inline your subroutines.

Prog rammer Efficienc y
• Use defaults.

• Use funky shortcut command-line switches like -a, -n, -p, -s, and -i.

• Use for to mean foreach.

• Run system commands with backticks.

• Use <*> and such.

• Use patterns created at run time.

• Use *, +, and {} liberally in your patterns.

• Process whole arrays and slurp entire files.

• Use getc.

• Use $‘, $&, and $’.

• Don’t check error values on open, since <HANDLE> and print HANDLE will simply
behave as no-ops when given an invalid handle.

• Don’t close your files—they’ll be closed on the next open.

• Don’t pass subroutine arguments. Use globals.

• Don’t name your subroutine parameters. You can access them directly as
$_[EXPR].

• Use whatever you think of first.

Maintainer Efficienc y
• Don’t use defaults.

• Use foreach to mean foreach.

• Use meaningful loop labels with next and last.

• Use meaningful variable names.

• Use meaningful subroutine names.

• Put the important thing first on the line using and, or, and statement modifiers
(like exit if $done).

• Close your files as soon as you’re done with them.

• Use packages, modules, and classes to hide your implementation details.

• Pass arguments as subroutine parameters.

• Name your subroutine parameters using my.

• Par enthesize for clarity.

• Put in lots of (useful) comments.

• Include embedded pod documentation.

• use warnings.

• use strict.

Porter Efficienc y
• Wave a handsome tip under his nose.

• Avoid functions that aren’t implemented everywhere. You can use eval tests to
see what’s available.

• Use the Config module or the $ˆO variable to find out what kind of machine
you’r e running on.

• Don’t expect native float and double to pack and unpack on foreign machines.

• Use network byte order (the “n” and “N” for mats for pack) when sending
binary data over the network.

Efficienc y 601

602 Chapter 24: Common Practices

• Don’t send binary data over the network. Send ASCII. Better, send UTF-8.
Better yet, send money.

• Check $] or $ˆV to see if the current version supports all the features you use.

• Don’t use $] or $ˆV. Use require or use with a version number.

• Put in the eval exec hack even if you don’t use it, so your program will run
on those few systems that have Unix-like shells but don’t recognize the #!

notation.

• Put the #!/usr/bin/perl line in even if you don’t use it.

• Test for variants of Unix commands. Some find pr ograms can’t handle the
-xdev switch, for example.

• Avoid variant Unix commands if you can do it internally. Unix commands
don’t work too well on MS-DOS or VMS.

• Put all your scripts and manpages into a single network filesystem that’s
mounted on all your machines.

• Publish your module on CPAN. You’ll get lots of feedback if it’s not portable.

User Efficienc y
• Instead of making users enter data line by line, pop users into their favorite

editor.

• Better yet, use a GUI like the Perl/Tk extension, where users can control the
order of events. (Perl/Tk is available on CPAN.)

• Put up something for users to read while you continue doing work.

• Use autoloading so that the program appears to run faster.

• Give the option of helpful messages at every prompt.

• Give a helpful usage message if users don’t give correct input.

• Display the default action at every prompt, and maybe a few alternatives.

• Choose defaults for beginners. Allow experts to change the defaults.

• Use single character input where it makes sense.

• Patter n the interaction after other things the user is familiar with.

• Make error messages clear about what needs fixing. Include all pertinent infor-
mation such as filename and error code, like this:

open(FILE, $file) or die "$0: Can’t open $file for reading: $!\n";

• Use fork && exit to detach from the terminal when the rest of the script is
just batch processing.

• Allow arguments to come from either the command line or standard input.

• Don’t put arbitrary limitations into your program.

• Prefer variable-length fields over fixed-length fields.

• Use text-oriented network protocols.

• Tell everyone else to use text-oriented network protocols!

• Tell everyone else to tell everyone else to use text-oriented network proto-
cols!!!

• Be vicariously lazy.

• Be nice.

Prog ramming with Style
You’ll certainly have your own prefer ences in regard to formatting, but there are
some general guidelines that will make your programs easier to read, understand,
and maintain.

The most important thing is to run your programs under the use warnings pragma.
(You can turn off unwanted warnings with no warnings.) You should also always
run under use strict or have a good reason not to. The use sigtrap and even
the use diagnostics pragmas may also prove of benefit.

Regarding aesthetics of code layout, about the only thing Larry cares strongly
about is that the closing brace of a multiline BLOCK should be “outdented” to line
up with the keyword that started the construct. Beyond that, he has other prefer-
ences that aren’t so strong. Examples in this book (should) all follow these coding
conventions:

• Use four-column indents.

• An opening brace should be put on the same line as its preceding keyword, if
possible; otherwise, line them up vertically.

while ($condition) { # for short ones, align with keywords
do something

}

if the condition wraps, line up the braces with each other
while ($this_condition and $that_condition

and $this_other_long_condition)
{

do something
}

Prog ramming with Style 603

604 Chapter 24: Common Practices

• Put space before the opening brace of a multiline BLOCK.

• A short BLOCK may be put on one line, including braces.

• Omit the semicolon in a short, one-line BLOCK.

• Surr ound most operators with space.

• Surr ound a “complex” subscript (inside brackets) with space.

• Put blank lines between chunks of code that do differ ent things.

• Put a newline between a closing brace and else.

• Do not put space between a function name and its opening parenthesis.

• Do not put space before a semicolon.

• Put space after each comma.

• Break long lines after an operator (but before and and or, even when spelled
&& and ||).

• Line up corresponding items vertically.

• Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone
else’s mind works the same as his does (or doesn’t).

Her e ar e some other, mor e substantive style issues to think about:

• Just because you can do something a particular way doesn’t mean you should
do it that way. Perl is designed to give you several ways to do anything, so
consider picking the most readable one. For instance:

open(FOO,$foo) or die "Can’t open $foo: $!";

is better than:

die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier.
On the other hand:

print "Starting analysis\n" if $verbose;

is better than:

$verbose and print "Starting analysis\n";

since the main point isn’t whether the user typed -v or not.

• Similarly, just because an operator lets you assume default arguments doesn’t
mean that you have to make use of the defaults. The defaults are ther e for
lazy programmers writing one-shot programs. If you want your program to be
readable, consider supplying the argument.

• Along the same lines, just because you can omit parentheses in many places
doesn’t mean that you ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck
bounce on the % key in vi.

Even if you ar en’t in doubt, consider the mental welfare of the person who
has to maintain the code after you, and who will probably put parentheses in
the wrong place.

• Don’t go through silly contortions to exit a loop at the top or the bottom. Perl
pr ovides the last operator so you can exit in the middle. You can optionally
“outdent” it to make it more visible:

LINE:
for (;;) {

statements;
last LINE if $foo;
next LINE if /ˆ#/;
statements;

}

• Don’t be afraid to use loop labels—they’r e ther e to enhance readability as
well as to allow multilevel loop breaks. See the example just given.

• Avoid using grep, map, or backticks in a void context, that is, when you just
thr ow away their retur n values. Those functions all have retur n values, so use
them. Otherwise, use a foreach loop or the system function.

• For portability, when using features that may not be implemented on every
machine, test the construct in an eval to see whether it fails. If you know the
version or patch level of a particular feature, you can test $] ($PERL_VERSION in
the English module) to see whether the feature is ther e. The Config module
will also let you interrogate values determined by the Configur e pr ogram
when Perl was installed.

• Choose mnemonic identifiers. If you can’t remember what mnemonic means,
you’ve got a problem.

• Although short identifiers like $gotit ar e pr obably okay, use underscores to
separate words. It is generally much easier to read $var_names_like_this than
$VarNamesLikeThis, especially for non-native speakers of English. Besides, the
same rule works for $VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally
reserves lowercase module names for pragmatic modules like integer and

Prog ramming with Style 605

606 Chapter 24: Common Practices

strict. Other modules should begin with a capital letter and use mixed case,
but should probably omit underscores due to name-length limitations on cer-
tain primitive filesystems.

• You may find it helpful to use letter case to indicate the scope or nature of a
variable. For example:

$ALL_CAPS_HERE # constants only (beware clashes with Perl vars!)
$Some_Caps_Here # package-wide global/static
$no_caps_here # function scope my() or local() variables

For various vague reasons, function and method names seem to work best as
all lowercase. For example, $obj->as_string().

You can use a leading underscore to indicate that a variable or function
should not be used outside the package that defined it. (Perl does not enforce
this; it’s just a form of documentation.)

• If you have a really hairy regular expression, use the /x modifier and put in
some whitespace to make it look a little less like line noise.

• Don’t use slash as a delimiter when your regular expression already has too
many slashes or backslashes.

• Don’t use quotes as delimiters when your string contains the same kind of
quote. Use the q//, qq//, or qx// pseudofunctions instead.

• Use the and and or operators to avoid having to parenthesize list operators so
much and to reduce the incidence of punctuational operators like && and ||.
Call your subroutines as if they were functions or list operators to avoid exces-
sive ampersands and parentheses.

• Use here documents instead of repeated print statements.

• Line up corresponding things vertically, especially if they’re too long to fit on
one line anyway:

$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";
chdir($tmpdir) or die "can’t chdir $tmpdir: $!";
mkdir ’tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

• That which we tell you three times is true:

Always check the retur n codes of system calls.
Always check the retur n codes of system calls.
ALWA YS CHECK THE RETURN CODES OF SYSTEM CALLS!

Err or messages should go to STDERR and should say which program caused the
pr oblem and what the failed call and its arguments were. Most importantly,
for failed syscalls, messages should contain the standard system error message
for what went wrong. Here’s a simple but sufficient example:

opendir(D, $dir) or die "Can’t opendir $dir: $!";

• Line up your transliterations when it makes sense:

tr [abc]
[xyz];

• Think about reusability. Why waste brainpower on a one-shot script when you
might want to do something like it again? Consider generalizing your code.
Consider writing a module or object class. Consider making your code run
cleanly with use strict and -w in effect. Consider giving away your code.
Consider changing your whole world view. Consider . . . oh, never mind.

• Be consistent.

• Be nice.

Fluent Perl
We’ve touched on a few idioms in the preceding sections (not to mention the pre-
ceding chapters), but there are many other idioms you’ll commonly see if you read
pr ograms by accomplished Perl programmers. When we speak of idiomatic Perl in
this context, we don’t just mean a set of arbitrary Perl expressions with fossilized
meanings. Rather, we mean Perl code that shows an understanding of the flow of
the language, what you can get away with when, and what that buys you. And
when to buy it.

We can’t hope to list all the idioms you might see—that would take a book as big
as this one. Maybe two. (See the Perl Cookbook, for instance.) But here are some
of the important idioms, where “important” might be defined as “that which
induces hissy fits in people who think they already know just how computer lan-
guages ought to work”.

• Use => in place of a comma anywhere you think it improves readability:

return bless $mess => $class;

This reads, “Bless this mess into the specified class.” Just be careful not to use
it after a word that you don’t want autoquoted:

sub foo () { "FOO" }
sub bar () { "BAR" }
print foo => bar; # prints fooBAR, not FOOBAR;

Fluent Perl 607

608 Chapter 24: Common Practices

Another good place to use => is near a literal comma that might get confused
visually:

join(", " => @array);

Perl provides you with more than one way to do things so that you can exer-
cise your ability to be creative. Exercise it!

• Use the singular pronoun to increase readability:

for (@lines) {
$_ .= "\n";

}

The $_ variable is Perl’s version of a pronoun, and it essentially means “it”. So
the code above means “for each line, append a newline to it.” Nowadays you
might even spell that:

$_ .= "\n" for @lines;

The $_ pr onoun is so important to Perl that its use is mandatory in grep and
map. Her e is one way to set up a cache of common results of an expensive
function:

%cache = map { $_ => expensive($_) } @common_args;
$xval = $cache{$x} || expensive($x);

• Omit the pronoun to increase readability even further.*

• Use loop controls with statement modifiers.

while (<>) {
next if /ˆ=for\s+(index|later)/;
$chars += length;
$words += split;
$lines += y/\n//;

}

This is a fragment of code we used to do page counts for this book. When
you’r e going to be doing a lot of work with the same variable, it’s often more
readable to leave out the pronouns entirely, contrary to common belief.

The fragment also demonstrates the idiomatic use of next with a statement
modifier to short-circuit a loop.

The $_ variable is always the loop control variable in grep and map, but the
pr ogram’s refer ence to it is often implicit:

@haslen = grep { length } @random;

* In this section, multiple bullet items in a row all refer to the subsequent example, since some of our
examples illustrate more than one idiom.

Her e we take a list of random scalars and only pick the ones that have a
length greater than 0.

• Use for to set the antecedent for a pronoun:

for ($episode) {
s/fred/barney/g;
s/wilma/betty/g;
s/pebbles/bambam/g;

}

So what if there’s only one element in the loop? It’s a convenient way to set
up “it”, that is, $_. Linguistically, this is known as topicalization. It’s not cheat-
ing, it’s communicating.

• Implicitly refer ence the plural pronoun, @_.

• Use control flow operators to set defaults:

sub bark {
my Dog $spot = shift;
my $quality = shift || "yapping";
my $quantity = shift || "nonstop";
...

}

Her e we’r e implicitly using the other Perl pronoun, @_, which means “them”.
The arguments to a function always come in as “them”. The shift operator
knows to operate on @_ if you omit it, just as the ride operator at Disneyland
might call out “Next!” without specifying which queue is supposed to shift.
(Ther e’s no point in specifying, because there’s only one queue that matters.)

The || can be used to set defaults despite its origins as a Boolean operator,
since Perl retur ns the first true value. Perl programmers often manifest a cava-
lier attitude toward the truth; the line above would break if, for instance, you
tried to specify a quantity of 0. But as long as you never want to set either
$quality or $quantity to a false value, the idiom works great. There’s no
point in getting all superstitious and throwing in calls to defined and exists

all over the place. You just have to understand what it’s doing. As long as it
won’t accidentally be false, you’re fine.

• Use assignment forms of operators, including control flow operators:

$xval = $cache{$x} ||= expensive($x);

Her e we don’t initialize our cache at all. We just rely on the ||= operator to
call expensive($x) and assign it to $cache{$x} only if $cache{$x} is false. The
result of that is whatever the new value of $cache{$x} is. Again, we take the
cavalier approach towards truth, in that if we cache a false value, expen-

sive($x) will get called again. Maybe the programmer knows that’s okay,
because expensive($x) isn’t expensive when it retur ns false. Or maybe the

Fluent Perl 609

610 Chapter 24: Common Practices

pr ogrammer knows that expensive($x) never retur ns a false value at all. Or
maybe the programmer is just being sloppy. Sloppiness can be construed as a
for m of creativity.

• Use loop controls as operators, not just as statements. And . . .

• Use commas like small semicolons:

while (<>) {
$comments++, next if /ˆ#/;
$blank++, next if /ˆ\s*$/;
last if /ˆ_ _END_ _/;
$code++;

}
print "comment = $comments\nblank = $blank\ncode = $code\n";

This shows an understanding that statement modifiers modify statements,
while next is a mere operator. It also shows the comma being idiomatically
used to separate expressions much like you’d ordinarily use a semicolon. (The
dif ference being that the comma keeps the two expressions as part of the
same statement, under the control of the single statement modifier.)

• Use flow control to your advantage:

while (<>) {
/ˆ#/ and $comments++, next;
/ˆ\s*$/ and $blank++, next;
/ˆ_ _END_ _/ and last;
$code++;

}
print "comment = $comments\nblank = $blank\ncode = $code\n";

Her e’s the exact same loop again, only this time with the patterns out in front.
The perspicacious Perl programmer understands that it compiles down to
exactly the same internal codes as the previous example. The if modifier is
just a backward and (or &&) conjunction, and the unless modifier is just a
backward or (or ||) conjunction.

• Use the implicit loops provided by the -n and -p switches.

• Don’t put semicolon at the end of a one-line block:

#!/usr/bin/perl -n
$comments++, next LINE if /#/;
$blank++, next LINE if /ˆ\s*$/;
last LINE if /ˆ__END_ _/;
$code++;

END { print "comment = $comments\nblank = $blank\ncode = $code\n" }

This is essentially the same program as before. We put an explicit LINE label
on the loop control operators because we felt like it, but we didn’t really need
to, since the implicit LINE loop supplied by -n is the innermost enclosing loop.

We used an END to get the final print statement outside the implicit main loop,
just as in awk.

• Use here docs when the printing gets ferocious.

• Use a meaningful delimiter on the here doc:

END { print <<"COUNTS" }
comment = $comments
blank = $blank
code = $code
COUNTS

Rather than using multiple prints, the fluent Perl programmer uses a multiline
string with interpolation. And despite our calling it a Common Goof earlier,
we’ve brazenly left off the trailing semicolon because it’s not necessary at the
end of the END block. (If we ever turn it into a multiline block, we’ll put the
semicolon back in.)

• Do substitutions and translations en passant on a scalar:

($new = $old) =˜ s/bad/good/g;

Since lvalues are lvaluable, so to speak, you’ll often see people changing a
value “in passing” while it’s being assigned. This could actually save a string
copy internally (if we ever get around to implementing the optimization):

chomp($answer = <STDIN>);

Any function that modifies an argument in place can do the en passant trick.
But wait, there’s more!

• Don’t limit yourself to changing scalars en passant:

for (@new = @old) { s/bad/good/g }

Her e we copy @old into @new, changing everything in passing (not all at once,
of course—the block is executed repeatedly, one “it” at a time).

• Pass named parameters using the fancy => comma operator.

• Rely on assignment to a hash to do even/odd argument processing:

sub bark {
my DOG $spot = shift;
my %parm = @_;
my $quality = $parm{QUALITY} || "yapping";
my $quantity = $parm{QUANTITY} || "nonstop";
...

}

$fido->bark(QUANTITY => "once",
QUALITY => "woof");

Fluent Perl 611

612 Chapter 24: Common Practices

Named parameters are often an affordable luxury. And with Perl, you get them
for free, if you don’t count the cost of the hash assignment.

• Repeat Boolean expressions until false.

• Use minimal matching when appropriate.

• Use the /e modifier to evaluate a replacement expression:

#!/usr/bin/perl -p
1 while s/ˆ(.*?)(\t+)/$1 . ’ ’ x (length($2) * 4 - length($1) % 4)/e;

This program fixes any file you receive from someone who mistakenly thinks
they can redefine hardware tabs to occupy 4 spaces instead of 8. It makes use
of several important idioms. First, the 1 while idiom is handy when all the
work you want to do in the loop is actually done by the conditional. (Perl is
smart enough not to warn you that you’re using 1 in a void context.) We have
to repeat this substitution because each time we substitute some number of
spaces in for tabs, we have to recalculate the column position of the next tab
fr om the beginning.

The (.*?) matches the smallest string it can up until the first tab, using the
minimal matching modifier (the question mark). In this case, we could have
used an ordinary greedy * like this: ([ˆ\t]*). But that only works because a
tab is a single character, so we can use a negated character class to avoid run-
ning past the first tab. In general, the minimal matcher is much more elegant,
and doesn’t break if the next thing that must match happens to be longer than
one character.

The /e modifier does a substitution using an expression rather than a mere
string. This lets us do the calculations we need right when we need them.

• Use creative formatting and comments on complex substitutions:

#!/usr/bin/perl -p
1 while s{

ˆ # anchor to beginning
(# start first subgroup

.*? # match minimal number of characters
) # end first subgroup
(# start second subgroup

\t+ # match one or more tabs
) # end second subgroup

}
{

my $spacelen = length($2) * 4; # account for full tabs
$spacelen -= length($1) % 4; # account for the uneven tab
$1 . ’ ’ x $spacelen; # make correct number of spaces

}ex;

This is probably overkill, but some people find it more impr essive than the
pr evious one-liner. Go figur e.

• Go ahead and use $‘ if you feel like it:

1 while s/(\t+)/’ ’ x (length($1) * 4 - length($‘) % 4)/e;

Her e’s the shorter version, which uses $‘, which is known to impact perfor-
mance. Except that we’re only using the length of it, so it doesn’t really count
as bad.

• Use the offsets directly from the @- (@LAST_MATCH_START) and @+

(@LAST_MATCH_END) arrays:

1 while s/\t+/’ ’ x (($+[0] - $-[0]) * 4 - $-[0] % 4)/e;

This one’s even shorter. (If you don’t see any arrays there, try looking for array
elements instead.) See @- and @+ in Chapter 28.

• Use eval with a constant retur n value:

sub is_valid_pattern {
my $pat = shift;
return eval { "" =˜ /$pat/; 1 } || 0;

}

You don’t have to use the eval {} operator to retur n a real value. Here we
always retur n 1 if it gets to the end. However, if the pattern contained in $pat

blows up, the eval catches it and retur ns undef to the Boolean conditional of
the || operator, which turns it into a defined 0 (just to be polite, since undef is
also false but might lead someone to believe that the is_valid_pattern sub-
routine is misbehaving, and we wouldn’t want that, now would we?).

• Use modules to do all the dirty work.

• Use object factories.

• Use callbacks.

• Use stacks to keep track of context.

• Use negative subscripts to access the end of an array or string:

use XML::Parser;

$p = new XML::Parser Style => ’subs’;
setHandlers $p Char => sub { $out[-1] .= $_[1] };

push @out, "";

sub literal {
$out[-1] .= "C<";
push @out, "";

}

Fluent Perl 613

614 Chapter 24: Common Practices

sub literal_ {
my $text = pop @out;
$out[-1] .= $text . ">";

}
...

This is a snippet from the 250-line program we used to translate the XML ver-
sion of the old Camel book back into pod format so we could edit it for this
edition with a Real Text Editor.

The first thing you’ll notice is that we rely on the XML::Parser module (from
CPAN) to parse our XML correctly, so we don’t have to figure out how. That
cuts a few thousand lines out of our program right there (pr esuming we’r e
reimplementing in Perl everything XML::Parser does for us,* including transla-
tion from almost any character set into UTF-8).

XML::Parser uses a high-level idiom called an object factory. In this case, it’s a
parser factory. When we create an XML::Parser object, we tell it which style of
parser interface we want, and it creates one for us. This is an excellent way to
build a testbed application when you’re not sure which kind of interface will
tur n out to be the best in the long run. The subs style is just one of
XML::Parser’s interfaces. In fact, it’s one of the oldest interfaces, and probably
not even the most popular one these days.

The setHandlers line shows a method call on the parser, not in arrow nota-
tion, but in “indirect object” notation, which lets you omit the parens on the
arguments, among other things. The line also uses the named parameter idiom
we saw earlier.

The line also shows another powerful concept, the notion of a callback.
Instead of us calling the parser to get the next item, we tell it to call us. For
named XML tags like <literal>, this interface style will automatically call a
subr outine of that name (or the name with an underline on the end for the
corr esponding end tag). But the data between tags doesn’t have a name, so
we set up a Char callback with the setHandlers method.

Next we initialize the @out array, which is a stack of outputs. We put a null
string into it to repr esent that we haven’t collected any text at the current tag
embedding level (0 initially).

Now is when that callback comes back in. Whenever we see text, it automati-
cally gets appended to the final element of the array, via the $out[-1] idiom in
the callback. At the outer tag level, $out[-1] is the same as $out[0], so
$out[0] ends up with our whole output. (Eventually. But first we have to deal
with tags.)

* Actually, XML::Parser is just a fancy wrapper around James Clark’s expat XML parser.

Suppose we see a <literal> tag. Then the literal subr outine gets called,
appends some text to the current output, then pushes a new context onto the
@out stack. Now any text up until the closing tag gets appended to that new
end of the stack. When we hit the closing tag, we pop the $text we’ve col-
lected back off the @out stack, and append the rest of the transmogrified data
to the new (that is, the old) end of stack, the result of which is to translate the
XML string, <literal>text</literal>, into the corresponding pod string,
C<text>.

The subroutines for the other tags are just the same, only differ ent.

• Use my without assignment to create an empty array or hash.

• Split the default string on whitespace.

• Assign to lists of variables to collect however many you want.

• Use autovivification of undefined refer ences to create them.

• Autoincr ement undefined array and hash elements to create them.

• Use autoincrement of a %seen array to determine uniqueness.

• Assign to a handy my temporary in the conditional.

• Use the autoquoting behavior of braces.

• Use an alternate quoting mechanism to interpolate double quotes.

• Use the ?: operator to switch between two arguments to a printf.

• Line up printf args with their % field:

my %seen;
while (<>) {

my ($a, $b, $c, $d) = split;
print unless $seen{$a}{$b}{$c}{$d}++;

}
if (my $tmp = $seen{fee}{fie}{foe}{foo}) {

printf qq(Saw "fee fie foe foo" [sic] %d time%s.\n"),
$tmp, $tmp == 1 ? "" : "s";

}

These nine lines are just chock full of idioms. The first line makes an empty
hash because we don’t assign anything to it. We iterate over input lines setting
“it”, that is, $_, implicitly, then using an argumentless split which splits “it” on
whitespace. Then we pick off the four first words with a list assignment,
thr owing any subsequent words away. Then we remember the first four words
in a four-dimensional hash, which automatically creates (if necessary) the first
thr ee refer ence elements and final count element for the autoincrement to
incr ement. (Under use warnings, the autoincrement will never warn that
you’r e using undefined values, because autoincrement is an accepted way to
define undefined values.) We then print out the line if we’ve never seen a line

Fluent Perl 615

616 Chapter 24: Common Practices

starting with these four words before, because the autoincrement is a postin-
cr ement, which, in addition to incrementing the hash value, will retur n the old
true value if there was one.

After the loop, we test %seen again to see if a particular combination of four
words was seen. We make use of the fact that we can put a literal identifier
into braces and it will be autoquoted. Otherwise, we’d have to say
$seen{"fee"}{"fie"}{"foe"}{"foo"}, which is a drag even when you’re not
running from a giant.

We assign the result of $seen{fee}{fie}{foe}{foo} to a temporary variable
even before testing it in the Boolean context provided by the if. Because
assignment retur ns its left value, we can still test the value to see if it was true.
The my tells your eye that it’s a new variable, and we’re not testing for equality
but doing an assignment. It would also work fine without the my, and an
expert Perl programmer would still immediately notice that we used one =

instead of two ==. (A semiskilled Perl programmer might be fooled, however.
Pascal programmers of any skill level will foam at the mouth.)

Moving on to the printf statement, you can see the qq() for m of double
quotes we used so that we could interpolate ordinary double quotes as well as
a newline. We could’ve directly interpolated $tmp ther e as well, since it’s effec-
tively a double-quoted string, but we chose to do further interpolation via
printf. Our temporary $tmp variable is now quite handy, particularly since we
don’t just want to interpolate it, but also test it in the conditional of a ?: oper-
ator to see whether we should pluralize the word “time”. Finally, note that we
lined up the two fields with their corresponding % markers in the printf for-
mat. If an argument is too long to fit, you can always go to the next line for
the next argument, though we didn’t have to in this case.

Whew! Had enough? There are many more idioms we could discuss, but this book
is already sufficiently heavy. But we’d like to talk about one more idiomatic use of
Perl, the writing of program generators.

Prog ram Generation
Almost from the time people first figured out that they could write programs, they
started writing programs that write other programs. We often call these pr ogram
generators. (If you’re a history buff, you might know that RPG stood for Report
Pr ogram Generator long before it stood for Role Playing Game.) Nowadays they’d
pr obably be called “program factories”, but the generator people got there first, so
they got to name it.

Now, anyone who has written a program generator knows that it can make your
eyes go crossed even when you’re wide awake. The problem is simply that much
of your program’s data looks like real code, but isn’t (at least not yet). The same
text file contains both stuff that does something and similar looking stuff that
doesn’t. Perl has various features that make it easy to mix Perl together with other
languages, textually speaking.

(Of course, these features also make it easier to write Perl in Perl, but that’s rather
to be expected by now, we should think.)

Generating Other Languages in Perl
Perl is (among other things) a text-processing language, and most computer lan-
guages are textual. Beyond that, Perl’s lack of arbitrary limits together with the var-
ious quoting and interpolation mechanisms make it easy to visually isolate the
code of the other language you’re spitting out. For example, here is a small chunk
of s2p, the sed-to-perl translator:

print &q(<<"EOT");
: #!$bin/perl
: eval ’exec $bin/perl -S \$0 \${1+"\$@"}’
: if \$running_under_some_shell;
:
EOT

Her e the enclosed text happens to be legal in two languages, both Perl and sh.
We’ve used an idiom right off the bat that will preserve your sanity in the writing
of a program generator: the trick of putting a “noise” character and a tab on the
fr ont of every quoted line, which visually isolates the enclosed code, so you can
tell at a glance that it’s not the code that is actually being executed. One variable,
$bin, is interpolated in the multiline quote in two places, and then the string is
passed through a function to strip the colon and tab.

Of course, you aren’t requir ed to use multiline quotes. One often sees CGI scripts
containing millions of print statements, one per line. It seems a bit like driving to
church in an F-16, but hey, if it gets you there . . . (We will admit that a column of
print statements has its own form of visual distinctiveness.)

When you are embedding a large, multiline quote containing some other language
(such as HTML), it’s often helpful to pretend you’re programming inside-out,
enclosing Perl into the other language instead, much as you might do with overtly
everted languages such as PHP:

print <<"XML";
<stuff>
<nonsense>
blah blah blah @{[scalar EXPR]} blah blah blah

Prog ram Generation 617

618 Chapter 24: Common Practices

blah blah blah @{[LIST]} blah blah blah
</nonsense>
</stuff>

XML

You can use either of those two tricks to interpolate the values of arbitrarily com-
plicated expressions into the long string.

Some program generators don’t look much like program generators, depending on
how much of their work they hide from you. In Chapter 22, CPAN, we saw how a
small Makefile.PL pr ogram could be used to write a Makefile. The Makefile can
easily be 100 times bigger than the Makefile.PL that produced it. Think how much
wear and tear that saves your fingers. Or don’t think about it—that’s the point,
after all.

Generating Perl in Other Languages
It’s easy to generate other languages in Perl, but the converse is also true. Perl can
easily be generated in other languages because it’s both concise and malleable.
You can pick your quotes not to interfer e with the other language’s quoting mech-
anisms. You don’t have to worry about indentation, or where you put your line
br eaks, or whether to backslash your backslashes Yet Again. You aren’t forced to
define a package as a single string in advance, since you can slide into your pack-
age’s namespace repeatedly, whenever you want to evaluate more code in that
package.

Another thing that makes it easy to write Perl in other languages (including Perl) is
the #line dir ective. Perl knows how to process these as special directives that
reconfigur e its idea of the current filename and line number. This can be useful in
err or or warning messages, especially for strings processed with eval (which,
when you think about it, is just Perl writing Perl). The syntax for this mechanism is
the one used by the C prepr ocessor: when Perl encounters a # symbol and the
word line, followed by a number and a filename, it sets __LINE_ _ to the number
and __FILE_ _ to the filename.*

Her e ar e some examples that you can test by typing into perl dir ectly. We’ve used
a Contr ol-D to indicate end-of-file, which is typical on Unix. DOS/Windows and
VMS users can type Control-Z. If your shell uses something else, you’ll have to use
that to tell perl you’r e done. Alternatively, you can always type in __END_ _ to tell
the compiler there’s nothing left to parse.

* Technically, it matches the pattern /ˆ#\s*line\s+(\d+)\s*(?:\s"([ˆ”]+)”)?\s*$/, with $1 pr oviding
the line number for the next line, and $2 pr oviding the optional filename specified within quotes. (A
null filename leaves __FILE_ _ unchanged.)

Her e, Perl’s built-in warn function prints out the new filename and line number:

% perl
line 2000 "Odyssey"
the "#" on the previous line must be the first char on line
warn "pod bay doors"; # or die
ˆD
pod bay doors at Odyssey line 2001.

And here, the exception raised by die within the eval found its way into the $@

($EVAL_ERROR) variable, along with the temporary new filename and line:

line 1996 "Odyssey"
eval qq{
#line 2025 "Hal"

die "pod bay doors";
};
print "Problem with $@";
warn "I’m afraid I can’t do that";
ˆD
Problem with pod bay doors at Hal line 2025.
I’m afraid I can’t do that at Odyssey line 2001.

This shows how a #line dir ective af fects only the current compilation unit (file or
eval STRING), and that when that unit is done being compiled, the previous set-
tings are automatically restor ed. This way you can set up your own messages
inside an eval STRING or do FILE without affecting the rest of your program.

Perl has a -P switch that invokes the C prepr ocessor, which emits #line dir ectives.
The C prepr ocessor was the original impetus for implementing #line, but it is sel-
dom used these days, since there are usually better ways to do what we used to
rely on it for. Perl has a number of other prepr ocessors, however, including the
AutoSplit module. The JPL (Java Perl Lingo) prepr ocessor tur ns .jpl files into
.java, .pl, .h, and .c files. It makes use of #line to keep the error messages accu-
rate.

One of the very first Perl prepr ocessors was the sed-to-perl translator, s2p. In fact,
Larry delayed the initial release of Perl in order to complete s2p and awk-to-perl
(a2p), because he thought they’d improve the acceptance of Perl. Hmm, maybe
they did.

See the online docs for more on these, as well as the find2perl translator.

Sour ce Filter s
If you can write a program to translate random stuff into Perl, then why not have a
way of invoking that translator from within Perl?

Prog ram Generation 619

620 Chapter 24: Common Practices

The notion of a source filter started with the idea that a script or module should
be able to decrypt itself on the fly, like this:

#!/usr/bin/perl
use MyDecryptFilter;
@*x$]‘0uN&kˆZx02jZˆX{.?s!(f;9Q/ˆAˆ@˜˜8H]|,%@ˆP:q-=
...

But the idea grew from there, and now a source filter can be defined to do any
transfor mation on the input text you like. Put that together with the notion of the
-x switch mentioned in Chapter 19, The Command-Line Interface, and you have a
general mechanism for pulling any chunk of program out of a message and exe-
cuting it, regardless of whether it’s written in Perl or not.

Using the Filter module from CPAN, one can now even do things like program-
ming Perl in awk :

#!/usr/bin/perl
use Filter::exec "a2p"; # the awk-to-perl translator
1,30 { print $1 }

Now that’s definitely what you might call idiomatic. But we won’t pretend for a
moment that it’s common practice.

25
Portable Perl

A world with only one operating system makes portability easy, and life boring.
We prefer a larger genetic pool of operating systems, as long as the ecosystem
doesn’t divide too cleanly into predators and prey. Perl runs on dozens of operat-
ing systems, and because Perl programs aren’t platform dependent, the same pro-
gram can run on all of those systems without modification.

Well, almost. Perl tries to give the programmer as many features as possible, but if
you make use of features particular to a certain operating system, you’ll necessarily
reduce the portability of your program to other systems. In this section, we’ll pro-
vide some guidelines for writing portable Perl code. Once you make a decision
about how portable you want to be, you’ll know where the lines are drawn, and
you can stay within them.

Looking at it another way, writing portable code is usually about willfully limiting
your available choices. Naturally, it takes discipline and sacrifice to do that, two
traits that Perl programmers might be unaccustomed to.

Be aware that not all Perl programs have to be portable. There is no reason not to
use Perl to glue Unix tools together, or to prototype a Macintosh application, or to
manage the Windows registry. If it makes sense to sacrifice portability, go ahead.*

In general, note that the notions of a user ID, a “home” directory, and even the
state of being logged in will exist only on multi-user platforms.

The special $ˆO variable tells you what operating system your Perl was built on.
This is provided to speed up code that would otherwise have to use Config to get

* Not every conversation has to be cross-culturally correct. Perl tries to give you at least one way to do
the Right Thing but doesn’t try to force it on you rigidly. In this respect, Perl more closely resembles
your mother tongue than a nanny’s tongue.

621

622 Chapter 25: Por table Perl

the same information via $Config{osname}. (Even if you’ve pulled in Config for
other reasons, it still saves you the price of a tied-hash lookup.)

To get more detailed information about the platform, you can look at the rest of
the information in the %Config hash, which is made available by the standard Con-

fig module. For example, to check whether the platform has the lstat call, you
can check $Config{d_lstat}. See Config’s online documentation for a full descrip-
tion of available variables, and the perlport manpage for a listing of the behavior
of Perl built-in functions on differ ent platfor ms. Her e ar e the Perl functions whose
behavior varies the most across platforms:

-X (file tests), accept, alarm, bind, binmode, chmod, chown, chroot, connect, crypt,
dbmclose, dbmopen, dump, endgrent, endhostent, endnetent, endprotoent, endpwent,
endservent, exec, fcntl, fileno, flock, fork, getgrent, getgrgid, getgrnam, get-
hostbyaddr, gethostbyname, gethostent, getlogin, getnetbyaddr, getnetbyname,
getnetent, getpeername, getpgrp, getppid, getpriority, getprotobyname, getproto-
bynumber, getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent,
getservbyname, getsockname, getsockopt, glob, ioctl, kill, link, listen, lstat,
msgctl, msgget, msgrcv, msgsnd, open, pipe, qx, readlink, readpipe, recv, select,
semctl, semget, semop, send, sethostent, setgrent, setnetent, setpgrp, setprior-
ity, setprotoent, setpwent, setservent, setsockopt, shmctl, shmget, shmread,
shmwrite, shutdown, socket, socketpair, stat, symlink, syscall, sysopen, system,
times, truncate, umask, utime, wait, waitpid

Newlines
On most operating systems, lines in files are ter minated by one or two characters
that signal the end of the line. The characters vary from system to system. Unix
traditionally uses \012 (that is, the octal 12 character in ASCII), one type of DOSish
I/O uses \015\012, and Macs uses \015. Perl uses \n to repr esent a “logical” new-
line, regardless of platform. In MacPerl, \n always means \015. In DOSish Perls, \n
usually means \012, but when accessing a file in “text mode”, it is translated to (or
fr om) \015\012, depending on whether you’re reading or writing. Unix does the
same thing on terminals in canonical mode. \015\012 is commonly referr ed to as
CRLF.

Because DOS distinguishes between text files and binary files, DOSish Perls have
limitations when using seek and tell on a file in “text mode”. For best results,
only seek to locations obtained from tell. If you use Perl’s built-in binmode func-
tion on the filehandle, however, you can usually seek and tell with impunity.

A common misconception in socket programming is that \n will be \012 every-
wher e. In many common Internet protocols, \012 and \015 ar e specified, and the
values of Perl’s \n and \r ar e not reliable since they vary from system to system:

print SOCKET "Hi there, client!\015\012"; # right
print SOCKET "Hi there, client!\r\n"; # wrong

However, using \015\012 (or \cM\cJ, or \x0D\x0A, or even v13.10) can be tedious
and unsightly, as well as confusing to those maintaining the code. The Socket

module supplies some Right Things for those who want them:

use Socket qw(:DEFAULT :crlf);
print SOCKET "Hi there, client!$CRLF" # right

When reading from a socket, remember that the default input record separator $/
is \n, which means you have to do some extra work if you’re not sure what you’ll
be seeing across the socket. Robust socket code should recognize either \012 or
\015\012 as end of line:

use Socket qw(:DEFAULT :crlf);
local ($/) = LF; # not needed if $/ is already \012

while (<SOCKET>) {
s/$CR?$LF/\n/; # replace LF or CRLF with logical newline

}

Similarly, code that retur ns text data—such as a subroutine that fetches a web
page — should often translate newlines. A single line of code will often suffice:

$data =˜ s/\015?\012/\n/g;
return $data;

Endianness and Number Width
Computers store integers and floating-point numbers in differ ent orders (big-
endian or little-endian) and differ ent widths (32-bit and 64-bit being the most
common today). Normally, you won’t have to think about this. But if your pro-
gram sends binary data across a network connection, or onto disk to be read by a
dif ferent computer, you may need to take precautions.

Conflicting orders can make an utter mess out of numbers. If a little-endian host
(such as an Intel CPU) stores 0x12345678 (305,419,896 in decimal), a big-endian
host (such as a Motorola CPU) will read it as 0x78563412 (2,018,915,346 in deci-
mal). To avoid this problem in network (socket) connections, use the pack and
unpack for mats n and N, which write unsigned short and long numbers in big-
endian order (also called “network” order) regardless of the platform.

You can explore the endianness of your platform by unpacking a data structure
packed in native format such as:

print unpack("h*", pack("s2", 1, 2)), "\n";
’10002000’ on e.g. Intel x86 or Alpha 21064 in little-endian mode
’00100020’ on e.g. Motorola 68040

Endianness and Number Width 623

624 Chapter 25: Por table Perl

To deter mine your endianness, you could use either of these statements:

$is_big_endian = unpack("h*", pack("s", 1)) =˜ /01/;
$is_little_endian = unpack("h*", pack("s", 1)) =˜ /ˆ1/;

Even if two systems have the same endianness, there can still be problems when
transferring data between 32-bit and 64-bit platforms. There is no good solution
other than to avoid transferring or storing raw binary numbers. Either transfer and
stor e numbers as text instead of binary, or use modules like Data::Dumper or
Storable to do this for you. You really want to be using text-oriented protocols in
any event—they’r e mor e robust, more maintainable, and more extensible than
binary protocols.

Of course, with the advent of XML and Unicode, our definition of text is getting
mor e flexible. For instance, between two systems running Perl 5.6.0 (or newer),
you can transport a sequence of integers encoded as characters in utf8 (Perl’s ver-
sion of UTF-8). If both ends are running on an architectur e with 64-bit integers,
you can exchange 64-bit integers. Otherwise, you’re limited to 32-bit integers. Use
pack with a U* template to send, and unpack with a U* template to receive.

Files and Filesystems
File path components are separated with / on Unix, with \ on Windows, and with
: on Macs. Some systems support neither hard links (link) nor symbolic links
(symlink, readlink, lstat). Some systems pay attention to capitalization of file-
names, some don’t, and some pay attention when creating files but not when
reading them.

Ther e ar e modules that can help. The standard File::Spec modules provide some
functions of the Right Thing persuasion:

use File::Spec::Functions;
chdir(updir()); # go up one directory
$file = catfile(curdir(), ’temp’, ’file.txt’);

That last line reads in ./temp/file.txt on Unix and Windows, or :temp:file.txt on
Macs, or [.temp]file.txt on VMS, and stores the file’s contents in $file.

The File::Basename module, another platform-tolerant module bundled with Perl,
splits a pathname into its components: the base filename, the full path to the
dir ectory, and the file suffix.

Her e ar e some tips for writing portable file-manipulating Perl programs:

• Don’t use two files of the same name with differ ent case, like test.pl and
Test.pl, since some platforms ignore capitalization.

• Constrain filenames to the 8.3 convention (eight-letter names and three-letter
extensions) where possible. You can often get away with longer filenames as
long as you make sure the filenames will remain unique when shoved through
an 8.3-sized hole in the wall. (Hey, it’s gotta be easier than shoving a camel
thr ough the eye of a needle.)

• Minimize nonalphanumeric characters in filenames. Using underscores is often
okay, but it wastes a character that could better be used for uniqueness on 8.3
systems. (Remember, that’s why we don’t usually put underscores into module
names.)

• Likewise, when using the AutoSplit module, try to constrain your subroutine
names to eight characters or less, and don’t give two subroutines the same
name with differ ent case. If you need longer subroutine names, make the first
eight characters of each unique.

• Always use < explicitly to open a file for reading; otherwise, on systems that
allow punctuation in filenames, a file prefixed with a > character could result
in a file being wiped out, and a file prefixed with a | character could result in
a pipe open. That’s because the two-argument form of open is magical and
will interpret characters like >, <, and |, which may be the wrong thing to do.
(Except when it’s right.)

open(FILE, $existing_file) or die $!; # wrongish
open(FILE, "<$existing_file") or die $!; # righter
open(FILE, "<", $existing_file) or die $!; # righterer

• Don’t assume text files will end with a newline. They should, but sometimes
people forget, especially when their text editor helps them forget.

System Interaction
Platfor ms that rely on a graphical user interface sometimes lack command lines, so
pr ograms requiring a command-line interface might not work everywhere. You
can’t do much about this, except upgrade.

Some other tips:

• Some platforms can’t delete or rename files that are in use, so remember to
close files when you are done with them. Don’t unlink or rename an open file.
Don’t tie or open a file already tied or opened; untie or close it first.

• Don’t open the same file more than once at a time for writing, since some
operating systems put mandatory locks on such files.

• Don’t depend on a specific environment variable existing in %ENV, and don’t
assume that anything in %ENV will be case sensitive or case preserving. Don’t

System Interaction 625

626 Chapter 25: Por table Perl

assume Unix inheritance semantics for environment variables; on some sys-
tems, they may be visible to all other processes.

• Don’t use signals or %SIG.

• Try to avoid filename globbing. Use opendir, readdir, and closedir instead.
(As of release 5.6.0 of Perl, basic filename globbing is much more portable
than it was, but some systems may still chafe under the Unixisms of the
default interface if you try to get fancy.)

• Don’t assume specific values of the error numbers or strings stored in $!.

Interprocess Communication (IPC)
To maximize portability, don’t try to launch new processes. That means you
should avoid system, exec, fork, pipe, ‘‘, qx//, or open with a |.

The main problem is not the operators themselves; commands that launch external
pr ocesses ar e generally supported on most platforms (though some do not support
any type of forking). Problems are mor e likely to arise when you invoke external
pr ograms that have names, locations, output, or argument semantics that vary
acr oss platfor ms.

One especially popular bit of Perl code is opening a pipe to sendmail so that your
pr ograms can send mail:

open(MAIL, ’|/usr/lib/sendmail -t’) or die "cannot fork sendmail: $!";

This won’t work on platforms without sendmail. For a portable solution, use one
of the CPAN modules to send your mail, such as Mail::Mailer and Mail::Send in
the MailTools distribution, or Mail::Sendmail.

The Unix System V IPC functions (msg*(), sem*(), shm*()) are not always avail-
able, even on some Unix platforms.

Exter nal Subroutines (XS)
XS code can usually be made to work with any platform, but libraries and header
files might not be readily available, or the XS code itself might be platform spe-
cific. If the libraries and headers are portable, then it’s a reasonable guess that the
XS code can be made portable as well.

A dif ferent type of portability issue arises when writing XS code: the availability of
a C compiler on the end user’s platform. C brings with it its own portability issues,
and writing XS code will expose you to some of those. Writing in pure Perl is an

easier way to achieve portability because Perl’s configuration process goes through
extr eme agonies to hide C’s portability blemishes from you.*

Standard Modules
In general, the standard modules (modules bundled with Perl) work on all plat-
for ms. Notable exceptions are the CPAN.pm module (which currently makes con-
nections to external programs that may not be available), platform-specific
modules (such as ExtUtils::MM_VMS), and DBM modules.

Ther e is no single DBM module available on all platforms. SDBM_File and the oth-
ers are generally available on all Unix and DOSish ports, but not in MacPerl,
wher e only NBDM_File and DB_File ar e available.

The good news is that at least one DBM module should be available, and Any-

DBM_File will use whichever module it can find. With such uncertainty, you should
use only the features common to all DBM implementations. For instance, keep
your records to no more than 1K bytes. See the AnyDBM_File module documenta-
tion for more details.

Dates and Times
Wher e possible, use the ISO-8601 standard (“YYYY-MM-DD”) to repr esent dates.
Strings like “1987-12-18” can be easily converted into a system-specific value with
a module like Date::Parse. A list of time and date values (such as that retur ned by
the built-in localtime function) can be converted to a system-specific repr esenta-
tion using Time::Local.

The built-in time function will always retur n the number of seconds since the
beginning of the “epoch”, but operating systems differ in their opinions of when
that was. On many systems, the epoch began on January 1, 1970, at 00:00:00 UTC,
but it began 66 years earlier on Macs, and on VMS it began on November 17,
1858, at 00:00:00. So for portable times you may want to calculate an offset for the
epoch:

require Time::Local;
$offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);

The value for $offset in Unix and Windows will always be 0, but on Macs and
VMS it may be some large number. $offset can then be added to a Unix time
value to get what should be the same value on any system.

* Some people on the margins of society run Perl’s Configur e script as a cheap form of entertainment.
People have even been known to stage “Configure races”, between competing systems and wager
large sums on them. This practice is now outlawed in most of the civilized world.

Dates and Times 627

628 Chapter 25: Por table Perl

A system’s repr esentation of the time of day and the calendar date can be con-
tr olled in widely differ ent ways. Don’t assume the time zone is stored in $ENV{TZ}.
Even if it is, don’t assume that you can control the time zone through that variable.

Inter nationalization
Use Unicode inside your program. Do any translation to and from other character
sets at your interfaces to the outside world. See Chapter 15, Unicode.

Outside the world of Unicode, you should assume little about character sets and
nothing about the ord values of characters. Do not assume that the alphabetic
characters have sequential ord values. The lowercase letters may come before or
after the uppercase letters; the lowercase and uppercase may be interlaced so that
both a and A come before b; the accented and other international characters may
be interlaced so that ä comes before b.

If your program is to operate on a POSIX system (a rather large assumption), con-
sult the perllocale manpage for more infor mation about POSIX locales. Locales
af fect character sets and encodings, and date and time formatting, among other
things. Proper use of locales will make your program a little bit more portable, or
at least more convenient and native-friendly for non-English users. But be aware
that locales and Unicode don’t mix well yet.

Style
When it is necessary to have platform-specific code, consider keeping it in one
place to ease porting to other platforms. Use the Config module and the special
variable $ˆO to differ entiate between platforms.

Be careful in the tests you supply with your module or programs. A module’s code
may be fully portable, but its tests may well not be. This often happens when tests
spawn other processes or call external programs to aid in the testing, or when (as
noted above) the tests assume certain things about the filesystem and paths. Be
car eful not to depend on a specific output style for errors, even when checking $!

for “standard” errors after a syscall. Use the Errno module instead.

Remember that good style transcends both time and culture, so for maximum
portability, you must seek to understand the universal amidst the exigencies of
your existence. The coolest people are not prisoners of the latest cool fad; they
don’t have to be, because they are not worried about being “in” with respect to
their own culture, programmatically or otherwise. Fashion is a variable, but style is
a constant.

26
Plain Old Documentation

One of the principles underlying Perl’s design is that simple things should be sim-
ple, and hard things should be possible. Documentation should be simple.

Perl supports a simple text markup format called pod that can stand on its own or
be freely intermixed with your source code to create embedded documentation.
Pod can be converted to many other formats for printing or viewing, or you can
just read it directly, because it’s plain.

Pod is not as expressive as languages like XML, LATEX, tr off (1), or even HTML. This
is intentional: we sacrificed that expressiveness for simplicity and convenience.
Some text markup languages make authors write more markup than text, which
makes writing harder than it has to be, and reading next to impossible. A good
for mat, like a good movie score, stays in the background without causing distrac-
tion.

Getting programmers to write documentation is almost as hard as getting them to
wear ties. Pod was designed to be so easy to write that even a programmer could
do it—and would. We don’t claim that pod is sufficient for writing a book,
although it was sufficient for writing this one.

Pod in a Nutshell
Most document formats requir e the entire document to be in that format. Pod is
mor e forgiving: you can embed pod in any sort of file, relying on pod translators
to extract the pod. Some files consist entirely of 100% pure pod. But other files,
notably Perl programs and modules, may contain dollops of pod sprinkled about
wher ever the author feels like it. Perl simply skips over the pod text when parsing
the file for execution.

629

630 Chapter 26: Plain Old Documentation

The Perl lexer knows to begin skipping when, at a spot where it would ordinarily
find a statement, it instead encounters a line beginning with an equal sign and an
identifier, like this:

=head1 Here There Be Pods!

That text, along with all remaining text up through and including a line beginning
with =cut, will be ignored. This allows you to intermix your source code and your
documentation freely, as in:

=item snazzle

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut

sub snazzle {
my $arg = shift;
....

}

=item razzle

The razzle() function enables autodidactic epistemology generation.

=cut

sub razzle {
print "Epistemology generation unimplemented on this platform.\n";

}

For more examples, look at any standard or CPAN Perl module. They’re all sup-
posed to come with pod, and nearly all do, except for the ones that don’t.

Since pod is recognized by the Perl lexer and thrown out, you may also use an
appr opriate pod directive to quickly comment out an arbitrarily large section of
code. Use a =for pod block to comment out one paragraph, or a =begin/=end pair
for a larger section. We’ll cover the syntax of those pod directives later. Remember,
though, that in both cases, you’re still in pod mode afterwards, so you need to
=cut back to the compiler.

print "got 1\n";

=for commentary
This paragraph alone is ignored by anyone except the
mythical "commentary" translator. When it’s over, you’re
still in pod mode, not program mode.
print "got 2\n";

=cut

ok, real program again
print "got 3\n";

=begin comment

print "got 4\n";

all of this stuff
here will be ignored
by everyone

print "got 5\n";

=end comment

=cut

print "got 6\n";

This will print out that it got 1, 3, and 6. Remember that these pod directives can’t
go just anywhere. You have to put them only where the parser is expecting to see
a new statement, not just in the middle of an expression or at other arbitrary loca-
tions.

Fr om the viewpoint of Perl, all pod markup is thrown out, but from the viewpoint
of pod translators, it’s the code that is thrown out. Pod translators view the remain-
ing text as a sequence of paragraphs separated by blank lines. All modern pod
translators parse pod the same way, using the standard Pod::Parser module. They
dif fer only in their output, since each translator specializes in one output format.

Ther e ar e thr ee kinds of paragraphs: verbatim paragraphs, command paragraphs,
and prose paragraphs.

Verbatim Parag raphs
Verbatim paragraphs are used for literal text that you want to appear as is, such as
snippets of code. A verbatim paragraph must be indented; that is, it must begin
with a space or tab character. The translator should repr oduce it exactly, typically
in a constant width font, with tabs assumed to be on eight-column boundaries.
Ther e ar e no special formatting escapes, so you can’t play font games to italicize
or embolden. A < character means a literal <, and nothing else.

Pod in a Nutshell 631

632 Chapter 26: Plain Old Documentation

Pod Directives
All pod directives start with = followed by an identifier. This may be followed by
any amount of arbitrary text that the directive can use however it pleases. The
only syntactic requir ement is that the text must all be one paragraph. Currently
recognized directives (sometimes called pod commands) are:

=head1

=head2

. . .
The =head1, =head2, . . . dir ectives pr oduce headings at the level specified. The
rest of the text in the paragraph is treated as the heading description. These
ar e similar to the .SH and .SS section and subsection headers in man (7), or to
<H1> . . . </H1> and <H2> . . . </H2> tags in HTML. In fact, that’s exactly what
those translators convert these directives into.

=cut

The =cut dir ective indicates the end of a stretch of pod. (There might be more
pod later in the document, but if so it will be introduced with another pod
dir ective.)

=pod

The =pod dir ective does nothing beyond telling the compiler to lay off parsing
code through the next =cut. It’s useful for adding another paragraph to the
document if you’re mixing up code and pod a lot.

=over NUMBER

=item SYMBOL

=back

The =over dir ective starts a section specifically for the generation of a list using
the =item dir ective. At the end of your list, use =back to end it. The NUMBER, if
pr ovided, hints to the formatter how many spaces to indent. Some formatters
ar en’t rich enough to respect the hint, while others are too rich to respect it,
insofar as it’s difficult when working with proportional fonts to make anything
line up merely by counting spaces. (However, four spaces is generally con-
strued as enough room for bullets or numbers.)

The actual type of the list is indicated by the SYMBOL on the individual items.
Her e is a bulleted list:

=over 4

=item *

Mithril armor

=item *

Elven cloak

=back

And a numbered list:

=over 4

=item 1.

First, speak "friend".

=item 2.

Second, enter Moria.

=back

And a named list:

=over 4

=item armor()

Description of the armor() function

=item chant()

Description of the chant() function

=back

You may nest lists of the same or differ ent types, but some basic rules apply:
don’t use =item outside an =over/=back block; use at least one =item inside an
=over/=back block; and perhaps most importantly, keep the type of the items
consistent within a given list. Either use =item * for each item to produce a
bulleted list, or =item 1., =item 2., and so on to produce numbered list, or
use =item foo, =item bar, and so on to produce a named list. If you start with
bullets or numbers, stick with them, since formatters are allowed to use the
first =item type to decide how to format the list.

As with everything in pod, the result is only as good as the translator. Some
translators pay attention to the particular numbers (or letters, or Roman
numerals) following the =item, and others don’t. The current pod2html transla-
tor, for instance, is quite cavalier: it strips out the sequence indicators entirely
without looking at them to infer what sequence you’re using, then wraps the
entir e list inside and tags so that the browser can display it as an
order ed list in HTML. This is not to be construed a feature; it may eventually
be fixed.

Pod in a Nutshell 633

634 Chapter 26: Plain Old Documentation

=for TRANSLATOR

=begin TRANSLATOR

=end TRANSLATOR

=for, =begin, and =end let you include special sections to be passed through
unalter ed, but only to particular formatters. Formatters that recognize their
own names, or aliases for their names, in TRANSLATOR pay attention to that
dir ective; any others completely ignore them. The directive =for specifies that
just the rest of this paragraph is destined for a particular translator.

=for html
<p> This is a <flash>raw</flash> <small>HTML</small> paragraph </p>

The paired =begin and =end dir ectives work similarly to =for, but instead of
accepting a single paragraph only, they treat all text between matched =begin

and =end as destined for a particular translator. Some examples:

=begin html

Figure 1.

=end html

=begin text

| foo |
bar

ˆˆˆˆ Figure 1. ˆˆˆˆ

=end text

Values of TRANSLATOR commonly accepted by formatters include roff, man,
troff, nroff, tbl, eqn, latex, tex, html, and text. Some formatters will accept
some of these as synonyms. No translator accepts comment—that’s just the cus-
tomary word for something to be ignored by everybody. Any unrecognized
word would serve the same purpose. While writing this book, we often left
notes for ourselves under the directive =for later.

Note that =begin and =end do nest, but only in the sense that the outermost
matched set causes everything in the middle to be treated as nonpod, even if
it happens to contain other =word dir ectives. That is, as soon as any translator
sees =begin foo, it will either ignore or process everything down to the corre-
sponding =end foo.

Pod Sequences
The third type of paragraph is simply “flowed” text. That is, if a paragraph doesn’t
start with either whitespace or an equals sign, it’s taken as a plain paragraph: regu-
lar text that’s typed in with as few frills as possible. Newlines are treated as equiv-
alent to spaces. It’s largely up to the translator to make it look nice, because
pr ogrammers have more important things to do. It is assumed that translators will
apply certain common heuristics—see the section “Pod Translators and Modules”
later in this chapter.

You can do some things explicitly, however. Inside either ordinary paragraphs or
heading/item directives (but not in verbatim paragraphs), you may use special
sequences to adjust the formatting. These sequences always start with a single cap-
ital letter followed by a left angle bracket, and extend through the matching (not
necessarily the next) right angle bracket. Sequences may contain other sequences.

Her e ar e the sequences defined by pod:

I<text>

Italicized text, used for emphasis, book titles, names of ships, and manpage
refer ences such as “perlpod (1)”.

B<text>

Emboldened text, used almost exclusively for command-line switches and
sometimes for names of programs.

C<text>

Literal code, probably in a fixed-width font like Courier. Not needed on simple
items that the translator should be able to infer as code, but you should put it
anyway.

S<text>

Text with nonbreaking spaces. Often surrounds other sequences.

L<name>

A cross refer ence (link) to a name:

L<name>

Manual page

L<name/ident>

Item in manual page

L<name/"sec">

Section in other manual page

Pod in a Nutshell 635

636 Chapter 26: Plain Old Documentation

L<"sec">

Section in this manual page (the quotes are optional)

L</"sec">

Ditto

The next five sequences are the same as those above, but the output will be
only text, with the link information hidden as in HTML:

L<text|name>

L<text|name/ident>

L<text|name/"sec">

L<text|"sec">

L<text|/"sec">

The text cannot contain the characters / and |, and should contain < or >
only in matched pairs.

F<pathname>

Used for filenames. This is traditionally render ed the same as I.

X<entry>

An index entry of some sort. As always, it’s up to the translator to decide what
to do. The pod specification doesn’t dictate that.

E<escape>

A named character, similar to HTML escapes:

E<lt>

A literal < (optional except in other interior sequences and when preceded
by a capital letter)

E<gt>

A literal > (optional except in other interior sequences)

E<sol>

A literal / (needed in L<> only)

E<verbar>

A literal | (needed in L<> only)

E<NNN>

Character number NNN, probably in ISO-8859-1, but maybe Unicode.
Shouldn’t really matter, in the abstract . . .

E<entity>

Some nonnumeric HTML entity, such as E<Agrave>.

Z<>

A zer o-width character. This is nice for putting in front of sequences that
might confuse something. For example, if you had a line in regular prose that
had to start with an equals sign, you could write that as:

Z<>=can you see

or for something with a “From” in it, so the mailer doesn’t put a > in front:

Z<>From here on out...

Most of the time, you’ll need only a single set of angle brackets to delimit one of
these pod sequences. Sometimes, however, you will want to put a < or > inside a
sequence. (This is particularly common when using a C<> sequence to provide a
constant-width font for a snippet of code.) As with all things in Perl, there is mor e
than one way to do it. One way is to simply repr esent the closing bracket with an
E sequence:

C<$a E<lt>=E<gt> $b>

This produces “$a <=> $b”.

A mor e readable, and perhaps more “plain” way, is to use an alternate set of
delimiters that doesn’t requir e the angle brackets to be escaped. Doubled angle
brackets (C<< stuff >>) may be used, provided there is whitespace immediately
following the opening delimiter and immediately preceding the closing one. For
example, the following will work:

C<< $a <=> $b >>

You may use as many repeated angle-brackets as you like so long as you have the
same number of them on both sides, and you make sure that whitespace immedi-
ately follows the last < of the left side and immediately precedes the first > of the
right side. So the following will also work:

C<<< $a <=> $b >>>
C<<<< $a <=> $b >>>>

All these end up spitting out $a <=> $b in a constant-width font.

The extra whitespace inside on either end goes away, so you should leave white-
space on the outside if you want it. Also, the two inside chunks of extra white-
space don’t overlap, so if the first thing being quoted is >>, it isn’t taken as the
closing delimiter:

The C<< >> >> right shift operator.

This produces “The >> right shift operator.”

Note that pod sequences do nest. That means you can write “The I<Santa

MarE<iacute>a> left port already” to produce “The Santa María left port
alr eady”, or “B<touch> S<B<-t> I<time>> I<file>” to produce “touch -t time file”,
and expect this to work properly.

Pod in a Nutshell 637

638 Chapter 26: Plain Old Documentation

Pod Translator s and Modules
Perl is bundled with several pod translators that convert pod documents (or the
embedded pod in other types of documents) into various formats. All should be
8-bit clean.

pod2text
Converts pod into text. Normally, this text will be 7-bit ASCII, but it will be
8-bit if it had 8-bit input, or specifically ISO-8859-1 (or Unicode) if you use
sequences like LE<uacute>thien for Lúthien or EE<auml>rendil for Eär endil.

If you have a file with pod in it, the easiest (although perhaps not the pretti-
est) way to view just the formatted pod would be:

% pod2text File.pm | more

Then again, pod is supposed to be human readable without formatting.

pod2man
Converts pod into Unix manpage format suitable for viewing through nr off (1)
or creating typeset copies via tr off (1). For example:

% pod2man File.pm | nroff -man | more

or

% pod2man File.pm | troff -man -Tps -t > tmppage.ps
% ghostview tmppage.ps

and to print:

% lpr -Ppostscript tmppage.ps

pod2html
Converts pod into HTML for use with your favorite viewer:

% pod2html File.pm > tmppage.html
% lynx tmppage.html
% netscape -remote "openURL(file:‘pwd‘/tmppage.html)"

That last one is a netscape hack that works if you already have netscape run-
ning somewhere to tell that incarnation to load the page. Otherwise, just call it
as you did lynx.

pod2latex
Converts pod into LATEX.

Additional translators are available on CPAN for other formats.

Translators exhibit differ ent default behaviors depending on the output format. For
instance, if your pod has a prose paragraph saying:

This is a $variable right here

then pod2html will turn that into:

This is a $variable right here

but pod2text will leave it unadorned, since the dollar should be enough to let it be
read.

You should write your pod as close to plain text as you possibly can, with as few
explicit markups as you can get away with. It is up to the individual translator to
decide how things in your text should be repr esented. That means letting the
translator figure out how to create paired quotes, how to fill and adjust text, how
to find a smaller font for words in all capitals, etc. Since these were written to pro-
cess Perl documentation, most translators* should also recognize unadorned items
like these and render them appropriately:

• FILEHANDLE

• $scalar

• @array

• function()

• manpage(3r)

• somebody@someplace.com

• http://foo.com/

Perl also comes with several standard modules for parsing and converting pod,
including Pod::Checker (and the associated podchecker utility) for checking the
syntax of pod documents, Pod::Find for finding pod documents in directory trees,
and Pod::Parser for creating your own pod utilities.

Note that pod translators should only look at paragraphs beginning with a pod
dir ective (this makes parsing easier), whereas the compiler actually knows to look
for pod escapes even in the middle of a paragraph. This means that the following
secr et stuf f will be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn’t rely upon the warn being podded out forever. Not all pod
translators are well-behaved in this regard, and the compiler may someday
become pickier.

* If you’re designing a general-purpose pod translator, not one for Perl code, your criteria may vary.

Pod Translator s and Modules 639

640 Chapter 26: Plain Old Documentation

Wr iting Your Own Pod Tools
Pod was designed first and foremost to be easy to write. As an added benefit,
pod’s simplicity also lends itself to writing simple tools for processing pod. If
you’r e looking for pod directives, just set your input record separator to paragraph
mode (perhaps with the -00 switch), and only pay attention to paragraphs that
look poddish.

For example, here’s a simple olpod pr ogram to produce a pod outline:

#!/usr/bin/perl -l00n
olpod - outline pod
next unless /ˆ=head/;
s/ˆ=head(\d)\s+/ ’ ’ x ($1 * 4 - 4)/e;
print $_, "\n";

If you run that on the current chapter of this book, you’ll get something like this:

Plain Old Documentation
Pod in a Nutshell

Verbatim Paragraphs
Pod Directives
Pod Sequences

Pod Translators and Modules
Writing Your Own Pod Tools
Pod Pitfalls
Documenting Your Perl Programs

That pod outliner didn’t really pay attention to whether it was in a valid pod block
or not. Since pod and nonpod can intermingle in the same file, running general-
purpose tools to search or analyze the whole file doesn’t always make sense. But
that’s no problem, given how easy it is to write tools for pod. Here’s a tool that is
awar e of the differ ence between pod and nonpod, and produces only the pod:

#!/usr/bin/perl -00
catpod - cat out just the pods
while (<>) {

if (! $inpod) { $inpod = /ˆ=/; }
if ($inpod) { $inpod = !/ˆ=cut/; print; }

} continue {
if (eof) { close ARGV; $inpod = ’’; }

}

You could use that program on another Perl program or module, then pipe the
output along to another tool. For example, if you have the wc (1) program* to
count lines, words, and characters, you could feed it catpod output to consider
only pod in its counting:

* And if you don’t, get the Perl Power Tools version from the CPAN scripts dir ectory.

% catpod MyModule.pm | wc

Ther e ar e plenty of places where pod allows you to write primitive tools trivially
using plain, straightforward Perl. Now that you have catpod to use as a compo-
nent, here’s another tool to show just the indented code:

#!/usr/bin/perl -n00
podlit - print the indented literal blocks from pod input
print if /ˆ\s/;

What would you do with that? Well, you might want to do perl -wc checks on the
code in the document, for one thing. Or maybe you want a flavor of gr ep (1)* that
only looks at the code examples:

% catpod MyModule.pm | podlit | grep funcname

This tool-and-filter philosophy of interchangeable (and separately testable) parts is
a sublimely simple and powerful approach to designing reusable software compo-
nents. It’s a form of laziness to just put together a minimal solution that gets the
job done today—for certain kinds of jobs, at least.

For other tasks, though, this can even be counterproductive. Sometimes it’s more
work to write a tool from scratch, sometimes less. For those we showed you ear-
lier, Perl’s native text-processing prowess makes it expedient to use brute force.
But not everything works that way. As you play with pod, you might notice that
although its directives are simple to parse, its sequences can get a little dicey.
Although some, um, subcorrect translators don’t accommodate this, sequences can
nest within other sequences and can have variable-length delimiters.

Instead of coding up all that parsing code on your own, laziness looks for another
solution. The standard Pod::Parser module fits that bill. It’s especially useful for
complicated tasks, like those that requir e real parsing of the internal bits of the
paragraphs, conversion into alternative output formats, and so on. It’s easier to use
the module for complicated cases, because the amount of code you end up writ-
ing is smaller. It’s also better because the tricky parsing is already worked out for
you. It’s really the same principle as using catpod in a pipeline.

The Pod::Parser module takes an interesting approach to its job. It’s an object-ori-
ented module of a differ ent flavor than most you’ve seen in this book. Its primary
goal isn’t so much to provide objects for direct manipulation as it is to provide a
base class upon which other classes can be built.

You create your own class and inherit from Pod::Parser. Then you declare sub-
routines to serve as callback methods for your parent class’s parser to invoke. It’s a
very differ ent way of programming than the procedural programs given earlier. In

* And if you don’t have gr ep, see previous footnote.

Wr iting Your Own Pod Tools 641

642 Chapter 26: Plain Old Documentation

a sense, it’s more of a declarative programming style, because to get the job done,
you simply register functions and let other entities invoke them for you. The pro-
gram’s tiresome logic is handled elsewhere. You just give some plug-and-play
pieces.

Her e’s a rewrite of the original catpod pr ogram given earlier, but this time it uses
the Pod::Parser module to create our own subclass:

#!/usr/bin/perl
catpod2, class and program

package catpod_parser;
use Pod::Parser;
@ISA = qw(Pod::Parser);
sub command {

my ($parser, $command, $paragraph, $line_num) = @_;
my $out_fh = $parser->output_handle();
$paragraph .= "\n" unless substr($paragraph, -1) eq "\n";
$paragraph .= "\n" unless substr($paragraph, -2) eq "\n\n";
print $out_fh "=$command $paragraph";

}

sub verbatim {
my ($parser, $paragraph, $line_num) = @_;
my $out_fh = $parser->output_handle();
print $out_fh $paragraph;

}

sub textblock {
my ($parser, $paragraph, $line_num) = @_;
my $out_fh = $parser->output_handle();
print $out_fh $paragraph;

}
sub interior_sequence {

my ($parser, $seq_command, $seq_argument) = @_;
return "$seq_command<$seq_argument>";

}

if (!caller) {
package main;
my $parser = catpod_parser::->new();
unshift @ARGV, ’-’ unless @ARGV;
for (@ARGV) { $parser->parse_from_file($_); }

}
1;
__END_ _

=head1 NAME
docs describing the new catpod program here

As you see, it’s a good bit longer and more complicated. It’s also more extensible
because all you have to do is plug in your own methods when you want your
subclass to act differ ently than its base class.

The last bit at the end there, where it says !caller, checks whether the file is
being used as a module or as a program. If it’s being used as a program, then
ther e is no caller. So it fires up its own parser (using the new method it inherited)
and runs that parser on the command-line arguments. If no filenames were sup-
plied, it assumes standard input, just as the previous version did.

Following the module code is an __END_ _ marker, a blank line without whitespace
on it, and then the program/module’s own pod documentation. This is an example
of one file that’s a program and a module and its own documentation. It’s proba-
bly several other things as well.

Pod Pitfalls
Pod is fairly straightforward, but it’s still possible to flub a few things:

• It’s really easy to leave out the trailing angle bracket.

• It’s really easy to leave out the trailing =back dir ective.

• It’s easy to accidentally put a blank line into the middle of a long =for comment

dir ective. Consider using =begin/=end instead.

• If you mistype one of the tags on a =begin/=end pair, it’ll eat the rest of your
file (podwise). Consider using =for instead.

• Pod translators requir e paragraphs to be separated by completely empty lines;
that is, by two or more consecutive newline (\n) characters. If you have a line
with spaces or tabs on it, it will not be treated as a blank line. This can cause
two or more paragraphs to be treated as one.

• The meaning of a “link” is not defined by pod, and it’s up to each translator to
decide what to do with it. (If you’re starting to get the idea that most decisions
have been deferred to the translators, not pod, you’re right.) Translators will
often add wording around a L<> link, so that “L<foo(1)>” becomes “the foo (1)
manpage”, for example. So you shouldn’t write things like “the L<foo> man-
page” if you want the translated document to read sensibly: that would end up
saying “the the foo (1) manpage manpage”.

If you need total control of the text used for a link, use the form L<show this

text|foo> instead.

The standard podchecker pr ogram checks pod syntax for errors and warnings. For
example, it checks for unknown pod sequences and for seemingly blank lines
containing whitespace. It is still advisable to pass your document through two or
mor e dif ferent pod translators and proofr ead the results. Some of the problems
you find may be idiosyncrasies of the particular translators, which you may or may
not wish to work around.

Pod Pitfalls 643

644 Chapter 26: Plain Old Documentation

And, as always, Everything is Subject To Change at the Whim of the Random
Hacker.

Documenting Your Perl Programs
We hope you document your code, whether or not you’re a Random Hacker. If
you do, you may wish to include the following sections in your pod:

=head1 NAME

The name of your program or module.

=head1 SYNOPSIS

A one-line description of what your program or module does (purportedly).

=head1 DESCRIPTION

The bulk of your documentation. (Bulk is good in this context.)

=head1 AUTHOR

Who you are. (Or an alias, if you are ashamed of your program.)

=head1 BUGS

What you did wrong (and why it wasn’t really your fault).

=head1 SEE ALSO

Wher e people can find related information (so they can work around your
bugs).

=head1 COPYRIGHT

The copyright statement. If you wish to assert an explicit copyright, you
should say something like:

Copyright 2013, Randy Waterhouse. All Rights Reserved.

Many modules also add:

This program is free software. You may copy or
redistribute it under the same terms as Perl itself.

One caveat: if you’re going to put your pod at the end of the file, and you’re using
an __END_ _ or __DATA_ _ token, make sure to put an empty line before the first
pod directive:

__END_ _

=head1 NAME

Modern - I am the very model of a modern major module

Without the empty line before the =head1, the pod translators will ignore the start
of your (extensive, accurate, cultured) documentation.

27
Perl Culture

This book is a part of Perl culture, so we can’t hope to put everything we know
about Perl culture in her e. We can only whet your appetite with a little history,
and a little art—some would say “very little art”. For a much larger dose of Perl
cultur e, see www.perl.or g and www.perl.com. (Larry keeps copies of all his (offi-
cial) ravings at www.wall.or g/˜larry.) Or just get acquainted with some other Perl
pr ogrammers. We can’t tell you what sort of people they’ll be—about the only
personality trait Perl programmers have in common is that they’re all pathologi-
cally helpful.

Histor y Made Practical
In order to understand why Perl is defined the way it is (or isn’t), one must first
understand why Perl even exists. So, let’s drag out the old dusty history book

Way back in 1986, Larry was a systems programmer on a project developing multi-
level-secur e wide-ar ea networks. He was in charge of an installation consisting of
thr ee VAXen and three Suns on the West Coast, connected over an encrypted,
1200-baud serial line to a similar configuration on the East Coast. Since Larry’s pri-
mary job was support (he wasn’t a programmer on the project, just the system
guru), he was able to exploit his three virtues (laziness, impatience, and hubris) to
develop and enhance all sorts of useful tools—such as rn, patch, and warp.*

* It was at about this time that Larry latched onto the phrase “feeping creaturism” in a desperate
attempt to justify on the basis of biological necessity his overwhelming urge to add “just one more
featur e”. After all, if Life Is Simply Too Complicated, why not programs too? Especially programs like
rn that really ought to be treated as advanced Artificial Intelligence projects so that they can read
your news for you. Of course, some people say that the patch pr ogram is already too smart.

645

646 Chapter 27: Perl Culture

One day, after Larry had just finished ripping rn to shreds, leaving it in pieces on
the floor of his directory, the great Manager came to him and said, “Larry, we need
a configuration management and control system for all six VAXen and all six Suns.
We need it in a month. Go to it!”

So, Larry, never being one to shirk work, asked himself what was the best way to
have a bicoastal CM system, without writing it from scratch, that would allow
viewing of problem reports on both coasts, with approvals and control. The
answer came to him in one word: B-news.*

Larry went off and installed news on these machines and added two control com-
mands: an “append” command to append to an existing article, and a “synchro-
nize” command to keep the article numbers the same on both coasts. CM would
be done using RCS (Revision Control System), and approvals and submissions
would be done using news and rn. Fine so far.

Then the great Manager asked him to produce reports. News was maintained in
separate files on a master machine, with lots of cross-r efer ences between files.
Larry’s first thought was “Let’s use awk.” Unfortunately, the awk of that day
couldn’t handle opening and closing of multiple files based on information in the
files. Larry didn’t want to have to code a special-purpose tool. As a result, a new
language was born.

This new tool wasn’t originally called Perl. Larry bandied about a number of
names with his officemates and cohorts (Dan Faigin, who wrote this history, and
Mark Biggar, his brother-in-law, who also helped greatly with the initial design).
Larry actually considered and rejected every three- or four-letter word in the dictio-
nary. One of the earliest names was “Gloria”, after his sweetheart (and wife). He
soon decided that this would cause too much domestic confusion.

The name then became “Pearl”, which mutated into our present-day “Perl”, partly
because Larry saw a refer ence to another language called PEARL, but mostly
because he’s too lazy to type five letters all the time. And, of course, so that Perl
could be used as a four-letter word. (You’ll note, however, the vestiges of the for-
mer spelling in the acronym’s gloss: “Practical Extraction And Report Language”.)

This early Perl lacked many of the features of today’s Perl. Pattern matching and
filehandles were ther e, scalars were ther e, and formats were ther e, but there wer e
very few functions, no associative arrays, and only a crippled implementation of
regular expressions, borrowed from rn. The manpage was only 15 pages long. But
Perl was faster than sed and awk and began to be used on other applications on
the project.

* That is, the second implementation of Usenet transport software.

But Larry was needed elsewhere. Another great Manager came over one day and
said, “Larry, support R&D.” And Larry said, okay. He took Perl with him and dis-
cover ed that it was turning into a good tool for system administration. He bor-
rowed Henry Spencer’s beautiful regular expression package and butchered it into
something Henry would prefer not to think about during dinner. Then Larry added
most of the goodies he wanted, and a few goodies other people wanted. He
released it on the network.* The rest, as they say, is history.†

Which goes something like this: Perl 1.0 was released on December 18, 1987;
some people still take Perl’s Birthday seriously. Perl 2.0 follows in June 1988, and
Randal Schwartz creates the legendary “Just Another Perl Hacker” signature. In
1989, Tom Christiansen presents the first public Perl tutorial at the Baltimore
Usenix. With Perl 3.0 in October 1989, the language is released and distributed for
the first time under the terms of the GNU Public License.

In March of 1990, Larry writes the first Perl Poem (see the following section). Then
he and Randal write the first edition of this book, The Pink Camel; it is published
in early 1991. Perl 4.0 is released simultaneously; it includes an Artistic License as
well as the GPL.

The unveiling of the much anticipated Perl 5 occurs in October 1994. A complete
rewrite of Perl, it includes objects and modules. The advent of Perl 5 even merits
coverage by The Economist. In 1995, CPAN is officially introduced to the Perl com-
munity. Jon Orwant begins publishing The Perl Journal in 1996. After a long gesta-
tion, the second edition of this book, The Blue Camel, appears that fall. The first
O’Reilly Perl Conference (TPC) is held in San Jose, California, in the summer of
1997. Notable events are now occurring almost daily, so for the rest of history,
check out the Perl Timeline on CPAST, the Comprehensive Perl Arcana Society
Tapestry (history.perl.or g).

Perl Poetr y
The forgery in the attendant sidebar appeared on Usenet on April Fool’s Day,
1990. It is presented here without comment, merely to show how disgusting the
metaphors of a typical programming language really are. So much for anything
resembling literary value. Larry is particularly relieved that “Black Perl”, originally
written for Perl 3, no longer parses under Perl 5.

* Mor e astonishingly, he kept on releasing it as he went to work at Jet Propulsion Lab, then at NetLabs
and Seagate. Nowadays, other people do most of the real work, and Larry pretends to work for
O’Reilly & Associates (a small company that publishes pamphlets about computers and stuff).

† And this, so to speak, is a footnote to history. When Perl was started, rn had just been ripped to
pieces in anticipation of a major rewrite. Since he started work on Perl, Larry hasn’t touched rn. It is
still in pieces. Occasionally, Larry threatens to rewrite rn in Perl, but never seriously.

Perl Poetr y 647

648 Chapter 27: Perl Culture

Larry’s, er, corpus has fortunately been overshadowed by that of the reigning Perl
Poet, Sharon Hopkins. She has written quite a few Perl poems, as well as a paper
on Perl poetry that she presented at the Usenix Winter 1992 Technical Conference,
entitled “Camels and Needles: Computer Poetry Meets the Perl Programming Lan-
guage”. (The paper is available as misc/poetry.ps on CPAN.) Besides being the
most prolific Perl poet, Shar on is also the most widely published, having had the
following poem published in both the Economist and the Guar dian:

#!/usr/bin/perl

APPEAL:

listen (please, please);

open yourself, wide;
join (you, me),

connect (us,together),

tell me.

do something if distressed;

@dawn, dance;
@evening, sing;
read (books,$poems,stories) until peaceful;
study if able;

write me if-you-please;

sort your feelings, reset goals, seek (friends, family, anyone);

do*not*die (like this)
if sin abounds;

keys (hidden), open (locks, doors), tell secrets;
do not, I-beg-you, close them, yet.

accept (yourself, changes),
bind (grief, despair);

require truth, goodness if-you-will, each moment;

select (always), length(of-days)

listen (a perl poem)
Sharon Hopkins
rev. June 19, 1995

Perl Poetr y
Article 970 of comp.lang.perl:
Path: jpl-devvax!pl-dexxav!lwall
Fr om: lwall@jpl-dexxav.JPL.NASA.GOV (Larry Wall)
Newsgr oups: news.gr oups,rec.arts.poems,comp.lang.perl
Subject: CALL FOR DISCUSSION: comp.lang.perl.poems
Message-ID: <0401@jpl-devvax.JPL.NASA.GOV>
Date: 1 Apr 90 00:00:00 GMT
Reply-To: lwall@jpl-devvax.JPL.NSAS.GOV (Larry Wall)
Organization: Jet Prepulsion Laboratory, Pasadena, CA
Lines: 61

It has come to my attention that there is a crying need for a place for people to express both their emotional
and technical natures simultaneously. Several people have sent me some items which don’t fit into any
newsgr oup. Perhaps it’s because I recently posted to both comp.lang.perl and to rec.arts.poems, but people
seem to be writing poems in Perl, and they’re asking me where they should post them. Here is a sampling:

Fr om a graduate student (in finals week), the following haiku:

study, write, study,
do review (each word) if time.
close book. sleep? what’s that?

And someone writing from Fort Lauderdale writes:

sleep, close together,
sort of sin each spring & wait;
50% die

A person who wishes to remain anonymous wrote the following example of “Black Perl”. (The Pearl poet
would have been shocked, no doubt.)

BEFOREHAND: close door, each window & exit; wait until time.
open spellbook, study, read (scan, select, tell us);

write it, print the hex while each watches,
reverse its length, write again;
kill spiders, pop them, chop, split, kill them.

unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn the "goats" & kill the "sheep");

kill them, dump qualms, shift moralities,
values aside, each one;

die sheep! die to reverse the system
you accept (reject, respect);

next step,
kill the next sacrifice, each sacrifice,
wait, redo ritual until "all the spirits are pleased";
do it ("as they say").

do it(*everyone***must***participate***in***forbidden**s*e*x*).
return last victim; package body;

exit crypt (time, times & "half a time") & close it,
select (quickly) & warn your next victim;

AFTERWORDS: tell nobody.
wait, wait until time;
wait until next year, next decade;

sleep, sleep, die yourself,
die at last

I tried that, and it actually parses in Perl. It doesn’t appear to do anything useful, however. I think I’m glad,
actually... I hereby propose the creation of comp.lang.perl.poems as a place for such items, so we don’t clutter
the perl or poems newsgroups with things that may be of interest to neither. Or, alter nately, we should
cr eate rec.arts.poems.perl for items such as those above which merely parse, and don’t do anything useful.
(Ther e is precedent in rec.arts.poems, after all.) Then also create comp.lang.perl.poems for poems that
actually do something, such as this haiku of my own:

print STDOUT q
Just another Perl hacker,
unless $spring

Larry Wall lwall@jpl-devvax.jpl.nasa.gov

Perl Poetr y 649

V
Reference Material

28
Special Names

This chapter is about variables that have special meanings to Perl. Most of the
punctuational names have reasonable mnemonics, or analogs in one of the shells
(or both). But if you want to use long variable names as synonyms, just say:

use English;

at the top of your program. This aliases all the short names to long names in the
curr ent package. Some of these variables even have medium names, generally bor-
rowed from awk. Most people eventually settle on using the short names, at least
for the more commonly used variables. Throughout this book, we consistently
refer to the short names, but also often mention the long names (in parentheses)
so that you can look them up easily in this chapter.

The semantics of these variables can be quite magical. (To create your own magic,
see Chapter 14, Tied Variables.) A few of these variables are read-only. If you try
to assign values to them, an exception will be raised.

In what follows, we’ll first provide a concise listing of the variables and functions
for which Perl assigns a special meaning, grouped by type, so you can look up
variables that you’re not sure of the proper name. Then we’ll explain all of the
variables alphabetically under their proper name (or their least improper name).

Special Names Grouped by Type
We used the word “type” loosely—the sections here actually group variables more
by their scope, that is, where they’r e visible from.

Nam
es

653

654 Chapter 28: Special Names

Regular Expression Special Var iables
The following special variables related to pattern matching are visible throughout
the dynamic scope in which the pattern match occurred (except for $*, which is
depr ecated). In other words, they behave as though they were declar ed with
local, so you needn’t declare them that way yourself. See Chapter 5, Patter n
Matching.

$*
$digits
@+ (@LAST_MATCH_END)
@- (@LAST_MATCH_START)
$+ ($LAST_PAREN_MATCH)
$ˆR ($LAST_REGEXP_CODE_RESULT)
$& ($MATCH)
$’ ($POSTMATCH)
$‘ ($PREMATCH)

Per-Filehandle Var iables
These special variables never need to be mentioned in a local because they
always refer to some value pertaining to the currently selected output filehandle—
each filehandle keeps its own set of values. When you select another filehandle,
the old filehandle remembers the values it had for these variables, and the vari-
ables now reflect the values of the new filehandle. See also the FileHandle mod-
ule in Chapter 32, Standar d Modules.

$| ($AUTOFLUSH, $OUTPUT_AUTOFLUSH)
$- ($FORMAT_LINES_LEFT)
$= ($FORMAT_LINES_PER_PAGE)
$˜ ($FORMAT_NAME)
$% ($FORMAT_PAGE_NUMBER)
$ˆ ($FORMAT_TOP_NAME)

Per-Package Special Var iables
These special variables exist separately in each package. There should be no need
to localize them, since sort automatically does so on $a and $b, and the rest are
pr obably best left alone (though you will need to declare them with our if you use

strict).

$a
$b
@EXPORT
@EXPORT_OK
%EXPORT_TAGS
%FIELDS
@ISA

%OVERLOAD
$VERSION

Prog ram-wide Special Var iables
These variables are truly global in the fullest sense—they mean the same thing in
every package, because they’re all forced into package main when unqualified
(except for @F, which is special in main, but not forced). If you want a temporary
copy of one of these, you must localize it in the current dynamic scope.

%ENV
%INC
%SIG
%!
%ˆH

@_
@ARGV
@F
@INC

$_ ($ARG)
$0 ($PROGRAM_NAME)
$ARGV

$! ($ERRNO, $OS_ERROR)
$" ($LIST_SEPARATOR)
$#
$$ ($PID, $PROCESS_ID)
$(($GID, $REAL_GROUP_ID)
$) ($EGID, $EFFECTIVE_GROUP_ID)
$, ($OFS, $OUTPUT_FIELD_SEPARATOR)
$. ($NR, $INPUT_LINE_NUMBER)
$/ ($RS, $INPUT_RECORD_SEPARATOR)
$: ($FORMAT_LINE_BREAK_CHARACTERS)
$; ($SUBSEP, $SUBSCRIPT_SEPARATOR)

$< ($UID, $REAL_USER_ID)
$> ($EUID, $EFFECTIVE_USER_ID)
$? ($CHILD_ERROR)
$@ ($EVAL_ERROR)
$[
$\ ($ORS, $OUTPUT_RECORD_SEPARATOR)
$] ($OLD_PERL_VERSION)
$ˆA ($ACCUMULATOR)
$ˆC ($COMPILING)
$ˆD ($DEBUGGING)
$ˆE ($EXTENDED_OS_ERROR)
$ˆF ($SYSTEM_FD_MAX)
$ˆH
$ˆI ($INPLACE_EDIT)
$ˆL ($FORMAT_FORMFEED)
$ˆM
$ˆO ($OSNAME)
$ˆP ($PERLDB)
$ˆR ($LAST_REGEXP_CODE_RESULT)
$ˆS (EXCEPTIONS_BEING_CAUGHT)
$ˆT ($BASETIME)
$ˆV ($PERL_VERSION)
$ˆW ($WARNING)
${ˆWARNING_BITS}
${ˆWIDE_SYSTEM_CALLS}
$ˆX ($EXECUTABLE_NAME)

Per-Package Special Filehandles
Except for DATA, which is always per-package, the following filehandles are always
assumed to be in main when not fully qualified with another package name:

_ (underline)
ARGV
ARGVOUT
DATA
STDIN
STDOUT
STDERR

Nam
es

Special Names Grouped by Type 655

656 Chapter 28: Special Names

Per-Package Special Functions
The following subroutine names have a special meaning to Perl. They’re always
called implicitly because of some event, such as accessing a tied variable or trying
to call an undefined function. We don’t describe them in this chapter since they all
receive heavy-duty coverage elsewhere in the book.

Undefined function call interceptor (see Chapter 10, Packages):

AUTOLOAD

Moribund objects’ finalization (see Chapter 12, Objects):

DESTROY

Exception objects (see die in the next chapter):

PROPAGATE

Auto-init and auto-cleanup functions (see Chapter 18, Compiling):

BEGIN, CHECK, INIT, END

Tie methods (see Chapter 14):

BINMODE, CLEAR, CLOSE, DELETE, EOF, EXISTS, EXTEND, FETCH, FETCHSIZE,
FILENO, FIRSTKEY, GETC, NEXTKEY, OPEN, POP, PRINT, PRINTF, PUSH, READ,
READLINE, SEEK, SHIFT, SPLICE, STORE, STORESIZE, TELL, TIEARRAY,
TIEHANDLE, TIEHASH, TIESCALAR, UNSHIFT, WRITE

Special Var iables in Alphabetical Order
We’ve alphabetized these entries according to the long variable name. If you don’t
know the long name of a variable, you can find it in the previous section. (Vari-
ables without alphabetical names are sorted to the front.)

So that we don’t have to keep repeating ourselves, each variable description starts
with one or more of these annotations:

Annotation Meaning

XXX Depr ecated, do not use in anything new.
NOT Not Officially There (inter nal use only).
ALL Truly global, shared by all packages.
PKG Package global; each package can have its own.
FHA Filehandle attribute; one per I/O object.
DYN Dynamically scoped automatically (implies ALL).
LEX Lexically scoped at compile time.
RO Read only; raises an exception if you modify.

When more than one variable name or symbol is listed, only the short one is avail-
able by default. Using the English module makes the longer synonyms available
to the current package, and only to the current package, even if the variable is
marked [ALL].

Entries of the form method HANDLE EXPR show object-oriented interfaces to the per-
filehandle variables provided by the FileHandle and various IO:: modules. (You
may also use the HANDLE->method(EXPR) notation if you prefer.) These let you
avoid having to call select to change the default output handle before examining
or changing that variable. Each such method retur ns the old value of the FileHan-

dle attribute; a new value is set if the EXPR argument is supplied. If not supplied,
most of the methods do nothing to the current value, except for autoflush, which
assumes an argument of 1, just to be differ ent.

_ (underline)

[ALL] This is the special filehandle used to cache the information from the last
successful stat, lstat, or file test operator (like -w $file or -d $file).

$digits

[DYN,RO] The numbered variables $1, $2, and so on (up just as high as you
want)* contain the text that is matched by the corresponding set of parenthe-
ses in the last matched pattern within the currently active dynamic scope.
(Mnemonic: like \digits.)

$[[XXX,LEX] The index of the first element in an array and of the first character
in a substring. Default is 0, but we used to set it to 1 to make Perl behave
mor e like awk (or FORTRAN) when subscripting and when evaluating the
index and substr functions. Because it was found to be so dangerous, assign-
ment to $[is now treated as a lexically scoped compiler directive and cannot
influence the behavior of any other file. (Mnemonic: [begins subscripts.)

$# [XXX,ALL] Don’t use this; use printf instead. $# contains the output format
for printed numbers, in a half-hearted attempt to emulate awk ’s OFMT variable.
(Mnemonic: # is the number sign, but if you’re sharp, you’ll just forget it so
you don’t make a hash of your program and get pounded for it.)

$* [XXX,ALL] Wow, three deprecated variables in a row! This one can (but
shouldn’t) be set to true to get Perl to assume /m on every pattern match that
doesn’t have an explicit /s. (Mnemonic: * matches multiple things.)

* Although many regular expression engines only support up to nine backrefer ences, Perl has no such
limit, so if you go around writing $768, Perl won’t mind, although maintainers of your code might if
you actually use that many parentheses in your regular expressions.

Nam
es

Special Var iables in Alphabetical Order 657

658 Chapter 28: Special Names

$a [PKG] This variable is used by the sort function to hold the first of each pair
of values to be compared ($b is the second of each pair). The package for $a
is the same one that the sort operator was compiled in, which is not necessar-
ily the same as the one its comparison function was compiled into. This vari-
able is implicitly localized within the sort comparison block. Because it is a
global, it is exempt from use strict complaints. Because it is an alias for the
actual array value, you might think you can modify it, but you shouldn’t. See
the sort function.

$ACCUMULATOR

$ˆA

[ALL] The current value of the write accumulator for format lines. A format
contains formline commands that put their result into $ˆA. After calling its for-
mat, write prints out the contents of $ˆA and empties it. So you never actually
see the contents of $ˆA unless you call formline yourself and then look at it.
See the formline function.

$ARG

$_ [ALL] The default input and pattern-search space. These pairs are equivalent:

while (<>) {...} # equivalent only in unadorned while test
while (defined($_ = <>)) {...}

chomp
chomp($_)

/ˆSubject:/
$_ =˜ /ˆSubject:/

tr/a-z/A-Z/
$_ =˜ tr/a-z/A-Z/

Her e ar e the places where Perl will assume $_ if you don’t specify something
to operate on:

• List functions like print and unlink, and unary functions like ord, pos, and
int, as well as the all file tests (except for -t, which defaults to STDIN). All
functions that default to $_ ar e so marked in Chapter 29, Functions.

• The pattern-matching operations m// and s/// and the transliteration oper-
ations y/// and tr///, when used without an =˜ operator.

• The iterator variable in a foreach loop (even when spelled for or when
used as a statement modifier) if no other variable is supplied.

• The implicit iterator variable in the grep and map functions. (There is no
way to specify a differ ent variable for these.)

• The default place to put an input record when a <FH>, readline, or glob
operation’s result is tested by itself as the sole criterion of a while test.
This assignment does not occur outside of a while test or if any additional
elements are included in the while expr ession.

(Mnemonic: underline is the underlying operand in certain operations.)

@ARG

@_ [ALL] Within a subroutine, this array holds the argument list passed to that sub-
routine. See Chapter 6, Subr outines. A split in scalar context splits to this
array, but this usage is deprecated.

ARGV

[ALL] The special filehandle that iterates over command-line filenames in
@ARGV. Usually written as the null filehandle in the angle operator: <>.

$ARGV

[ALL] Contains the name of the current file when reading from the ARGV handle
using the <> or readline operators.

@ARGV

[ALL] The array containing the command-line arguments intended for the
script. Note that $#ARGV is generally the number of arguments minus one, since
$ARGV[0] is the first argument, not the command name; use scalar @ARGV for
the number of program arguments. See $0 for the program name.

ARGVOUT

[ALL] The special filehandle is used while processing the ARGV handle under
the -i switch or the $ˆI variable. See the -i switch in Chapter 19, The Com-
mand-Line Interface.

$b [PKG] The variable, companion to $a, used in sort comparisons. See $a and
the sort function for details.

$BASETIME

$ˆT

[ALL] The time at which the script began running, in seconds since the epoch
(the beginning of 1970, for Unix systems). The values retur ned by the -M, -A,
and -C file tests are relative to this moment.

$CHILD_ERROR

$? [ALL] The status retur ned by the last pipe close, backtick (‘‘) command, or
wait, waitpid, or system functions. Note that this is not just the simple exit
code, but the entire 16-bit status word retur ned by the underlying wait (2) or

Nam
es

Special Var iables in Alphabetical Order 659

660 Chapter 28: Special Names

waitpid (2) syscall (or equivalent). Thus, the exit value of the subprocess is in
the high byte, that is, $? >> 8; in the low byte, $? & 127 says which signal (if
any) the process died from, while $? & 128 reports whether its demise pro-
duced a core dump. (Mnemonic: similar to $? in the sh and its offspring.)

Inside an END block, $? contains the value that is going to be given to exit.
You can modify $? in an END to change the exit status of the script.

Under VMS, the pragma use vmsish ’status’ makes $? reflect the true VMS
exit status, instead of the default emulation of POSIX status.

If the h_errno variable is supported in C, its numeric value is retur ned via $? if
any of the gethost*() functions fail.

$COMPILING

$ˆC

[ALL] The current value of the internal flag associated with the -c switch,
mainly of use with -M O and the perlcc (1) tool to let code alter its behavior
when being compiled for code generation. For example, you might want to
AUTOLOAD at compile time instead of using the normal, deferred loading so that
code can be generated right away. See Chapter 18.

DATA

[PKG] This special filehandle refers to anything following either the __END_ _

token or the __DATA_ _ token in the current file. The __END_ _ token always
opens the main::DATA filehandle, and so is used in the main program. The
__DATA_ _ token opens the DATA handle in whichever package is in effect at
the time, so differ ent modules can each have their own DATA filehandle, since
they (presumably) have differ ent package names.

$DEBUGGING

$ˆD

[ALL] The current value of the internal debugging flags, set from the -D switch
on the command line; see Chapter 19 for the bit values. (Mnemonic: value of
the -D switch.)

$EFFECTIVE_GROUP_ID

$EGID

$) [ALL] The effective GID (group ID) of this process. If you are on a machine
that supports membership in multiple groups simultaneously, $) gives a space-
separated list of groups you are in. The first number is the one retur ned by
getegid (2), and the subsequent ones by getgr oups (2), one of which may be
the same as the first number.

Similarly, a value assigned to $) must also be a space-separated list of num-
bers. The first number is used to set the effective GID, and the rest (if any) are
passed to the setgr oups (2) syscall. To get the effect of an empty list for

setgroups, just repeat the new effective GID; for example, to force an effective
GID of 5 and an effectively empty setgroups list, say:

$) = "5 5";

(Mnemonic: parentheses are used to gr oup things. The effective GID is the
gr oup that’s right for you, if you’re running setgid.) Note: $<, $>, $(, and $)

can only be set on machines that support the corresponding system set-id rou-
tine. $(and $) can be swapped only on machines supporting setr egid (2).

$EFFECTIVE_USER_ID

$EUID

$> [ALL] The effective UID of this process as retur ned by the geteuid (2) syscall.
Example:

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uid

(Mnemonic: it’s the UID you went to, if you’r e running setuid.) Note: $< and
$> can only be swapped on machines supporting setr euid (2). And sometimes
not even then.

%ENV

[ALL] The hash containing your current environment variables. Setting a value
in %ENV changes the environment for both your process and child processes
launched after the assignment. (It cannot change a parent process’s environ-
ment on any system resembling Unix.)

$ENV{PATH} = "/bin:/usr/bin";
$ENV{PAGER} = "less";
$ENV{LESS} = "MQeicsnf"; # our favorite switches to less(1)
system "man perl"; # picks up new settings

To remove something from your environment, make sure to use the delete

function instead of undef on the hash value.

Note that processes running as cr ontab (5) entries inherit a particularly impov-
erished set of environment variables. (If your program runs fine from the com-
mand line but not under cr on, this is probably why.) Also note that you
should set $ENV{PATH}, $ENV{SHELL}, $ENV{BASH_ENV}, and $ENV{IFS} if you are
running as a setuid script. See Chapter 23, Security.

$EVAL_ERROR

$@ [ALL] The currently raised exception or the Perl syntax error message from the
last eval operation. (Mnemonic: where was the syntax error “at”?) Unlike $!

($OS_ERROR), which is set on failure but not cleared on success, $@ is guaran-
teed to be set (to a true value) if the last eval had a compilation error or run-
time exception, and guaranteed to be cleared (to a false value) if no such
pr oblem occurr ed.

Nam
es

Special Var iables in Alphabetical Order 661

662 Chapter 28: Special Names

Warning messages are not collected in this variable. You can, however, set up
a routine to process warnings by setting $SIG{_ _WARN_ _} as described later in
this section.

Note that the value of $@ may be an exception object rather than a string. If
so, you can still probably treat it as a string if the exception object has stringi-
fication overloading defined for its class. If you propagate an exception by
saying:

die if $@;

then an exception object will call $@->PROPAGATE to see what to do. (A string
exception merely adds a “propagated at” line to the string.)

$EXCEPTIONS_BEING_CAUGHT

$ˆS

[ALL] This variable reflects the current state of the interpreter, retur ning true if
inside an eval, false otherwise. It’s undefined if parsing of the current compi-
lation unit hasn’t finished yet, which may be the case in $SIG{_ _DIE_ _} and
$SIG{_ _WARN_ _} handlers. (Mnemonic: state of eval.)

$EXECUTABLE_NAME

$ˆX

[ALL] The name that the perl binary itself was executed as, from C’s argv[0].

@EXPORT [PKG] This array variable is consulted by the Exporter module’s
import method to find the list of other package variables and subroutines to
be exported by default when the module is used, or when the :DEFAULT

import tag is used. It is not exempt from use strict complaints, so it must be
declar ed with our or fully qualified by package name if you’ve enabled that
pragma. However, all variables whose names begin with the string “EXPORT”
ar e exempt from warnings about being used only once. See Chapter 11,
Modules.

@EXPORT_OK

[PKG] This array variable is consulted by the Exporter module’s import

method to determine whether a requested import is legal. It is not exempt
fr om use strict. See Chapter 11.

%EXPORT_TAGS

[PKG] This hash variable is consulted by the Exporter module’s import method
when an import symbol with a leading colon is requested, as in use POSIX

":sys_wait_h". The keys are the colon tags, but without the loading colon.
The values should be refer ences to arrays containing symbols to import when
the colon tag is requested, all of which must also appear in either @EXPORT or
@EXPORT_OK. It is not exempt from use strict. See Chapter 11.

$EXTENDED_OS_ERROR

$ˆE

[ALL] Error information specific to the current operating system. Under Unix,
$ˆE is identical to $! ($OS_ERROR), but it differs under OS/2, VMS, and
Micr osoft systems, and on MacPerl. See your port’s information for specifics.
Caveats mentioned in the description of $! generally apply to $ˆE as well.
(Mnemonic: extra error explanation.)

@F [PKG] The array into which the input line’s fields are split when the -a
command-line switch is given. If the -a option is not used, this array has no
special meaning. (This array is actually only @main::F, and not in all packages
at once.)

%FIELDS

[NOT,PKG] This hash is for internal use by the use fields pragma to deter-
mine the current legal fields in an object hash. See use fields, use base, and
“Field Declarations with use fields” in Chapter 12.

format_formfeed HANDLE EXPR

$FORMAT_FORMFEED

$ˆL

[ALL] What a write function implicitly outputs to perfor m a for m feed before it
emits a top of form header. Default is "\f".

format_lines_left HANDLE EXPR

$FORMAT_LINES_LEFT

$- [FHA] The number of lines left on the page of the currently selected output
handle, for use with the format declaration and the write function.
(Mnemonic: lines_on_page - lines_printed.)

format_lines_per_page HANDLE EXPR

$FORMAT_LINES_PER_PAGE

$= [FHA] The current page length (printable lines) of the currently selected output
handle, for use with format and write. Default is 60. (Mnemonic: = has hori-
zontal lines.)

format_line_break_characters HANDLE EXPR

$FORMAT_LINE_BREAK_CHARACTERS

$: [ALL] The current set of characters after which a string may be broken to fill
continuation fields (starting with ˆ) in a for mat. Default is " \n-", to break on
whitespace or hyphens. (Mnemonic: a colon is a technical word meaning part
of a line in poetry. Now you just have to remember the mnemonic . . .)

Nam
es

Special Var iables in Alphabetical Order 663

664 Chapter 28: Special Names

format_name HANDLE EXPR

$FORMAT_NAME

$˜ [FHA] The name of the current report format for the currently selected output
handle. Default is the filehandle’s name. (Mnemonic: takes a turn after $ˆ.)

format_page_number HANDLE EXPR

$FORMAT_PAGE_NUMBER

$% [FHA] The current page number of the currently selected output handle, for
use with format and write. (Mnemonic: % is the page number register in
tr off (1). What, you don’t know what tr off is?)

format_top_name HANDLE EXPR

$FORMAT_TOP_NAME

$ˆ [FHA] The name of the current top-of-page format for the currently selected
output handle. Default is name of the filehandle with _TOP appended.
(Mnemonic: points to top of page.)

$ˆH

[NOT,LEX] This variable contains lexically scoped status bits (a.k.a. hints) for
the Perl parser. This variable is strictly for internal use only. Its availability,
behavior, and contents are subject to change without notice. If you touch it,
you will undoubtedly die a horrible death of some loathsome tropical disease
unknown to science. (Mnemonic: we won’t give you a hint.)

%ˆH

[NOT,LEX] The %ˆH hash provides the same lexical scoping semantics as $ˆH,
making it useful for implementation of lexically scoped pragmas. Read the dire
war nings listed under $ˆH, and then add to them the fact that this variable is
still experimental.

%INC

[ALL] The hash containing entries for the filename of each Perl file loaded via
do FILE, require, or use. The key is the filename you specified, and the value
is the location of the file actually found. The require operator uses this array
to determine whether a given file has already been loaded. For example:

% perl -MLWP::Simple -le ’print $INC{"LWP/Simple.pm"}’
/opt/perl/5.6.0/lib/site_perl/LWP/Simple.pm

@INC

[ALL] The array containing the list of directories where Perl modules may be
found by do FILE, require, or use. It initially consists of the arguments to any
-I command-line switches and directories in the PERL5LIB envir onment vari-
able, followed by the default Perl libraries, such as:

/usr/local/lib/perl5/5.6.0/sun4-solaris
/usr/local/lib/perl5/5.6.0
/usr/local/lib/perl5/site_perl/5.6.0/sun4-solaris
/usr/local/lib/perl5/site_perl/5.6.0
/usr/local/lib/perl5/site_perl/5.00552/sun4-solaris
/usr/local/lib/perl5/site_perl/5.00552
/usr/local/lib/perl5/site_perl/5.005/sun4-solaris
/usr/local/lib/perl5/site_perl/5.005
/usr/local/lib/perl5/site_perl

followed by “.”, to repr esent the current directory. If you need to modify this
list from within your program, try the use lib pragma, which not only modi-
fies the variable at compile time, but also adds in any related architectur e-
dependent directories (such as those that contain the shared libraries used by
XS modules):

use lib "/mypath/libdir/";
use SomeMod;

$INPLACE_EDIT

$ˆI

[ALL] The current value of the inplace-edit extension. Use undef to disable
inplace editing. You can use this from within your program to get the same
behavior as the -i switch provides. For example, to do the equivalent of this
command:

% perl -i.orig -pe ’s/foo/bar/g’ *.c

you can use the following equivalent code in your program:

local $ˆI = ’.orig’;
local @ARGV = glob("*.c");
while (<>) {

s/foo/bar/g;
print;

}

(Mnemonic: value of the -i switch.)

$INPUT_LINE_NUMBER

$NR

$. [ALL] The current record number (usually line number) for the last filehandle
you read from (or called seek or tell on). The value may be differ ent fr om
the actual physical line number in the file, depending on what notion of “line”
is in effect — see $/ ($INPUT_RECORD_SEPARATOR) on how to affect that. An
explicit close on a filehandle resets the line number. Because <> never does an
explicit close, line numbers increase across ARGV files (but see examples under
eof). Localizing $. also localizes Perl’s notion of “the last read filehandle”.
(Mnemonic: many programs use “.” to mean the current line number.)

Nam
es

Special Var iables in Alphabetical Order 665

666 Chapter 28: Special Names

$INPUT_RECORD_SEPARATOR

$RS

$/ [ALL] The input record separator, newline by default, which is consulted by
the readline function, the <FH> operator, and the chomp function. It works like
awk ’s RS variable, and, if set to the null string, treats one or more blank lines
as a record terminator. (But a blank line must contain no hidden spaces or
tabs.) You may set it to a multicharacter string to match a multicharacter ter-
minator, but you may not set it to a pattern—awk has to be better at some-
thing.

Note that setting $/ to "\n\n" means something slightly differ ent than setting it
to "", if the file contains consecutive blank lines. Setting it to "" will treat two
or mor e consecutive blank lines as a single blank line. Setting it to "\n\n"

means Perl will blindly assume that a third newline belongs to the next para-
graph.

Entir ely undefining $/ makes the next line input operation slurp in the remain-
der of the file as one scalar value:

undef $/; # enable whole-file mode
$_ = <FH>; # whole file now here
s/\n[\t]+/ /g; # fold indented lines

If you’re using the while (<>) construct to access ARGV handle while $/ is
undefined, each read gets the next file:

undef $/;
while (<>) { # $_ has the whole next file in it

...
}

Although we used undef above, it’s safer to undefine $/ using local:

{
local $/;
$_ = <FH>;

}

Setting $/ to a refer ence to either an integer, a scalar containing an integer, or
a scalar that’s convertible to an integer will make readline and <FH> opera-
tions read in fixed-length records (with the maximum record size being the
refer enced integer) instead of variable-length record terminated by a particular
string. So this:

$/ = \32768; # or \"32768" or \$scalar_var_containing_32768
open(FILE, $myfile);
$record = <FILE>;

will read a record of no more than 32,768 bytes from the FILE handle. If
you’r e not reading from a record-oriented file (or your operating system

doesn’t have record-oriented files), then you’ll likely get a full chunk of data
with every read. If a record is larger than the record size you’ve set, you’ll get
the record back in pieces. Record mode mixes well with line mode only on
systems where standard I/O supplies a read (3) function; VMS is a notable
exception.

Calling chomp when $/ is set to enable record mode—or when it is unde-
fined — has no effect. See also the -0 (the digit) and the -l (the letter)
command-line switches in Chapter 19. (Mnemonic: / is used to separate lines
when quoting poetry.)

@ISA

[PKG] This array contains names of other packages to look through when a
method call cannot be found in the current package. That is, it contains the
base classes of the package. The use base pragma sets this implicitly. It is not
exempt from use strict. See Chapter 12.

@LAST_MATCH_END

@+ This array holds the offsets of the ends of the last successful submatches in the
curr ently active dynamic scope. $+[0] is the offset of the end of the entire
match. This is the same value the pos function retur ns when called on the
variable that was matched against. (When we say “offset of the end”, we really
mean the offset to the first character following the end of whatever matched,
so that we can subtract beginning offsets from end offsets and arrive at the
length.) The nth element of this array holds the offset of the nth submatch,
so $+[1] is the offset where $1 ends, $+[2] the offset where $2 ends, and so
on. You can use $#+ to determine how many subgroups were in the last suc-
cessful match. See also @_ (@LAST_MATCH_START).

After a successful match against some variable $var:

• $‘ is the same as substr($var, 0, $-[0])

• $& is the same as substr($var, $-[0], $+[0] - $-[0])

• $’ is the same as substr($var, $+[0])

• $1 is the same as substr($var, $-[1], $+[1] - $-[1])

• $2 is the same as substr($var, $-[2], $+[2] - $-[2])

• $3 is the same as substr($var, $-[3], $+[3] - $-[3]), and so on.

@LAST_MATCH_START

@- [DYN,RO] This array holds the offsets of the beginnings of the last successful
submatches in the currently active dynamic scope. $-[0] is the offset of the
beginning of the entire match. The nth element of this array holds the offset

Nam
es

Special Var iables in Alphabetical Order 667

668 Chapter 28: Special Names

of the nth submatch, so $-[1] is the offset where $1 begins, $-[2] the offset
wher e $2 begins, and so on. You can use $#- to determine how many sub-
gr oups wer e in the last successful match. See also @+ (@LAST_MATCH_END).

$LAST_PAREN_MATCH

$+ [DYN,RO] This retur ns the last parenthesized submatch from the last successful
patter n in the currently active dynamic scope. This is useful when you don’t
know (or care) which of a set of alternative patterns matched. (Mnemonic: be
positive and forward looking.) Example:

$rev = $+ if /Version: (.*)|Revision: (.*)/;

$LAST_REGEXP_CODE_RESULT

$ˆR

[DYN] This contains the result of the last snippet of code executed inside a
successful pattern with the (?{ CODE }) construct. $ˆR gives you a way to
execute code and remember the result for use later in the pattern, or even
afterward.

As the Perl regular expression engine moves through the pattern, it may
encounter multiple (?{ CODE }) expr essions. As it does, it remembers each
value of $ˆR so that if it later has to backtrack past an expression, it restor es
the previous value of $ˆR. In other words, $ˆR has a dynamic scope within the
patter n, much like $1 and friends.

So $ˆR is not simply the result of the last snippet of code executed inside a
patter n. It’s the result of the last snippet of code leading to a successful match.
A cor ollary is that if the match was not successful, $ˆR will be restor ed to
whatever value it had before the match occurred.

If the (?{ CODE }) patter n is functioning directly as the conditional of a
(?(COND)IFTRUE|IFFALSE) subpatter n, $ˆR is not set.

$LIST_SEPARATOR

$" [ALL] When an array or slice is interpolated into a double-quoted string (or the
like), this variable specifies the string to put between individual elements.
Default is a space. (Mnemonic: obvious, one hopes.)

$ˆM

[ALL] By default, running out of memory is not trappable. However, if your
perl was compiled to take advantage of $ˆM, you may use it as an emergency
memory pool. If your Perl is compiled with -DPERL_EMERGENCY_SBRK and uses
Perl’s malloc, then:

$ˆM = ’a’ x (1 << 16);

would allocate a 64K buffer for emergency use. See the INSTALL file in the
Perl source distribution directory for information on how to enable this option.

As a disincentive to casual use of this advanced feature, there is no use

English long name for this variable (and we won’t tell you what the
mnemonic is).

$MATCH

$& [DYN,RO] The string matched by the last successful pattern match in the cur-
rently active dynamic scope. (Mnemonic: like & in some editors.)

$OLD_PERL_VERSION

$] [ALL] Returns the version + patchlevel/1000. It can be used to determine at the
beginning of a script whether the Perl interpreter executing the script is in the
right range of versions. (Mnemonic: is this version of Perl in the right bracket?)
Example:

warn "No checksumming!\n" if $] < 3.019;
die "Must have prototyping available\n" if $] < 5.003;

See also the documentation of use VERSION and require VERSION for a conve-
nient way to fail if the Perl interpreter is too old. See $ˆV for a more flexible
UTF-8 repr esentation of the Perl version.

$OSNAME

$ˆO

[ALL] This variable contains the name of the platform (usually the operating
system) the current perl binary was compiled for. It’s a cheap alternative to
pulling it out of the Config module.

$OS_ERROR

$ERRNO

$! [ALL] If used in a numeric context, yields the current value of the last syscall
err or, with all the usual caveats. (This means that you shouldn’t depend on the
value of $! to be anything in particular unless you’ve gotten a specific error
retur n indicating a system error.) If used in a string context, $! yields the cor-
responding system error string. You can assign an error number to $! if, for
instance, you want $! to retur n the string for that particular error, or you want
to set the exit value for die. See also the Errno module in Chapter 32.
(Mnemonic: what just went bang?)

%OS_ERROR

%ERRNO

%! [ALL] This hash is defined only if you’ve loaded the standard Errno module
described in Chapter 32. Once you’ve done this, you can subscript into %!

using a particular error string, and its value is true only if that’s the current
err or. For example, $!{ENOENT} is true only if the C errno variable is currently
set to the C #define value, ENOENT. This is convenient for accessing vendor-
specific symbols.

Nam
es

Special Var iables in Alphabetical Order 669

670 Chapter 28: Special Names

autoflush HANDLE EXPR

$OUTPUT_AUTOFLUSH

$AUTOFLUSH

$| [FHA] If set to true, forces a buffer flush after every print, printf, and write

on the currently selected output handle. (We call this command buffering.
Contrary to popular belief, setting this variable does not turn off buf fering.)
The default is false, which on many systems means that STDOUT will be line
buf fered if output is to the terminal, and block buffer ed otherwise, even on
pipes and sockets. Setting this variable is useful when you are outputting to a
pipe, such as when you are running a Perl script under rsh (1) and want to see
the output as it’s happening. If you have pending, unflushed data in the cur-
rently selected filehandle’s output buffer when this variable is set to true, that
buf fer will be immediately flushed as a side-effect of assignment. See the one-
argument form of select for examples of controlling buffering on filehandles
other than STDOUT. (Mnemonic: when you want your pipes to be piping hot.)

This variable has no effect on input buffering; for that, see getc in Chapter 29
or the example in the POSIX module in Chapter 32.

$OUTPUT_FIELD_SEPARATOR

$OFS

$, [ALL] The output field separator (terminator, actually) for print. Ordinarily,
print simply prints out the list elements you specify without anything between
them. Set this variable as you would set awk ’s OFS variable to specify what is
printed between fields. (Mnemonic: what is printed when there is a “,” in your
print statement.)

$OUTPUT_RECORD_SEPARATOR

$ORS

$\ [ALL] The output record separator (terminator, actually) for print. Ordinarily,
print simply prints out the comma-separated fields you specify, with no trail-
ing newline or record separator assumed. Set this variable as you would set
awk ’s ORS variable to specify what is printed at the end of the print.
(Mnemonic: you set $\ instead of adding "\n" at the end of the print. Also, it’s
just like /, but it’s what you get “back” from Perl.) See also the -l (for “line”)
command-line switch in Chapter 19.

%OVERLOAD

[NOT,PKG] This hash’s entries are set internally by the use overload pragma to
implement operator overloading for objects of the current package’s class. See
Chapter 13, Overloading.

$PERLDB

$ˆP

[NOT,ALL] The internal variable for enabling the Perl debugger (perl -d).

$PERL_VERSION

$ˆV

[ALL] The revision, version, and subversion of the Perl interpreter, repr esented
as a binary “version string”. V-strings don’t generally have a a numeric value,
but this variable is dual-valued, and has a numeric value equivalent to the old
$] variable; that is, a floating-point number that amounts to revision + ver-
sion/1000 + subversion/1,000,000. The string value is made of UTF-8 charac-
ters: chr($revision) . chr($version) . chr($subversion). This means that
$ˆV is not printable. To print it, you have to say:

printf "%vd", $ˆV;

On the plus side, it also means that ordinary string comparison can be used to
deter mine whether the Perl interpreter executing your script is in the right
range of versions. (This applies to any version numbers repr esented with
v-strings, not just Perl’s.) Example:

warn "No ’our’ declarations!\n" if $ˆV lt v5.6;

See the documentation of use VERSION and require VERSION for a convenient
way to fail if the running Perl interpreter is older than you were hoping. See
also $] for the original repr esentation of the Perl version.

$POSTMATCH

$’ [DYN,RO] The string following whatever was matched by the last successful
patter n in the currently active dynamic scope. (Mnemonic: ’ often follows a
quoted string.) Example:

$_ = ’abcdefghi’;
/def/;
print "$‘:$&:$’\n"; # prints abc:def:ghi

Thanks to dynamic scope, Perl can’t know which patterns will need their
results saved away into these variables, so mentioning $‘ or $’ anywher e in a
pr ogram incurs a perfor mance penalty on all pattern matches throughout the
pr ogram. This isn’t much of an issue in small programs, but you probably
should avoid this pair when you’re writing reusable module code. The exam-
ple above can be equivalently recoded like this, but without the global perfor-
mance hit:

$_ = ’abcdefghi’;
/(.*?)(def)(.*)/s; # /s in case $1 contains newlines
print "$1:$2:$3\n"; # prints abc:def:ghi

Nam
es

Special Var iables in Alphabetical Order 671

672 Chapter 28: Special Names

$PREMATCH

$‘ [DYN,RO] The string preceding whatever was matched by the last successful
patter n in the currently active dynamic scope. (Mnemonic: ‘ often precedes a
quoted string.) See the perfor mance note under $’ pr eviously.

$PROCESS_ID

$PID

$$ [ALL] The process number (PID) of the Perl running this script. This variable is
automatically updated upon a fork. In fact, you can even set $$ yourself; this
will not, however, change your PID. That would be a neat trick. (Mnemonic:
same as in the various shells.)

You need to be careful not to use $$ anywher e it might be misinterpreted as a
der efer ence: $$alphanum. In this situation, write ${$}alphanum to distinguish it
fr om ${$alphanum}.

$PROGRAM_NAME

$0 [ALL] Contains the name of the file containing the Perl script being executed.
Assignment to $0 is magical: it attempts to modify the argument area that the
ps (1) program normally reports on. This is more useful as a way of indicating
the current program state than it is for hiding the program you’re running. But
it doesn’t work on all systems. (Mnemonic: same as sh, ksh, bash, etc.)

$REAL_GROUP_ID

$GID

$([ALL] The real group ID (GID) of this process. If you are on a platfor m that
supports simultaneous membership in multiple groups, $(gives a space-
separated list of groups you are in. The first number is the one retur ned by
getgid (2), and the subsequent ones by getgr oups (2), one of which may be the
same as the first number.

However, a value assigned to $(must be a single number used to set the real
GID. So the value given by $(should not be assigned back to $(without
being forced to be numeric, such as by adding zero. This is because you can
have only one real group. See $) ($EFFECTIVE_GROUP_ID) instead, which
allows you to set multiple effective groups.

(Mnemonic: parentheses are used to gr oup things. The real GID is the group
you left, if you’r e running setgid.)

$REAL_USER_ID

$UID

$< [ALL] The real user ID (UID) of this process as retur ned by the getuid (2)
syscall. Whether and how you can modify this is subject to the vagaries of
your system’s implementation—see examples under $> ($EFFECTIVE_USER_ID).
(Mnemonic: it’s the UID you came fr om, if you’r e running setuid.)

%SIG

[ALL] The hash used to set signal handlers for various signals. (See the section
“Signals” in Chapter 16, Interpr ocess Communication.) For example:

sub handler {
my $sig = shift; # 1st argument is signal name
syswrite STDERR, "Caught a SIG$sig--shutting down\n";

Avoid standard I/O in async handlers to suppress
core dumpage. (Even that string concat is risky.)

close LOG; # This calls standard I/O, so may dump core anyway!
exit 1; # But since we’re exiting, no harm in trying.

}

$SIG{INT} = \&handler;
$SIG{QUIT} = \&handler;
...
$SIG{INT} = ’DEFAULT’; # restore default action
$SIG{QUIT} = ’IGNORE’; # ignore SIGQUIT

The %SIG hash contains undefined values corresponding to those signals for
which no handler has been set. A handler may be specified as a subroutine
refer ence or as a string. A string value that is not one of the two special
actions “DEFAULT” or “IGNORE” is the name of a function, which, if unqualified
by package, is interpreted to be the main package. Here are some other
examples:

$SIG{PIPE} = "Plumber"; # okay, assumes main::Plumber
$SIG{PIPE} = \&Plumber; # fine, use Plumber from current package

Certain internal hooks can also be set using the %SIG hash. The routine indi-
cated by $SIG{_ _WARN_ _} is called when a warning message is about to be
printed. The warning message is passed as the first argument. The presence of
a __WARN_ _ hook causes the ordinary printing of warnings to STDERR to be
suppr essed. You can use this to save warnings in a variable or to turn war n-
ings into fatal errors, like this:

local $SIG{__WARN_ _} = sub { die $_[0] };
eval $proggie;

This is similar to saying:

use warnings qw/FATAL all/;
eval $proggie;

except that the first has dynamic scope, whereas the second has lexical scope.

The routine indicated by $SIG{_ _DIE_ _} pr ovides a way to turn a frog excep-
tion into a prince exception with a magical kiss, which often doesn’t work.

Nam
es

Special Var iables in Alphabetical Order 673

674 Chapter 28: Special Names

The best use is for a moribund program that’s about to die of an untrapped
exception to do some last-moment processing on its way out. You can’t save
yourself this way, but you can give one last hurrah.

The exception message is passed as the first argument. When a __DIE_ _ hook
routine retur ns, exception processing continues as it would have in the
absence of the hook, unless the hook routine itself exits via a goto, a loop
exit, or a die. The __DIE_ _ handler is explicitly disabled during the call, so
that you yourself can then call the real die fr om a __DIE_ _ handler. (If it
wer en’t disabled, the handler would call itself recursively forever.) The handler
for $SIG{_ _WARN_ _} works similarly.

Only the main program should set $SIG{_ _DIE_ _}, not modules. That’s
because currently, even exceptions that are being trapped still trigger a
$SIG{_ _DIE_ _} handler. This is strongly discouraged because of its potential
for breaking innocent modules who aren’t expecting their predicted excep-
tions to be mysteriously altered. Use this feature only as a last resort, and if
you must, always put a local on the front to limit the period of danger.

Do not attempt to build an exception-handling mechanism on this feature.
Use eval {} to trap exceptions instead.

STDERR

[ALL] The special filehandle for standard error in any package.

STDIN

[ALL] The special filehandle for standard input in any package.

STDOUT

[ALL] The special filehandle for standard output in any package.

$SUBSCRIPT_SEPARATOR

$SUBSEP

$; [ALL] The subscript separator for multidimensional hash emulation. If you refer
to a hash element as:

$foo{$a,$b,$c}

it really means:

$foo{join($;, $a, $b, $c)}

But don’t put:

@foo{$a,$b,$c} # a slice- -note the @

which means:

($foo{$a},$foo{$b},$foo{$c})

The default is "\034", the same as SUBSEP in awk. Note that if your keys con-
tain binary data, there might not be any safe value for $;. (Mnemonic:
comma — the syntactic subscript separator—is a semi-semicolon. Yeah, we
know, it’s pretty lame, but $, is already taken for something more important.)

Although we haven’t deprecated this feature, you should instead consider
using “real” multidimensional hashes now, such as $foo{$a}{$b}{$c} instead
of $foo{$a,$b,$c}. The fake ones may be easier to sort, however, and are
much more amenable to use as DBM files.

$SYSTEM_FD_MAX

$ˆF

[ALL] The maximum “system” file descriptor, ordinarily 2. System file descrip-
tors are passed to new programs during an exec, while higher file descriptors
ar e not. Also, during an open, system file descriptors are preserved even if the
open fails. (Ordinary file descriptors are closed before the open is attempted
and stay closed if the open fails.) Note that the close-on-exec status of a file
descriptor will be decided according to the value of $ˆF at the time of the
open, not the time of the exec. Avoid this by temporarily jacking $ˆF thr ough
the roof first:

{
local $ˆF = 10_000;
pipe(HITHER,THITHER) or die "can’t pipe: $!";

}

$VERSION

[PKG] This variable is accessed whenever a minimum acceptable version of a
module is specified, as in use SomeMod 2.5. If $SomeMod::VERSION is less than
that, an exception is raised. Technically, it’s the UNIVERSAL->VERSION method
that looks at this variable, so you could define your own VERSION function in
the current package if you want something other than the default behavior.
See Chapter 12.

$WARNING

$ˆW

[ALL] The current Boolean value of the global warning switch (not to be con-
fused with the global warming switch, about which we hear many global
war nings). See also the use warnings pragma in Chapter 31, Pragmatic Mod-
ules, and the -W and -X command-line switches for lexically scoped warnings,
which are unaf fected by this variable. (Mnemonic: the value is related to the
-w switch.)

Nam
es

Special Var iables in Alphabetical Order 675

676 Chapter 28: Special Names

${ˆWARNING_BITS}

[NOT,ALL] The current set of warning checks enabled by the use warnings

pragma. See use warnings in Chapter 31 for more details.

${ˆWIDE_SYSTEM_CALLS}

[ALL] Global flag that enables all syscalls made by Perl to use wide-character
APIs native to the system, if available. This can also be enabled from the
command line using the -C command-line switch. The initial value is typically
0 for compatibility with Perl versions earlier than 5.6, but may be automatically
set to 1 by Perl if the system provides a user-settable default (such as via
$ENV{LC_CTYPE}). The use bytes pragma always overrides the effect of this flag
in the current lexical scope.

Now brace yourself for a big chapter . . .

29
Functions

This chapter describes the built-in Perl functions in alphabetical order* for conve-
nient refer ence. Each function description begins with a brief summary of the syn-
tax for that function. Parameter names like THIS repr esent placeholders for actual
expr essions, and the text following the syntax summary will describe the seman-
tics of supplying (or omitting) the actual arguments.

You can think of functions as terms in an expression, along with literals and vari-
ables. Or you can think of them as prefix operators that process the arguments
after them. We call them operators half the time anyway.

Some of these operators, er, functions take a LIST as an argument. Elements of the
LIST should be separated by commas (or by =>, which is just a funny kind of
comma). The elements of the LIST ar e evaluated in a list context, so each element
will retur n either a scalar or a list value, depending on its sensitivity to list context.
Each retur ned value, whether scalar or list, will be interpolated as part of the over-
all sequence of scalar values. That is, all the lists get flattened into one list. From
the viewpoint of the function receiving the arguments, the overall argument LIST is
always a single-dimensional list value. (To interpolate an array as a single element,
you must explicitly create and interpolate a refer ence to the array instead.)

Pr edefined Perl functions may be used either with or without parentheses around
their arguments; the syntax summaries in this chapter omit the parentheses. If you
do use parentheses, the simple but occasionally surprising rule is this: if it looks
like a function, then it is a function, so precedence doesn’t matter. Otherwise, it’s a
list operator or unary operator, and precedence does matter. Be car eful, because

* Sometimes tightly related functions are grouped together in the system manpages, so we respect that
gr ouping her e. To find the description of endpwent, for instance, you’ll have to look under getpwent.

Functions

677

678 Chapter 29: Functions

even if you put whitespace between the keyword and its left parenthesis, that
doesn’t keep it from being a function:

print 1+2*4; # Prints 9.
print(1+2) * 4; # Prints 3!
print (1+2)*4; # Also prints 3!
print +(1+2)*4; # Prints 12.
print ((1+2)*4); # Prints 12.

If you run Perl with the -w switch, it will warn you about this. For example, the
second and third lines above produce messages like this:

print (...) interpreted as function at - line 2.
Useless use of integer multiplication in void context at - line 2.

Given the simple definition of some functions, you have considerable latitude in
how you pass arguments. For instance, the most common way to use chmod is to
pass the file permissions (the mode) as an initial argument:

chmod 0644, @array;

but the definition of chmod just says:

chmod LIST

so you could just as well say:

unshift @array, 0644;
chmod @array;

If the first argument of the list is not a valid mode, chmod will fail, but that’s a run-
time semantic problem unrelated to the syntax of the call. If the semantics requir e
any special arguments to be passed first, the text will describe these restrictions.

In contrast to the simple LIST functions, other functions impose additional syntac-
tic constraints. For instance, push has a syntax summary that looks like this:

push ARRAY, LIST

This means that push requir es a proper array as its first argument, but doesn’t care
about its subsequent arguments. That’s what the LIST at the end means. (LISTs
always come at the end, since they gobble up all remaining values.) Whenever a
syntax summary contains any arguments before the LIST, those arguments are syn-
tactically distinguished by the compiler, not just semantically distinguished by the
interpr eter when it runs later. Such arguments are never evaluated in list context.
They may be evaluated in scalar context, or they may be special refer ential argu-
ments such as the array in push. (The description will tell you which is which.)

For those operations that are based directly on the C library’s functions, we do not
attempt to duplicate your system’s documentation. When a function description
says to see function (2), that means that you should look up the corresponding C
version of that function to learn mor e about its semantics. The number in paren-
theses indicates the section of the system programmer’s manual in which you will
find the manpage, if you have the manpages installed. (And in which you won’t, if
you don’t.)

These manpages may document system-dependent behavior like shadow pass-
word files, access control lists, and so forth. Many Perl functions that derive from C
library functions in Unix are emulated even on non-Unix platforms. For example,
although your operating system might not support the flock (2) or fork (2) syscalls,
Perl will do its best to emulate them anyway by using whatever native facilities
your platform provides.

Occasionally, you’ll find that the documented C function has more arguments than
the corresponding Perl function. Generally, the missing arguments are things that
Perl knows already, such as the length of the previous argument, so you needn’t
supply them in Perl. Any remaining disparities are caused by the differ ent ways
Perl and C specify filehandles and success/failure values.

In general, functions in Perl that serve as wrappers for syscalls of the same name
(like chown (2), fork (2), closedir (2), etc.) all retur n true when they succeed and
undef otherwise, as mentioned in the descriptions that follow. This is differ ent
fr om the C library’s interfaces to these operations, which all retur n -1 on failure.
Exceptions to this rule are wait, waitpid, and syscall. Syscalls also set the special
$! ($OS_ERROR) variable on failure. Other functions do not, except accidentally.

For functions that can be used in either scalar or list context, failure is generally
indicated in scalar context by retur ning a false value (usually undef) and in list
context by retur ning the null list. Successful execution is generally indicated by
retur ning a value that will evaluate to true (in context).

Remember the following rule: there is no rule that relates the behavior of a func-
tion in list context to its behavior in scalar context, or vice versa. It might do two
totally differ ent things.

Each function knows the context in which it was called. The same function that
retur ns a list when called in list context will, when called in scalar context, retur n
whichever kind of value would be most appropriate. Some functions retur n the
length of the list that would have been retur ned in list context. Some operators
retur n the first value in the list. Some functions retur n the last value in the list.
Some functions retur n the “other” value, when something can be looked up either
by number or by name. Some functions retur n a count of successful operations. In
general, Perl functions do exactly what you want, unless you want consistency.

Functions

Introduction 679

680 Chapter 29: Functions

One final note: we’ve tried to be very consistent in our use of the terms “byte” and
“character”. Historically, these terms have been confused with each other (and
with themselves). But when we say “byte” we always mean an octet, 8 bits. When
we say “character”, we mean an abstract character, usually a Unicode character,
which may be repr esented by one or more bytes within your strings.

But notice that we said “usually”. Perl purposefully confuses bytes with characters
in the scope of a use bytes declaration, so whenever we say “character”, you
should take it to mean a byte in a use bytes context, and a Unicode character oth-
erwise. In other words, use bytes just warps the definition of character back to
what it was in older versions of Perl. So, for instance, when we say that a scalar
reverse reverses a string character by character, don’t ask us whether that really
means characters or bytes, because the answer is, “Yes, it does.”

Perl Functions by Categor y
Her e ar e Perl’s functions and function-like keywords, arranged by category. Some
functions appear under more than one heading.

Scalar manipulation
chomp, chop, chr, crypt, hex, index, lc, lcfirst, length, oct, ord, pack, q//,
qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

Regular expressions and pattern matching
m//, pos, qr//, quotemeta, s///, split, study

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Array processing
pop, push, shift, splice, unshift

List processing
grep, join, map, qw//, reverse, sort, unpack

Hash processing
delete, each, exists, keys, values

Input and output
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format,
getc, print, printf, read, readdir, readpipe, rewinddir, seek, seekdir, select
(r eady file descriptors), syscall, sysread, sysseek, syswrite, tell, telldir,
truncate, warn, write

Fixed-length data and recor ds
pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

Filehandles, files, and directories
chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, select (r eady file descriptors), select (out-
put filehandle), stat, symlink, sysopen, umask, unlink, utime

Flow of program control
caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub,
wantarray

Scoping
caller, import, local, my, no, our, package, use

Miscellaneous
defined, dump, eval, formline, lock, prototype, reset, scalar, undef, wantarray

Pr ocesses and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, setpgrp,
setpriority, sleep, system, times, wait, waitpid

Library modules
do, import, no, package, require, use

Classes and objects
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket access
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread,
shmwrite

Fetching user and group information
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, get-
login, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network information
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnet-
byaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber, getpro-
toent, getservbyname, getservbyport, getservent, sethostent, setnetent, set-
protoent, setservent

Time
gmtime, localtime, time, times

Functions

Perl Functions by Categor y 681

682 Chapter 29: Functions

Perl Functions in Alphabetical Order
Many of the following function names are annotated with, um, annotations. Here
ar e their meanings:

$_ Uses $_ ($ARG) as a default variable.

$! Sets $! ($OS_ERROR) on syscall errors.

$@ Raises exceptions; use eval to trap $@ ($EVAL_ERROR).

$? Sets $? ($CHILD_ERROR) when child process exits.

T Taints retur ned data.

T Taints retur ned data under some system, locale, or handle settings.
X

ARG Raises an exception if given an argument of inappropriate type.
X

RO Raises an exception if modifying a read-only target.
X
T Raises an exception if fed tainted data.
X
U Raises an exception if unimplemented on current platform.

Functions that retur n tainted data when fed tainted data are not marked, since
that’s most of them. In particular, if you use any function on %ENV or @ARGV, you’ll
get tainted data.

Functions marked with X
ARG raise an exception when they requir e, but do not

receive, an argument of a particular type (such as filehandles for I/O operations,
refer ences for blessing, etc.).

Functions marked with X
RO sometimes need to alter their arguments. If they can’t

modify the argument because it’s marked read-only, they’ll raise an exception.
Examples of read-only variables are the special variables containing data captured
during a pattern match and variables that are really aliases to constants.

Functions marked with X
U may not be implemented on all platforms. Although

many of these are named after functions in the Unix C library, don’t assume that
just because you aren’t running Unix, you can’t call any of them. Many are emu-
lated, even those you might never expect to see—such as fork on Win32 systems,
which works as of the 5.6 release of Perl. For more infor mation about the portabil-
ity and behavior of system-specific functions, see the perlport manpage, plus any
platfor m-specific documentation that came with your Perl port.

Functions that raise other miscellaneous exceptions are marked with $@ , including
math functions that throw range errors, such as sqrt(-1).

abs $_

abs VALUE
abs

This function retur ns the absolute value of its argument.

$diff = abs($first - $second);

Note: here and in subsequent examples, good style (and the use strict pragma)
would dictate that you add a my modifier to declare a new lexically scoped vari-
able, like this:

my $diff = abs($first - $second);

However, we’ve omitted my fr om most of our examples for clarity. Just assume that
any such variable was declared earlier, if that cranks your rotor.

accept $! X
ARG

X
U

accept SOCKET, PROTOSOCKET

This function is used by server processes that wish to listen for socket connections
fr om clients. PROTOSOCKET must be a filehandle already opened via the socket

operator and bound to one of the server’s network addresses or to INADDR_ANY.
Execution is suspended until a connection is made, at which point the SOCKET file-
handle is opened and attached to the newly made connection. The original PROTO-
SOCKET remains unchanged; its only purpose is to be cloned into a real socket. The
function retur ns the connected address if the call succeeds, false otherwise. For
example:

unless ($peer = accept(SOCK, PROTOSOCK)) {
die "Can’t accept a connection: $!\n";

}

On systems that support it, the close-on-exec flag will be set for the newly opened
file descriptor, as deter mined by the value of $ˆF ($SYSTEM_FD_MAX).

See accept (2). See also the example in the section “Sockets” in Chapter 16, Inter-
pr ocess Communication.

alar m $_ X
U

alarm EXPR
alarm

This function sends a SIGALRM signal to the current process after EXPR seconds.

Functions

Perl Functions in Alphabetical Order 683

684 Chapter 29: Functions

Only one timer may be active at once. Each call disables the previous timer, and
an EXPR of 0 may be supplied to cancel the previous timer without starting a new
one. The retur n value is the amount of time remaining on the previous timer.

print "Answer me within one minute, or die: ";
alarm(60); # kill program in one minute
$answer = <STDIN>;
$timeleft = alarm(0); # clear alarm
print "You had $timeleft seconds remaining\n";

It is usually a mistake to intermix alarm and sleep calls, because many systems use
the alar m (2) syscall mechanism to implement sleep (3). On older machines, the
elapsed time may be up to one second less than you specified because of how
seconds are counted. Additionally, a busy system may not get around to running
your process immediately. See Chapter 16 for information on signal handling.

For alarms of finer granularity than one second, you might be able to use the
syscall function to access setitimer (2) if your system supports it. The CPAN mod-
ule, Timer::HiRes, also provides functions for this purpose.

atan2
atan2 Y, X

This function retur ns the principal value of the arc tangent of Y/X in the range –π
to π. A quick way to get an approximate value of π is to say:

$pi = atan2(1,1) * 4;

For the tangent operation, you may use the tan function from either the
Math::Trig or the POSIX modules, or just use the familiar relation:

sub tan { sin($_[0]) / cos($_[0]) }

bind $! X
ARG

X
U

X
T

bind SOCKET, NAME

This function attaches an address (a name) to an already opened socket specified
by the SOCKET filehandle. The function retur ns true if it succeeded, false otherwise.
NAME should be a packed address of the proper type for the socket.

use Socket;
$port_number = 80; # pretend we want to be a web server
$sockaddr = sockaddr_in($port_number, INADDR_ANY);
bind SOCK, $sockaddr or die "Can’t bind $port_number: $!\n";

See bind (2). See also the examples in the section “Sockets” in Chapter 16.

binmode X
ARG

binmode FILEHANDLE, DISCIPLINES
binmode FILEHANDLE

This function arranges for the FILEHANDLE to have the semantics specified by the
DISCIPLINES argument. If DISCIPLINES is omitted, binary (or “raw”) semantics are
applied to the filehandle. If FILEHANDLE is an expression, the value is taken as the
name of the filehandle or a refer ence to a filehandle, as appropriate.

The binmode function should be called after the open but before any I/O is done
on the filehandle. The only way to reset the mode on a filehandle is to reopen the
file, since the various disciplines may have treasur ed up various bits and pieces of
data in various buffers. This restriction may be relaxed in the future.

In the olden days, binmode was used primarily on operating systems whose
run-time libraries distinguished text from binary files. On those systems, the pur-
pose of binmode was to turn off the default text semantics. However, with the
advent of Unicode, all programs on all systems must take some cognizance of the
distinction, even on Unix and Mac systems. These days there is only one kind of
binary file (as far as Perl is concerned), but there are many kinds of text files,
which Perl would also like to treat in a single way. So Perl has a single internal
for mat for Unicode text, UTF-8. Since there are many kinds of text files, text files
often need to be translated upon input into UTF-8, and upon output back into
some legacy character set, or some other repr esentation of Unicode. You can use
disciplines to tell Perl how exactly (or inexactly) to do these translations.*

For example, a discipline of ":text" will tell Perl to do generic text processing
without telling Perl which kind of text processing to do. But disciplines like
":utf8" and ":latin1" tell Perl which text format to read and write. On the other
hand, the ":raw" discipline tells Perl to keep its cotton-pickin’ hands off the data.
For more on how disciplines work (or will work), see the open function. The rest
of this discussion describes what binmode does without the DISCIPLINES argument,
that is, the historical meaning of binmode, which is equivalent to:

binmode FILEHANDLE, ":raw";

Unless instructed otherwise, Perl will assume your freshly opened file should be
read or written in text mode. Text mode means that \n (newline) will be your
inter nal line terminator. All systems use \n as the internal line terminator, but what
that really repr esents varies from system to system, device to device, and even file
to file, depending on how you access the file. In such legacy systems (including
MS-DOS and VMS), what your program sees as a \n may not be what’s physically

* Mor e pr ecisely, you will be able to use disciplines for this, but we’re still implementing them as of
this writing.

Functions

Perl Functions in Alphabetical Order 685

686 Chapter 29: Functions

stor ed on disk. The operating system might, for example, store text files with
\cM\cJ sequences that are translated on input to appear as \n to your program,
and have \n fr om your program translated back to \cM\cJ on output to a file. The
binmode function disables this automatic translation on such systems.

In the absence of a DISCIPLINES argument, binmode has no effect under Unix or
Mac OS, both of which use \n to end each line and repr esent that as a single char-
acter. (It may, however, be a dif ferent character: Unix uses \c J and older Macs use
\cM. Doesn’t matter.)

The following example shows how a Perl script might read a GIF image from a
file and print it to the standard output. On systems that would otherwise alter the
literal data into something other than its exact physical repr esentation, you must
pr epar e both handles. While you could use a ":raw" discipline directly in the GIF
open, you can’t do that so easily with pre-opened filehandles like STDOUT:

binmode STDOUT;
open(GIF, "vim-power.gif") or die "Can’t open vim-power.gif: $!\n";
binmode GIF;
while (read(GIF, $buf, 1024)) {

print STDOUT $buf;
}

bless X
ARG

bless REF, CLASSNAME
bless REF

This function tells the refer ent pointed to by refer ence REF that it is now an object
in the CLASSNAME package — or the current package if no CLASSNAME is specified. If
REF is not a valid refer ence, an exception is raised. For convenience, bless retur ns
the refer ence, since it’s often the last function in a constructor subroutine. For
example:

$pet = Beast->new(TYPE => "cougar", NAME => "Clyde");

then in Beast.pm:
sub new {

my $class = shift;
my %attrs = @_;
my $self = { %attrs };
return bless($self, $class);

}

You should generally bless objects into CLASSNAMEs that are mixed case. Name-
spaces with all lowercase names are reserved for internal use as Perl pragmata
(compiler directives). Built-in types (such as “SCALAR”, “ARRAY”, “HASH”, etc., not to
mention the base class of all classes, “UNIVERSAL”) all have uppercase names, so
you may wish to avoid such package names as well.

Make sure that CLASSNAME is not false; blessing into false packages is not supported
and may result in unpredictable behavior.

It is not a bug that there is no corr esponding curse operator. (But there is a sin

operator.) See also Chapter 12, Objects, for more about the blessing (and bless-
ings) of objects.

caller
caller EXPR
caller

This function retur ns infor mation about the stack of current subroutine calls and
such. Without an argument, it retur ns the package name, filename, and line num-
ber that the currently executing subroutine was called from:

($package, $filename, $line) = caller;

Her e’s an example of an exceedingly picky function, making use of the special
tokens __PACKAGE_ _ and __FILE_ _ described in Chapter 2, Bits and Pieces :

sub careful {
my ($package, $filename) = caller;
unless ($package eq __PACKAGE_ _ && $filename eq __FILE_ _) {

die "You weren’t supposed to call me, $package!\n";
}
print "called me safely\n";

}

sub safecall {
careful();

}

When called with an argument, caller evaluates EXPR as the number of stack
frames to go back before the current one. For example, an argument of 0 means
the current stack frame, 1 means the caller, 2 means the caller’s caller, and so on.
The function also reports additional information as shown here:

$i = 0;
while (($package, $filename, $line, $subroutine,

$hasargs, $wantarray, $evaltext, $is_require,
$hints, $bitmask) = caller($i++))

{
...

}

If the frame is a subroutine call, $hasargs is true if it has its own @_ array (not one
borr owed fr om its caller). Otherwise, $subroutine may be "(eval)" if the frame is
not a subroutine call, but an eval. If so, additional elements $evaltext and
$is_require ar e set: $is_require is true if the frame is created by a require or use
statement, and $evaltext contains the text of the eval EXPR statement. In

Functions

Perl Functions in Alphabetical Order 687

688 Chapter 29: Functions

particular, for a eval BLOCK statement, $filename is "(eval)", but $evaltext is
undefined. (Note also that each use statement creates a require frame inside an
eval EXPR frame.) The $hints and $bitmask ar e inter nal values; please ignore them
unless you’re a member of the thaumatocracy.

In a fit of even deeper magic, caller also sets the array @DB::args to the argu-
ments passed in the given stack frame—but only when called from within the DB

package. See Chapter 20, The Perl Debugger.

chdir $! X
T

chdir EXPR
chdir

This function changes the current process’s working directory to EXPR, if possible.
If EXPR is omitted, the caller’s home directory is used. The function retur ns true
upon success, false otherwise.

chdir "$prefix/lib" or die "Can’t cd to $prefix/lib: $!\n";

See also the Cwd module, described in Chapter 32, Standar d Modules, which lets
you keep track of your current directory automatically.

chmod $! X
T

chmod LIST

This function changes the permissions of a list of files. The first element of the list
must be the numerical mode, as in the chmod (2) syscall. The function retur ns the
number of files successfully changed. For example:

$cnt = chmod 0755, ’file1’, ’file2’;

will set $cnt to 0, 1, or 2, depending on how many files were changed. Success is
measur ed by lack of error, not by an actual change, because a file may have had
the same mode before the operation. An error probably means you lacked suffi-
cient privileges to change its mode because you were neither the file’s owner nor
the superuser. Check $! to find the actual reason for failure.

Her e’s a mor e typical usage:

chmod(0755, @executables) == @executables
or die "couldn’t chmod some of @executables: $!";

If you need to know which files didn’t allow the change, use something like this:

@cannot = grep {not chmod 0755, $_} ’file1’, ’file2’, ’file3’;
die "$0: could not chmod @cannot\n" if @cannot;

This idiom makes use of the grep function to select only those elements of the list
for which the chmod function failed.

When using nonliteral mode data, you may need to convert an octal string to a
number using the oct function. That’s because Perl doesn’t automatically assume a
string contains an octal number just because it happens to have a leading “0”.

$DEF_MODE = 0644; # Can’t use quotes here!
PROMPT: {

print "New mode? ";
$strmode = <STDIN>;

exit unless defined $strmode; # test for eof
if ($strmode =˜ /ˆ\s*$/) { # test for blank line

$mode = $DEF_MODE;
}
elsif ($strmode !˜ /ˆ\d+$/) {

print "Want numeric mode, not $strmode\n";
redo PROMPT;

}
else {

$mode = oct($strmode); # converts "755" to 0755
}
chmod $mode, @files;

}

This function works with numeric modes much like the Unix chmod (2) syscall. If
you want a symbolic interface like the one the chmod (1) command provides, see
the File::chmod module on CPAN.

You can also import the symbolic S_I* constants from the Fcntl module:

use Fcntl ’:mode’;
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;

Some people consider that more readable than 0755. Go figur e.

chomp $_ X
RO

chomp VARIABLE
chomp LIST
chomp

This function (normally) deletes a trailing newline from the end of a string con-
tained in a variable. This is a slightly safer version of chop (described next) in that
it has no effect upon a string that doesn’t end in a newline. More specifically, it
deletes the terminating string corresponding to the current value of $/, and not just
any last character.

Unlike chop, chomp retur ns the number of characters deleted. If $/ is "" (in
paragraph mode), chomp removes all trailing newlines from the selected string (or
strings, if chomping a LIST). You cannot chomp a literal, only a variable.

Functions

Perl Functions in Alphabetical Order 689

690 Chapter 29: Functions

For example:

while (<PASSWD>) {
chomp; # avoid \n on last field
@array = split /:/;
...

}

With version 5.6, the meaning of chomp changes slightly in that input disciplines
ar e allowed to override the value of the $/ variable and mark strings as to how
they should be chomped. This has the advantage that an input discipline can rec-
ognize more than one variety of line terminator (such as Unicode paragraph and
line separators), but still safely chomp whatever terminates the current line.

chop $_ X
RO

chop VARIABLE
chop LIST
chop

This function chops off the last character of a string variable and retur ns the char-
acter chopped. The chop operator is used primarily to remove the newline from
the end of an input record, and is more efficient than using a substitution. If that’s
all you’re doing, then it would be safer to use chomp, since chop always shortens
the string no matter what’s there, and chomp is more selective.

You cannot chop a literal, only a variable.

If you chop a LIST of variables, each string in the list is chopped:

@lines = ‘cat myfile‘;
chop @lines;

You can chop anything that is an lvalue, including an assignment:

chop($cwd = ‘pwd‘);
chop($answer = <STDIN>);

This is differ ent fr om:

$answer = chop($tmp = <STDIN>); # WRONG

which puts a newline into $answer because chop retur ns the character chopped,
not the remaining string (which is in $tmp). One way to get the result intended
her e is with substr:

$answer = substr <STDIN>, 0, -1;

But this is more commonly written as:

chop($answer = <STDIN>);

In the most general case, chop can be expressed in terms of substr:

$last_char = chop($var);
$last_char = substr($var, -1, 1, ""); # same thing

Once you understand this equivalence, you can use it to do bigger chops. To chop
mor e than one character, use substr as an lvalue, assigning a null string. The fol-
lowing removes the last five characters of $caravan:

substr($caravan, -5) = "";

The negative subscript causes substr to count from the end of the string instead of
the beginning. If you wanted to save the characters so removed, you could use the
four-argument form of substr, creating something of a quintuple chop:

$tail = substr($caravan, -5, 5, "");

chown $! X
U

X
T

chown LIST

This function changes the owner and group of a list of files. The first two elements
of the list must be the numeric UID and GID, in that order. A value of -1 in either
position is interpreted by most systems to leave that value unchanged. The func-
tion retur ns the number of files successfully changed. For example:

chown($uidnum, $gidnum, ’file1’, ’file2’) == 2
or die "can’t chown file1 or file2: $!";

will set $cnt to 0, 1, or 2, depending on how many files got changed (in the sense
that the operation succeeded, not in the sense that the owner was differ ent after-
ward). Here’s a more typical usage:

chown($uidnum, $gidnum, @filenames) == @filenames
or die "can’t chown @filenames: $!";

Her e’s a subr outine that accepts a username, looks up the user and group IDs for
you, and does the chown:

sub chown_by_name {
my($user, @files) = @_;
chown((getpwnam($user))[2,3], @files) == @files

or die "can’t chown @files: $!";
}

chown_by_name("fred", glob("*.c"));

Functions

Perl Functions in Alphabetical Order 691

692 Chapter 29: Functions

However, you may not want the group changed as the previous function does,
because the /etc/passwd file associates each user with a single group even though
that user may be a member of many secondary groups according to /etc/gr oup. An
alter native is to pass a -1 for the GID, which leaves the group of the file
unchanged. If you pass a -1 as the UID and a valid GID, you can set the group
without altering the owner.

On most systems, you are not allowed to change the ownership of the file unless
you’r e the superuser, although you should be able to change the group to any of
your secondary groups. On insecure systems, these restrictions may be relaxed,
but this is not a portable assumption. On POSIX systems, you can detect which
rule applies like this:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
only try if we’re the superuser or on a permissive system
if ($> == 0 || !sysconf(_PC_CHOWN_RESTRICTED)) {

chown($uidnum, -1, $filename)
or die "can’t chown $filename to $uidnum: $!";

}

chr $_

chr NUMBER
chr

This function retur ns the character repr esented by that NUMBER in the character set.
For example, chr(65) is “A” in either ASCII or Unicode, and chr(0x263a) is a Uni-
code smiley face. For the reverse of chr, use ord.

If you’d rather specify your characters by name than by number (for example,
"\N{WHITE SMILING FACE}" for a Unicode smiley), see charnames in Chapter 31,
Pragmatic Modules.

chroot $_ $! X
U

X
T

chroot FILENAME
chroot

If successful, FILENAME becomes the new root directory for the current process —
the starting point for pathnames beginning with “/”. This directory is inherited
acr oss exec calls and by all subprocesses forked after the chroot call. There is no
way to undo a chroot. For security reasons, only the superuser can use this func-
tion. Here’s some code that approximates what many FTP servers do:

chroot((getpwnam(’ftp’))[7])
or die "Can’t do anonymous ftp: $!\n";

This function is unlikely to work on non-Unix systems. See chr oot (2).

close $! $? X
ARG

close FILEHANDLE
close

This function closes the file, socket, or pipe associated with FILEHANDLE. (It closes
the currently selected filehandle if the argument is omitted.) It retur ns true if the
close is successful, false otherwise. You don’t have to close FILEHANDLE if you are
immediately going to do another open on it, since the next open will close it for
you. (See open.) However, an explicit close on an input file resets the line counter
($.), while the implicit close done by open does not.

FILEHANDLE may be an expression whose value can be used as an indirect filehan-
dle (either the real filehandle name or a refer ence to anything that can be inter-
pr eted as a filehandle object).

If the filehandle came from a piped open, close will retur n false if any underlying
syscall fails or if the program at the other end of the pipe exited with nonzero sta-
tus. In the latter case, the close forces $! ($OS_ERROR) to zer o. So if a close on a
pipe retur ns a nonzer o status, check $! to determine whether the problem was
with the pipe itself (nonzero value) or with the program at the other end (zero
value). In either event, $? ($CHILD_ERROR) contains the wait status value (see its
interpr etation under system) of the command associated with the other end of the
pipe. For example:

open(OUTPUT, ’| sort -rn | lpr -p’) # pipe to sort and lpr
or die "Can’t start sortlpr pipe: $!";

print OUTPUT @lines; # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Syserr closing sortlpr pipe: $!"
: "Wait status $? from sortlpr pipe";

A filehandle produced by dup (2)ing a pipe is treated as an ordinary filehandle, so
close will not wait for the child on that filehandle. You have to wait for the child
by closing the original filehandle. For example:

open(NETSTAT, "netstat -rn |")
or die "can’t run netstat: $!";

open(STDIN, "<&NETSTAT")
or die "can’t dup to stdin: $!";

If you close STDIN above, there is no wait, but if you close NETSTAT, ther e is.

If you somehow manage to reap an exited pipe child on your own, the close will
fail. This could happen if you had a $SIG{CHLD} handler of your own that got trig-
ger ed when the pipe child exited, or if you intentionally called waitpid on the
pr ocess ID retur ned fr om the open call.

Functions

Perl Functions in Alphabetical Order 693

694 Chapter 29: Functions

closedir $! X
ARG

X
U

closedir DIRHANDLE

This function closes a directory opened by opendir and retur ns the success of that
operation. See the examples under readdir. DIRHANDLE may be an expression
whose value can be used as an indirect dirhandle, usually the real dirhandle name.

connect $! X
ARG

X
T

X
U

connect SOCKET, NAME

This function initiates a connection with another process that is waiting at an
accept. The function retur ns true if it succeeded, false otherwise. NAME should be a
packed network address of the proper type for the socket. For example, assuming
SOCK is a previously created socket:

use Socket;

my ($remote, $port) = ("www.perl.com", 80);
my $destaddr = sockaddr_in($port, inet_aton($remote));
connect SOCK, $destaddr

or die "Can’t connect to $remote at port $port: $!";

To disconnect a socket, use either close or shutdown. See also the examples in the
section “Sockets” in Chapter 16. See connect (2).

cos $_

cos EXPR
cos

This function retur ns the cosine of EXPR (expr essed in radians). For example, the
following script will print a cosine table of angles measured in degrees:

Here’s the lazy way of getting degrees-to-radians.

$pi = atan2(1,1) * 4;
$piover180 = $pi/180;

Print table.
for ($deg = 0; $deg <= 90; $deg++) {

printf "%3d %7.5f\n", $deg, cos($deg * $piover180);
}

For the inverse cosine operation, you may use the acos() function from the
Math::Trig or POSIX modules, or use this relation:

sub acos { atan2(sqrt(1 - $_[0] * $_[0]), $_[0]) }

cr ypt X
U

crypt PLAINTEXT, SALT

This function computes a one-way hash of a string exactly in the manner of
crypt (3). This is somewhat useful for checking the password file for lousy
passwords,* although what you really want to do is prevent people from adding
the bad passwords in the first place.

crypt is intended to be a one-way function, much like breaking eggs to make an
omelette. There is no (known) way to decrypt an encrypted password apart from
exhaustive, brute-force guessing.

When verifying an existing encrypted string, you should use the encrypted text as
the SALT (like crypt($plain, $crypted) eq $crypted). This allows your code to
work with the standard crypt, and with more exotic implementations, too.

When choosing a new SALT, you minimally need to create a random two character
string whose characters come from the set [./0-9A-Za-z] (like join ’’, (’.’,

’/’, 0..9, ’A’..’Z’, ’a’..’z’)[rand 64, rand 64]). Older implementations of
crypt only needed the first two characters of the SALT, but code that only gives the
first two characters is now considered nonportable. See your local crypt (3) man-
page for interesting details.

Her e’s an example that makes sure that whoever runs this program knows their
own password:

$pwd = (getpwuid ($<))[1]; # Assumes we’re on Unix.

system "stty -echo"; # or look into Term::ReadKey on CPAN
print "Password: ";
chomp($word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";

} else {
print "ok\n";

}

Of course, typing in your own password to whoever asks for it is unwise.

Shadow password files are slightly more secur e than traditional password files, and
you might have to be a superuser to access them. Because few programs should
run under such powerful privileges, you might have the program maintain its own

* Only people with honorable intentions are allowed to do this.

Functions

Perl Functions in Alphabetical Order 695

696 Chapter 29: Functions

independent authentication system by storing the crypt strings in a differ ent file
than /etc/passwd or /etc/shadow.

The crypt function is unsuitable for encrypting large quantities of data, not least of
all because you can’t get the information back. Look at the by-module/Crypt and
by-module/PGP dir ectories on your favorite CPAN mirror for a slew of potentially
useful modules.

dbmc lose $! X
U

dbmclose HASH

This function breaks the binding between a DBM (database management) file and
a hash. dbmclose is really just a call to untie with the proper arguments, but is pro-
vided for backward compatibility with ancient versions of Perl.

dbmopen $! X
U

dbmopen HASH, DBNAME, MODE

This binds a DBM file to a hash (that is, an associative array). (DBM stands for
database management, and consists of a set of C library routines that allow ran-
dom access to records via a hashing algorithm.) HASH is the name of the hash
(including the %). DBNAME is the name of the database (without any .dir or .pag
extension). If the database does not exist and a valid MODE is specified, the
database is created with the protection specified by MODE, as modified by the
umask. To prevent creation of the database if it doesn’t exist, you may specify a
MODE of undef, and the function will retur n false if it can’t find an existing database.
Values assigned to the hash prior to the dbmopen ar e not accessible.

The dbmopen function is really just a call to tie with the proper arguments, but is
pr ovided for backward compatibility with ancient versions of Perl. You can control
which DBM library you use by using the tie inter face dir ectly or by loading the
appr opriate module before you call dbmopen. Her e’s an example that works on
some systems for versions of DB_File similar to the version in your Netscape
br owser:

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.dat", undef)

or die "Can’t open netscape history file: $!";

while (($url, $when) = each %NS_Hist) {
next unless defined($when);
chop ($url, $when); # kill trailing null bytes
printf "Visited %s at %s.\n", $url,

scalar(localtime(unpack("V",$when)));
}

If you don’t have write access to the DBM file, you can only read the hash vari-
ables, not set them. If you want to test whether you can write, either use a file test
like -w $file, or try setting a dummy hash entry inside an eval {}, which will trap
the exception.

Functions such as keys and values may retur n huge list values when used on large
DBM files. You may prefer to use the each function to iterate over large DBM files
so that you don’t load the whole thing in memory at once.

Hashes bound to DBM files have the same limitations as the type of DBM package
you’r e using, including restrictions on how much data you can put into a bucket.
If you stick to short keys and values, it’s rarely a problem. See also the DB_File

module in Chapter 32.

Another thing you should bear in mind is that many existing DBM databases con-
tain null-terminated keys and values because they were set up with C programs in
mind. The Netscape history file and the old sendmail aliases file are examples. Just
use "$key\0" when pulling out a value, and remove the null from the value.

$alias = $aliases{"postmaster\0"};
chop $alias; # kill the null

Ther e is currently no built-in way to lock a generic DBM file. Some would con-
sider this a bug. The GDBM_File module does attempt to provide locking at the
granularity of the entire file. When in doubt, your best bet is to use a separate lock
file.

defined $_

defined EXPR
defined

This function retur ns a Boolean value saying whether EXPR has a defined value or
not. Most of the data you deal with is defined, but a scalar that contains no valid
string, numeric, or refer ence value is said to contain the undefined value, or undef
for short. Initializing a scalar variable to a particular value will define it, and it will
stay defined until you assign an undefined value to it or explicitly call the undef

function on that variable.

Many operations retur n undef under exceptional conditions, such as at end-of-file,
when using an uninitialized variable’s value, an operating system error, etc. Since
undef is just one kind of false value, a simple Boolean test does not distinguish
between undef, numeric zero, the null string, and the one-character string, “0”—all
of which are equally false. The defined function allows you to distinguish between
an undefined null string and a defined null string when you’re using operators that
might retur n a real null string.

Functions

Perl Functions in Alphabetical Order 697

698 Chapter 29: Functions

Her e is a fragment that tests a scalar value from a hash:

print if defined $switch{D};

When used on a hash element like this, defined only tells you whether the value
is defined, not whether the key has an entry in the hash. It’s possible to have a
key whose value is undefined; the key itself however still exists. Use exists to
deter mine whether the hash key exists.

In the next example we exploit the convention that some operations retur n the
undefined value when you run out of data:

print "$val\n" while defined($val = pop(@ary));

And in this one, we do the same thing with the getpwent function for retrieving
infor mation about the system’s users.

setpwent();
while (defined($name = getpwent())) {

print "<<$name>>\n";
}
endpwent();

The same thing goes for error retur ns fr om syscalls that could validly retur n a false
value:

die "Can’t readlink $sym: $!"
unless defined($value = readlink $sym);

You may also use defined to see whether a subroutine has been defined yet. This
makes it possible to avoid blowing up on nonexistent subroutines (or subroutines
that have been declared but never given a definition):

indir("funcname", @arglist);
sub indir {

my $subname = shift;
no strict ’refs’; # so we can use subname indirectly
if (defined &$subname) {

&$subname(@_); # or $subname->(@_);
}
else {

warn "Ignoring call to invalid function $subname";
}

}

Use of defined on aggregates (hashes and arrays) is deprecated. (It used to report
whether memory for that aggregate had ever been allocated.) Instead, use a simple
Boolean test to see whether the array or hash has any elements:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }

See also undef and exists.

delete
delete EXPR

This function deletes an element (or a slice of elements) from the specified hash
or array. (See unlink if you want to delete a file.) The deleted elements are
retur ned in the order specified, though this behavior is not guaranteed for tied
variables such as DBM files. After the delete operation, the exists function will
retur n false on any deleted key or index. (In contrast, after the undef function, the
exists function continues to retur n true, because the undef function only unde-
fines the value of the element, but doesn’t delete the element itself.)

Deleting from the %ENV hash modifies the environment. Deleting from a hash that
is bound to a (writable) DBM file deletes the entry from that DBM file.

Historically, you could only delete from a hash, but with Perl version 5.6 you may
also delete from an array. Deleting from an array causes the element at the speci-
fied position to revert to a completely uninitialized state, but it doesn’t close up
the gap, since that would change the positions of all the subsequent entries. Use a
splice for that. (However, if you delete the final element in an array, the array size
will shrink by one (or more, depending on the position of the next largest existing
element (if any))).

EXPR can be arbitrarily complicated, provided that the final operation is a hash or
array lookup:

set up array of array of hash
$dungeon[$x][$y] = \%properties;

delete one property from hash
delete $dungeon[$x][$y]{"OCCUPIED"};

delete three properties all at once from hash
delete @{ $dungeon[$x][$y] }{ "OCCUPIED", "DAMP", "LIGHTED" };

delete reference to %properties from array
delete $dungeon[$x][$y];

The following naïve example inefficiently deletes all the values of a %hash:

foreach $key (keys %hash) {
delete $hash{$key};

}

And so does this:

delete @hash{keys %hash};

Functions

Perl Functions in Alphabetical Order 699

700 Chapter 29: Functions

But both of these are slower than just assigning the empty list or undefining it:

%hash = (); # completely empty %hash
undef %hash; # forget %hash ever existed

Likewise for arrays:

foreach $index (0 .. $#array) {
delete $array[$index];

}

and:

delete @array[0 .. $#array];

ar e less efficient than either of:

@array = (); # completely empty @array
undef @array; # forget @array ever existed

die $@

die LIST
die

Outside an eval, this function prints the concatenated value of LIST to STDERR and
exits with the current value of $! (the C-library errno variable). If $! is 0, it exits
with the value of $? >> 8 (which is the status of the last reaped child from a sys-

tem, wait, close on a pipe, or ‘command‘). If $? >> 8 is 0, it exits with 255.

Within an eval, the function sets the $@ variable to the error message that would
have otherwise been produced, then aborts the eval, which retur ns undef. The die

function can thus be used to raise named exceptions that can be caught at a
higher level in the program. See eval later in this chapter.

If LIST is a single object refer ence, that object is assumed to be an exception
object and is retur ned unmodified as the exception in $@.

If LIST is empty and $@ alr eady contains a string value (typically from a previous
eval) that value is reused after appending "\t...propagated". This is useful for
pr opagating (r eraising) exceptions:

eval { ... };
die unless $@ =˜ /Expected exception/;

If LIST is empty and $@ alr eady contains an exception object, the $@->PROPAGATE

method is called to determine how the exception should be propagated.

If LIST is empty and $@ is empty, then the string "Died" is used.

If the final value of LIST does not end in a newline (and you’re not passing an
exception object), the current script filename, line number, and input line number
(if any) are appended to the message, as well as a newline. Hint: sometimes
appending ", stopped" to your message will cause it to make better sense when
the string "at scriptname line 123" is appended. Suppose you are running script
canasta; consider the differ ence between the following two ways of dying:

die "/usr/games is no good";
die "/usr/games is no good, stopped";

which produce, respectively:

/usr/games is no good at canasta line 123.
/usr/games is no good, stopped at canasta line 123.

If you want your own error messages reporting the filename and line number, use
the __FILE_ _ and __LINE_ _ special tokens:

die ’"’, __FILE_ _, ’", line ’, __LINE_ _, ", phooey on you!\n";

This produces output like:

"canasta", line 38, phooey on you!

One other style issue—consider the following equivalent examples:

die "Can’t cd to spool: $!\n" unless chdir ’/usr/spool/news’;

chdir ’/usr/spool/news’ or die "Can’t cd to spool: $!\n"

Because the important part is the chdir, the second form is generally preferr ed.

See also exit, warn, %SIG, and the Carp module.

do (block)
do BLOCK

The do BLOCK for m executes the sequence of statements in the BLOCK and retur ns
the value of the last expression evaluated in the block. When modified by a while

or until statement modifier, Perl executes the BLOCK once before testing the loop
condition. (On other statements the loop modifiers test the conditional first.) The
do BLOCK itself does not count as a loop, so the loop control statements next, last,
or redo cannot be used to leave or restart the block. See the section “Bare Blocks”
in Chapter 4, Statements and Declarations, for workarounds.

Functions

Perl Functions in Alphabetical Order 701

702 Chapter 29: Functions

do (file) $! T X
T

do FILE

The do FILE for m uses the value of FILE as a filename and executes the contents
of the file as a Perl script. Its primary use is (or rather was) to include subroutines
fr om a Perl subroutine library, so that:

do ’stat.pl’;

is rather like:

scalar eval ‘cat stat.pl‘; # ‘type stat.pl‘ on Windows

except that do is more efficient, more concise, keeps track of the current filename
for error messages, searches all the directories listed in the @INC array, and updates
%INC if the file is found. (See Chapter 28, Special Names.) It also differs in that
code evaluated with do FILE cannot see lexicals in the enclosing scope, whereas
code in eval FILE does. It’s the same, however, in that it reparses the file every
time you call it—so you might not want to do this inside a loop unless the file-
name itself changes at each loop iteration.

If do can’t read the file, it retur ns undef and sets $! to the error. If do can read the
file but can’t compile it, it retur ns undef and sets an error message in $@. If the file
is successfully compiled, do retur ns the value of the last expression evaluated.

Inclusion of library modules (which have a mandatory .pm suf fix) is better done
with the use and require operators, which also do error checking and raise an
exception if there’s a problem. They also offer other benefits: they avoid duplicate
loading, help with object-oriented programming, and provide hints to the compiler
on function prototypes.

But do FILE is still useful for such things as reading program configuration files.
Manual error checking can be done this way:

read in config files: system first, then user
for $file ("/usr/share/proggie/defaults.rc",

"$ENV{HOME}/.someprogrc")
{

unless ($return = do $file) {
warn "couldn’t parse $file: $@" if $@;
warn "couldn’t do $file: $!" unless defined $return;
warn "couldn’t run $file" unless $return;

}
}

A long-running daemon could periodically examine the timestamp on its configu-
ration file, and if the file has changed since it was last read in, the daemon could
use do to reload that file. This is more tidily accomplished with do than with
require or use.

do (subroutine) $@

do SUBROUTINE(LIST)

The do SUBROUTINE(LIST) is a deprecated form of a subr outine call. An exception
is raised if the SUBROUTINE is undefined. See Chapter 6, Subr outines.

dump
dump LABEL
dump

This function causes an immediate core dump. Primarily this is so that you can use
the undump pr ogram (not supplied) to turn your core dump into an executable
binary after having initialized all your variables at the beginning of the program.
When the new binary is executed it will begin by executing a goto LABEL (with all
the restrictions that goto suf fers). Think of it as a goto with an intervening core
dump and reincar nation. If LABEL is omitted, the program is restarted from the top.
Warning: any files opened at the time of the dump will not be open any more
when the program is reincar nated, with possible resulting confusion on the part of
Perl. See also the -u command-line option in Chapter 19, The Command-Line
Inter face.

This function is now largely obsolete, partly because it’s difficult in the extreme to
convert a core file into an executable in the general case, and because various
compiler backends for generating portable bytecode and compilable C code have
superseded it.

If you’re looking to use dump to speed up your program, check out the discussion
of efficiency matters in Chapter 24, Common Practices, as well the Perl native-code
generator in Chapter 18, Compiling. You might also consider autoloading or self-
loading, which at least make your program appear to run faster.

each
each HASH

This function steps through a hash one key/value pair at a time. When called in
list context, each retur ns a two-element list consisting of the key and value for the
next element of a hash, so that you can iterate over it. When called in scalar con-
text, each retur ns just the key for the next element in the hash. When the hash is
entir ely read, the empty list is retur ned, which when assigned produces a false
value in scalar context, such as a loop test. The next call to each after that will start
iterating again. The typical use is as follows, using predefined %ENV hash:

Functions

Perl Functions in Alphabetical Order 703

704 Chapter 29: Functions

while (($key,$value) = each %ENV) {
print "$key=$value\n";

}

Inter nally, a hash maintains its own entries in an apparently random order. The
each function iterates through this sequence because every hash remembers which
entry was last retur ned. The actual ordering of this sequence is subject to change
in future versions of Perl, but is guaranteed to be in the same order as the keys (or
values) function would produce on the same (unmodified) hash.

Ther e is a single iterator for each hash, shared by all each, keys, and values func-
tion calls in the program; it can be reset by reading all the elements from the hash,
or by evaluating keys %hash or values %hash. If you add or delete elements of a
hash while you’re iterating over it, the resulting behavior is not well-defined:
entries might get skipped or duplicated.

See also keys, values, and sort.

eof X
ARG

eof FILEHANDLE
eof()
eof

This function retur ns true if the next read on FILEHANDLE would retur n end-of-file,
or if FILEHANDLE is not open. FILEHANDLE may be an expression whose value gives
the real filehandle, or a refer ence to a filehandle object of some sort. An eof with-
out an argument retur ns the end-of-file status for the last file read. An eof() with
empty parentheses () tests the ARGV filehandle (most commonly seen as the null
filehandle in <>). Therefor e, inside a while (<>) loop, an eof() with parentheses
will detect the end of only the last of a group of files. Use eof (without the paren-
theses) to test each file in a while (<>) loop. For example, the following code
inserts dashes just before the last line of the last file:

while (<>) {
if (eof()) {

print "-" x 30, "\n";
}
print;

}

On the other hand, this script resets line numbering on each input file:

reset line numbering on each input file
while (<>) {

next if /ˆ\s*#/; # skip comments
print "$.\t$_";

} continue {
close ARGV if eof; # Not eof()!

}

Like “$” in a sed pr ogram, eof tends to show up in line number ranges. Here’s a
script that prints lines from /pattern/ to end of each input file:

while (<>) {
print if /pattern/ .. eof;

}

Her e, the flip-flop operator (..) evaluates the pattern match for each line. Until the
patter n matches, the operator retur ns false. When it finally matches, the operator
starts retur ning true, causing the lines to be printed. When the eof operator finally
retur ns true (at the end of the file being examined), the flip-flop operator resets,
and starts retur ning false again for the next file in @ARGV.

Warning: The eof function reads a byte and then pushes it back on the input
str eam with ungetc (3), so it is not useful in an interactive context. In fact, experi-
enced Perl programmers rarely use eof, since the various input operators already
behave politely in while-loop conditionals. See the example in the description of
foreach in Chapter 4.

eval $_ X
T

eval BLOCK
eval EXPR
eval

The eval keyword serves two distinct but related purposes in Perl. These purposes
ar e repr esented by two forms of syntax, eval BLOCK and eval EXPR. The first form
traps run-time exceptions (errors) that would otherwise prove fatal, similar to the
“try block” construct in C++ or Java. The second form compiles and executes little
bits of code on the fly at run time, and also (conveniently) traps any exceptions
just like the first form. But the second form runs much slower than the first form,
since it must parse the string every time. On the other hand, it is also more gen-
eral. Whichever form you use, eval is the preferr ed way to do all exception han-
dling in Perl.

For either form of eval, the value retur ned fr om an eval is the value of the last
expr ession evaluated, just as with subroutines. Similarly, you may use the return

operator to retur n a value from the middle of the eval. The expression providing
the retur n value is evaluated in void, scalar, or list context, depending on the con-
text of the eval itself. See wantarray for more on how the evaluation context can
be determined.

If there is a trappable error (including any produced by the die operator), eval
retur ns undef and puts the error message (or object) in $@. If ther e is no error, $@ is
guaranteed to be set to the null string, so you can test it reliably afterward for
err ors. A simple Boolean test suffices:

Functions

Perl Functions in Alphabetical Order 705

706 Chapter 29: Functions

eval { ... }; # trap run-time errors
if ($@) { ... } # handle error

The eval BLOCK for m is syntax-checked at compile time, so it is quite efficient.
(People familiar with the slow eval EXPR for m ar e occasionally confused on this
issue.) Since the code in the BLOCK is compiled at the same time as the surround-
ing code, this form of eval cannot trap syntax errors.

The eval EXPR for m can trap syntax errors because it parses the code at run time.
(If the parse is unsuccessful, it places the parse error in $@, as usual.) Otherwise, it
executes the value of EXPR as though it were a little Perl program. The code is exe-
cuted in the context of the current Perl program, which means that it can see any
enclosing lexicals from a surrounding scope, and that any non-local variable set-
tings remain in effect after the eval is complete, as do any subroutine or format
definitions. The code of the eval is treated as a block, so any locally scoped vari-
ables declared within the eval last only until the eval is done. (See my and local.)
As with any code in a block, a final semicolon is not requir ed.

Her e is a simple Perl shell. It prompts the user to enter a string of arbitrary Perl
code, compiles and executes that string, and prints whatever error occurred:

print "\nEnter some Perl code: ";

while (<STDIN>) {
eval;
print $@;
print "\nEnter some more Perl code: ";

}

Her e is a rename pr ogram to do a mass renaming of files using a Perl expression:

#!/usr/bin/perl
rename - change filenames
$op = shift;
for (@ARGV) {

$was = $_;
eval $op;
die if $@;
next line calls the built-in function, not the script by the same name
rename($was,$_) unless $was eq $_;

}

You’d use that program like this:

$ rename ’s/\.orig$//’ *.orig
$ rename ’y/A-Z/a-z/ unless /ˆMake/’ *
$ rename ’$_ .= ".bad"’ *.f

Since eval traps errors that would otherwise prove fatal, it is useful for determin-
ing whether particular features (such as fork or symlink) are implemented.

Because eval BLOCK is syntax-checked at compile time, any syntax error is reported
earlier. Ther efor e, if your code is invariant and both eval EXPR and eval BLOCK will
suit your purposes equally well, the BLOCK for m is preferr ed. For example:

make divide-by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient if run multiple times
eval ’$answer = $a / $b’; warn $@ if $@;

a compile-time syntax error (not trapped)
eval { $answer = }; # WRONG

a run-time syntax error
eval ’$answer =’; # sets $@

Her e, the code in the BLOCK has to be valid Perl code to make it past the compile
phase. The code in the EXPR doesn’t get examined until run time, so it doesn’t
cause an error until run time.

The block of eval BLOCK does not count as a loop, so the loop control statements
next, last, or redo cannot be used to leave or restart the block.

exec $! X
T

exec PATHNAME LIST
exec LIST

The exec function terminates the current program and executes an external com-
mand and never retur ns !!! Use system instead of exec if you want to recover con-
tr ol after the commands exits. The exec function fails and retur ns false only if the
command does not exist and if it is executed directly instead of via your system’s
command shell (discussed below).

If there is only one scalar argument, the argument is checked for shell metacharac-
ters. If metacharacters are found, the entire argument is passed to the system’s
standard command interpreter (/bin/sh under Unix). If there are no metacharacters,
the argument is split into words and executed directly, since in the interests of effi-
ciency this bypasses all the overhead of shell processing. It also gives you more
contr ol of error recovery should the program not exist.

If there is mor e than one argument in LIST, or if LIST is an array with more than
one value, the system shell will never be used. This also bypasses any shell pro-
cessing of the command. The presence or absence of metacharacters in the argu-
ments doesn’t affect this list-triggered behavior, which makes it the preferr ed for m
in security-conscious programs that do not wish to expose themselves to potential
shell escapes.

Functions

Perl Functions in Alphabetical Order 707

708 Chapter 29: Functions

This example causes the currently running Perl program to replace itself with the
echo pr ogram, which then prints out the current argument list:

exec ’echo’, ’Your arguments are: ’, @ARGV;

This example shows that you can exec a pipeline, not just a single program.

exec "sort $outfile | uniq"
or die "Can’t do sort/uniq: $!\n";

Ordinarily, exec never retur ns—if it does retur n, it always retur ns false, and you
should check $! to find out what went wrong. Be aware that in older releases of
Perl, exec (and system) did not flush your output buffer, so you needed to enable
command buffering by setting $| on one or more filehandles to avoid lost output
in the case of exec, or misorder ed output in the case of system. This situation was
largely remedied in the 5.6 release of Perl.

When you ask the operating system to execute a new program within an existing
pr ocess (as Perl’s exec function does), you tell the system the location of the pro-
gram to execute, but you also tell the new program (through its first argument) the
name under which the program was invoked. Customarily, the name you tell it is
just a copy of the location of the program, but it doesn’t necessarily have to be,
since there are two separate arguments at the level of the C language. When it is
not a copy, you have the odd result that the new program thinks it’s running
under a name that may be totally differ ent fr om the actual pathname where the
pr ogram resides. Often this doesn’t matter to the program in question, but some
pr ograms do care and adopt a differ ent persona depending on what they think
their name is. For example, the vi editor looks to see whether it was called as “vi”
or as “view”. If invoked as “view”, it automatically enables read-only mode, just as
though it was called with the -R command-line option.

This is where exec’s optional PATHNAME parameter comes into play. Syntactically, it
goes in the indirect-object slot like the filehandle for print or printf. Ther efor e, it
doesn’t take a comma after it, because it’s not exactly part of the argument list. (In
a sense, Perl takes the opposite approach from the operating system in that it
assumes the first argument is the important one, and lets you modify the pathname
if it differs.) For example:

$editor = "/usr/bin/vi";
exec $editor "view", @files # trigger read-only mode

or die "Couldn’t execute $editor: $!\n";

As with any other indirect object, you can also replace the simple scalar holding
the program name with a block containing arbitrary code, which simplifies the
pr evious example to:

exec { "/usr/bin/vi" } "view" @files # trigger read-only mode
or die "Couldn’t execute $editor: $!\n";

As we mentioned earlier, exec tr eats a discr ete list of arguments as an indication
that it should bypass shell processing. However, ther e is one place where you
might still get tripped up. The exec call (and system, too) will not distinguish
between a single scalar argument and an array containing only one element.

@args = ("echo surprise"); # just one element in list
exec @args # still subject to shell escapes

or die "exec: $!"; # because @args == 1

To avoid this, you can use the PATHNAME syntax, explicitly duplicating the first argu-
ment as the pathname, which forces the rest of the arguments to be interpreted as
a list, even if there is only one of them:

exec { $args[0] } @args # safe even with one-argument list
or die "can’t exec @args: $!";

The first version, the one without the curlies, runs the echo pr ogram, passing it
“surprise” as an argument. The second version doesn’t—it tries to run a program
literally called echo surprise, doesn’t find it (we hope), and sets $! to a nonzero
value indicating failure.

Because the exec function is most often used shortly after a fork, it is assumed
that anything that normally happens when a Perl process terminates should be
skipped. Upon an exec, Perl will not call your END blocks, nor will it call any
DESTROY methods associated with any objects. Otherwise, your child process would
end up doing the cleanup you expected the parent process to do. (We wish that
wer e the case in real life.)

Because it’s such a common mistake to use exec instead of system, Perl warns you
if there is a following statement that isn’t die, warn, or exit when run with the
popular -w command-line option, or if you’ve used the use warnings qw(exec syn-

tax) pragma. If you really want to follow an exec with some other statement, you
can use either of these styles to avoid the warning:

exec (’foo’) or print STDERR "couldn’t exec foo: $!";
{ exec (’foo’) }; print STDERR "couldn’t exec foo: $!";

As the second line above shows, a call to exec that is the last statement in a block
is exempt from this warning.

See also system.

Functions

Perl Functions in Alphabetical Order 709

710 Chapter 29: Functions

exists
exists EXPR

This function retur ns true if the specified hash key or array index exists in its hash
or array. It doesn’t matter whether the corresponding value is true or false, or
whether the value is even defined.

print "True\n" if $hash{$key};
print "Defined\n" if defined $hash{$key};
print "Exists\n" if exists $hash{$key};

print "True\n" if $array[$index];
print "Defined\n" if defined $array[$index];
print "Exists\n" if exists $array[$index];

An element can be true only if it’s defined, and can be defined only if it exists, but
the reverse doesn’t necessarily hold.

EXPR can be arbitrarily complicated, provided that the final operation is a hash key
or array index lookup:

if (exists $hash{A}{B}{$key}) { ... }

Although the last element will not spring into existence just because its existence
was tested, intervening ones will. Thus $$hash{"A"} and $hash{"A"}->{"B"} will
both spring into existence. This is not a function of exists, per se ; it happens any-
wher e the arrow operator is used (explicitly or implicitly):

undef $ref;
if (exists $ref->{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

Even though the "Some key" element didn’t spring into existence, the previously
undefined $ref variable did suddenly come to hold an anonymous hash. This is a
surprising instance of autovivification in what does not at first—or even second—
glance appear to be an lvalue context. This behavior is likely to be fixed in a
futur e release. As a workaround, you can nest your calls:

if ($ref and
exists $ref->[$x] and
exists $ref->[$x][$y] and
exists $ref->[$x][$y]{$key} and
exists $ref->[$x][$y]{$key}[2]) { ... }

If EXPR is the name of a subroutine, the exists function will retur n true if that sub-
routine has been declared, even if it has not yet been defined. The following will
just print “Exists”:

sub flub;
print "Exists\n" if exists &flub;
print "Defined\n" if defined &flub;

Using exists on a subroutine name can be useful for an AUTOLOAD subr outine that
needs to know whether a particular package wants a particular subroutine to be
defined. The package can indicate this by declaring a stub sub like flub.

exit
exit EXPR
exit

This function evaluates EXPR as an integer and exits immediately with that value as
the final error status of the program. If EXPR is omitted, the function exits with 0

status (meaning “no error”). Here’s a fragment that lets a user exit the program by
typing x or X:

$ans = <STDIN>;
exit if $ans =˜ /ˆ[Xx]/;

You shouldn’t use exit to abort a subroutine if there’s any chance that someone
might want to trap whatever error happened. Use die instead, which can be
trapped by an eval. Or use one of die’s wrappers from the Carp module, like
croak or confess.

We said that the exit function exits immediately, but that was a bald-faced lie. It
exits as soon as possible, but first it calls any defined END routines for at-exit han-
dling. These routines cannot abort the exit, although they can change the eventual
exit value by setting the $? variable. Likewise, any class that defines a DESTROY

method will invoke that method on behalf of all its objects before the real pro-
gram exits. If you really need to bypass exit processing, you can call the POSIX

module’s _exit function to avoid all END and destructor processing. And if POSIX
isn’t available, you can exec "/bin/false" or some such.

exp $_

exp EXPR
exp

This function retur ns e to the power of EXPR. To get the value of e, just use exp(1).
For general exponentiation of differ ent bases, use the ** operator we stole from
FOR TRAN:

use Math::Complex;
print -exp(1) ** (i * pi); # prints 1

Functions

Perl Functions in Alphabetical Order 711

712 Chapter 29: Functions

fcntl $! X
ARG

X
RO

X
T

X
U

fcntl FILEHANDLE, FUNCTION, SCALAR

This function calls your operating system’s file control functions, as documented in
the fcntl (2) manpage. Before you call fcntl, you’ll probably first have to say:

use Fcntl;

to load the correct constant definitions.

SCALAR will be read or written (or both) depending on the FUNCTION. A pointer to
the string value of SCALAR will be passed as the third argument of the actual fcntl
call. (If SCALAR has no string value but does have a numeric value, that value will
be passed directly rather than passing a pointer to the string value.) See the Fcntl

module for a description of the more common permissible values for FUNCTION.

The fcntl function will raise an exception if used on a system that doesn’t imple-
ment fcntl (2). On systems that do implement it, you can do such things as modify
the close-on-exec flags (if you don’t want to play with the $ˆF ($SYSTEM_FD_MAX)
variable), modify the nonblocking I/O flags, emulate the lockf (3) function, and
arrange to receive the SIGIO signal when I/O is pending.

Her e’s an example of setting a filehandle named REMOTE to be nonblocking at the
system level. This makes any input operation retur n immediately if nothing is
available when reading from a pipe, socket, or serial line that would otherwise
block. It also works to cause output operations that normally would block to
retur n a failur e status instead. (For those, you’ll likely have to negotiate $| as
well.)

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
or die "Can’t get flags for the socket: $!\n";

$flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can’t set flags for the socket: $!\n";

The retur n value of fcntl (and ioctl) is as follows:

Syscall Returns Perl Returns

-1 undef

0 String “0 but true”
anything else That number

Thus Perl retur ns true on success and false on failure, yet you can still easily
deter mine the actual value retur ned by the operating system:

$retval = fcntl(...) || -1;
printf "fcntl actually returned %d\n", $retval;

Her e, even the string “0 but true” prints as 0, thanks to the %d for mat. This string
is true in Boolean context and 0 in numeric context. (It is also happily exempt
fr om the normal warnings on improper numeric conversions.)

fileno X
ARG

fileno FILEHANDLE

This function retur ns the file descriptor underlying a filehandle. If the filehandle is
not open, fileno retur ns undef. A file descriptor is a small, non-negative integer
like 0 or 1, in contrast to filehandles like STDIN and STDOUT, which are symbols.
Unfortunately, the operating system doesn’t know about your cool symbols. It only
thinks of open files in terms of these small file numbers, and although Perl will
usually do the translations for you automatically, occasionally you have to know
the actual file descriptor.

So, for example, the fileno function is useful for constructing bitmaps for select
and for passing to certain obscure system calls if syscall (2) is implemented. It’s
also useful for double-checking that the open function gave you the file descriptor
you wanted and for determining whether two filehandles use the same system file
descriptor.

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";

}

If FILEHANDLE is an expression, the value is taken as an indirect filehandle, gener-
ally its name or a refer ence to something resembling a filehandle object.

One caution: don’t count on the association of a Perl filehandle and a numeric file
descriptor throughout the life of the program. If a file has been closed and
reopened, the file descriptor may change. Perl takes a bit of trouble to try to
ensur e that certain file descriptors won’t be lost if an open on them fails, but it only
does this for file descriptors that don’t exceed the current value of the special $ˆF
($SYSTEM_FD_MAX) variable (by default, 2). Although filehandles STDIN, STDOUT, and
STDERR start out with file descriptors of 0, 1, and 2 (the Unix standard convention),
even they can change if you start closing and opening them with wild abandon.
You can’t get into trouble with 0, 1, and 2 as long as you always reopen immedi-
ately after closing. The basic rule on Unix systems is to pick the lowest available
descriptor, and that’ll be the one you just closed.

Functions

Perl Functions in Alphabetical Order 713

714 Chapter 29: Functions

flock $! X
ARG

X
U

flock FILEHANDLE, OPERATION

The flock function is Perl’s portable file-locking interface, although it locks only
entir e files, not records. The function manages locks on the file associated with
FILEHANDLE, retur ning true for success and false otherwise. To avoid the possibility
of lost data, Perl flushes your FILEHANDLE befor e locking or unlocking it. Perl might
implement its flock in terms of flock (2), fcntl (2), lockf (3), or some other platform-
specific lock mechanism, but if none of these is available, calling flock raises an
exception. See the section “File Locking” in Chapter 16.

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly ORed with LOCK_NB.
These constants are traditionally valued 1, 2, 8, and 4, but you can use the sym-
bolic names if you import them from the Fcntl module, either individually or as a
gr oup using the :flock tag.

LOCK_SH requests a shared lock, so it’s typically used for reading. LOCK_EX requests
an exclusive lock, so it’s typically used for writing. LOCK_UN releases a previously
requested lock; closing the file also releases any locks. If the LOCK_NB bit is used
with LOCK_SH or LOCK_EX, flock retur ns immediately rather than waiting for an
unavailable lock. Check the retur n status to see whether you got the lock you
asked for. If you don’t use LOCK_NB, you might wait indefinitely for the lock to be
granted.

Another nonobvious but traditional aspect of flock is that its locks are mer ely
advisory. Discr etionary locks are mor e flexible but offer fewer guarantees than
mandatory ones. This means that files locked with flock may be modified by pro-
grams that do not also use flock. Cars that stop for red lights get on well with
each other, but not with cars that don’t stop for red lights. Drive defensively.

Some implementations of flock cannot lock things over the network. While you
could in theory use the more system-specific fcntl for that, the jury (having
sequester ed itself on the case for a decade or so) is still out on whether this is (or
even can be) reliable.

Her e’s a mailbox appender for Unix systems that use flock (2) to lock mailboxes:

use Fcntl qw/:flock/; # import LOCK_* constants
sub mylock {

flock(MBOX, LOCK_EX)
or die "can’t lock mailbox: $!";

in case someone appended while we were waiting
and our stdio buffer is out of sync
seek(MBOX, 0, 2)

or die "can’t seek to the end of mailbox: $!";
}

open(MBOX, ">>/usr/spool/mail/$ENV{’USER’}")
or die "can’t open mailbox: $!";

mylock();
print MBOX $msg, "\n\n";
close MBOX

or die "can’t close mailbox: $!";

On systems that support a real flock (2) syscall, locks are inherited across fork

calls. Other implementations are not so lucky, and are likely to lose the locks
acr oss forks. See also the DB_File module in Chapter 32 for other flock examples.

fork $! X
U

fork

This function creates two processes out of one by invoking the fork (2) syscall. If it
succeeds, the function retur ns the new child process’s ID to the parent process
and 0 to the child process. If the system doesn’t have sufficient resources to allo-
cate a new process, the call fails and retur ns undef. File descriptors (and some-
times locks on those descriptors) are shar ed, while everything else is copied—or
at least made to look that way.

In versions of Perl prior to 5.6, unflushed buffers remain unflushed in both pro-
cesses, which means you may need to set $| on one or more filehandles earlier in
the program to avoid duplicate output.

A nearly bulletproof way to launch a child process while checking for “cannot
fork” errors would be:

use Errno qw(EAGAIN);
FORK: {

if ($pid = fork) {
parent here
child process pid is available in $pid

}
elsif (defined $pid) { # $pid is zero here if defined
child here
parent process pid is available with getppid

}
elsif ($! == EAGAIN) {
EAGAIN is the supposedly recoverable fork error
sleep 5;
redo FORK;

}
else {
weird fork error
die "Can’t fork: $!\n";

}
}

Functions

Perl Functions in Alphabetical Order 715

716 Chapter 29: Functions

These precautions are not necessary on operations that do an implicit fork (2),
such as system, backticks, or opening a process as a filehandle, because Perl auto-
matically retries a fork on a temporary failure when it’s doing the fork for you. Be
car eful to end the child code with an exit, or else your child will inadvertently
leave the conditional block and start executing code intended only for the parent
pr ocess.

If you fork without ever waiting on your children, you will accumulate zombies
(exited processes whose parents haven’t waited on them yet). On some systems,
you can avoid this by setting $SIG{CHLD} to "IGNORE"; on most, you must wait for
your moribund children. See the wait function for examples of doing this, or see
the “Signals” section of Chapter 16 for more on SIGCHLD.

If a forked child inherits system file descriptors like STDIN and STDOUT that are con-
nected to a remote pipe or socket, you may have to reopen these in the child to
/dev/null. That’s because even when the parent process exits, the child will live on
with its copies of those filehandles. The remote server (such as, say, a CGI script
or a background job launched from a remote shell) will appear to hang because
it’s still waiting for all copies to be closed. Reopening the system filehandles to
something else fixes this.

On most systems supporting fork (2), great care has gone into making it extremely
ef ficient (for example, using copy-on-write technology on data pages), making it
the dominant paradigm for multitasking over the last few decades. The fork func-
tion is unlikely to be implemented efficiently, or perhaps at all, on systems that
don’t resemble Unix. For example, Perl 5.6 emulates a proper fork even on
Micr osoft systems, but no assurances can be made on perfor mance at this point.
You might have more luck there with the Win32::Process module.

format
format NAME =

picture line
value list
...

.

This function declares a named sequence of picture lines (with associated values)
for use by the write function. If NAME is omitted, the name defaults to STDOUT,
which happens to be the default format name for the STDOUT filehandle. Since, like
a sub declaration, this is a package-global declaration that happens at compile
time, any variables used in the value list need to be visible at the point of the for-
mat’s declaration. That is, lexically scoped variables must be declared earlier in the
file, while dynamically scoped variables merely need to be set at the time write is

called. Here’s an example (which assumes we’ve already calculated $cost and
$quantity):

my $str = "widget"; # Lexically scoped variable.

format Nice_Output =
Test: @<<<<<<<< @||||| @>>>>>

$str, $%, ’$’ . int($num)
.

local $˜ = "Nice_Output"; # Select our format.
local $num = $cost * $quantity; # Dynamically scoped variable.

write;

Like filehandles, format names are identifiers that exist in a symbol table (package)
and may be fully qualified by package name. Within the typeglobs of a symbol
table’s entries, formats reside in their own namespace, which is distinct from file-
handles, directory handles, scalars, arrays, hashes, and subroutines. Like those
other six types, however, a for mat named Whatever would also be affected by a
local on the *Whatever typeglob. In other words, a format is just another gadget
contained in a typeglob, independent of the other gadgets.

The “Format Variables” section in Chapter 7, For mats contains numerous details
and examples of their use. Chapter 28 describes the internal format-specific vari-
ables, and the English and IO::Handle modules provide easier access to them.

formline
formline PICTURE, LIST

This is an internal function used by formats, although you may also call it yourself.
It always retur ns true. It formats a list of values according to the contents of PIC-
TURE, placing the output into the format output accumulator, $ˆA (or $ACCUMULATOR
if you use the English module). Eventually, when a write is done, the contents of
$ˆA ar e written to some filehandle, but you could also read $ˆA yourself and then
set $ˆA back to "". A for mat typically does one formline per line of form, but the
formline function itself doesn’t care how many newlines are embedded in the
PICTURE. This means that the ˜ and ˜˜ tokens will treat the entire PICTURE as a sin-
gle line. You may therefor e need to use multiple formlines to implement a single
record-for mat, just as the format compiler does internally.

Be careful if you put double quotes around the picture, since an @ character may
be taken to mean the beginning of an array name. See “Formats” in Chapter 6 for
example uses.

Functions

Perl Functions in Alphabetical Order 717

718 Chapter 29: Functions

getc T X
ARG

getc FILEHANDLE
getc

This function retur ns the next byte from the input file attached to FILEHANDLE. It
retur ns undef at end-of-file, or if an I/O error was encountered. If FILEHANDLE is
omitted, the function reads from STDIN.

This function is somewhat slow, but occasionally useful for single-character (byte,
really) input from the keyboard—provided you manage to get your keyboard
input unbuffer ed. This function requests unbuffer ed input from the standard I/O
library. Unfortunately, the standard I/O library is not so standard as to provide a
portable way to tell the underlying operating system to supply unbuffer ed key-
board input to the standard I/O system. To do that, you have to be slightly more
clever, and in an operating-system-dependent fashion. Under Unix you might say
this:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

} else {
system "stty", "-icanon", "eol", "";

}

$key = getc;

if ($BSD_STYLE) {
system "stty -cbreak </dev/tty >/dev/tty 2>&1";

} else {
system "stty", "icanon", "eol", "ˆ@"; # ASCII NUL

}
print "\n";

This code puts the next character (byte) typed on the terminal in the string $key. If
your stty pr ogram has options like cbreak, you’ll need to use the code where
$BSD_STYLE is true. Otherwise, you’ll need to use the code where it is false. Deter-
mining the options for stty (1) is left as an exercise to the reader.

The POSIX module provides a more portable version of this using the
POSIX::getattr function. See also the Term::ReadKey module from your nearest
CPAN site for a more portable and flexible approach.

getg rent X
U

getgrent
setgrent
endgrent

These routines iterate through your /etc/gr oup file (or maybe someone else’s
/etc/gr oup file, if it’s coming from a server somewhere). The retur n value from
getgrent in list context is:

($name, $passwd, $gid, $members)

wher e $members contains a space-separated list of the login names of the members
of the group. To set up a hash for translating group names to GIDs, say this:

while (($name, $passwd, $gid) = getgrent) {
$gid{$name} = $gid;

}

In scalar context, getgrent retur ns only the group name. The standard User::grent

module supports a by-name interface to this function. See getgr ent (3).

getg rgid X
U

getgrgid GID

This function looks up a group file entry by group number. The retur n value in list
context is:

($name, $passwd, $gid, $members)

wher e $members contains a space-separated list of the login names of the members
of the group. If you want to do this repeatedly, consider caching the data in a
hash using getgrent.

In scalar context, getgrgid retur ns only the group name. The User::grent module
supports a by-name interface to this function. See getgr gid (3).

getg rnam X
U

getgrnam NAME

This function looks up a group file entry by group name. The retur n value in list
context is:

($name, $passwd, $gid, $members)

wher e $members contains a space-separated list of the login names of the members
of the group. If you want to do this repeatedly, consider caching the data in a
hash using getgrent.

Functions

Perl Functions in Alphabetical Order 719

720 Chapter 29: Functions

In scalar context, getgrnam retur ns only the numeric group ID. The User::grent

module supports a by-name interface to this function. See getgr nam (3).

gethostbyaddr X
U

gethostbyaddr ADDR, ADDRTYPE

This function translates addresses into names (and alternate addresses). ADDR

should be a packed binary network address, and ADDRTYPE should in practice usu-
ally be AF_INET (fr om the Socket module). The retur n value in list context is:

($name, $aliases, $addrtype, $length, @addrs) =
gethostbyaddr($packed_binary_address, $addrtype);

wher e @addrs is a list of packed binary addresses. In the Internet domain, each
addr ess is (historically) four bytes long, and can be unpacked by saying something
like:

($a, $b, $c, $d) = unpack(’C4’, $addrs[0]);

Alter natively, you can convert directly to dot vector notation with the v modifier to
sprintf:

$dots = sprintf "%vd", $addrs[0];

The inet_ntoa function from the Socket module is useful for producing a printable
version. This approach will become important if and when we all ever manage to
switch over to IPv6.

use Socket;
$printable_address = inet_ntoa($addrs[0]);

In scalar context, gethostbyaddr retur ns only the host name.

To produce an ADDR fr om a dot vector, say this:

use Socket;
$ipaddr = inet_aton("127.0.0.1"); # localhost
$claimed_hostname = gethostbyaddr($ipaddr, AF_INET);

Inter estingly, with version 5.6 of Perl you can skip the inet_aton() and use the
new v-string notation that was invented for version numbers but happens to work
for IP addresses as well:

$ipaddr = v127.0.0.1;

See the section “Sockets” in Chapter 16 for more examples. The Net::hostent

module supports a by-name interface to this function. See gethostbyaddr (3).

gethostbyname X
U

gethostbyname NAME

This function translates a network hostname to its corresponding addresses (and
other names). The retur n value in list context is:

($name, $aliases, $addrtype, $length, @addrs) =
gethostbyname($remote_hostname);

wher e @addrs is a list of raw addresses. In the Internet domain, each address is
(historically) four bytes long, and can be unpacked by saying something like:

($a, $b, $c, $d) = unpack(’C4’, $addrs[0]);

You can convert directly to vector notation with the v modifier to sprintf:

$dots = sprintf "%vd", $addrs[0];

In scalar context, gethostbyname retur ns only the host address:

use Socket;
$ipaddr = gethostbyname($remote_host);
printf "%s has address %s\n",

$remote_host, inet_ntoa($ipaddr);

See “Sockets” in Chapter 16 for another approach. The Net::hostent module sup-
ports a by-name interface to this function. See also gethostbyname (3).

gethostent X
U

gethostent
sethostent STAYOPEN
endhostent

These functions iterate through your /etc/hosts file and retur n each entry one at a
time. The retur n value from gethostent is:

($name, $aliases, $addrtype, $length, @addrs)

wher e @addrs is a list of raw addresses. In the Internet domain, each address is
four bytes long, and can be unpacked by saying something like:

($a, $b, $c, $d) = unpack(’C4’, $addrs[0]);

Scripts that use gethostent should not be considered portable. If a machine uses a
name server, it would have to interrogate most of the Internet to try to satisfy a
request for all the addresses of every machine on the planet. So gethostent is
unimplemented on such machines. See gethostent (3) for other details.

The Net::hostent module supports a by-name interface to this function.

Functions

Perl Functions in Alphabetical Order 721

722 Chapter 29: Functions

getlog in X
U

getlogin

This function retur ns the current login name if found. On Unix systems, this is
read from the utmp (5) file. If it retur ns false, use getpwuid instead. For example:

$login = getlogin() || (getpwuid($<))[0] || "Intruder!!";

getnetbyaddr X
U

getnetbyaddr ADDR, ADDRTYPE

This function translates a network address to the corresponding network name or
names. The retur n value in list context is:

use Socket;
($name, $aliases, $addrtype, $net) = getnetbyaddr(127, AF_INET);

In scalar context, getnetbyaddr retur ns only the network name. The Net::netent

module supports a by-name interface to this function. See getnetbyaddr (3).

getnetbyname X
U

getnetbyname NAME

This function translates a network name to its corresponding network address. The
retur n value in list context is:

($name, $aliases, $addrtype, $net) = getnetbyname("loopback");

In scalar context, getnetbyname retur ns only the network address. The Net::netent

module supports a by-name interface to this function. See getnetbyname (3).

getnetent X
U

getnetent
setnetent STAYOPEN
endnetent

These functions iterate through your /etc/networks file. The retur n value in list con-
text is:

($name, $aliases, $addrtype, $net) = getnetent();

In scalar context, getnetent retur ns only the network name. The Net::netent

module supports a by-name interface to this function. See getnetent (3).

The concept of network names seems rather quaint these days; most IP addresses
ar e on unnamed (and unnameable) subnets.

getpeer name $! X
ARG

X
U

getpeername SOCKET

This function retur ns the packed socket address of the other end of the SOCKET

connection. For example:

use Socket;
$hersockaddr = getpeername SOCK;
($port, $heraddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($heraddr, AF_INET);
$herstraddr = inet_ntoa($heraddr);

getpg rp $! X
U

getpgrp PID

This function retur ns the current process group for the specified PID (use a PID of
0 for the current process). Invoking getpgrp will raise an exception if used on a
machine that doesn’t implement getpgrp (2). If PID is omitted, the function retur ns
the process group of the current process (the same as using a PID of 0). On sys-
tems implementing this operator with the POSIX getpgrp (2) syscall, PID must be
omitted or, if supplied, must be 0.

getppid X
U

getppid

This function retur ns the process ID of the parent process. On the typical Unix
system, if your parent process ID changes to 1, it means your parent process has
died and you’ve been adopted by the init (8) program.

getpr ior ity $! X
U

getpriority WHICH, WHO

This function retur ns the current priority for a process, a process group, or a user.
See getpriority (2). Invoking getpriority will raise an exception if used on a
machine that doesn’t implement getpriority (2).

The BSD::Resource module from CPAN provides a more convenient interface,
including the PRIO_PROCESS, PRIO_PGRP, and PRIO_USER symbolic constants to sup-
ply for the WHICH argument. Although these are traditionally set to 0, 1, and 2

respectively, you really never know what may happen within the dark confines of
C’s #include files.

Functions

Perl Functions in Alphabetical Order 723

724 Chapter 29: Functions

A value of 0 for WHO means the current process, process group, or user, so to get
the priority of the current process, use:

$curprio = getpriority(0, 0);

getprotobyname X
U

getprotobyname NAME

This function translates a protocol name to its corresponding number. The retur n
value in list context is:

($name, $aliases, $protocol_number) = getprotobyname("tcp");

When called in scalar context, getprotobyname retur ns only the protocol number.
The Net::proto module supports a by-name interface to this function. See
getpr otobyname (3).

getprotobynumber X
U

getprotobynumber NUMBER

This function translates a protocol number to its corresponding name. The retur n
value in list context is:

($name, $aliases, $protocol_number) = getprotobynumber(6);

When called in scalar context, getprotobynumber retur ns only the protocol name.
The Net::proto module supports a by-name interface to this function. See
getpr otobynumber (3).

getprotoent X
U

getprotoent
setprotoent STAYOPEN
endprotoent

These functions iterate through the /etc/pr otocols file. In list context, the retur n
value from getprotoent is:

($name, $aliases, $protocol_number) = getprotoent();

When called in scalar context, getprotoent retur ns only the protocol name. The
Net::proto module supports a by-name interface to this function. See
getpr otent (3).

getpwent T X
U

getpwent
setpwent
endpwent

These functions conceptually iterate through your /etc/passwd file, though this may
involve the /etc/shadow file if you’re the superuser and are using shadow pass-
words, or NIS (née YP) or NIS+ if you’re using either of those. The retur n value in
list context is:

($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwent();

Some machines may use the quota and comment fields for other than their named
purposes, but the remaining fields will always be the same. To set up a hash for
translating login names to UIDs, say this:

while (($name, $passwd, $uid) = getpwent()) {
$uid{$name} = $uid;

}

In scalar context, getpwent retur ns only the username. The User::pwent module
supports a by-name interface to this function. See getpwent (3).

getpwnam T X
U

getpwnam NAME

This function translates a username to the corresponding /etc/passwd file entry.
The retur n value in list context is:

($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwnam("daemon");

On systems that support shadow passwords, you will have to be the superuser to
retrieve the actual password. Your C library should notice that you’re suitably
empower ed and open the /etc/shadow file (or wherever it keeps the shadow file).
At least, that’s how it’s supposed to work. Perl will try to do this if your C library is
too stupid to notice.

For repeated lookups, consider caching the data in a hash using getpwent.

In scalar context, getpwnam retur ns only the numeric user ID. The User::pwent

module supports a by-name interface to this function. See getpwnam (3) and
passwd (5).

Functions

Perl Functions in Alphabetical Order 725

726 Chapter 29: Functions

getpwuid T X
U

getpwuid UID

This function translates a numeric user ID to the corresponding /etc/passwd file
entry. The retur n value in list context is:

($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwuid(2);

For repeated lookups, consider caching the data in a hash using getpwent.

In scalar context, getpwuid retur ns the username. The User::pwent module sup-
ports a by-name interface to this function. See getpwnam (3) and passwd (5).

getser vbyname X
U

getservbyname NAME, PROTO

This function translates a service (port) name to its corresponding port number.
PROTO is a protocol name such as "tcp". The retur n value in list context is:

($name, $aliases, $port_number, $protocol_name) = getservbyname("www", "tcp");

In scalar context, getservbyname retur ns only the service port number. The
Net::servent module supports a by-name interface to this function. See
getservbyname (3).

getser vbypor t X
U

getservbyport PORT, PROTO

This function translates a service (port) number to its corresponding names. PROTO
is a protocol name such as "tcp". The retur n value in list context is:

($name, $aliases, $port_number, $protocol_name) = getservbyport(80, "tcp");

In scalar context, getservbyport retur ns only the service name. The Net::servent

module supports a by-name interface to this function. See getservbyport (3).

getser vent X
U

getservent
setservent STAYOPEN
endservent

This function iterates through the /etc/services file or its equivalent. The retur n
value in list context is:

($name, $aliases, $port_number, $protocol_name) = getservent();

In scalar context, getservent retur ns only the service port name. The Net::servent

module supports a by-name interface to this function. See getservent (3).

getsockname $! X
ARG

X
U

getsockname SOCKET

This function retur ns the packed socket address of this end of the SOCKET connec-
tion. (And why wouldn’t you know your own address already? Maybe because
you bound an address containing wildcards to the server socket before doing an
accept and now you need to know what interface someone used to connect to
you. Or you were passed a socket by your parent process — inetd, for example.)

use Socket;
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = sockaddr_in($mysockaddr);
$myname = gethostbyaddr($myaddr,AF_INET);
printf "I am %s [%vd]\n", $myname, $myaddr;

getsockopt $! X
ARG

X
U

getsockopt SOCKET, LEVEL, OPTNAME

This function retur ns the socket option requested, or undef if there is an err or. See
setsockopt for more infor mation.

glob $_ $@ T X
T

glob EXPR
glob

This function retur ns the value of EXPR with filename expansions such as a shell
would do. This is the internal function implementing the <*> operator.

For historical reasons, the algorithm matches the csh (1)’s style of expansion, not
the Bourne shell’s. Versions of Perl before the 5.6 release used an external process,
but 5.6 and later perfor m globs internally. Files whose first character is a dot (“.”)
ar e ignor ed unless this character is explicitly matched. An asterisk (“*”) matches
any sequence of any character (including none). A question mark (“?”) matches
any one character. A squar e bracket sequence (“[. . .]”) specifies a simple charac-
ter class, like “[chy0-9]”. Character classes may be negated with a circumflex, as in
“*.[ˆoa]”, which matches any non-dot files whose names contain a period fol-
lowed by one character which is neither an “a” nor an “o” at the end of the name.
A tilde (“˜”) expands to a home directory, as in “˜/.*rc” for all the current user’s
“rc” files, or “˜jane/Mail/*” for all of Jane’s mail files. Braces may be used for
alter nation, as in “˜/.{mail,ex,csh,twm,}rc” to get those particular rc files.

If you want to glob filenames that might contain whitespace, you’ll need to use
the File::Glob module directly, since glob grandfathers the use of whitespace to

Functions

Perl Functions in Alphabetical Order 727

728 Chapter 29: Functions

separate multiple patterns such as <*.c *.h>. For details, see File::Glob in
Chapter 32. Calling glob (or the <*> operator) automatically uses that module, so if
the module mysteriously vaporizes from your library, an exception is raised.

When you call open, Perl does not expand wildcards, including tildes. You need to
glob the result first.

open(MAILRC, "˜/.mailrc") # WRONG: tilde is a shell thing
or die "can’t open ˜/.mailrc: $!";

open(MAILRC, (glob("˜/.mailrc"))[0]) # expand tilde first
or die "can’t open ˜/.mailrc: $!";

The glob function is not related to the Perl notion of typeglobs, other than that
they both use a * to repr esent multiple items.

See also the “Filename globbing operator” section of Chapter 2.

gmtime
gmtime EXPR
gmtime

This function converts a time as retur ned by the time function to a nine-element
list with the time correct for the Greenwich time zone (a.k.a. GMT, or UTC, or
even Zulu in certain cultures, not including the Zulu culture, oddly enough). It’s
typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime;

If, as in this case, the EXPR is omitted, it does gmtime(time()). The Perl library
module Time::Local contains a subroutine, timegm, that can convert the list back
into a time value.

All list elements are numeric and come straight out of a struct tm (that’s a C pro-
gramming structure—don’t sweat it). In particular this means that $mon has the
range 0..11 with January as month 0, and $wday has the range 0..6 with Sunday
as day 0. You can remember which ones are zer o-based because those are the
ones you’re always using as subscripts into zero-based arrays containing month
and day names.

For example, to get the current month in London, you might say:

$london_month = (qw(Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec))[(gmtime)[4]];

$year is the number of years since 1900; that is, in year 2023, $year is 123, not
simply 23. To get the 4-digit year, just say $year + 1900. To get the 2-digit year (for
example “01” in 2001), use sprintf("%02d", $year % 100).

In scalar context, gmtime retur ns a ctime (3)-like string based on the GMT time
value. The Time::gmtime module supports a by-name interface to this function. See
also POSIX::strftime() for a more fine-grained approach to formatting times.

This scalar value is not locale dependent but is instead a Perl built-in. Also see the
Time::Local module and the str ftime (3) and mktime (3) functions available via the
POSIX module. To get somewhat similar but locale-dependent date strings, set up
your locale environment variables appropriately (please see the perllocale man-
page), and try:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

The %a and %b escapes, which repr esent the short forms of the day of the week
and the month of the year, may not necessarily be three characters wide in all
locales.

goto $@

goto LABEL
goto EXPR
goto &NAME

goto LABEL finds the statement labeled with LABEL and resumes execution there. If
the LABEL cannot be found, an exception is raised. It cannot be used to go into
any construct that requir es initialization, such as a subroutine or a foreach loop. It
also can’t be used to go into a construct that is optimized away. It can be used to
go almost anywhere else within the dynamic scope,* including out of subroutines,
but for that purpose it’s usually better to use some other construct such as last or
die. The author of Perl has never felt the need to use this form of goto (in Perl,
that is—C is another matter).

Going to even greater heights of orthogonality (and depths of idiocy), Perl allows
goto EXPR, which expects EXPR to evaluate to a label name, whose location is guar-
anteed to be unresolvable until run time since the label is unknown when the
statement is compiled. This allows for computed gotos per FORTRAN, but isn’t
necessarily recommended† if you’re optimizing for maintainability:

goto +("FOO", "BAR", "GLARCH")[$i];

The unrelated goto &NAME is highly magical, substituting a call to the named sub-
routine for the currently running subroutine. This construct may be used without

* This means that if it doesn’t find the label in the current routine, it looks back through the routines
that called the current routine for the label, thus making it nearly impossible to maintain your pro-
gram.

† Understatement is reputed to be funny, so we thought we’d try one here.

Functions

Perl Functions in Alphabetical Order 729

730 Chapter 29: Functions

shame by AUTOLOAD subr outines that wish to load another subroutine and then pre-
tend that this new subroutine — and not the original one—had been called in the
first place (except that any modifications to @_ in the original subroutine are prop-
agated to the replacement subroutine). After the goto, not even caller will be able
to tell that the original AUTOLOAD routine was called first.

grep
grep EXPR, LIST
grep BLOCK LIST

This function evaluates EXPR or BLOCK in Boolean context for each element of LIST,
temporarily setting $_ to each element in turn, much like the foreach construct. In
list context, it retur ns a list of those elements for which the expression is true.
(The operator is named after a beloved Unix program that extracts lines out of a
file that match a particular pattern. In Perl, the expression is often a pattern, but
doesn’t have to be.) In scalar context, grep retur ns the number of times the
expr ession was true.

If @all_lines contains lines of code, this example weeds out comment lines:

@code_lines = grep !/ˆ\s*#/, @all_lines;

Because $_ is an implicit alias to each list value, altering $_ will modify the ele-
ments of the original list. While this is useful and supported, it can occasionally
cause bizarre results if you aren’t expecting it. For example:

@list = qw(barney fred dino wilma);
@greplist = grep { s/ˆ[bfd]// } @list;

@greplist is now “arney”, “red”, “ino”, but @list is now “arney”, “red”, “ino”,
“wilma”! Ergo, Caveat Programmor.

See also map. The following two statements are functionally equivalent:

@out = grep { EXPR } @in;
@out = map { EXPR ? $_ : () } @in

hex $_

hex EXPR
hex

This function interprets EXPR as a hexadecimal string and retur ns the equivalent
decimal value. A leading “0x” is ignor ed, if present. To interpr et strings that might
start with any of 0, 0b, or 0x, see oct. The following code sets $number to
4,294,906,560:

$number = hex("ffff12c0");

To do the inverse function, use sprintf:

sprintf "%lx", $number; # (That’s an ell, not a one.)

Hex strings may only repr esent integers. Strings that would cause integer overflow
trigger a warning.

impor t
import CLASSNAME LIST
import CLASSNAME

Ther e is no built-in import function. It is merely an ordinary class method defined
(or inherited) by modules that wish to export names to another module through
the use operator. See use for details.

index
index STR, SUBSTR, OFFSET
index STR, SUBSTR

This function searches for one string within another. It retur ns the position of the
first occurrence of SUBSTR in STR. The OFFSET, if specified, says how many charac-
ters from the start to skip before beginning to look. Positions are based at 0 (or
whatever you’ve set the subscript base $[variable to—but don’t do that). If the
substring is not found, the function retur ns one less than the base, ordinarily -1.
To work your way through a string, you might say:

$pos = -1;
while (($pos = index($string, $lookfor, $pos)) > -1) {

print "Found at $pos\n";
$pos++;

}

int $_

int EXPR
int

This function retur ns the integer portion of EXPR. If you’r e a C programmer, you’r e
apt to forget to use int in conjunction with division, which is a floating-point
operation in Perl:

$average_age = 939/16; # yields 58.6875 (58 in C)
$average_age = int 939/16; # yields 58

You should not use this function for generic rounding, because it truncates
towards 0 and because machine repr esentations of floating-point numbers can

Functions

Perl Functions in Alphabetical Order 731

732 Chapter 29: Functions

sometimes produce counterintuitive results. For example, int(-6.725/0.025) pr o-
duces -268 rather than the correct -269; that’s because the value is really more like
-268.99999999999994315658. Usually, the sprintf, printf, or the POSIX::floor and
POSIX::ceil functions will serve you better than will int.

$n = sprintf("%.0f", $f); # round (not trunc) to nearest integer

ioctl $! X
ARG

X
RO

X
T

X
U

ioctl FILEHANDLE, FUNCTION, SCALAR

This function implements the ioctl (2) syscall which controls I/O. To get the correct
function definitions, first you’ll probably have to say:

require "sys/ioctl.ph"; # perhaps /usr/local/lib/perl/sys/ioctl.ph

If sys/ioctl.ph doesn’t exist or doesn’t have the correct definitions, you’ll have to
roll your own based on your C header files such as sys/ioctl.h. (The Perl distribu-
tion includes a script called h2ph to help you do this, but running it is nontrivial.)
SCALAR will be read or written (or both) depending on the FUNCTION—a pointer to
the string value of SCALAR will be passed as the third argument of the actual
ioctl (2) call. (If SCALAR has no string value but does have a numeric value, that
value will be passed directly rather than a pointer to the string value.) The pack

and unpack functions are useful for manipulating the values of structures used by
ioctl. The following example determines how many bytes are available for read-
ing using the FIONREAD ioctl:

require ’sys/ioctl.ph’;

$size = pack("L", 0);
ioctl(FH, FIONREAD(), $size)

or die "Couldn’t call ioctl: $!\n";
$size = unpack("L", $size);

If h2ph wasn’t installed or doesn’t work for you, you can gr ep the include files by
hand or write a small C program to print out the value.

The retur n value of ioctl (and fcntl) is as follows:

Syscall Returns Perl Returns

-1 undef

0 String “0 but true”
Anything else That number

Thus Perl retur ns true on success and false on failure, yet you can still easily
deter mine the actual value retur ned by the operating system:

$retval = ioctl(...) || -1;
printf "ioctl actually returned %d\n", $retval;

The special string “0 but true” is exempt from -w complaints about improper
numeric conversions.

Calls to ioctl should not be considered portable. If, say, you’re mer ely tur ning of f
echo once for the whole script, it’s more portable to say:

system "stty -echo"; # Works on most Unix boxen.

Just because you can do something in Perl doesn’t mean you ought to. To quote
the Apostle Paul, “Everything is permissible — but not everything is beneficial.”

For still better portability, you might look at the Term::ReadKey module from
CPAN.

join
join EXPR, LIST

This function joins the separate strings of LIST into a single string with fields sepa-
rated by the value of EXPR, and retur ns the string. For example:

$rec = join ’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell;

To do the opposite, see split. To join things together into fixed-position fields,
see pack. The most efficient way to concatenate many strings together is to join

them with a null string:

$string = join "", @array;

Unlike split, join doesn’t take a pattern as its first argument, and will produce a
war ning if you try.

ke ys
keys HASH

This function retur ns a list consisting of all the keys of the indicated HASH. The
keys are retur ned in an apparently random order, but it is the same order pro-
duced by either the values or each function (assuming the hash has not been
modified between calls). As a side effect, it resets HASH ’s iterator. Her e is a (rather
cork-brained) way to print your environment:

@keys = keys %ENV; # keys are in the same order as
@values = values %ENV; # values, as this demonstrates
while (@keys) {

print pop(@keys), ’=’, pop(@values), "\n";
}

Functions

Perl Functions in Alphabetical Order 733

734 Chapter 29: Functions

You’r e mor e likely to want to see the environment sorted by keys:

foreach $key (sort keys %ENV) {
print $key, ’=’, $ENV{$key}, "\n";

}

You can sort the values of a hash directly, but that’s somewhat useless in the
absence of any way to map the values back to the keys. To sort a hash by value,
you generally need to sort the keys by providing a comparison function that
accesses the values based on the keys. Here’s a descending numeric sort of a hash
by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

Using keys on a hash bound to a largish DBM file will produce a largish list, caus-
ing you to have a largish process. You might prefer to use the each function here,
which will iterate over the hash entries one by one without slurping them all into
a single gargantuan list.

In scalar context, keys retur ns the number of elements of the hash (and resets the
each iterator). However, to get this information for tied hashes, including DBM
files, Perl must walk the entire hash, so it’s not efficient then. Calling keys in a
void context helps with that.

Used as an lvalue, keys incr eases the number of hash buckets allocated for the
given hash. (This is similar to pre-extending an array by assigning a larger number
to $#array.) Pre-extending your hash can gain a measure of efficiency if you hap-
pen to know the hash is going to get big, and how big it’s going to get. If you say:

keys %hash = 1000;

then %hash will have at least 1000 buckets allocated for it (you get 1024 buckets, in
fact, since it rounds up to the next power of two). You can’t shrink the number of
buckets allocated for the hash using keys in this way (but you needn’t worry about
doing this by accident, as trying has no effect). The buckets will be retained even
if you do %hash = (). Use undef %hash if you want to free the storage while %hash

is still in scope.

See also each, values, and sort.

kill $! X
ARG

X
U

X
T

kill SIGNAL, LIST

This function sends a signal to a list of processes. For SIGNAL, you may use either
an integer or a quoted signal name (without a “SIG” on the front). Trying to use an
unr ecognized SIGNAL name raises an exception. The function retur ns the number

of processes successfully signalled. If SIGNAL is negative, the function kills process
gr oups instead of processes. (On SysV, a negative process number will also kill
pr ocess gr oups, but that’s not portable.) A PID of zero sends the signal to all pro-
cesses of the same group ID as the sender. For example:

$cnt = kill 1, $child1, $child2;
kill 9, @goners;
kill ’STOP’, getppid # Can *so* suspend my login shell...

unless getppid == 1; # (But don’t taunt init(8).)

A SIGNAL of 0 tests whether a process is still alive and that you still have permis-
sion to signal it. No signal is sent. This way you can check whether the process is
still alive and hasn’t changed its UID.

use Errno qw(ESRCH EPERM);
if (kill 0 => $minion) {

print "$minion is alive!\n";
} elsif ($! == EPERM) { # changed UID

print "$minion has escaped my control!\n";
} elsif ($! == ESRCH) {

print "$minion is deceased.\n"; # or zombied
} else {

warn "Odd; I couldn’t check on the status of $minion: $!\n";
}

See the section “Signals” in Chapter 16.

last $@

last LABEL
last

The last operator immediately exits the loop in question, just like the break state-
ment in C or Java (as used in loops). If the LABEL is omitted, the operator refers to
the innermost enclosing loop. The continue block, if any, is not executed.

LINE: while (<MAILMSG>) {
last LINE if /ˆ$/; # exit when done with header
rest of loop here

}

last cannot be used to exit a block which retur ns a value, such as eval {}, sub
{}, or do {}, and should not be used to exit a grep or map operation. With warn-
ings enabled, Perl will warn you if you last out of a loop that’s not in your cur-
rent lexical scope, such as a loop in a calling subroutine.

A block by itself is semantically identical to a loop that executes once. Thus last
can be used to effect an early exit out of such a block.

See also Chapter 4 for illustrations of how last, next, redo, and continue work.

Functions

Perl Functions in Alphabetical Order 735

736 Chapter 29: Functions

lc $_ T

lc EXPR
lc

This function retur ns a lowercased version of EXPR. This is the internal function
implementing the \L escape in double-quoted strings. Your current LC_CTYPE locale
is respected if use locale is in effect, though how locales interact with Unicode is
still a topic of ongoing research, as they say. See the perllocale manpage for the
most recent results.

lcfir st $_ T

lcfirst EXPR
lcfirst

This function retur ns a version of EXPR with the first character lowercased. This is
the internal function implementing the \l escape in double-quoted strings. Your
curr ent LC_CTYPE locale is respected if you use locale and if we figure out how
that relates to Unicode.

length $_

length EXPR
length

This function retur ns the length in characters of the scalar value EXPR. If EXPR is
omitted, it retur ns the length of $_. (But be careful that the next thing doesn’t look
like the start of an EXPR, or Perl’s lexer will get confused. For example, length <
10 won’t compile. When in doubt, use parentheses.)

Do not try to use length to find the size of an array or hash. Use scalar @array

for the size of an array, and scalar keys %hash for the number of key/value pairs
in a hash. (The scalar is typically omitted when redundant.)

To find the length of a string in bytes rather than characters, say:

$blen = do { use bytes; length $string; };

or:

$blen = bytes::length($string); # must use bytes first

link $! X
U

X
T

link OLDFILE, NEWFILE

This function creates a new filename linked to the old filename. The function
retur ns true for success, false otherwise. See also symlink later in this chapter. This
function is unlikely to be implemented on non-Unix-style filesystems.

listen $! X
ARG

X
U

listen SOCKET, QUEUESIZE

This function tells the system that you’re going to be accepting connections on this
SOCKET and that the system can queue the number of waiting connections specified
by QUEUESIZE. Imagine having call-waiting on your phone, with up to 17 callers
queued. (Gives me the willies!) The function retur ns true if it succeeded, false oth-
erwise.

use Socket;
listen(PROTOSOCK, SOMAXCONN)

or die "cannot set listen queue on PROTOSOCK: $!";

See accept. See also the section “Sockets” in Chapter 16. See listen (2).

local
local EXPR

This operator does not create a local variable; use my for that. Instead, it localizes
existing variables; that is, it causes one or more global variables to have locally
scoped values within the innermost enclosing block, eval, or file. If more than one
variable is listed, the list must be placed in parentheses because the operator binds
mor e tightly than commas. All listed variables must be legal lvalues, that is, some-
thing you could assign to; this can include individual elements of arrays or hashes.

This operator works by saving the current values of the specified variables on a
hidden stack and restoring them upon exiting the block, subroutine, eval, or file.
After the local is executed, but before the scope is exited, any subroutines and
executed formats will see the local, inner value, instead of the previous, outer
value because the variable is still a global variable, despite having a localized
value. The technical term for this is “dynamic scoping”. See the section “Scoped
Declarations” in Chapter 4.

The EXPR may be assigned to if desired, which allows you to initialize your vari-
ables as you localize them. If no initializer is given, all scalars are initialized to
undef, and all arrays and hashes to (). As with ordinary assignment, if you use
par entheses ar ound the variables on the left (or if the variable is an array or hash),
the expression on the right is evaluated in list context. Otherwise, the expression
on the right is evaluated in scalar context.

In any event, the expression on the right is evaluated before the localization, but
the initialization happens after localization, so you can initialize a localized vari-
able with its nonlocalized value. For instance, this code demonstrates how to
make a temporary modification to a global array:

Functions

Perl Functions in Alphabetical Order 737

738 Chapter 29: Functions

if ($sw eq ’-v’) {
init local array with global array
local @ARGV = @ARGV;
unshift @ARGV, ’echo’;
system @ARGV;

}
@ARGV restored

You can also temporarily modify global hashes:

temporarily add a couple of entries to the %digits hash
if ($base12) {

(NOTE: We’re not claiming this is efficient!)
local(%digits) = (%digits, T => 10, E => 11);
parse_num();

}

You can use local to give temporary values to individual elements of arrays and
hashes, even lexically scoped ones:

if ($protected) {
local $SIG{INT} = ’IGNORE’;
precious(); # no interrupts during this function

} # previous handler (if any) restored

You can also use local on typeglobs to create local filehandles without loading
any bulky object modules:

local *MOTD; # protect any global MOTD handle
my $fh = do { local *FH }; # create new indirect filehandle

(As of the 5.6 release of Perl, a plain my $fh; is good enough, because if you give
an undefined variable where a real filehandle is expected, like the first argument
to open or socket, Perl now autovivifies a brand new filehandle for you.)

But in general, you usually want to use my instead of local, because local isn’t
really what most people think of as “local”, or even “lo-cal”. See my.

localtime
localtime EXPR
localtime

This function converts the value retur ned by time to a nine-element list with the
time corrected for the local time zone. It’s typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime;

If, as in this case, EXPR is omitted, it does localtime(time()).

All list elements are numeric and come straight out of a struct tm. (That’s a bit of
C programming lingo—don’t worry about it.) In particular, this means that $mon

has the range 0..11 with January as month 0, and $wday has the range 0..6 with
Sunday as day 0. You can remember which ones are zer o-based because those are
the ones you’re always using as subscripts into zero-based arrays containing
month and day names.

For example, to get the name of the current day of the week:

$thisday = (Sun,Mon,Tue,Wed,Thu,Fri,Sat)[(localtime)[6]];

$year is the number of years since 1900, that is, in year 2023, $year is 123, not
simply 23. To get the 4-digit year, just say $year + 1900. To get the 2-digit year (for
example “01” in 2001), use sprintf("%02d", $year % 100).

The Perl library module Time::Local contains a subroutine, timelocal, that can
convert in the opposite direction.

In scalar context, localtime retur ns a ctime (3)-like string. For example, the
date (1) command can be (almost)* emulated with:

perl -le ’print scalar localtime’

See also the standard POSIX module’s strftime function for a more fine-grained
appr oach to formatting times. The Time::localtime module supports a by-name
inter face to this function.

lock
lock THING

The lock function places a lock on a variable, subroutine, or object refer enced by
THING until the lock goes out of scope. For backward compatibility, this function is
a built-in only if your version of Perl was compiled with threading enabled, and if
you’ve said use Threads. Otherwise, Perl will assume this is a user-defined func-
tion. See Chapter 17, Thr eads.

log $_ $@

log EXPR
log

This function retur ns the natural logarithm (that is, base e) of EXPR. If EXPR is nega-
tive, it raises an exception. To get the log of another base, use basic algebra: the
base-N log of a number is equal to the natural log of that number divided by the
natural log of N. For example:

* date (1) prints the timezone, whereas scalar localtime does not.

Functions

Perl Functions in Alphabetical Order 739

740 Chapter 29: Functions

sub log10 {
my $n = shift;
return log($n)/log(10);

}

For the inverse of log, see exp.

lstat $_ $! X
U

lstat EXPR
lstat

This function does the same thing as Perl’s stat function (including setting the
special _ filehandle), but if the last component of the filename is a symbolic link, it
stats the symbolic link itself instead of the file that the symbolic link points to. (If
symbolic links are unimplemented on your system, a normal stat is done instead.)

m// T X
T

/PATTERN/
m/PATTERN/

This is the match operator, which interprets PATTERN as a regular expression. The
operator is parsed as a double-quoted string rather than as a function. See
Chapter 5, Patter n Matching.

map
map BLOCK LIST
map EXPR, LIST

This function evaluates the BLOCK or EXPR for each element of LIST (locally setting
$_ to each element) and retur ns the list comprising the results of each such evalua-
tion. It evaluates BLOCK or EXPR in list context, so each element of LIST may map to
zer o, one, or more elements in the retur ned value. These are all flattened into one
list. For instance:

@words = map { split ’ ’ } @lines;

splits a list of lines into a list of words. But often there is a one-to-one mapping
between input values and output values:

@chars = map chr, @nums;

translates a list of numbers to the corresponding characters. And here’s an exam-
ple of a one-to-two mapping:

%hash = map { genkey($_) => $_ } @array;

which is just a funny functional way to write this:

%hash = ();
foreach $_ (@array) {

$hash{genkey($_)} = $_;
}

Because $_ is an alias (implicit refer ence) into the list’s values, this variable can be
used to modify the elements of the array. This is useful and supported, although it
can cause bizarre results if the LIST is not a named array. Using a regular foreach
loop for this purpose may be clearer. See also grep; map dif fers fr om grep in that
map retur ns a list consisting of the results of each successive evaluation of EXPR,
wher eas grep retur ns a list consisting of each value of LIST for which EXPR evalu-
ates to true.

mkdir $! X
T

mkdir FILENAME, MASK
mkdir FILENAME

This function creates the directory specified by FILENAME, giving it permissions
specified by the numeric MASK as modified by the current umask. If the operation
succeeds, it retur ns true; otherwise, it retur ns false.

If MASK is omitted, a mask of 0777 is assumed, which is almost always what you
want anyway. In general, creating directories with permissive MASKs (like 0777) and
letting the user modify that with their umask is better than supplying a restrictive
MASK and giving the user no way to be more per missive. The exception to this rule
is when the file or directory should be kept private (mail files, for instance). See
umask.

If the mkdir (2) syscall is not built into your C library, Perl emulates it by calling
the mkdir (1) program for each directory. If you are creating a long list of directo-
ries on such a system, it’ll be more efficient to call the mkdir pr ogram yourself
with the list of directories than it is to start zillions of subprocesses.

msgctl $! X
U

msgctl ID, CMD, ARG

This function calls the System V IPC msgctl (2) syscall; see msgctl (2) for more
details. You may have to use IPC::SysV first to get the correct constant definitions.
If CMD is IPC_STAT, then ARG must be a variable that will hold the retur ned msqid_ds

C structur e. Retur n values are like ioctl and fcntl: undef for error, “0 but true”
for zero, or the actual retur n value otherwise.

This function is available only on machines supporting System V IPC, which turns
out to be far fewer than those supporting sockets.

Functions

Perl Functions in Alphabetical Order 741

742 Chapter 29: Functions

msgget $! X
U

msgget KEY, FLAGS

This function calls the System V IPC msgget (2) syscall. See msgget (2) for details.
The function retur ns the message queue ID, or undef if there is an err or. Befor e
calling, you should use IPC::SysV.

This function is available only on machines supporting System V IPC.

msg rcv $! X
U

msgrcv ID, VAR, SIZE, TYPE, FLAGS

This function calls the msgr cv (2) syscall to receive a message from message queue
ID into variable VAR with a maximum message size of SIZE. See msgr cv (2) for
details. When a message is received, the message type will be the first thing in
VAR, and the maximum length of VAR is SIZE plus the size of the message type. The
function retur ns true if successful, or false if there is an err or. Befor e calling, you
should use IPC::SysV.

This function is available only on machines supporting System V IPC.

msgsnd $! X
U

msgsnd ID, MSG, FLAGS

This function calls the msgsnd (2) syscall to send the message MSG to the message
queue ID. See msgsnd (2) for details. MSG must begin with the long integer message
type. You can create a message like this:

$msg = pack "L a*", $type, $text_of_message;

The function retur ns true if successful, or false if there is an err or. Befor e calling,
use IPC::SysV.

This function is available only on machines supporting System V IPC.

my
my TYPE EXPR : ATTRIBUTES
my EXPR : ATTRIBUTES
my TYPE EXPR
my EXPR

This operator declares one or more private variables to exist only within the inner-
most enclosing block, subroutine, eval, or file. If more than one variable is listed,
the list must be placed in parentheses because the operator binds more tightly
than commas. Only simple scalars or complete arrays and hashes may be declared
this way.

The variable name cannot be package qualified, because package variables are all
globally accessible through their corresponding symbol table, and lexical variables
ar e unr elated to any symbol table. Unlike local, then, this operator has nothing to
do with global variables, other than hiding any other variable of the same name
fr om view within its scope (that is, where the private variable exists). A global
variable can always be accessed through its package-qualified form, however, or
thr ough a symbolic refer ence.

A private variable’s scope does not start until the statement after its declaration.
The variable’s scope extends into any enclosed blocks thereafter, up to the end of
the scope of the variable itself.

However, this means that any subroutines you call from within the scope of a pri-
vate variable cannot see the private variable unless the block that defines the sub-
routine itself is also textually enclosed within the scope of that variable. That
sounds complicated, but it’s not once you get the hang of it. The technical term
for this is lexical scoping, so we often call these lexical variables. In C cultur e,
they’r e sometimes called “auto” variables, since they’re automatically allocated and
deallocated at scope entry and exit.

The EXPR may be assigned to if desired, which allows you to initialize your lexical
variables. (If no initializer is given, all scalars are initialized to the undefined value
and all arrays and hashes to the empty list.) As with ordinary assignment, if you
use parentheses around the variables on the left (or if the variable is an array or
hash), the expression on the right is evaluated in list context. Otherwise, the
expr ession on the right is evaluated in scalar context. For example, you can name
your formal subroutine parameters with a list assignment, like this:

my ($friends, $romans, $countrymen) = @_;

But be careful not to omit the parentheses indicating list assignment, like this:

my $country = @_; # right or wrong?

This assigns the length of the array (that is, the number of the subroutine’s argu-
ments) to the variable, since the array is being evaluated in scalar context. You can
pr ofitably use scalar assignment for a formal parameter though, as long as you use
the shift operator. In fact, since object methods are passed the object as the first
argument, many method subroutines start off by “stealing” the first argument:

sub simple_as {
my $self = shift; # scalar assignment
my ($a,$b,$c) = @_; # list assignment
...

}

Functions

Perl Functions in Alphabetical Order 743

744 Chapter 29: Functions

If you attempt to declare a lexically scoped subroutine with my sub, Perl will die
with the message that this feature has not been implemented yet. (Unless, of
course, this feature has been implemented yet.)

The TYPE and ATTRIBUTES ar e optional, which is just as well, since they’re both
consider ed experimental. Here’s what a declaration that uses them might look like:

my Dog $spot :ears(short) :tail(long);

The TYPE, if specified, indicates what kind of scalar or scalars are declar ed in EXPR,
either directly as one or more scalar variables, or indirectly through an array or
hash. If TYPE is the name of the class, the scalars will be assumed to contain refer-
ences to objects of that type, or to objects compatible with that type. In particular,
derived classes are consider ed compatible. That is, assuming Collie is derived
fr om Dog, you might declare:

my Dog $lassie = new Collie;

Your declaration claims that you will use the $lassie object consistently with its
being a Dog object. The fact that it’s actually a Collie object shouldn’t matter as
long as you only try to do Dog things. Through the magic of virtual methods, the
implementation of those Dog methods might well be in the Collie class, but the
declaration above is only talking about the interface, not the implementation. In
theory.

Inter estingly, up through version 5.6.0, the only time Perl pays attention to the
TYPE declaration is when the corresponding class has declared fields with the use

fields pragma. Together, these declarations allow the pseudohash implementation
of a class to “show through” to code outside the class, so that hash lookups can be
optimized by the compiler into array lookups. In a sense, the pseudohash is the
inter face to such a class, so our theory remains intact, if a bit battered. For more
on pseudohashes, see the section “Pseudohashes” in Chapter 8, Refer ences.

In the future, other types of classes may interpret the TYPE dif ferently. The TYPE

declaration should be considered a generic type interface that might someday be
instantiated in various ways depending on the class. In fact, the TYPE might not
even be an official class name. We’r e reserving the lowercase type names for Perl,
because one of the ways we’d like to extend the type interface is to allow optional
low-level type declarations such as int, num, str, and ref. These declarations will
not be for the purpose of strong typing; rather, they’ll be hints to the compiler
telling it to optimize the storage of the variable with the assumption that the vari-
able will be used mostly as declared. The semantics of scalars will stay pretty
much the same—you’ll still be able to add two str scalars, or print an int scalar,
just as though they were the ordinary polymorphic scalars you’re familiar with. But
with an int declaration Perl might decide to store only the integer value and forget
about caching the resulting string as it currently does. Loops with int loop vari-

ables might run faster, particularly in code compiled down to C. In particular,
arrays of numbers could be stored much more compactly. As a limiting case, the
built-in vec function might even become obsolete when we can write declarations
such as:

my bit @bitstring;

The ATTRIBUTES declaration is even more experimental. We haven’t done much
mor e than reserve the syntax and prototype the internal interface; see the use

attributes pragma in Chapter 31 for more on that. The first attribute we’ll imple-
ment is likely to be constant:

my num $PI : constant = atan2(1,1) * 4;

But there are many other possibilities, such as establishing default values for arrays
and hashes, or letting variables be shared among cooperating interpreters. Like the
type interface, the attribute interface should be considered a generic interface, a
kind of workbench for inventing new syntax and semantics. We do not know how
Perl will evolve in the next 10 years. We only know that we can make it easier on
ourselves by planning for that in advance.

See also local, our, and the section “Scoped Declarations” in Chapter 4.

new
new CLASSNAME LIST
new CLASSNAME

Ther e is no built-in new function. It is merely an ordinary constructor method (that
is, a user-defined subroutine) that is defined or inherited by the CLASSNAME class
(that is, package) to let you construct objects of type CLASSNAME. Many constructors
ar e named “new”, but only by convention, just to trick C++ programmers into
thinking they know what’s going on. Always read the documentation of the class
in question so you know how to call its constructors; for example, the constructor
that creates a list box in the Tk widget set is just called Listbox(). See Chapter 12.

next $@

next LABEL
next

The next operator is like the continue statement in C: it starts the next iteration of
the loop designated by LABEL:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
...

}

Functions

Perl Functions in Alphabetical Order 745

746 Chapter 29: Functions

If there wer e a continue block in this example, it would be executed immediately
following the invocation of next. When LABEL is omitted, the operator refers to the
inner most enclosing loop.

A block by itself is semantically identical to a loop that executes once. Thus, next
will exit such a block early (via the continue block, if there is one).

next cannot be used to exit a block that retur ns a value, such as eval {}, sub {},
or do {}, and should not be used to exit a grep or map operation. With warnings
enabled, Perl will warn you if you next out of a loop not in your current lexical
scope, such as a loop in a calling subroutine. See the section “Loop Statements” in
Chapter 4.

no $@

no MODULE LIST

See the use operator, which is the opposite of no, kind of. Most standard modules
do not unimport anything, making no a no-op, as it were. The pragmatic modules
tend to be more obliging here. If the MODULE cannot be found, an exception is
raised.

oct $_

oct EXPR
oct

This function interprets EXPR as an octal string and retur ns the equivalent decimal
value. If EXPR happens to start with “0x”, it is interpreted as a hexadecimal string
instead. If EXPR starts off with “0b”, it is interpreted as a string of binary digits. The
following will properly convert to numbers any input strings in decimal, binary,
octal, and hex bases written in standard C or C++ notation:

$val = oct $val if $val =˜ /ˆ0/;

To per form the inverse function, use sprintf with an appropriate format:

$perms = (stat("filename"))[2] & 07777;
$oct_perms = sprintf "%lo", $perms;

The oct function is commonly used when a data string such as “644” needs to be
converted into a file mode, for example. Although Perl will automatically convert
strings into numbers as needed, this automatic conversion assumes base 10.

open $! X
ARG

X
U

X
T

open FILEHANDLE, MODE, LIST
open FILEHANDLE, EXPR
open FILEHANDLE

The open function associates an internal FILEHANDLE with an external file specifica-
tion given by EXPR or LIST. It may be called with one, two, or three arguments (or
mor e if the third argument is a command, and you’re running at least version 5.6.1
of Perl). If three or more arguments are present, the second argument specifies the
access MODE in which the file should be opened, and the third argument (LIST)
supplies the actual filename or the command to execute, depending on the mode.
In the case of a command, additional arguments may be supplied if you wish to
invoke the command directly without involving a shell, much like system or exec.
Or the command may be supplied as a single argument (the third one), in which
case the decision to invoke the shell depends on whether the command contains
shell metacharacters. (Don’t use more than three arguments if the arguments are
ordinary filenames; it won’t work.) If the MODE is not recognized, open raises an
exception.

If only two arguments are present, the mode and filename/command are assumed
to be combined in the second argument. (And if you don’t specify a mode in the
second argument, just a filename, then the file is opened read-only to be on the
safe side.)

With only one argument, the package scalar variable of the same name as the
FILEHANDLE must contain the filename and optional mode:

$LOG = ">logfile"; # $LOG must not be declared my!
open LOG or die "Can’t open logfile: $!";

But don’t do that. It’s not stylin’. Forget we mentioned it.

The open function retur ns true when it succeeds and undef otherwise. If the open

starts up a pipe to a child process, the retur n value will be the process ID of that
new process. As with any syscall, always check the retur n value of open to make
sur e it worked. But this isn’t C or Java, so don’t use an if statement when the or

operator will do. You can also use ||, but if you do, use parentheses on the open.
If you choose to omit parentheses on the function call to turn it into a list opera-
tor, be car eful to use “or die” after the list rather than “|| die”, because the prece-
dence of || is higher than list operators like open, and the || will bind to your last
argument, not the whole open:

open LOG, ">logfile" || die "Can’t create logfile: $!"; # WRONG
open LOG, ">logfile" or die "Can’t create logfile: $!"; # ok

Functions

Perl Functions in Alphabetical Order 747

748 Chapter 29: Functions

That looks rather intense, but typically you’d introduce some whitespace to tell
your eye where the list operator ends:

open LOG, ">logfile"
or die "Can’t create logfile: $!";

As that example shows, the FILEHANDLE argument is often just a simple identifier
(nor mally uppercase), but it may also be an expression whose value provides a
refer ence to the actual filehandle. (The refer ence may be either a symbolic refer-
ence to the filehandle name or a hard refer ence to any object that can be inter-
pr eted as a filehandle.) This is called an indir ect filehandle, and any function that
takes a FILEHANDLE as its first argument can handle indirect filehandles as well as
dir ect ones. But open is special in that if you supply it with an undefined variable
for the indirect filehandle, Perl will automatically define that variable for you, that
is, autovivifying it to contain a proper filehandle refer ence. One advantage of this
is that the filehandle will be closed automatically when there are no further refer-
ences to it, typically when the variable goes out of scope:

{
my $fh; # (uninitialized)
open($fh, ">logfile") # $fh is autovivified

or die "Can’t create logfile: $!";
... # do stuff with $fh

} # $fh closed here

The my $fh declaration can be readably incorporated into the open:

open my $fh, ">logfile" or die ...

The > symbol you’ve been seeing in front of the filename is an example of a
mode. Historically, the two-argument form of open came first. The recent addition
of the three-argument form lets you separate the mode from the filename, which
has the advantage of avoiding any possible confusion between the two. In the fol-
lowing example, we know that the user is not trying to open a filename that hap-
pens to start with “>”. We can be sure that they’re specifying a MODE of “>”, which
opens the file named in EXPR for writing, creating the file if it doesn’t exist and
truncating the file down to nothing if it already exists:

open(LOG, ">", "logfile") or die "Can’t create logfile: $!";

In the shorter forms, the filename and mode are in the same string. The string is
parsed much as the typical shell processes file and pipe redir ections. First, any
leading and trailing whitespace is removed from the string. Then the string is
examined, on either end if need be, for characters specifying how the file is to be
opened. Whitespace is allowed between the mode and the filename.

The modes that indicate how to open a file are shell-like redir ection symbols. A
list of these symbols is provided in Table 29-1. (To access a file with combinations
of open modes not covered by this table, see the low-level sysopen function.)

Table 29-1. Modes for open

Read Write Append Create Clobber
Mode Access Access Only Nonexisting Existing

< PATH Y N N N N

> PATH N Y N Y Y

>> PATH N Y Y Y N

+< PATH Y Y N N N

+> PATH Y Y N Y Y

+>> PATH Y Y Y Y N

| COMMAND N Y n/a n/a n/a

COMMAND | Y N n/a n/a n/a

If the mode is “<” or nothing, an existing file is opened for input. If the mode is
“>”, the file is opened for output, which truncates existing files and creates nonex-
istent ones. If the mode is “>>”, the file is created if needed and opened for
appending, and all output is automatically placed at the end of the file. If a new
file is created because you used a mode of “>” or “>>” and the file did not previ-
ously exist, access permissions will depend on the process’s current umask under
the rules described for that function.

Her e ar e common examples:

open(INFO, "datafile") || die("can’t open datafile: $!");
open(INFO, "< datafile") || die("can’t open datafile: $!");
open(RESULTS, "> runstats") || die("can’t open runstats: $!");
open(LOG, ">> logfile ") || die("can’t open logfile: $!");

If you prefer the low-punctuation version, you can write:

open INFO, "datafile" or die "can’t open datafile: $!";
open INFO, "< datafile" or die "can’t open datafile: $!";
open RESULTS, "> runstats" or die "can’t open runstats: $!";
open LOG, ">> logfile " or die "can’t open logfile: $!";

When opened for reading, the special filename “-” refers to STDIN. When opened
for writing, the same special filename refers to STDOUT. Nor mally, these are speci-
fied as “<-” and “>-”, respectively.

open(INPUT, "-") or die; # re-open standard input for reading
open(INPUT, "<-") or die; # same thing, but explicit
open(OUTPUT, ">-") or die; # re-open standard output for writing

This way the user can supply a program with a filename that will use the standard
input or the standard output, but the author of the program doesn’t have to write
special code to know about this.

Functions

Perl Functions in Alphabetical Order 749

750 Chapter 29: Functions

You may also place a “+” in front of any of these three modes to request simulta-
neous read and write. However, whether the file is clobbered or created and
whether it must already exist is still governed by your choice of less-than or
gr eater-than signs. This means that “+<” is almost always preferr ed for read/write
updates, as the dubious “+>” mode would first clobber the file before you could
ever read anything from it. (Use that mode only if you want to rer ead only what
you just wrote.)

open(DBASE, "+< database")
or die "can’t open existing database in update mode: $!";

You can treat a file opened for update as a random-access database and use seek

to move to a particular byte number, but the variable-length records of regular text
files usually make it impractical to use read-write mode to update such files. See
the -i command-line option in Chapter 19 for a differ ent appr oach to updating.

If the leading character in EXPR is a pipe symbol, open fir es up a new process and
connects a write-only filehandle to the command. This way you can write into that
handle and what you write will show up on that command’s standard input. For
example:

open(PRINTER, "| lpr -Plp1") or die "can’t fork: $!";
print PRINTER "stuff\n";
close(PRINTER) or die "lpr/close failed: $?/$!";

If the trailing character in EXPR is a pipe symbol, open again launches a new pro-
cess, but this time with a read-only filehandle connected to it. This allows what-
ever the command writes to its standard output to show up on your handle for
reading. For example:

open(NET, "netstat -i -n |") or die "can’t fork: $!";
while (<NET>) { ... }
close(NET) or die "can’t close netstat: $!/$?";

Explicitly closing any piped filehandle causes the parent process to wait for the
child to finish and retur ns the status code in $? ($CHILD_ERROR). It’s also possible
for close to set $! ($OS_ERROR). See the examples under close and system for how
to interpret these error codes.

Any pipe command containing shell metacharacters such as wildcards or I/O redi-
rections is passed to your system’s canonical shell (/bin/sh on Unix), so those
shell-specific constructs can be processed first. If no metacharacters are found, Perl
launches the new process itself without calling the shell.

You may also use the three-argument form to start up pipes. Using that style, the
equivalent of the previous pipe opens would be:

open(PRINTER, "|-", "lpr -Plp1") or die "can’t fork: $!";
open(NET, "-|", "netstat -i -n") or die "can’t fork: $!";

Her e the minus in the second argument repr esents the command in the third argu-
ment. These commands don’t happen to invoke the shell, but if you want to guar-
antee no shell processing occurs, new versions of Perl let you say:

open(PRINTER, "|-", "lpr", "-Plp1") or die "can’t fork: $!";
open(NET, "-|", "netstat", "-i", "-n") or die "can’t fork: $!";

If you use the two-argument form to open a pipe to or from the special command
“-”,* an implicit fork is done first. (On systems that can’t fork, this raises an
exception. Microsoft systems did not support fork prior to the 5.6 release of Perl.)
In this case, the minus repr esents your new child process, which is a copy of the
par ent. The retur n value from this forking open is the process ID of the child when
examined from the parent process, 0 when examined from the child process, and
the undefined value undef if the fork fails — in which case, there is no child. For
example:

defined($pid = open(FROM_CHILD, "-|"))
or die "can’t fork: $!";

if ($pid) {
@parent_lines = <FROM_CHILD>; # parent code

}
else {

print STDOUT @child_lines; # child code
}

The filehandle behaves normally for the parent, but for the child process, the par-
ent’s input (or output) is piped from (or to) the child’s STDOUT (or STDIN). The child
pr ocess does not see the parent’s filehandle opened. (This is conveniently indi-
cated by the 0 PID.) Typically you’d use this construct instead of the normal piped
open when you want to exercise more contr ol over just how the pipe command
gets executed (such as when you are running setuid) and don’t want to have to
scan shell commands for metacharacters. The following piped opens are roughly
equivalent:

open FH, "| tr ’a-z’ ’A-Z’"; # pipe to shell command
open FH, "|-", ’tr’, ’a-z’, ’A-Z’; # pipe to bare command
open FH, "|-" or exec ’tr’, ’a-z’, ’A-Z’ or die; # pipe to child

as are these:

open FH, "cat -n ’file’ |"; # pipe from shell command
open FH, "-|", ’cat’, ’-n’, ’file’; # pipe from bare command
open FH, "-|" or exec ’cat’, ’-n’, ’file’ or die; # pipe from child

* Or you can think of it as leaving the command off of the three-argument forms above.

Functions

Perl Functions in Alphabetical Order 751

752 Chapter 29: Functions

For more elaborate uses of fork open, see the sections “Talking to Yourself ” in
Chapter 16 and “Cleaning Up Your Environment” in Chapter 23, Security.

When starting a command with open, you must choose either input or output:
“cmd|” for reading or “|cmd” for writing. You may not use open to start a command
that pipes both in and out, as the (currently) illegal notation, "|cmd|", might
appear to indicate. However, the standard IPC::Open2 and IPC::Open3 library rou-
tines give you a close equivalent. For details on double-ended pipes, see the sec-
tion “Bidirectional Communication” in Chapter 16.

You may also, in the Bourne shell tradition, specify an EXPR beginning with >&, in
which case the rest of the string is interpreted as the name of a filehandle (or file
descriptor, if numeric) to be duplicated using the dup2 (2) syscall.* You may use &

after >, >>, <, +>, +>>, and +<. (The specified mode should match the mode of the
original filehandle.)

One reason you might want to do this would be if you already had a filehandle
open and wanted to make another handle that’s really a duplicate of the first one.

open(SAVEOUT, ">&SAVEERR") or die "couldn’t dup SAVEERR: $!";
open(MHCONTEXT, "<&4") or die "couldn’t dup fd4: $!";

That means that if a function is expecting a filename, but you don’t want to give it
a filename because you already have the file open, you can just pass the filehan-
dle with a leading ampersand. It’s best to use a fully qualified handle though, just
in case the function happens to be in a differ ent package:

somefunction("&main::LOGFILE");

Another reason to “dup” filehandles is to temporarily redir ect an existing filehandle
without losing track of the original destination. Here is a script that saves, redi-
rects, and restor es STDOUT and STDERR:

#!/usr/bin/perl
open SAVEOUT, ">&STDOUT";
open SAVEERR, ">&STDERR";

open STDOUT, ">foo.out" or die "Can’t redirect stdout";
open STDERR, ">&STDOUT" or die "Can’t dup stdout";

select STDERR; $| = 1; # enable autoflush
select STDOUT; $| = 1; # enable autoflush

print STDOUT "stdout 1\n"; # these I/O streams propagate to
print STDERR "stderr 1\n"; # subprocesses too

* This doesn’t (currently) work with I/O objects on typeglob refer ences by filehandle autovivification,
but you can always use fileno to fetch the file descriptor and dup that.

system("some command"); # uses new stdout/stderr

close STDOUT;
close STDERR;

open STDOUT, ">&SAVEOUT";
open STDERR, ">&SAVEERR";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If the filehandle or descriptor number is preceded by a &= combination instead of
a simple &, then instead of creating a completely new file descriptor, Perl makes
the FILEHANDLE an alias for the existing descriptor using the fdopen (3) C library
call. This is slightly more parsimonious of systems resources, although that’s less of
a concer n these days.

$fd = $ENV{"MHCONTEXTFD"};
open(MHCONTEXT, "<&=$fdnum")

or die "couldn’t fdopen descriptor $fdnum: $!";

Filehandles STDIN, STDOUT, and STDERR always remain open across an exec. Other
filehandles, by default, do not. On systems supporting the fcntl function, you may
modify the close-on-exec flag for a filehandle.

use Fcntl qw(F_GETFD F_SETFD);
$flags = fcntl(FH, F_SETFD, 0)

or die "Can’t clear close-on-exec flag on FH: $!\n";

See also the special $ˆF ($SYSTEM_FD_MAX) variable in Chapter 28.

With the one- or two-argument form of open, you have to be careful when you use
a string variable as a filename, since the variable may contain arbitrarily weird
characters (particularly when the filename has been supplied by arbitrarily weird
characters on the Internet). If you’re not careful, parts of the filename might get
interpr eted as a MODE string, ignorable whitespace, a dup specification, or a minus.
Her e’s one historically interesting way to insulate yourself:

$path =˜ s#ˆ(\s)#./$1#;
open (FH, "< $path\0") or die "can’t open $path: $!";

But that’s still broken in several ways. Instead, just use the three-argument form of
open to open any arbitrary filename cleanly and without any (extra) security risks:

open(FH, "<", $path) or die "can’t open $path: $!";

On the other hand, if what you’re looking for is a true, C-style open (2) syscall with
all its attendant belfries and whistle-stops, then check out sysopen:

use Fcntl;
sysopen(FH, $path, O_RDONLY) or die "can’t open $path: $!";

Functions

Perl Functions in Alphabetical Order 753

754 Chapter 29: Functions

If you’re running on a system that distinguishes between text and binary files, you
may need to put your filehandle into binary mode—or forgo doing so, as the case
may be—to avoid mutilating your files. On such systems, if you use text mode on
a binary file, or binary mode on a text file, you probably won’t like the results.

Systems that need the binmode function are distinguished from those that don’t by
the format used for text files. Those that don’t need it terminate each line with a
single character that corresponds to what C thinks is a newline, \n. Unix and Mac
OS fall into this category. VMS, MVS, MS-whatever, and S&M operating systems of
other varieties treat I/O on text files and binary files differ ently, so they need
binmode.

Or its equivalent. As of the 5.6 release of Perl, you can specify binary mode in the
open function without a separate call to binmode. As part of the MODE argument (but
only in the three-argument form), you may specify various input and output disci-
plines. To do the equivalent of a binmode, use the three argument form of open and
stuf f a discipline of :raw in after the other MODE characters:

open(FH, "<:raw", $path) or die "can’t open $path: $!";

Since this is a very new feature, there will certainly be more disciplines by the
time you read this than there wer e when we wrote it. However, we can reason-
ably predict that there will in all likelihood be disciplines resembling some or all
of the ones in Table 29-2.

Table 29-2. I/O Disciplines

Discipline Meaning

:raw Binary mode; do no processing

:text Default text processing

:def Default declared by “use open”

:latin1 File should be ISO-8859-1

:ctype File should be LC_CTYPE

:utf8 File should be UTF-8

:utf16 File should be UTF-16

:utf32 File should be UTF-32

:uni Intuit Unicode (UTF-*)

:any Intuit Unicode/Latin1/LC_CTYPE

:xml Use encoding specified in file

:crlf Intuit newlines

:para Paragraph mode

:slurp Slurp mode

You’ll be able to stack disciplines that make sense to stack, so, for instance, you
could say:

open(FH, "<:para:crlf:uni", $path) or die "can’t open $path: $!";
while ($para = <FH>) { ... }

That would set up disciplines to:

• read in some form of Unicode and translate to Perl’s internal UTF-8 format if
the file isn’t already in UTF-8,

• look for variants of line-ending sequences, translating them all to \n, and

• process the file into paragraph-sized chunks, much as $/ = "" does.

If you want to set the default open mode (:def) to something other than :text,
you can declare that at the top of your file with the open pragma:

use open IN => ":any", OUT => ":utf8";

In fact, it would be really nice if that were the default :text discipline someday. It
per fectly captur es the spirit of “Be liberal in what you accept, and strict in what
you produce.”

opendir $! X
ARG

X
U

X
T

opendir DIRHANDLE, EXPR

This function opens a directory named EXPR for processing by readdir, telldir,
seekdir, rewinddir, and closedir. The function retur ns true if successful. Directory
handles have their own namespace separate from filehandles.

ord $_

ord EXPR
ord

This function retur ns the numeric value (ASCII, Latin-1, or Unicode) of the first
character of EXPR. The retur n value is always unsigned. If you want a signed value,
use unpack(’c’, EXPR). If you want all the characters of the string converted to a
list of numbers, use unpack(’U*’, EXPR) instead.

our
our TYPE EXPR : ATTRIBUTES
our EXPR : ATTRIBUTES
our TYPE EXPR
our EXPR

An our declar es one or more variables to be valid globals within the enclosing
block, file, or eval. That is, our has the same rules as a my declaration for

Functions

Perl Functions in Alphabetical Order 755

756 Chapter 29: Functions

deter mination of visibility, but does not create a new private variable; it merely
allows unfettered access to the existing package global. If more than one value is
listed, the list must be placed in parentheses.

The primary use of an our declaration is to hide the variable from the effects of a
use strict "vars" declaration; since the variable is masquerading as a my variable,
you are per mitted to use the declared global variable without qualifying it with its
package. However, just like the my variable, this only works within the lexical
scope of the our declaration. In this respect, it differs from use vars, which affects
the entire package and is not lexically scoped.

our is also like my in that you are allowed to declare variables with a TYPE and with
ATTRIBUTES. Her e is the syntax:

our Dog $spot :ears(short) :tail(long);

As of this writing, it’s not entirely clear what that will mean. Attributes could affect
either the global or the local interpretation of $spot. On the one hand, it would be
most like my variables for attributes to warp the current local view of $spot without
inter fering with other views of the global in other places. On the other hand, if
one module declares $spot to be a Dog, and another declares $spot to be a Cat,
you could end up with meowing dogs or barking cats. This is a subject of ongoing
research, which is a fancy way to say we don’t know what we’re talking about yet.
(Except that we do know what to do with the TYPE declaration when the variable
refers to a pseudohash—see “Managing Instance Data” in Chapter 12.)

Another way in which our is like my is in its visibility. An our declaration declares a
global variable that will be visible across its entire lexical scope, even across pack-
age boundaries. The package in which the variable is located is determined at the
point of the declaration, not at the point of use. This means the following behavior
holds and is deemed to be a feature:

package Foo;
our $bar; # $bar is $Foo::bar for rest of lexical scope
$bar = 582;

package Bar;
print $bar; # prints 582, just as if "our" had been "my"

However, the distinction between my cr eating a new, private variable and our

exposing an existing, global variable is important, especially in assignments. If you
combine a run-time assignment with an our declaration, the value of the global
variable does not disappear once the our goes out of scope. For that, you need
local:

($x, $y) = ("one", "two");
print "before block, x is $x, y is $y\n";
{

our $x = 10;
local our $y = 20;
print "in block, x is $x, y is $y\n";

}
print "past block, x is $x, y is $y\n";

That prints out:

before block, x is one, y is two
in block, x is 10, y is 20
past block, x is 10, y is two

Multiple our declarations in the same lexical scope are allowed if they are in dif fer-
ent packages. If they happen to be in the same package, Perl will emit warnings if
you ask it to.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning

See also local, my, and the section “Scoped Declarations” in Chapter 4.

pack $@

pack TEMPLATE, LIST

This function takes a LIST of ordinary Perl values and converts them into a string
of bytes according to the TEMPLATE and retur ns this string. The argument list will be
padded or truncated as necessary. That is, if you provide fewer arguments than the
TEMPLATE requir es, pack assumes additional null arguments. If you provide more
arguments than the TEMPLATE requir es, the extra arguments are ignor ed. Unr ecog-
nized format elements in TEMPLATE will raise an exception.

The template describes the structure of the string as a sequence of fields. Each
field is repr esented by a single character that describes the type of the value and
its encoding. For instance, a format character of N specifies an unsigned four-byte
integer in big-endian byte order.

Functions

Perl Functions in Alphabetical Order 757

758 Chapter 29: Functions

Fields are packed in the order given in the template. For example, to pack an
unsigned one-byte integer and a single-precision floating-point value into a string,
you’d say:

$string = pack("Cf", 244, 3.14);

The first byte of the retur ned string has the value 244. The remaining bytes are the
encoding of 3.14 as a single-precision float. The particular encoding of the floating
point number depends on your computer’s hardware.

Some important things to consider when packing are:

• the type of data (such as integer or float or string),

• the range of values (such as whether your integers will fit into one, two, four,
or maybe even eight bytes; or whether you’re packing 8-bit or Unicode char-
acters),

• whether your integers are signed or unsigned, and

• the encoding to use (such as native, little-endian, or big-endian packing of bits
and bytes).

Table 29-3 lists the format characters and their meanings. (Other characters can
occur in formats as well; these are described later.)

Table 29-3. Template Characters for pack/unpack

Character Meaning

a A null-padded string of bytes

A A space-padded string of bytes

b A bit string, in ascending bit order inside each byte (like vec)

B A bit string, in descending bit order inside each byte

c A signed char (8-bit integer) value

C An unsigned char (8-bit integer) value; see U for Unicode

d A double-pr ecision floating-point number in native format

f A single-pr ecision floating-point number in native format

h A hexadecimal string, low nybble first

H A hexadecimal string, high nybble first

i A signed integer value, native format

I An unsigned integer value, native format

l A signed long value, always 32 bits

L An unsigned long value, always 32 bits

n A 16-bit short in “network” (big-endian) order

N A 32-bit long in “network” (big-endian) order

Table 29-3. Template Characters for pack/unpack (continued)

Character Meaning

p A pointer to a null-terminated string

P A pointer to a fixed-length string

q A signed quad (64-bit integer) value

Q An unsigned quad (64-bit integer) value

s A signed short value, always 16 bits

S An unsigned short value, always 16 bits

u A uuencoded string

U A Unicode character number

v A 16-bit short in “VAX” (little-endian) order

V A 32-bit long in “VAX” (little-endian) order

w A BER compressed integer

x A null byte (skip forward a byte)

X Back up a byte

Z A null-ter minated (and null-padded) string of bytes

@ Null-fill to absolute position

You may freely place whitespace and comments in your TEMPLATEs. Comments
start with the customary # symbol and extend up through the first newline (if any)
in the TEMPLATE.

Each letter may be followed by a number indicating the count, interpr eted as a
repeat count or length of some sort, depending on the format. With all formats
except a, A, b, B, h, H, P, and Z, count is a repeat count, so pack gobbles up that
many values from the LIST. A * for the count means however many items are left.

The a, A, and Z for mats gobble just one value, but pack it as a byte string of length
count, padding with nulls or spaces as necessary. When unpacking, A strips trail-
ing spaces and nulls, Z strips everything after the first null, and a retur ns the literal
data unmolested. When packing, a and Z ar e equivalent.

Similarly, the b and B for mats pack a string count bits long. Each byte of the input
field generates 1 bit of the result based on the least-significant bit of each input
byte (that is, on ord($byte) % 2). Conveniently, that means bytes 0 and 1 generate
bits 0 and 1. Starting from the beginning of the input string, each 8-tuple of bytes
is converted to a single byte of output. If the length of the input string is not divis-
ible by 8, the remainder is packed as if padded by 0’s. Similarly, during unpacking
any extra bits are ignor ed. If the input string is longer than needed, extra bytes are
ignor ed. A * for the count means to use all bytes from the input field. On unpack-

ing, the bits are converted to a string of 0s and 1s.

Functions

Perl Functions in Alphabetical Order 759

760 Chapter 29: Functions

The h and H for mats pack a string of count nybbles (4-bit groups often repr esented
as hexadecimal digits).

The p for mat packs a pointer to a null-terminated string. You are responsible for
ensuring the string is not a temporary value (which can potentially get deallocated
befor e you get around to using the packed result). The P for mat packs a pointer to
a structur e of the size indicated by count. A null pointer is created if the corre-
sponding value for p or P is undef.

The / character allows packing and unpacking of strings where the packed struc-
tur e contains a byte count followed by the string itself. You write length-

item/string-item. The length-item can be any pack template letter, and describes
how the length value is packed. The ones likely to be of most use are integer-
packing ones like n (for Java strings), w (for ASN.1 or SNMP) and N (for Sun XDR).
The string-item must, at present, be A*, a*, or Z*. For unpack, the length of the
string is obtained from the length-item, but if you put in the *, it will be ignored.

unpack ’C/a’, "\04Gurusamy"; # gives ’Guru’
unpack ’a3/A* A*’, ’007 Bond J ’; # gives (’ Bond’,’J’)
pack ’n/a* w/a*’,’hello,’,’world’; # gives "hello,world"

The length-item is not retur ned explicitly from unpack. Adding a count to the
length-item letter is unlikely to do anything useful, unless that letter is A, a, or Z.
Packing with a length-item of a or Z may introduce null (\0) characters, which
Perl does not regard as legal in numeric strings.

The integer formats s, S, l, and L may be immediately followed by a ! to signify
native shorts or longs instead of exactly 16 or 32 bits respectively. Today, this is an
issue mainly in 64-bit platforms, where the native shorts and longs as seen by the
local C compiler can be differ ent than these values. (i! and I! also work but only
because of completeness; they are identical to i and I.)

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the plat-
for m wher e Perl was built are also available via the Config module:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";

Just because Configur e knows the size of a long long, doesn’t necessarily imply
that you have q or Q for mats available to you. (Some systems do, but you’re proba-
bly not running one. Yet.)

Integer formats of greater than one byte in length (s, S, i, I, l, and L) are inher-
ently nonportable between processors because they obey the native byte order
and endianness. If you want portable packed integers, use the formats n, N, v, and
V; their byte endianness and size are known.

Floating-point numbers are in the native machine format only. Because of the vari-
ety of floating formats and lack of a standard “network” repr esentation, no facility
for interchange has been made. This means that packed floating-point data written
on one machine may not be readable on another. This is a problem even when
both machines use IEEE floating-point arithmetic, because the endian-ness of the
memory repr esentation is not part of the IEEE spec.

Perl uses doubles internally for all floating-point calculation, so converting from
double into float, then back again to double will lose precision. This means that
unpack("f", pack("f", $foo)) will not generally equal $foo.

You are responsible for any alignment or padding considerations expected by
other programs, particularly those programs that were created by a C compiler
with its own idiosyncratic notions of how to lay out a C struct on the particular
architectur e in question. You’ll have to add enough x’s while packing to make up
for this. For example, a C declaration of:

struct foo {
unsigned char c;
float f;

};

might be written out in a “C x f” for mat, a “C x3 f” for mat, or even a “f C” for-
mat — just to name a few. The pack and unpack functions handle their input and
output as flat sequences of bytes because there is no way for them to know where
the bytes are going to or coming from.

Let’s look at some examples. This first pair packs numeric values into bytes:

$out = pack "CCCC", 65, 66, 67, 68; # $out eq "ABCD"
$out = pack "C4", 65, 66, 67, 68; # same thing

This one does the same thing with Unicode circled letters:

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);

This does a similar thing, with a couple of nulls thrown in:

$out = pack "CCxxCC", 65, 66, 67, 68; # $out eq "AB\0\0CD"

Packing your shorts doesn’t imply that you’re portable:

$out = pack "s2", 1, 2; # "\1\0\2\0" on little-endian
"\0\1\0\2" on big-endian

Functions

Perl Functions in Alphabetical Order 761

762 Chapter 29: Functions

On binary and hex packs, the count refers to the number of bits or nybbles, not
the number of bytes produced:

$out = pack "B32", "01010000011001010111001001101100";
$out = pack "H8", "5065726c"; # both produce "Perl"

The length on an a field applies only to one string:

$out = pack "a4", "abcd", "x", "y", "z"; # "abcd"

To get around that limitation, use multiple specifiers:

$out = pack "aaaa", "abcd", "x", "y", "z"; # "axyz"
$out = pack "a" x 4, "abcd", "x", "y", "z"; # "axyz"

The a for mat does null filling:

$out = pack "a14", "abcdefg"; # "abcdefg\0\0\0\0\0\0\0"

This template packs a C struct tm record (at least on some systems):

$out = pack "i9pl", gmtime(), $tz, $toff;

Generally, the same template may also be used in the unpack function, although
some formats act differ ently, notably a, A, and Z.

If you want to join fixed-width text fields together, use pack with a TEMPLATE of
several A or a for mats:

$string = pack("A10" x 10, @data);

If you want to join variable-width text fields with a separator, use the join func-
tion instead:

$string = join(" and ", @data);
$string = join("", @data); # null separator

Although all of our examples used literal strings as templates, there is no reason
you couldn’t pull in your templates from a disk file. You could build an entire rela-
tional database system around this function. (What that would prove about you we
won’t get into.)

package
package NAMESPACE
package

This is not really a function, but a declaration that says that the rest of the inner-
most enclosing scope belongs to the indicated symbol table or namespace. (The
scope of a package declaration is thus the same as the scope of a my or our decla-
ration.) Within its scope, the declaration causes the compiler to resolve all unquali-
fied global identifiers by looking them up in the declared package’s symbol table.

A package declaration affects only global variables—including those on which
you’ve used local—not lexical variables created with my. It only affects unquali-
fied global variables; global variables that are qualified with a package name of
their own ignore the current declared package. Global variables declared with our

ar e unqualified and therefor e respect the current package, but only at the point of
declaration, after which they behave like my variables. That is, for the rest of their
lexical scope, our variables are “nailed” to the package in use at the point of dec-
laration, even if a subsequent package declaration intervenes.

Typically, you would put a package declaration as the first thing in a file that is to
be included by the require or use operator, but you can put one anywhere a state-
ment would be legal. When creating a traditional or objected-oriented module file,
it is customary to name the package the same name as the file to avoid confusion.
(It’s also customary to name such packages beginning with a capital letter because
lowercase modules are by convention interpreted as pragmatic modules.)

You can switch into a given package in more than one place; it merely influences
which symbol table is used by the compiler for the rest of that block. (If the com-
piler sees another package declaration at the same level, the new declaration over-
rides the previous one.) Your main program is assumed to start with an invisible
package main declaration.

You can refer to variables, subroutines, handles, and formats in other packages by
qualifying the identifier with the package name and a double colon: $Pack-

age::Variable. If the package name is null, the main package is assumed. That is,
$::sail is equivalent to $main::sail, as well as to $main’sail, which is still occa-
sionally seen in older code.

Her e’s an example:

package main; $sail = "hale and hearty";
package Mizzen; $sail = "tattered";
package Whatever;
print "My main sail is $main::sail.\n";
print "My mizzen sail is $Mizzen::sail.\n";

This prints:

My main sail is hale and hearty.
My mizzen sail is tattered.

The symbol table for a package is stored in a hash with a name ending in a dou-
ble colon. The main package’s symbol table is named %main:: for example. So the
existing package symbol *main::sail can also be accessed as $main::{"sail"}.

If NAMESPACE is omitted, then there is no curr ent package, and all identifiers must
be fully qualified or declared as lexicals. This is stricter than use strict since it
also extends to function names.

Functions

Perl Functions in Alphabetical Order 763

764 Chapter 29: Functions

See Chapter 10, Packages, for more infor mation about packages. See my earlier in
this chapter for other scoping issues.

pipe $! X
ARG

X
U

pipe READHANDLE, WRITEHANDLE

Like the corresponding syscall, this function opens a pair of connected pipes—see
pipe (2). This call is usually used right before a fork, after which the pipe’s reader
should close WRITEHANDLE, and the writer close READHANDLE. (Otherwise the pipe
won’t indicate EOF to the reader when the writer closes it.) If you set up a loop of
piped processes, deadlock can occur unless you are remarkably careful. In addi-
tion, note that Perl’s pipes use standard I/O buffering, so you may need to set $|
($OUTPUT_AUTOFLUSH) on your WRITEHANDLE to flush after each output operation,
depending on the application—see select (output filehandle).

(As with open, if either filehandle is undefined, it will be autovivfied.)

Her e’s a small example:

pipe(README, WRITEME);
unless ($pid = fork) { # child

defined $pid or die "can’t fork: $!";
close(README);
for $i (1..5) { print WRITEME "line $i\n" }
exit;

}
$SIG{CHLD} = sub { waitpid($pid, 0) };
close(WRITEME);
@strings = <README>;
close(README);
print "Got:\n", @strings;

Notice how the writer closes the read end and the reader closes the write end.
You can’t use one pipe for two-way communication. Either use two differ ent pipes
or the socketpair syscall for that. See the section “Pipes” in Chapter 16.

pop
pop ARRAY
pop

This function treats an array like a stack—it pops (removes) and retur ns the last
value of the array, shortening the array by one element. If ARRAY is omitted, the
function pops @_ within the lexical scope of subroutines and formats; it pops @ARGV
at file scopes (typically the main program) or within the lexical scopes established
by the eval STRING, BEGIN {}, CHECK {}, INIT {}, and END {} constructs. It has the
same effect as:

$tmp = $ARRAY[$#ARRAY--];

or:

$tmp = splice @ARRAY, -1;

If there are no elements in the array, pop retur ns undef. (But don’t depend on that
to tell you when the array is empty if your array contains undef values!) See also
push and shift. If you want to pop more than one element, use splice.

The pop requir es its first argument to be an array, not a list. If you just want the
last element of a list, use this:

(LIST)[-1]

pos $_

pos SCALAR
pos

This function retur ns the location in SCALAR wher e the last m//g search over SCALAR
left off. It retur ns the offset of the character after the last one matched. (That is, it’s
equivalent to length($‘) + length($&).) This is the offset where the next m//g
search on that string will start. Remember that the offset of the beginning of the
string is 0. For example:

$graffito = "fee fie foe foo";
while ($graffito =˜ m/e/g) {

print pos $graffito, "\n";
}

prints 2, 3, 7, and 11, the offsets of each of the characters following an “e”. The pos

function may be assigned a value to tell the next m//g wher e to start:

$graffito = "fee fie foe foo";
pos $graffito = 4; # Skip the fee, start at fie
while ($graffito =˜ m/e/g) {

print pos $graffito, "\n";
}

This prints only 7 and 11. The regular expression assertion \G matches only at the
location currently specified by pos for the string being searched. See the section
“Positions” in Chapter 5.

pr int $_ $! X
ARG

print FILEHANDLE LIST
print LIST
print

This function prints a string or a comma-separated list of strings. If set, the con-
tents of the $\ ($OUTPUT_RECORD_SEPARATOR) variable will be implicitly printed at the

Functions

Perl Functions in Alphabetical Order 765

766 Chapter 29: Functions

end of the list. The function retur ns true if successful, false otherwise. FILEHANDLE
may be a scalar variable name (unsubscripted), in which case the variable contains
either the name of the actual filehandle or a refer ence to a filehandle object of
some sort. As with any other indirect object, FILEHANDLE may also be a block that
retur ns such a value:

print { $OK ? "STDOUT" : "STDERR" } "stuff\n";
print { $iohandle[$i] } "stuff\n";

If FILEHANDLE is a variable and the next token is a term, it may be misinterpreted
as an operator unless you interpose a + or put parentheses around the arguments.
For example:

print $a - 2; # prints $a - 2 to default filehandle (usually STDOUT)
print $a (- 2); # prints -2 to filehandle specified in $a
print $a -2; # also prints -2 (weird parsing rules :-)

If FILEHANDLE is omitted, the function prints to the currently selected output file-
handle, initially STDOUT. To set the default output filehandle to something other
than STDOUT, use the select FILEHANDLE operation.* If LIST is also omitted, the
function prints $_. Because print takes a LIST, anything in the LIST is evaluated in
list context. Thus, when you say:

print OUT <STDIN>;

it is not going to print the next line from standard input, but all the rest of the
lines from standard input up to end-of-file, since that’s what <STDIN> retur ns in list
context. If you want the other thing, say:

print OUT scalar <STDIN>;

Also, remembering the if-it-looks-like-a-function-it-is-a-function rule, be careful not
to follow the print keyword with a left parenthesis unless you want the corre-
sponding right parenthesis to terminate the arguments to the print—interpose a +

or put parens around all the arguments:

print (1+2)*3, "\n"; # WRONG
print +(1+2)*3, "\n"; # ok
print ((1+2)*3, "\n"); # ok

pr intf $_ $! X
ARG

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

This function prints a formatted string to FILEHANDLE or, if omitted, the currently
selected output filehandle, initially STDOUT. The first item in the LIST must be a

* Thus, STDOUT isn’t really the default filehandle for print. It’s merely the default default filehandle.

string that says how to format the rest of the items. This is similar to the C library’s
printf (3) and fprintf (3) functions. The function is equivalent to:

print FILEHANDLE sprintf FORMAT, LIST

except that $\ ($OUTPUT_RECORD_SEPARATOR) is not appended. If use locale is in
ef fect, the character used for the decimal point in formatted floating-point numbers
is affected by the LC_NUMERIC locale.

An exception is raised only if an invalid refer ence type is used as the FILEHANDLE

argument. Unrecognized formats are passed through intact. Both situations trigger
war nings if they’re enabled.

See the print and sprintf functions elsewhere in this chapter. The description of
sprintf includes the list of format specifications. We’d duplicate them here, but
this book is already an ecological disaster.

If you omit both the FORMAT and the LIST, $_ is used—but in that case, you should
have been using print. Don’t fall into the trap of using a printf when a simple
print would do. The print function is more efficient and less error prone.

prototype X
ARG

prototype FUNCTION

Retur ns the prototype of a function as a string (or undef if the function has no pro-
totype). FUNCTION is a refer ence to, or the name of, the function whose prototype
you want to retrieve.

If FUNCTION is a string starting with CORE::, the rest is taken as a name for Perl
built-in, and an exception is raised if there is no such built-in. If the built-in is not
overridable (such as qw//) or its arguments cannot be expressed by a prototype
(such as system), the function retur ns undef because the built-in does not really
behave like a Perl function. Otherwise, the string describing the equivalent proto-
type is retur ned.

push
push ARRAY, LIST

This function treats ARRAY as a stack and pushes the values of LIST onto the end of
ARRAY. The length of ARRAY incr eases by the length of LIST. The function retur ns
this new length. The push function has the same effect as:

foreach $value (listfunc()) {
$array[++$#array] = $value;

}

Functions

Perl Functions in Alphabetical Order 767

768 Chapter 29: Functions

or:

splice @array, @array, 0, listfunc();

but it is more efficient (for both you and your computer). You can use push in
combination with shift to make a fairly time-efficient shift register or queue:

for (;;) {
push @array, shift @array;
...

}

See also pop and unshift.

q/STRING/
q/STRING/
qq/STRING/
qr/STRING/
qw/STRING/
qx/STRING/

Generalized quotes. See the “Pick your own quotes” section Chapter 2. For status
annotations on qx//, see readpipe. For status annotations on qr//, see m//. See
also “Staying in Control” in Chapter 5.

quotemeta $_

quotemeta EXPR
quotemeta

This function retur ns the value of EXPR with all nonalphanumeric characters back-
slashed. (That is, all characters not matching /[A-Za-z_0-9]/ will be preceded by a
backslash in the retur ned string, regardless of locale settings.) This is the internal
function implementing the \Q escape in interpolative contexts (including double-
quoted strings, backticks, and patterns).

rand
rand EXPR
rand

This function retur ns a pseudorandom floating-point number greater than or equal
to 0 and less than the value of EXPR. (EXPR should be positive.) If EXPR is omitted,
the function retur ns a floating-point number between 0 and 1 (including 0, but
excluding 1). rand automatically calls srand unless srand has already been called.
See also srand.

To get an integral value, such as for a die roll, combine this with int, as in:

$roll = int(rand 6) + 1; # $roll now a number between 1 and 6

Because Perl uses your own C library’s pseudorandom number function, like
random (3) or drand48 (3), the quality of the distribution is not guaranteed. If you
need stronger randomness, such as for cryptographic purposes, you might consult
instead the documentation on random(4) (if your system has a /dev/random or
/dev/urandom device), the CPAN module Math::TrulyRandom, or a good textbook
on computational generation of pseudorandom numbers, such as the second vol-
ume of Knuth.*

read $! T X
ARG

X
RO

read FILEHANDLE, SCALAR, LENGTH, OFFSET
read FILEHANDLE, SCALAR, LENGTH

This function attempts to read LENGTH bytes of data into variable SCALAR fr om the
specified FILEHANDLE. The function retur ns the number of bytes read or 0 at end-
of-file. It retur ns undef on error. SCALAR will grow or shrink to the length actually
read. The OFFSET, if specified, determines where in the variable to start putting
bytes, so that you can read into the middle of a string.

To copy data from filehandle FROM into filehandle TO, you could say:

while (read(FROM, $buf, 16384)) {
print TO $buf;

}

The opposite of a read is simply a print, which already knows the length of the
string you want to write and can write a string of any length. Don’t make the mis-
take of using write, which is solely used with formats.

Perl’s read function is implemented in terms of standard I/O’s fr ead (3) function,
so the actual read (2) syscall may read more than LENGTH bytes to fill the input
buf fer, and fr ead (3) may do more than one read (2) syscall in order to fill the
buf fer. To gain greater control, specify the real syscall using sysread. Calls to read

and sysread should not be intermixed unless you are into heavy wizardry (or
pain). Whichever one you use, be aware that when reading from a file containing
Unicode or any other multibyte encoding, the buffer boundary may fall in the mid-
dle of a character.

* Knuth, D.E. The Art of Computer Programming, Seminumerical Algorithms, vol. 2, 3d ed. (Reading,
Mass.: Addison-Wesley, 1997). ISBN 0-201-89684-2.

Functions

Perl Functions in Alphabetical Order 769

770 Chapter 29: Functions

readdir $! T X
ARG

X
U

readdir DIRHANDLE

This function reads directory entries (which are simple filenames) from a directory
handle opened by opendir. In scalar context, this function retur ns the next direc-
tory entry, if any; otherwise, it retur ns undef. In list context, it retur ns all the rest of
the entries in the directory, which will be a null list if there are no entries. For
example:

opendir(THISDIR, ".") or die "serious dainbramage: $!";
@allfiles = readdir THISDIR;
closedir THISDIR;
print "@allfiles\n";

That prints all the files in the current directory on one line. If you want to avoid
the “.” and “..” entries, incant one of these (whichever you think is least unread-
able):

@allfiles = grep { $_ ne ’.’ and $_ ne ’..’ } readdir THISDIR;
@allfiles = grep { not /ˆ[.][.]?\z/ } readdir THISDIR;
@allfiles = grep { not /ˆ\.{1,2}\z/ } readdir THISDIR;
@allfiles = grep !/ˆ\.\.?\z/, readdir THISDIR;

And to avoid all .* files (like the ls pr ogram):

@allfiles = grep !/ˆ\./, readdir THISDIR;

To get just text files, say this:

@textfiles = grep -T, readdir THISDIR;

But watch out on that last one because the result of readdir needs to have the
dir ectory part glued back on if it’s not the current directory — like this:

opendir(THATDIR, $path) or die "can’t opendir $path: $!";
@dotfiles = grep { /ˆ\./ && -f } map { "$path/$_" } readdir(THATDIR);
closedir THATDIR;

readline $! T X
ARG

readline FILEHANDLE

This is the internal function implementing the <FILEHANDLE> operator, but you can
use it directly. The function reads the next record from FILEHANDLE, which may be
a filehandle name or an indirect filehandle expression that retur ns either the name
of the actual filehandle or a refer ence to anything resembling a filehandle object,
such as a typeglob. (Versions of Perl prior to 5.6 accept only a typeglob.) In scalar
context, each call reads and retur ns the next record until end-of-file is reached,

wher eupon the subsequent call retur ns undef. In list context, readline reads
records until end-of-file is reached and then retur ns a list of records. By “record”,
we normally mean a line of text, but changing the value of $/

($INPUT_RECORD_SEPARATOR) from its default value causes this operator to “chunk”
the text differ ently. Likewise, some input disciplines such as :para (paragraph
mode) will retur n records in chunks other than lines. Setting the :slurp discipline
(or undefining $/) makes the chunk size entire files.

When slurping files in scalar context, if you happen to slurp an empty file, read-
line retur ns "" the first time, and undef each subsequent time. When slurping
fr om magical ARGV filehandle, each file retur ns one chunk (again, null files retur n
as ""), followed by a single undef when the files are exhausted.

The <FILEHANDLE> operator is discussed in more detail in the section “Input Opera-
tors” in Chapter 2.

$line = <STDIN>;
$line = readline(STDIN); # same thing
$line = readline(*STDIN); # same thing
$line = readline(*STDIN); # same thing

open my $fh, "<&=STDIN" or die;
bless $fh => ’AnyOldClass’;
$line = readline($fh); # same thing

readlink $_ $! T X
U

readlink EXPR
readlink

This function retur ns the filename pointed to by a symbolic link. EXPR should eval-
uate to a filename, the last component of which is a symbolic link. If it is not a
symbolic link, or if symbolic links are not implemented on the filesystem, or if
some system error occurs, undef is retur ned, and you should check the error code
in $!.

Be aware that the retur ned symlink may be relative to the location you specified.
For instance, you may say:

readlink "/usr/local/src/express/yourself.h"

and readlink might retur n:

../express.1.23/includes/yourself.h

which is not directly usable as a filename unless your current directory happens to
be /usr/local/src/express.

Functions

Perl Functions in Alphabetical Order 771

772 Chapter 29: Functions

readpipe $! $? T X
T

X
U

readpipe scalar EXPR
readpipe LIST (pr oposed)

This is the internal function implementing the qx// quote construct (also known as
the backticks operator). It is occasionally handy when you need to specify your
EXPR in a way that wouldn’t be handy using the quoted form. Be aware that we
may change this interface in the future to support a LIST argument in order to
make it more like the exec function, so don’t assume that it will continue to pro-
vide scalar context for EXPR. Supply the scalar yourself, or try the LIST for m. Who
knows, it might work by the time you read this.

recv $! T X
ARG

X
RO

X
U

recv SOCKET, SCALAR, LEN, FLAGS

This function receives a message on a socket. It attempts to receive LENGTH bytes
of data into variable SCALAR fr om the specified SOCKET filehandle. The function
retur ns the address of the sender, or undef if there’s an error. SCALAR will grow or
shrink to the length actually read. The function takes the same flags as recv (2).
See the section “Sockets” in Chapter 16.

redo $@

redo LABEL
redo

The redo operator restarts a loop block without reevaluating the conditional. The
continue block, if any, is not executed. If the LABEL is omitted, the operator refers
to the innermost enclosing loop. This operator is normally used by programs that
wish to deceive themselves about what was just input:

A loop that joins lines continued with a backslash.
while (<STDIN>) {

if (s/\\\n$// && defined($nextline = <STDIN>)) {
$_ .= $nextline;
redo;

}
print; # or whatever...

}

redo cannot be used to exit a block that retur ns a value such as eval {}, sub {},
or do {}, and should not be used to exit a grep or map operation. With warnings
enabled, Perl will warn you if you redo a loop not in your current lexical scope.

A block by itself is semantically identical to a loop that executes once. Thus redo
inside such a block will effectively turn it into a looping construct. See the section
“Loop Control” in Chapter 4.

ref $_

ref EXPR
ref

The ref operator retur ns a true value if EXPR is a refer ence, false otherwise. The
value retur ned depends on the type of thing the refer ence refers to. Built-in types
include:

SCALAR
ARRAY
HASH
CODE
GLOB
REF
LVALUE
IO::Handle

If the refer enced object has been blessed into a package, then that package name
is retur ned instead. You can think of ref as a “typeof” operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
elsif (ref($r) eq "Hump") { # Naughty- -see below.

print "r is a reference to a Hump object.\n";
}
elsif (not ref $r) {

print "r is not a reference at all.\n";
}

It’s considered bad OO style to test your object’s class for equality to any particular
class name, since a derived class will have a differ ent name, but should be
allowed access to the base class’s methods. It’s better to use the UNIVERSAL method
isa as follows:

if ($r->isa("Hump") }
print "r is a reference to a Hump object, or subclass.\n";

}

It’s usually best not to test at all, since the OO mechanism won’t send the object to
your method unless it thinks it’s appropriate in the first place. See Chapter 8 and
Chapter 12 for more details. See also the reftype function under the use

attributes pragma in Chapter 31.

rename $! X
T

rename OLDNAME, NEWNAME

This function changes the name of a file. It retur ns true for success, false other-
wise. It will not (usually) work across filesystem boundaries, although on a Unix
system the mv command can sometimes be used to compensate for this. If a file

Functions

Perl Functions in Alphabetical Order 773

774 Chapter 29: Functions

named NEWNAME alr eady exists, it will be destroyed. Non-Unix systems might have
additional restrictions.

See the standard File::Copy module for cross-filesystem renames.

require $_ $! $@ X
T

require VERSION
require EXPR
require

This function asserts a dependency of some kind on its argument.

If the argument is a string, require loads and executes the Perl code found in the
separate file whose name is given by the string. This is similar to perfor ming a do

on a file, except that require checks to see whether the library file has been
loaded already and raises an exception if any difficulties are encounter ed. (It can
thus be used to express file dependencies without worrying about duplicate com-
pilation.) Like its cousins do and use, require knows how to search the include
path stored in the @INC array and to update %INC upon success. See Chapter 28.

The file must retur n true as the last value to indicate successful execution of any
initialization code, so it’s customary to end such a file with 1; unless you’re sur e
it’ll retur n true otherwise.

If require’s argument is a version number of the form 5.6.2, require demands that
the currently executing version of Perl be at least that version. (Perl also accepts a
floating point number such as 5.005_03 for compatibility with older versions of
Perl, but that form is now discouraged because folks from other cultures don’t
understand it.) Thus, a script that requir es Perl version 5.6 can put as its first line:

require 5.6.0; # or require v5.6.0

and earlier versions of Perl will abort. Like all requires, however, this is done at
run-time. You might prefer to say use 5.6.0 for a compile-time check. See also
$PERL_VERSION in Chapter 28.

If require’s argument is a bare package name (see package), require assumes an
automatic .pm suf fix, making it easy to load standard modules. This behavior is
like use, except that it happens at run time rather than compile time, and the
import method is not called. For example, to pull in Socket.pm without introducing
any symbols into the current package, say this:

require Socket; # instead of "use Socket;"

However, you can get the same effect with the following, which has the advantage
of giving a compile-time warning if Socket.pm can’t be located:

use Socket ();

Using require on a bare name also replaces any :: in the package name with
your system’s directory separator, traditionally /. In other words, if you try this:

require Foo::Bar; # a splendid bare name

The requir e function looks for the Foo/Bar.pm file in the directories specified in
the @INC array. But if you try this:

$class = ’Foo::Bar’;
require $class; # $class is not a bare name

or this:

require "Foo::Bar"; # quoted literal not a bare name

the requir e function will look for the Foo::Bar file in the @INC array and will com-
plain about not finding Foo::Bar ther e. If so, you can do this:

eval "require $class";

See also do FILE, the use command, the use lib pragma, and the standard FindBin

module.

reset
reset EXPR
reset

This function is generally used (or abused) at the top of a loop or in a continue

block at the end of a loop, to clear global variables or reset ?? searches so that
they work again. The expression is interpreted as a list of single characters
(hyphens are allowed for ranges). All scalar variables, arrays, and hashes begin-
ning with one of those letters are reset to their pristine state. If the expression is
omitted, one-match searches (?PATTERN?) are reset to match again. The function
resets variables or searches for the current package only. It always retur ns true.

To reset all “X” variables, say this:

reset ’X’;

To reset all lowercase variables, say this:

reset ’a-z’;

Lastly, to just reset ?? searches, say:

reset;

Resetting “A-Z” in package main is not recommended since you’ll wipe out your
global ARGV, INC, ENV, and SIG arrays and hashes.

Functions

Perl Functions in Alphabetical Order 775

776 Chapter 29: Functions

Lexical variables (created by my) are not affected. Use of reset is vaguely depre-
cated because it easily clears out entire namespaces and because the ?? operator is
itself vaguely deprecated.

See also the delete_package() function from the standard Symbol module, and the
whole issue of Safe compartments documented in the section “Safe Compartments”
in Chapter 23.

retur n $@

return EXPR
return

This operator causes the current subroutine (or eval or do FILE) to retur n immedi-
ately with the specified value. Attempting to use return outside these three places
raises an exception. Note also that an eval cannot do a return on behalf of the
subr outine that called the eval.

EXPR may be evaluated in list, scalar, or void context, depending on how the
retur n value will be used, which may vary from one execution to the next. That is,
the supplied expression will be evaluated in the context of the subroutine invoca-
tion. If the subroutine was called in a scalar context, EXPR is also evaluated in
scalar context. If the subroutine was invoked in list context, then EXPR is also eval-
uated in list context and can retur n a list value. A return with no argument retur ns
the scalar value undef in scalar context, an empty list () in list context, and (natu-
rally) nothing at all in void context. The context of the subroutine call can be
deter mined fr om within the subroutine by using the (misnamed) wantarray

function.

re ver se
reverse LIST

In list context, this function retur ns a list value consisting of the elements of LIST
in the opposite order. The function can be used to create descending sequences:

for (reverse 1 .. 10) { ... }

Because of the way hashes flatten into lists when passed as a LIST, reverse can
also be used to invert a hash, presuming the values are unique:

%barfoo = reverse %foobar;

In scalar context, the function concatenates all the elements of LIST and then
retur ns the reverse of that resulting string, character by character.

A small hint: reversing a list sorted earlier by a user-defined function can often be
achieved more easily by sorting the list in the opposite direction in the first place.

re winddir $! X
ARG

X
U

rewinddir DIRHANDLE

This function sets the current position to the beginning of the directory for the
readdir routine on DIRHANDLE. The function may not be available on all machines
that support readdir—rewinddir dies if unimplemented. It retur ns true on suc-
cess, false otherwise.

rindex
rindex STR, SUBSTR, POSITION
rindex STR, SUBSTR

This function works just like index except that it retur ns the position of the last
occurr ence of SUBSTR in STR (a reverse index). The function retur ns $[-1 if not
SUBSTR is found. Since $[is virtually always 0 nowadays, the function virtually
always retur ns -1. POSITION, if specified, is the rightmost position that may be
retur ned. To work your way through a string backward, say:

$pos = length $string;
while (($pos = rindex $string, $lookfor, $pos) >= 0) {

print "Found at $pos\n";
$pos- -;

}

rmdir $_ $! X
T

rmdir FILENAME
rmdir

This function deletes the directory specified by FILENAME if the directory is empty.
If the function succeeds, it retur ns true; otherwise, it retur ns false. See also the
File::Path module if you want to remove the contents of the directory first and
don’t care to shell out to call rm -r for some reason. (Such as not having a shell,
or an rm command, because you haven’t got PPT yet.)

s/// T X
RO

X
T

s///

The substitution operator. See the section “Pattern-Matching Operators” in
Chapter 5.

Functions

Perl Functions in Alphabetical Order 777

778 Chapter 29: Functions

scalar
scalar EXPR

This pseudofunction may be used within a LIST to force EXPR to be evaluated in
scalar context when evaluation in the list context would produce a differ ent result.
For example:

my ($nextvar) = scalar <STDIN>;

pr events <STDIN> fr om reading all the lines from standard input before doing the
assignment, since assignment to a list (even a my list) provides a list context. (With-
out the scalar in this example, the first line from <STDIN> would still be assigned
to $nextvar, but the subsequent lines would be read and thrown away, since the
list we’re assigning to is only able to receive a single scalar value.)

Of course, a simpler, less-clutter ed way would be to just leave the parentheses off,
ther eby changing the list context to a scalar one:

my $nextvar = <STDIN>;

Since a print function is a LIST operator, you have to say:

print "Length is ", scalar(@ARRAY), "\n";

if you want the length of @ARRAY to be printed out.

Ther e’s no “list” function corresponding to scalar since, in practice, one never
needs to force evaluation in a list context. That’s because any operation that wants
LIST alr eady pr ovides a list context to its list arguments for free.

Because scalar is a unary operator, if you accidentally use a parenthesized list for
the EXPR, this behaves as a scalar comma expression, evaluating all but the last ele-
ment in void context and retur ning the final element evaluated in scalar context.
This is seldom what you want. The following single statement:

print uc(scalar(&foo,$bar)),$baz;

is the (im)moral equivalent of these two:

&foo;
print(uc($bar),$baz);

See Chapter 2 for more details on the comma operator. See “Prototypes” in
Chapter 6 for more on unary operators.

seek $! X
ARG

seek FILEHANDLE, OFFSET, WHENCE

This function positions the file pointer for FILEHANDLE, just like the fseek (3) call of
standard I/O. The first position in a file is at offset 0, not offset 1. Also, offsets
refer to byte positions, not line numbers. In general, since line lengths vary, it’s
not possible to access a particular line number without examining the whole file
up to that point, unless all your lines are known to be of a particular length, or
you’ve built an index that translates line numbers into byte offsets. (The same
restrictions apply to character positions in files with variable-length character
encodings: the operating system doesn’t know what characters are, only bytes.)

FILEHANDLE can be an expression whose value gives either the name of the actual
filehandle or a refer ence to anything resembling a filehandle object. The function
retur ns true upon success, false otherwise. For handiness, the function can calcu-
late offsets from various file positions for you. The value of WHENCE specifies which
file position your OFFSET uses for its starting point: 0, the beginning of the file; 1,
the current position in the file; or 2, the end of the file. The OFFSET can be nega-
tive for a WHENCE of 1 or 2. If you’d like to use symbolic values for WHENCE, you may
use SEEK_SET, SEEK_CUR, and SEEK_END fr om either the IO::Seekable or the POSIX

module, or as of the 5.6 release of Perl, the Fcntl module.

If you want to position the file for sysread or syswrite, don’t use seek; standard
I/O buffering makes its effect on the file’s system position unpredictable and non-
portable. Use sysseek instead.

Due to the rules and rigors of ANSI C, on some systems you have to do a seek
whenever you switch between reading and writing. Amongst other things, this
may have the effect of calling the standard I/O library’s clear err (3) function. A
WHENCE of 1 (SEEK_CUR) with an OFFSET 0 is useful for not moving the file position:

seek(TEST,0,1);

One interesting use for this function is to allow you to follow growing files, like
this:

for (;;) {
while (<LOG>) {

grok($_); # Process current line.
}
sleep 15;
seek LOG,0,1; # Reset end-of-file error.

}

Functions

Perl Functions in Alphabetical Order 779

780 Chapter 29: Functions

The final seek clears the end-of-file error without moving the pointer. Depending
on how standard your C library’s standard I/O implementation happens to be, you
may need something more like this:

for (;;) {
for ($curpos = tell FILE; <FILE>; $curpos = tell FILE) {

grok($_); # Process current line.
}
sleep $for_a_while;
seek FILE, $curpos, 0; # Reset end-of-file error.

}

Similar strategies can be used to remember the seek addr esses of each line in an
array.

seekdir $! X
ARG

X
U

seekdir DIRHANDLE, POS

This function sets the current position for the next call to readdir on DIRHANDLE.
POS must be a value retur ned by telldir. This function has the same caveats about
possible directory compaction as the corresponding system library routine. The
function may not be implemented everywhere that readdir is. It’s certainly not
implemented where readdir isn’t.

select (output filehandle) X
ARG

select FILEHANDLE
select

For historical reasons, there are two select operators that are totally unrelated to
each other. See the next section for the other one. This version of the select oper-
ator retur ns the currently selected output filehandle and, if FILEHANDLE is supplied,
sets the current default filehandle for output. This has two effects: first, a write or
a print without a filehandle will default to this FILEHANDLE. Second, special vari-
ables related to output will refer to this output filehandle. For example, if you
have to set the same top-of-form for mat for more than one output filehandle, you
might do the following:

select REPORT1;
$ˆ = ’MyTop’;
select REPORT2;
$ˆ = ’MyTop’;

But note that this leaves REPORT2 as the currently selected filehandle. This could be
construed as antisocial, since it could really foul up some other routine’s print or
write statements. Properly written library routines leave the currently selected file-
handle the same on exit as it was upon entry. To support this, FILEHANDLE may be

an expression whose value gives the name of the actual filehandle. Thus, you can
save and restor e the currently selected filehandle like this:

my $oldfh = select STDERR; $| = 1; select $oldfh;

or idiomatically but somewhat obscurely like this:

select((select(STDERR), $| = 1)[0])

This example works by building a list consisting of the retur ned value from
select(STDERR) (which selects STDERR as a side effect) and $| = 1 (which is always
1), but sets autoflushing on the now-selected STDERR as a side effect. The first ele-
ment of that list (the previously selected filehandle) is now used as an argument to
the outer select. Bizarr e, right? That’s what you get for knowing just enough Lisp
to be dangerous.

You can also use the standard SelectSaver module to automatically restor e the
pr evious select upon scope exit.

However, now that we’ve explained all that, we should point out that you rarely
need to use this form of select nowadays, because most of the special variables
you would want to set have object-oriented wrapper methods to do it for you. So
instead of setting $| dir ectly, you might say:

use IO::Handle; # Unfortunately, this is *not* a small module.
STDOUT->autoflush(1);

And the earlier format example might be coded as:

use IO::Handle;
REPORT1->format_top_name("MyTop");
REPORT2->format_top_name("MyTop");

select (ready file descriptor s) $! X
U

select RBITS, WBITS, EBITS, TIMEOUT

The four-argument select operator is totally unrelated to the previously described
select operator. This operator is used to discover which (if any) of your file
descriptors are ready to do input or output, or to report an exceptional condition.
(This helps you avoid having to do polling.) It calls the select (2) syscall with the
bit masks you’ve specified, which you can construct using fileno and vec, like
this:

$rin = $win = $ein = "";
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;

Functions

Perl Functions in Alphabetical Order 781

782 Chapter 29: Functions

If you want to select on many filehandles, you might wish to write a subroutine:

sub fhbits {
my @fhlist = @_;
my $bits;
for (@fhlist) {

vec($bits, fileno($_), 1) = 1;
}
return $bits;

}
$rin = fhbits(qw(STDIN TTY MYSOCK));

If you wish to use the same bit masks repeatedly (and it’s more efficient if you
do), the usual idiom is:

($nfound, $timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

Or to block until any file descriptor becomes ready:

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

As you can see, calling select in scalar context just retur ns $nfound, the number of
ready descriptors found.

The $wout=$win trick works because the value of an assignment is its left side, so
$wout gets clobbered first by the assignment and then by the select, while $win

remains unchanged.

Any of the arguments can also be undef, in which case they’re ignor ed. The TIME-

OUT, if not undef, is in seconds, which may be fractional. (A timeout of 0 ef fects a
poll.) Not many implementations are capable of retur ning $timeleft. If not, they
always retur n $timeleft equal to the supplied $timeout.

The standard IO::Select module provides a more user-friendly interface to select,
mostly because it does all the bit mask work for you.

One use for select is to sleep with a finer resolution than sleep allows. To do
this, specify undef for all the bitmasks. So, to sleep for (at least) 4.75 seconds, use:

select undef, undef, undef, 4.75;

(On some non-Unix systems the triple undef may not work, and you may need to
fake up at least one bitmask for a valid descriptor that won’t ever be ready.)

One should probably not attempt to mix buffer ed I/O (like read or <HANDLE>) with
select, except as permitted by POSIX, and even then only on truly POSIX sys-
tems. Use sysread instead.

semctl $! X
U

semctl ID, SEMNUM, CMD, ARG

This function calls the System V IPC function semctl (2). You’ll probably have to
say use IPC::SysV first to get the correct constant definitions. If CMD is IPC_STAT or
GETALL, then ARG must be a variable that will hold the retur ned semid_ds structur e
or semaphore value array. As with ioctl and fcntl, retur n values are undef for
err or, “0 but true” for zero, and the actual retur n value otherwise.

See also the IPC::Semaphore module. This function is available only on machines
supporting System V IPC.

semget $! X
U

semget KEY, NSEMS, SIZE, FLAGS

This function calls the System V IPC syscall semget (2). Before calling, you should
use IPC::SysV to get the correct constant definitions. The function retur ns the
semaphor e ID, or undef if there is an err or.

See also the IPC::Semaphore module. This function is available only on machines
supporting System V IPC.

semop $! X
U

semop KEY, OPSTRING

This function calls the System V IPC syscall semop (2) to perfor m semaphor e oper-
ations such as signalling and waiting. Before calling, you should use IPC::SysV to
get the correct constant definitions.

OPSTRING must be a packed array of semop structur es. You can make each semop

structur e by saying pack("s*", $semnum, $semop, $semflag). The number of
semaphor e operations is implied by the length of OPSTRING. The function retur ns
true if successful, or false if there is an err or.

The following code waits on semaphore $semnum of semaphore id $semid:

$semop = pack "s*", $semnum, -1, 0;
semop $semid, $semop or die "Semaphore trouble: $!\n";

To signal the semaphore, simply replace -1 with 1.

See the section “System V IPC” in Chapter 16. See also the IPC::Semaphore mod-
ule. This function is available only on machines supporting System V IPC.

Functions

Perl Functions in Alphabetical Order 783

784 Chapter 29: Functions

send $! X
ARG

X
U

send SOCKET, MSG, FLAGS, TO
send SOCKET, MSG, FLAGS

This function sends a message on a socket. It takes the same flags as the syscall of
the same name—see send (2). On unconnected sockets, you must specify a desti-
nation to send TO, which then makes Perl’s send work like sendto (2). The C syscall
sendmsg (2) is currently unimplemented in standard Perl. The send function retur ns
the number of bytes sent, or undef if there is an err or.

(Some non-Unix systems improperly treat sockets as differ ent fr om ordinary file
descriptors, with the result that you must always use send and recv on sockets
rather than the handier standard I/O operators.)

One error that at least one of us makes frequently is to confuse Perl’s send with
C’s send and write:

send SOCK, $buffer, length $buffer # WRONG

This will mysteriously fail depending on the relationship of the string length to the
FLAGS bits expected by the system. See the section “Message Passing” in
Chapter 16 for examples.

setpg rp $! X
T

X
U

setpgrp PID, PGRP

This function sets the current process group (PGRP) for the specified PID (use a PID

of 0 for the current process). Invoking setpgrp will raise an exception if used on a
machine that doesn’t implement setpgrp (2). Beware: some systems will ignore the
arguments you provide and always do setpgrp(0, $$). Fortunately, those are the
arguments one usually wants to provide. If the arguments are omitted, they default
to 0,0. The BSD 4.2 version of setpgrp did not accept any arguments, but in BSD
4.4, it is a synonym for the setpgid function. For better portability (by some defini-
tion), use the setpgid function in the POSIX module directly. If what you’re really
trying to do is daemonize your script, consider the POSIX::setsid() function as
well. Note that the POSIX version of setpgrp does not accept arguments, so only
setpgrp(0,0) is truly portable.

setpr ior ity $! X
T

X
U

setpriority WHICH, WHO, PRIORITY

This function sets the current PRIORITY for a process, a process group, or a user, as
specified by the WHICH and WHO. See setpriority (2). Invoking setpriority will raise

an exception if used on a machine that doesn’t implement setpriority (2). To “nice”
your process down by four units (the same as executing your program with
nice (1)), try:

setpriority 0, 0, getpriority(0, 0) + 4;

The interpretation of a given priority may vary from one operating system to the
next. Some priorities may be unavailable to nonprivileged users.

See also the BSD::Resource module from CPAN.

setsockopt $! X
ARG

X
U

setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL

This function sets the socket option requested. The function retur ns undef on
err or. LEVEL specifies which protocol layer you’re aiming the call at, or SOL_SOCKET
for the socket itself at the top of all the layers. OPTVAL may be specified as undef if
you don’t want to pass an argument. A common option to set on a socket is
SO_REUSEADDR, to get around the problem of not being able to bind to a particular
addr ess while the previous TCP connection on that port is still making up its mind
to shut down. That would look like this:

use Socket;
socket(SOCK, ...) or die "Can’t make socket: $!\n";
setsockopt(SOCK, SOL_SOCKET, SO_REUSEADDR, 1)

or warn "Can’t do setsockopt: $!\n";

See setsockopt (2) for other possible values.

shift
shift ARRAY
shift

This function shifts the first value of the array off and retur ns it, shortening the
array by one and moving everything down. (Or up, or left, depending on how you
visualize the array list. We like left.) If there are no elements in the array, the func-
tion retur ns undef.

If ARRAY is omitted, the function shifts @_ within the lexical scope of subroutines
and formats; it shifts @ARGV at file scopes (typically the main program) or within the
lexical scopes established by the eval STRING, BEGIN {}, CHECK {}, INIT {}, and
END {} constructs.

Subr outines often start by copying their arguments into lexical variables, and shift

can be used for this:

Functions

Perl Functions in Alphabetical Order 785

786 Chapter 29: Functions

sub marine {
my $fathoms = shift; # depth
my $fishies = shift; # number of fish
my $o2 = shift; # oxygen concentration
...

}

shift is also used to process arguments at the front of your program:

while (defined($_ = shift)) {
/ˆ[ˆ-]/ && do { unshift @ARGV, $_; last };
/ˆ-w/ && do { $WARN = 1; next };
/ˆ-r/ && do { $RECURSE = 1; next };
die "Unknown argument $_\n";

}

You might also consider the Getopt::Std and Getopt::Long modules for processing
pr ogram arguments.

See also unshift, push, pop, and splice. The shift and unshift functions do the
same thing to the left end of an array that pop and push do to the right end.

shmctl $! X
U

shmctl ID, CMD, ARG

This function calls the System V IPC syscall, shmctl (2). Before calling, you should
use IPC::SysV to get the correct constant definitions.

If CMD is IPC_STAT, then ARG must be a variable that will hold the retur ned shmid_ds

structur e. Like ioctl and fcntl, the function retur ns undef for error, “0 but true”
for zero, and the actual retur n value otherwise.

This function is available only on machines supporting System V IPC.

shmget $! X
U

shmget KEY, SIZE, FLAGS

This function calls the System V IPC syscall, shmget (2). The function retur ns the
shar ed memory segment ID, or undef if there is an err or. Befor e calling, use

SysV::IPC.

This function is available only on machines supporting System V IPC.

shmread $! X
U

shmread ID, VAR, POS, SIZE

This function reads from the shared memory segment ID starting at position POS

for size SIZE (by attaching to it, copying out, and detaching from it). VAR must be a

variable that will hold the data read. The function retur ns true if successful, or
false if there is an err or.

This function is available only on machines supporting System V IPC.

shmwr ite $! X
U

shmwrite ID, STRING, POS, SIZE

This function writes to the shared memory segment ID starting at position POS for
size SIZE (by attaching to it, copying in, and detaching from it). If STRING is too
long, only SIZE bytes are used; if STRING is too short, nulls are written to fill out
SIZE bytes. The function retur ns true if successful, or false if there is an err or.

This function is available only on machines supporting System V IPC. (You’r e
pr obably tir ed of reading that—we’r e getting tired of saying it.)

shutdown $! X
ARG

X
U

shutdown SOCKET, HOW

This function shuts down a socket connection in the manner indicated by HOW. If
HOW is 0, further receives are disallowed. If HOW is 1, further sends are disallowed. If
HOW is 2, everything is disallowed.

shutdown(SOCK, 0); # no more reading
shutdown(SOCK, 1); # no more writing
shutdown(SOCK, 2); # no more I/O at all

This is useful with sockets when you want to tell the other side you’re done writ-
ing but not done reading, or vice versa. It’s also a more insistent form of close
because it also disables any copies of those file descriptors held in forked pro-
cesses.

Imagine a server that wants to read its client’s request until end of file, then send
an answer. If the client calls close, that socket is now invalid for I/O, so no
answer would ever come back. Instead, the client should use shutdown to half-
close the connection:

print SERVER "my request\n"; # send some data
shutdown(SERVER, 1); # send eof; no more writing
$answer = <SERVER>; # but you can still read

(If you came here trying to figure out how to shut down your system, you’ll have
to execute an external program to do that. See system.)

Functions

Perl Functions in Alphabetical Order 787

788 Chapter 29: Functions

sin $_

sin EXPR
sin

Sorry, there’s nothing wicked about this operator. It mer ely retur ns the sine of EXPR
(expr essed in radians).

For the inverse sine operation, you may use Math::Trig or the POSIX module’s
asin function, or use this relation:

sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

sleep
sleep EXPR
sleep

This function causes the script to sleep for EXPR seconds, or forever if no EXPR, and
retur ns the number of seconds slept. It may be interrupted by sending the process
a SIGALRM. On some older systems, it may sleep up to a full second less than what
you requested, depending on how it counts seconds. Most modern systems always
sleep the full amount. They may appear to sleep longer than that, however,
because your process might not be scheduled right away in a busy multitasking
system. If available, the select (r eady file descriptors) call can give you better res-
olution. You may also be able to use syscall to call the getitimer (2) and
setitimer (2) routines that some Unix systems support. You probably cannot mix
alarm and sleep calls, because sleep is often implemented using alarm.

See also the POSIX module’s sigpause function.

socket $! X
ARG

X
T

X
U

socket SOCKET, DOMAIN, TYPE, PROTOCOL

This function opens a socket of the specified kind and attaches it to filehandle
SOCKET. DOMAIN, TYPE, and PROTOCOL ar e specified the same as for socket (2). If unde-
fined, SOCKET will be autovivified. Before using this function, your program should
contain the line:

use Socket;

This gives you the proper constants. The function retur ns true if successful. See
the examples in the section “Sockets” in Chapter 16.

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptor, as deter mined by the value of $ˆF. See the $ˆF

($SYSTEM_FD_MAX) variable in Chapter 28.

socketpair $! X
ARG

X
T

X
U

socketpair SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL

This function creates an unnamed pair of sockets in the specified domain, of the
specified type. DOMAIN, TYPE, and PROTOCOL ar e specified the same as for
socketpair (2). If either socket argument is undefined, it will be autovivified. The
function retur ns true if successful, false otherwise. On a system where
socketpair (2) is unimplemented, calling this function raises an exception.

This function is typically used just before a fork. One of the resulting processes
should close SOCKET1, and the other should close SOCKET2. You can use these sock-
ets bidirectionally, unlike the filehandles created by the pipe function. Some sys-
tems define pipe in terms of socketpair, in which a call to pipe(Rdr, Wtr) is
essentially:

use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptors, as determined by the value of $ˆF. See the $ˆF

($SYSTEM_FD_MAX) variable in Chapter 28. See also the example at the end of the
section “Bidirectional Communication” in Chapter 16.

sor t $@

sort USERSUB LIST
sort BLOCK LIST
sort LIST

This function sorts the LIST and retur ns the sorted list value. By default, it sorts in
standard string comparison order (undefined values sort before defined null
strings, which sort before everything else). When the use locale pragma is in
ef fect, sort LIST sorts LIST according to the current collation locale.

USERSUB, if given, is the name of a subroutine that retur ns an integer less than,
equal to, or greater than 0, depending on how the elements of the list are to be
order ed. (The handy <=> and cmp operators can be used to perfor m thr ee-way
numeric and string comparisons.) If a USERSUB is given but that function is unde-
fined, sort raises an exception.

In the interests of efficiency, the normal calling code for subroutines is bypassed,
with the following effects: the subroutine may not be a recursive subroutine (nor
may you exit the block or routine with a loop control operator), and the two

Functions

Perl Functions in Alphabetical Order 789

790 Chapter 29: Functions

elements to be compared are not passed into the subroutine via @_, but rather by
temporarily setting the global variables $a and $b in the package in which the sort

was compiled (see the examples that follow). The variables $a and $b ar e aliases
to the real values, so don’t modify them in the subroutine.

The comparison subroutine is requir ed to behave. If it retur ns inconsistent results
(sometimes saying $x[1] is less than $x[2] and sometimes saying the opposite, for
example), the results are not well defined. (That’s another reason you shouldn’t
modify $a and $b.)

USERSUB may be a scalar variable name (unsubscripted), in which case the value
pr ovides either a symbolic or a hard refer ence to the actual subroutine to use. (A
symbolic name rather than a hard refer ence is allowed even when the use strict

’refs’ pragma is in effect.) In place of a USERSUB, you can provide a BLOCK as an
anonymous, inline sort subroutine.

To do an ordinary numeric sort, say this:

sub numerically { $a <=> $b }
@sortedbynumber = sort numerically 53,29,11,32,7;

To sort in descending order, you could simply apply reverse after the sort, or you
could reverse the order of $a and $b in the sort routine:

@descending = reverse sort numerically 53,29,11,32,7;

sub reverse_numerically { $b <=> $a }
@descending = sort reverse_numerically 53,29,11,32,7;

To sort strings without regard to case, run $a and $b thr ough lc befor e comparing:

@unsorted = qw/sparrow Ostrich LARK catbird blueJAY/;
@sorted = sort { lc($a) cmp lc($b) } @unsorted;

(Under Unicode, the use of lc for case canonicalization is vaguely preferr ed to the
use of uc, since some languages differ entiate titlecase from uppercase. But that
doesn’t matter for basic ASCII sorting, and if you’re going to do Unicode sorting
right, your canonicalization routines are going to be a lot fancier than lc.)

Sorting hashes by value is a common use of the sort function. For example, if a
%sales_amount hash records department sales, doing a hash lookup in the sort rou-
tine allows the hash keys to be sorted according to their corresponding values:

sort from highest to lowest department sales
sub bysales { $sales_amount{$b} <=> $sales_amount{$a} }

for $dept (sort bysales keys %sale_amount) {
print "$dept => $sales_amount{$dept}\n";

}

You can perfor m additional levels of sorting by cascading multiple comparisons
using the || or or operators. This works nicely because the comparison operators
conveniently retur n 0 for equivalence, causing them to fall through to the next
comparison. Here, the hash keys are sorted first by their associated sales amounts
and then by the keys themselves (in case two or more departments have the same
sales amount):

sub by_sales_then_dept {
$sales_amount{$b} <=> $sales_amount{$a}

||
$a cmp $b

}

for $dept (sort by_sales_then_dept keys %sale_amount) {
print "$dept => $sales_amount{$dept}\n";

}

Assume that @recs is an array of hash refer ences, wher e each hash contains fields
such as FIRSTNAME, LASTNAME, AGE, HEIGHT, and SALARY. The following routine sorts
to the front of the list those records for people who are first richer, then taller, then
younger, then less alphabetically challenged:

sub prospects {
$b->{SALARY} <=> $a->{SALARY}

||
$b->{HEIGHT} <=> $a->{HEIGHT}

||
$a->{AGE} <=> $b->{AGE}

||
$a->{LASTNAME} cmp $b->{LASTNAME}

||
$a->{FIRSTNAME} cmp $b->{FIRSTNAME}

}

@sorted = sort prospects @recs;

Any useful information that can be derived from $a and $b can serve as the basis
of a comparison in a sort routine. For example, if lines of text are to be sorted
according to specific fields, split could be used within the sort routine to derive
the fields.

@sorted_lines = sort {
@a_fields = split /:/, $a; # colon-separated fields
@b_fields = split /:/, $b;

$a_fields[3] <=> $b_fields[3] # numeric sort on 4th field, then
||

$a_fields[0] cmp $b_fields[0] # string sort on 1st field, then
||

$b_fields[2] <=> $a_fields[2] # reverse numeric sort on 3rd field
||

Functions

Perl Functions in Alphabetical Order 791

792 Chapter 29: Functions

... # etc.

} @lines;

However, because sort per forms the sort routine many times using differ ent pair-
ings of values for $a and $b, the previous example will resplit each line more often
than needed.

To avoid the expense of repeated derivations such as the splitting of lines in order
to compare their fields, perfor m the derivation once per value prior to the sort and
save the derived information. Here, anonymous arrays are created to encapsulate
each line along with the results of splitting the line:

@temp = map { [$_, split /:/] } @lines;

Next, the array refer ences ar e sorted:

@temp = sort {
@a_fields = @$a[1..$#$a];
@b_fields = @$b[1..$#$b];

$a_fields[3] <=> $b_fields[3] # numeric sort on 4th field, then
||

$a_fields[0] cmp $b_fields[0] # string sort on 1st field, then
||

$b_fields[2] <=> $a_fields[2] # reverse numeric sort on 3rd field
||

... # etc.

} @temp;

Now that the array refer ences ar e sorted, the original lines can be retrieved from
the anonymous arrays:

@sorted_lines = map { $_->[0] } @temp;

Putting it all together, this map-sort-map technique, often referr ed to as the
Schwartzian Transfor m, can be perfor med in one statement:

@sorted_lines = map { $_->[0] }
sort {

@a_fields = @$a[1..$#$a];
@b_fields = @$b[1..$#$b];

$a_fields[3] <=> $b_fields[3]
||

$a_fields[0] cmp $b_fields[0]
||

$b_fields[2] <=> $a_fields[2]
||

...
}
map { [$_, split /:/] } @lines;

Do not declare $a and $b as lexical variables (with my). They are package globals
(though they’re exempt from the usual restrictions on globals when you’re using
use strict). You do need to make sure your sort routine is in the same package
though, or else qualify $a and $b with the package name of the caller.

That being said, in version 5.6 you can write sort subroutines with the standard
argument passing method (and, not coincidentally, use XS subroutines as sort sub-
routines), provided that you declare the sort subroutine with a prototype of ($$).
And if you do that, then you can in fact declare $a and $b as lexicals:

sub numerically ($$) {
my ($a, $b) = @_;
$a <=> $b;

}

And someday, when full prototypes are implemented, you’ll just say:

sub numerically ($a, $b) { $a <=> $b }

and then we’ll be back where we started, more or less.

splice $@

splice ARRAY, OFFSET, LENGTH, LIST
splice ARRAY, OFFSET, LENGTH
splice ARRAY, OFFSET
splice ARRAY

This function removes the elements designated by OFFSET and LENGTH fr om an
ARRAY, and replaces them with the elements of LIST, if any. If OFFSET is negative,
the function counts backward from the end of the array, but if that would land
befor e the beginning of the array, an exception is raised. In list context, splice
retur ns the elements removed from the array. In scalar context, it retur ns the last
element removed, or undef if there was none. If the number of new elements
doesn’t equal the number of old elements, the array grows or shrinks as necessary,
and elements after the splice change their position correspondingly. If LENGTH is
omitted, the function removes everything from OFFSET onward. If OFFSET is omit-
ted, the array is cleared as it is read. The following equivalences hold (assuming
$[is 0):

Direct Method Splice Equivalent

push(@a, $x, $y) splice(@a, @a, 0, $x, $y)

pop(@a) splice(@a, -1)

shift(@a) splice(@a, 0, 1)

unshift(@a, $x, $y) splice(@a, 0, 0, $x, $y)

$a[$x] = $y splice(@a, $x, 1, $y)

(@a, @a = ()) splice(@a)

Functions

Perl Functions in Alphabetical Order 793

794 Chapter 29: Functions

The splice function is also handy for carving up the argument list passed to a sub-
routine. For example, assuming list lengths are passed before lists:

sub list_eq { # compare two list values
my @a = splice(@_, 0, shift);
my @b = splice(@_, 0, shift);
return 0 unless @a == @b; # same length?
while (@a) {

return 0 if pop(@a) ne pop(@b);
}
return 1;

}
if (list_eq($len, @foo[1..$len], scalar(@bar), @bar)) { ... }

It would be cleaner to use array refer ences for this, however.

split $_ T

split /PATTERN/, EXPR, LIMIT
split /PATTERN/, EXPR
split /PATTERN/
split

This function scans a string given by EXPR for separators, and splits the string into
a list of substrings, retur ning the resulting list value in list context or the count of
substrings in scalar context.* The separators are deter mined by repeated pattern
matching, using the regular expression given in PATTERN, so the separators may be
of any size and need not be the same string on every match. (The separators are
not ordinarily retur ned; exceptions are discussed later in this section.) If the PAT-

TERN doesn’t match the string at all, split retur ns the original string as a single
substring. If it matches once, you get two substrings, and so on. You may supply
regular expression modifiers to the PATTERN, like /PATTERN/i, /PATTERN/x, etc. The
//m modifier is assumed when you split on the pattern /ˆ/.

If LIMIT is specified and positive, the function splits into no more than that many
fields (though it may split into fewer if it runs out of separators). If LIMIT is nega-
tive, it is treated as if an arbitrarily large LIMIT has been specified. If LIMIT is omit-
ted or zero, trailing null fields are stripped from the result (which potential users
of pop would do well to remember). If EXPR is omitted, the function splits the $_

string. If PATTERN is also omitted or is the literal space, " ", the function splits on
whitespace, /\s+/, after skipping any leading whitespace.

* Scalar context also causes split to write its result to @_, but this usage is deprecated.

Strings of any length can be split:

@chars = split //, $word;
@fields = split /:/, $line;
@words = split " ", $paragraph;
@lines = split /ˆ/, $buffer;

A patter n capable of matching either the null string or something longer than the
null string (for instance, a pattern consisting of any single character modified by a
* or ?) will split the value of EXPR into separate characters wherever it matches the
null string between characters; non-null matches will skip over the matched sepa-
rator characters in the usual fashion. (In other words, a pattern won’t match in one
spot more than once, even if it matched with a zero width.) For example:

print join ’:’, split / */, ’hi there’;

pr oduces the output “h:i:t:h:e:r:e”. The space disappears because it matches as
part of the separator. As a trivial case, the null pattern // simply splits into sepa-
rate characters, and spaces do not disappear. (For normal pattern matches, a //

patter n would repeat the last successfully matched pattern, but split’s pattern is
exempt from that wrinkle.)

The LIMIT parameter splits only part of a string:

($login, $passwd, $remainder) = split /:/, $_, 3;

We encourage you to split to lists of names like this in order to make your code
self-documenting. (For purposes of error checking, note that $remainder would be
undefined if there wer e fewer than three fields.) When assigning to a list, if LIMIT
is omitted, Perl supplies a LIMIT one larger than the number of variables in the list,
to avoid unnecessary work. For the split above, LIMIT would have been 4 by
default, and $remainder would have received only the third field, not all the rest of
the fields. In time-critical applications, it behooves you not to split into more fields
than you really need. (The trouble with powerful languages is that they let you be
power fully stupid at times.)

We said earlier that the separators are not retur ned, but if the PATTERN contains
par entheses, then the substring matched by each pair of parentheses is included in
the resulting list, interspersed with the fields that are ordinarily retur ned. Her e’s a
simple example:

split /([-,])/, "1-10,20";

pr oduces the list value:

(1, ’-’, 10, ’,’, 20)

Functions

Perl Functions in Alphabetical Order 795

796 Chapter 29: Functions

With more par entheses, a field is retur ned for each pair, even if some pairs don’t
match, in which case undefined values are retur ned in those positions. So if you
say:

split /(-)|(,)/, "1-10,20";

you get the value:

(1, ’-’, undef, 10, undef, ’,’, 20)

The /PATTERN/ argument may be replaced with an expression to specify patterns
that vary at run time. As with ordinary patterns, to do run-time compilation only
once, use /$variable/o.

As a special case, if the expression is a single space (" "), the function splits on
whitespace just as split with no arguments does. Thus, split(" ") can be used to
emulate awk ’s default behavior. In contrast, split(/ /) will give you as many null
initial fields as there are leading spaces. (Other than this special case, if you sup-
ply a string instead of a regular expression, it’ll be interpreted as a regular expres-
sion anyway.) You can use this property to remove leading and trailing whitespace
fr om a string and to collapse intervening stretches of whitespace into a single
space:

$string = join(’ ’, split(’ ’, $string));

The following example splits an RFC 822 message header into a hash containing
$head{Date}, $head{Subject}, and so on. It uses the trick of assigning a list of pairs
to a hash, based on the fact that separators alternate with separated fields. It
makes use of parentheses to retur n part of each separator as part of the retur ned
list value. Since the split patter n is guaranteed to retur n things in pairs by virtue
of containing one set of parentheses, the hash assignment is guaranteed to receive
a list consisting of key/value pairs, where each key is the name of a header field.
(Unfortunately, this technique loses information for multiple lines with the same
key field, such as Received-By lines. Ah, well. . . .)

$header =˜ s/\n\s+/ /g; # Merge continuation lines.
%head = (’FRONTSTUFF’, split /ˆ(\S*?):\s*/m, $header);

The following example processes the entries in a Unix passwd (5) file. You could
leave out the chomp, in which case $shell would have a newline on the end of it.

open PASSWD, ’/etc/passwd’;
while (<PASSWD>) {

chomp; # remove trailing newline
($login, $passwd, $uid, $gid, $gcos, $home, $shell) =

split /:/;
...

}

Her e’s how to process each word of each line of each file of input to create a
word-fr equency hash.

while (<>) {
foreach $word (split) {

$count{$word}++;
}

}

The inverse of split is perfor med by join (except that join can only join with the
same separator between all fields). To break apart a string with fixed-position
fields, use unpack.

spr intf
sprintf FORMAT, LIST

This function retur ns a string formatted by the usual printf conventions of the C
library function sprintf. See sprintf (3) or printf (3) on your system for an explana-
tion of the general principles. The FORMAT string contains text with embedded field
specifiers into which the elements of LIST ar e substituted, one per field.

Perl does its own sprintf for matting—it emulates the C function sprintf, but it
doesn’t use it.* As a result, any nonstandard extensions in your local sprintf (3)
function are not available from Perl.

Perl’s sprintf per mits the universally known conversions shown in Table 29-4.

Table 29-4. For mats for sprintf

Field Meaning

%% A percent sign

%c A character with the given number

%s A string

%d A signed integer, in decimal

%u An unsigned integer, in decimal

%o An unsigned integer, in octal

%x An unsigned integer, in hexadecimal

%e A floating-point number, in scientific notation

%f A floating-point number, in fixed decimal notation

%g A floating-point number, in %e or %f notation

* Except for floating-point numbers, and even then only the standard modifiers are allowed.

Functions

Perl Functions in Alphabetical Order 797

798 Chapter 29: Functions

In addition, Perl permits the following widely supported conversions:

Field Meaning

%X Like %x, but using uppercase letters
%E Like %e, but using an uppercase “E”
%G Like %g, but with an uppercase “E” (if applicable)
%b An unsigned integer, in binary
%p A pointer (outputs the Perl value’s address in hexadecimal)
%n Special: stor es the number of characters output so far into

the next variable in the argument list

Finally, for backward (and we do mean “backward”) compatibility, Perl permits
these unnecessary but widely supported conversions:

Field Meaning

%i A synonym for %d
%D A synonym for %ld
%U A synonym for %lu
%O A synonym for %lo
%F A synonym for %f

Perl permits the following universally known flags between the % and the conver-
sion character:

Fla g Meaning

space Pr efix positive number with a space
+ Pr efix positive number with a plus sign
- Left-justify within the field
0 Use zeros, not spaces, to right-justify
Pr efix nonzer o octal with "0", nonzer o hex with "0x"

number Minimum field width
.number “Pr ecision”: digits after decimal point for floating-point numbers,

maximum length for string, minimum length for integer
l Interpr et integer as C type long or unsigned long
h Interpr et integer as C type short or unsigned short (if no flags are

supplied, interpret integer as C type int or unsigned)

Ther e ar e also two Perl-specific flags:

Fla g Meaning

V Interpr et integer as Perl’s standard integer type
v Interpr et string as a vector of integers, output as numbers separated

either by dots, or by an arbitrary string received from the argument list
when the flag is preceded by *

If your Perl understands “quads” (64-bit integers) either because the platform
natively supports them or because Perl has been specifically compiled with that
ability, then the characters d u o x X b i D U O print quads, and they may option-
ally be preceded by ll, L, or q. For example, %lld %16LX %qo.

If Perl understands “long doubles” (this requir es that the platform support long
doubles), the flags e f g E F G may optionally be preceded by ll or L. For exam-
ple, %llf %Lg.

Wher e a number would appear in the flags, an asterisk (“*”) may be used instead,
in which case Perl uses the next item in the argument list as the given number
(that is, as the field width or precision). If a field width obtained through “*” is
negative, it has the same effect as the “-” flag: left-justification.

The v flag is useful for displaying ordinal values of characters in arbitrary strings:

sprintf "version is v%vd\n", $ˆV; # Perl’s version
sprintf "address is %vd\n", $addr; # IPv4 address
sprintf "address is %*vX\n", ":", $addr; # IPv6 address
sprintf "bits are %*vb\n", " ", $bits; # random bit strings

sqr t $_ $@

sqrt EXPR
sqrt

This function retur ns the square root of EXPR. For other roots such as cube roots,
you can use the ** operator to raise something to a fractional power. Don’t try
either of these approaches with negative numbers, as that poses a slightly more
complex problem (and raises an exception). But there’s a standard module to take
car e of even that:

use Math::Complex;
print sqrt(-2); # prints 1.4142135623731i

Functions

Perl Functions in Alphabetical Order 799

800 Chapter 29: Functions

srand
srand EXPR
srand

This function sets the random number seed for the rand operator. If EXPR is omit-
ted, it uses a semirandom value supplied by the kernel (if it supports the
/dev/urandom device) or based on the current time and process ID, among other
things. It’s usually not necessary to call srand at all, because if it is not called
explicitly, it is called implicitly at the first use of the rand operator. However, this
was not true in versions of Perl prior to 5.004, so if your script needs to run under
older Perl versions, it should call srand.

Fr equently called programs (like CGI scripts) that simply use time ˆ $$ for a seed
can fall prey to the mathematical property that aˆb == (a+1)ˆ(b+1) one-third of
the time. So don’t do that. Use this instead:

srand(time() ˆ ($$ + ($$ << 15)));

You’ll need something much more random than the default seed for cryptographic
purposes. On some systems the /dev/random device is suitable. Otherwise, check-
summing the compressed output of one or more rapidly changing operating sys-
tem status programs is the usual method. For example:

srand (time ˆ $$ ˆ unpack "%32L*", ‘ps wwaxl | gzip‘);

If you’re particularly concerned with this, see the Math::TrulyRandom module in
CPAN.

Do not call srand multiple times in your program unless you know exactly what
you’r e doing and why you’re doing it. The point of the function is to “seed” the
rand function so that rand can produce a differ ent sequence each time you run
your program. Just do it once at the top of your program, or you won’t get ran-
dom numbers out of rand !

stat $_ $! X
ARG

stat FILEHANDLE
stat EXPR
stat

In scalar context, this function retur ns a Boolean value that indicates whether the
call succeeded. In list context, it retur ns a 13-element list giving the statistics for a
file, either the file opened via FILEHANDLE, or named by EXPR. It’s typically used as
follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat $filename;

Not all fields are supported on all filesystem types; unsupported fields retur n 0.
Table 29-5 lists the meanings of the fields.

Table 29-5. Fields Returned by stat

Index Field Meaning

0 $dev Device number of filesystem

1 $ino Inode number

2 $mode File mode (type and permissions)

3 $nlink Number of (hard) links to the file

4 $uid Numeric user ID of file’s owner

5 $gid Numeric group ID of file’s designated group

6 $rdev The device identifier (special files only)

7 $size Total size of file, in bytes

8 $atime Last access time in seconds since the epoch

9 $mtime Last modify time in seconds since the epoch

10 $ctime Inode change time (not cr eation time!) in seconds since the epoch

11 $blksize Pr eferr ed blocksize for file system I/O

12 $blocks Actual number of blocks allocated

$dev and $ino, taken together, uniquely identify a file on the same system. The
$blksize and $blocks ar e likely defined only on BSD-derived filesystems. The
$blocks field (if defined) is reported in 512-byte blocks. The value of $blocks*512
can differ greatly from $size for files containing unallocated blocks, or “holes”,
which aren’t counted in $blocks.

If stat is passed the special filehandle consisting of an underline, no actual stat (2)
is done, but the current contents of the stat structure from the last stat, lstat, or
stat-based file test operator (such as -r, -w, and -x) are retur ned.

Because the mode contains both the file type and its permissions, you should
mask off the file type portion and printf or sprintf using a "%o" if you want to
see the real permissions:

$mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;
$sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb->size, $sb->mode & 07777,
scalar localtime $sb->mtime;

Functions

Perl Functions in Alphabetical Order 801

802 Chapter 29: Functions

You can also import symbolic definitions of the various mode bits from the Fcntl

module. See the online documentation for more details.

Hint: if you need only the size of the file, check out the -s file test operator, which
retur ns the size in bytes directly. There are also file tests that retur n the ages of
files in days.

study $_

study SCALAR
study

This function takes extra time in order to study SCALAR in anticipation of doing
many pattern matches on the string before it is next modified. This may or may
not save time, depending on the nature and number of patterns you are searching
on, and on the distribution of character frequencies in the string to be searched —
you probably want to compare run times with and without it to see which runs
faster. Those loops that scan for many short constant strings (including the con-
stant parts of more complex patterns) will benefit most from study. If all your pat-
ter n matches are constant strings anchored at the front, study won’t help at all,
because no scanning is done. You may have only one study active at a time—if
you study a differ ent scalar the first is “unstudied”.

The way study works is this: a linked list of every character in the string to be
searched is made, so we know, for example, where all the “k” characters are.
Fr om each search string, the rarest character is selected, based on some static fre-
quency tables constructed from some C programs and English text. Only those
places that contain this rarest character are examined.

For example, here is a loop that inserts index-producing entries before any line
containing a certain pattern:

while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
...
print;

}

In searching for /\bfoo\b/, only those locations in $_ that contain “f” will be
looked at, because “f” is rar er than “o”. This is a big win except in pathological
cases. The only question is whether it saves you more time than it took to build
the linked list in the first place.

If you have to look for strings that you don’t know until run time, you can build
an entire loop as a string and eval that to avoid recompiling all your patterns all

the time. Together with setting $/ to input entire files as one record, this can be
very fast, often faster than specialized programs like fgr ep (1). The following scans
a list of files (@files) for a list of words (@words), and prints out the names of
those files that contain a case-insensitive match:

$search = ’while (<>) { study;’;
foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/i;\n";
}
$search .= "}";
@ARGV = @files;
undef $/; # slurp each entire file
eval $search; # this screams
die $@ if $@; # in case eval failed
$/ = "\n"; # restore normal input terminator
foreach $file (sort keys(%seen)) {

print "$file\n";
}

Now that we have the qr// operator, complicated run-time evals as seen above
ar e less necessary. This does the same thing:

@pats = ();
foreach $word (@words) {

push @pats, qr/\b${word}\b/i;
}
@ARGV = @files;
undef $/; # slurp each entire file
while (<>) {

for $pat (@pats) {
$seen{$ARGV}++ if /$pat/;

}
}
$/ = "\n"; # restore normal input terminator
foreach $file (sort keys(%seen)) {

print "$file\n";
}

sub
Named declarations:

sub NAME PROTO ATTRS
sub NAME ATTRS
sub NAME PROTO
sub NAME

Named definitions:

sub NAME PROTO ATTRS BLOCK
sub NAME ATTRS BLOCK
sub NAME PROTO BLOCK
sub NAME BLOCK

Functions

Perl Functions in Alphabetical Order 803

804 Chapter 29: Functions

Unnamed definitions:

sub PROTO ATTRS BLOCK
sub ATTRS BLOCK
sub PROTO BLOCK
sub BLOCK

The syntax of subroutine declarations and definitions looks complicated, but is
actually pretty simple in practice. Everything is based on the syntax:

sub NAME PROTO ATTRS BLOCK

All four fields are optional; the only restrictions are that the fields that do occur
must occur in that order, and that you must use at least one of NAME or BLOCK. For
the moment, we’ll ignore the PROTO and ATTRS; they’r e just modifiers on the basic
syntax. The NAME and the BLOCK ar e the important parts to get straight:

• If you just have a NAME and no BLOCK, it’s a declaration of that name (and if
you ever want to call the subroutine, you’ll have to supply a definition with
both a NAME and a BLOCK later). Named declarations are useful because the
parser treats a name specially if it knows it’s a user-defined subroutine. You
can call such a subroutine either as a function or as an operator, just like built-
in functions. These are sometimes called forwar d declarations.

• If you have both a NAME and a BLOCK, it’s a standard named subroutine defini-
tion (and a declaration too, if you didn’t declare the name previously). Named
definitions are useful because the BLOCK associates an actual meaning (the
body of the subroutine) with the declaration. That’s all we mean when we say
it defines the subroutine rather than just declaring it. The definition is like the
declaration, however, in that the surrounding code doesn’t see it, and it
retur ns no inline value by which you could refer ence the subroutine.

• If you have just have a BLOCK without a NAME, it’s a nameless definition, that is,
an anonymous subroutine. Since it doesn’t have a name, it’s not a declaration
at all, but a real operator that retur ns a refer ence to the anonymous subroutine
body at run time. This is extremely useful for treating code as data. It allows
you to pass odd chunks of code around to be used as callbacks, and maybe
even as closures if the sub definition operator refers to any lexical variables
outside of itself. That means that differ ent calls to the same sub operator will
do the bookkeeping necessary to keep the correct “version” of each such lexi-
cal variable in sight for the life of the closure, even if the original scope of the
lexical variable has been destroyed.

In any of these three cases, either one or both of the PROTO and ATTRS may occur
after the NAME and/or before the BLOCK. A prototype is a list of characters in paren-
theses that tell the parser how to treat arguments to the function. Attributes are

intr oduced by a colon and supply additional information to the parser about the
function. Here’s a typical definition that includes all four fields:

sub numstrcmp ($$) : locked {
my ($a, $b) = @_;
return $a <=> $b || $a cmp $b;

}

For details on attribute lists and their manipulation, see the attributes pragma in
Chapter 31. See also Chapter 6 and “Anonymous Subroutines” in Chapter 8.

substr $@ X
ARG

X
RO

substr EXPR, OFFSET, LENGTH, REPLACEMENT
substr EXPR, OFFSET, LENGTH
substr EXPR, OFFSET

This function extracts a substring out of the string given by EXPR and retur ns it.
The substring is extracted starting at OFFSET characters from the front of the string.
(Note: if you’ve messed with $[, the beginning of the string isn’t at 0, but since
you haven’t messed with it (have you?), it is.) If OFFSET is negative, the substring
starts that far from the end of the string instead. If LENGTH is omitted, everything to
the end of the string is retur ned. If LENGTH is negative, the length is calculated to
leave that many characters off the end of the string. Otherwise, LENGTH indicates
the length of the substring to extract, which is sort of what you’d expect.

You may use substr as an lvalue (something to assign to), in which case EXPR

must also be a legal lvalue. If you assign something shorter than the length of your
substring, the string will shrink, and if you assign something longer than the
length, the string will grow to accommodate it. To keep the string the same length,
you may need to pad or chop your value using sprintf or the x operator. If you
attempt to assign to an unallocated area past the end of the string, substr raises an
exception.

To prepend the string "Larry" to the current value of $_, use:

substr($var, 0, 0) = "Larry";

To instead replace the first character of $_ with "Moe", use:

substr($var, 0, 1) = "Moe";

And finally, to replace the last character of $var with "Curly", use:

substr($var, -1) = "Curly";

An alternative to using substr as an lvalue is to specify the REPLACEMENT string as
the fourth argument. This allows you to replace parts of the EXPR and retur n what
was there befor e in one operation, just as you can with splice. The next example

Functions

Perl Functions in Alphabetical Order 805

806 Chapter 29: Functions

also replaces the last character of $var with "Curly" and puts that replaced charac-
ter into $oldstr:

$oldstr = substr($var, -1, 1, "Curly");

You don’t have to use lvalue substr only with assignment. This replaces any
spaces with dots, but only in the last 10 characters in the string:

substr($var, -10) =˜ s/ /./g;

symlink $! X
T

X
U

symlink OLDNAME, NEWNAME

This function creates a new filename symbolically linked to the old filename. The
function retur ns true for success, false otherwise. On systems that don’t support
symbolic links, it raises an exception at run time. To check for that, use eval to
trap the potential error:

$can_symlink = eval { symlink("",""); 1 };

Or use the Config module. Be careful if you supply a relative symbolic link, since
it’ll be interpreted relative to the location of the symbolic link itself, not to your
curr ent working directory.

See also link and readlink earlier in this chapter.

syscall $! X
RO

X
T

X
U

syscall LIST

This function calls the system call (meaning a syscall, not a shell command) speci-
fied as the first element of the list passes the remaining elements as arguments to
the system call. (Many of these calls are now more readily available through mod-
ules like POSIX.) The function raises an exception if syscall (2) is unimplemented.

The arguments are interpr eted as follows: if a given argument is numeric, the argu-
ment is passed as a C integer. If not, a pointer to the string value is passed. You
ar e responsible for making sure the string is long enough to receive any result that
might be written into it; otherwise, you’re looking at a core dump. You can’t use a
string literal (or other read-only string) as an argument to syscall because Perl has
to assume that any string pointer might be written through. If your integer argu-
ments are not literals and have never been interpreted in a numeric context, you
may need to add 0 to them to force them to look like numbers.

syscall retur ns whatever value was retur ned by the system call invoked. By C
coding conventions, if that system call fails, syscall retur ns -1 and sets $! (err no).
Some system calls legitimately retur n -1 if successful. The proper way to handle
such calls is to assign $!=0; befor e the call and check the value of $! if syscall
retur ns -1.

Not all system calls can be accessed this way. For example, Perl supports passing
up to 14 arguments to your system call, which in practice should usually suffice.
However, ther e’s a problem with syscalls that retur n multiple values. Consider
syscall(&SYS_pipe): it retur ns the file number of the read end of the pipe it cre-
ates. There is no way to retrieve the file number of the other end. You can avoid
this instance of the problem by using pipe instead. To solve the generic problem,
write XSUBs (external subroutine modules, a dialect of C) to access the system
calls directly. Then put your new module onto CPAN, and become wildly popular.

The following subroutine retur ns the current time as a floating-point number
rather than as integer seconds as time retur ns. (It will only work on machines that
support the gettimeofday (2) syscall.)

sub finetime() {
package main; # for next require
require ’syscall.ph’;
presize buffer to two 32-bit longs...
my $tv = pack("LL", ());
syscall(&SYS_gettimeofday, $tv, undef) >= 0

or die "gettimeofday: $!";
my($seconds, $microseconds) = unpack("LL", $tv);
return $seconds + ($microseconds / 1_000_000);

}

Suppose Perl didn’t support the setgr oups (2) syscall,* but your kernel did. You
could still get at it this way:

require ’syscall.ph’;
syscall(&SYS_setgroups, scalar @newgids, pack("i*", @newgids))

or die "setgroups: $!";

You may have to run h2ph as indicated in the Perl installation instructions for
syscall.ph to exist. Some systems may requir e a pack template of "II" instead.
Even more disturbing, syscall assumes the size equivalence of the C types int,
long, and char*. Try not to think of syscall as the epitome of portability.

See the Time::HiRes module from CPAN for a more rigor ous appr oach to fine-
grained timing issues.

* Although through $(, it does.

Functions

Perl Functions in Alphabetical Order 807

808 Chapter 29: Functions

sysopen $! X
ARG

sysopen FILEHANDLE, FILENAME, MODE, MASK
sysopen FILEHANDLE, FILENAME, MODE

The sysopen function opens the file whose filename is given by FILENAME and
associates it with FILEHANDLE. If FILEHANDLE is an expression, its value is used as
the name of, or refer ence to, the filehandle. If FILEHANDLE is a variable whose
value is undefined, a value will be created for you. The retur n value is true if the
call succeeds, false otherwise.

This function is a direct interface to your operating system’s open (2) syscall fol-
lowed by an fdopen (3) library call. As such, you’ll need to pretend you’re a C pro-
grammer for a bit here. The possible values and flag bits of the MODE parameter are
available through the Fcntl module. Because differ ent systems support differ ent
flags, don’t count on all of them being available on your system. Consult your
open (2) manpage or its local equivalent for details. Nevertheless, the following
flags should be present on any system with a reasonably standard C library:

Fla g Meaning

O_RDONLY Read only.
O_WRONLY Write only.
O_RDWR Read and write.
O_CREAT Cr eate the file if it doesn’t exist.
O_EXCL Fail if the file already exists.
O_APPEND Append to the file.
O_TRUNC Truncate the file.
O_NONBLOCK Nonblocking access.

Many other options are possible, however. Her e ar e some less common flags:

Fla g Meaning

O_NDELAY Old synonym for O_NONBLOCK.
O_SYNC Writes block until data is physically written to the underlying hardware.

O_ASYNC, O_DSYNC, and O_RSYNC may also be seen.
O_EXLOCK flock with LOCK_EX (advisory only).
O_SHLOCK flock with LOCK_SH (advisory only).
O_DIRECTORY Fail if the file is not a dir ectory.
O_NOFOLLOW Fail if the last path component is a symbolic link.
O_BINARY binmode the handle for Microsoft systems. An O_TEXT may also sometimes

exist to get the opposite behavior.
O_LARGEFILE Some systems need this for files over 2 GB.
O_NOCTTY Opening a terminal file won’t make that terminal become the process’s

contr olling ter minal if you don’t have one yet. Usually no longer needed.

The O_EXCL flag is not for locking: here, exclusiveness means that if the file already
exists, sysopen fails.

If the file named by FILENAME does not exist and the MODE includes the O_CREAT

flag, then sysopen cr eates the file with initial permissions determined by the MASK

argument (or 0666 if omitted) as modified by your process’s current umask. This
default is reasonable: see the entry on umask for an explanation.

Filehandles opened with open and sysopen may be used interchangeably. You do
not need to use sysread and friends just because you happened to open the file
with sysopen, nor are you precluded from doing so if you opened it with open.
Both can do things that the other can’t. Regular open can open pipes, fork pro-
cesses, set disciplines, duplicate file handles, and convert a file descriptor number
into a filehandle. It also ignores leading and trailing whitespace in filenames and
respects “-” as a special filename. But when it comes to opening actual files,
sysopen can do anything that open can.

The following examples show equivalent calls to both functions. We omit the or

die $! checks for clarity, but make sure to always check retur n values in your pro-
grams. We’ll restrict ourselves to using only flags available on virtually all operat-
ing systems. It’s just a matter of controlling the values that you OR together using
the bitwise | operator to pass in MODE argument.

• Open a file for reading:

open(FH, "<", $path);
sysopen(FH, $path, O_RDONLY);

• Open a file for writing, creating a new file if needed, or truncating an old file:

open(FH, ">", $path);
sysopen(FH, $path, O_WRONLY | O_TRUNC | O_CREAT);

• Open a file for appending, creating one if necessary:

open(FH, ">>", $path);
sysopen(FH, $path, O_WRONLY | O_APPEND | O_CREAT);

• Open a file for update, where the file must already exist:

open(FH, "+<", $path);
sysopen(FH, $path, O_RDWR);

And here are things you can do with sysopen but not with regular open:

• Open and create a file for writing, which must not previously exist:

sysopen(FH, $path, O_WRONLY | O_EXCL | O_CREAT);

Functions

Perl Functions in Alphabetical Order 809

810 Chapter 29: Functions

• Open a file for appending, which must already exist:

sysopen(FH, $path, O_WRONLY | O_APPEND);

• Open a file for update, creating a new file if necessary:

sysopen(FH, $path, O_RDWR | O_CREAT);

• Open a file for update, which must not already exist:

sysopen(FH, $path, O_RDWR | O_EXCL | O_CREAT);

• Open a write-only file without blocking, but not creating it if it doesn’t exist:

sysopen(FH, $path, O_WRONLY | O_NONBLOCK);

The FileHandle module described in Chapter 32 provides a set of object-oriented
synonyms (plus a small bit of new functionality) for opening files. You are wel-
come to call the appropriate FileHandle methods* on any handle created with
open, sysopen, pipe, socket, or accept, even if you didn’t use the module to initial-
ize those handles.

sysread $! $@ T X
ARG

X
RO

sysread FILEHANDLE, SCALAR, LENGTH, OFFSET
sysread FILEHANDLE, SCALAR, LENGTH

This function attempts to read LENGTH bytes of data into variable SCALAR fr om the
specified FILEHANDLE using a low-level syscall, read (2). The function retur ns the
number of bytes read, or 0 at EOF.† The sysread function retur ns undef on error.
SCALAR will grow or shrink to the length actually read. The OFFSET, if specified,
says where in the string to start putting the bytes, so that you can read into the
middle of a string that’s being used as a buffer. For an example of using OFFSET,
see syswrite. An exception is raised if LENGTH is negative or if OFFSET points out-
side the string.

You should be prepar ed to handle the problems (like interrupted syscalls) that
standard I/O normally handles for you. Because it bypasses standard I/O, do not
mix sysread with other kinds of reads, print, printf, write, seek, tell, or eof on
the same filehandle unless you are into heavy wizardry (and/or pain). Also, please
be aware that, when reading from a file containing Unicode or any other multibyte
encoding, the buffer boundary may fall in the middle of a character.

* Really IO::File or IO::Handle methods.

† Ther e is no syseof function, which is okay, since eof doesn’t work well on device files (like termi-
nals) anyway. Use sysread and check for a retur n value for 0 to decide whether you’re done.

sysseek $! X
ARG

sysseek FILEHANDLE, POSITION, WHENCE

This function sets FILEHANDLE ’s system position using the syscall lseek (2). It
bypasses standard I/O, so mixing this with reads (other than sysread), print,
write, seek, tell, or eof may cause confusion. FILEHANDLE may be an expression
whose value gives the name of the filehandle. The values for WHENCE ar e 0 to set
the new position to POSITION, 1 to set the it to the current position plus POSITION,
and 2 to set it to EOF plus POSITION (typically negative). For WHENCE, you may use
the constants SEEK_SET, SEEK_CUR, and SEEK_END fr om the standard IO::Seekable

and POSIX modules — or, as of the 5.6 release, from Fcntl, which is more portable
and convenient.

Retur ns the new position, or undef on failure. A position of zero is retur ned as the
special string “0 but true”, which can be used numerically without producing
war nings.

system $! $? X
T

system PATHNAME LIST
system LIST

This function executes any program on the system for you and retur ns that pro-
gram’s exit status—not its output. To captur e the output from a command, use
backticks or qx// instead. The system function works exactly like exec, except that
system does a fork first and then, after the exec, waits for the executed program to
complete. That is, it runs the program for you and retur ns when it’s done, whereas
exec replaces your running program with the new one, so it never retur ns if the
replacement succeeds.

Argument processing varies depending on the number of arguments, as described
under exec, including determining whether the shell will be called and whether
you’ve lied to the program about its name by specifying a separate PATHNAME.

Because system and backticks block SIGINT and SIGQUIT, sending one of those sig-
nals (such as from a Control-C) to the program being run doesn’t interrupt your
main program. But the other program you’re running does get the signal. Check
the retur n value from system to see whether the program you were running exited
pr operly or not.

@args = ("command", "arg1", "arg2");
system(@args) == 0

or die "system @args failed: $?"

The retur n value is the exit status of the program as retur ned thr ough the wait (2)
syscall. Under traditional semantics, to get the real exit value, divide by 256 or shift
right by 8 bits. That’s because the lower byte has something else in it. (Two

Functions

Perl Functions in Alphabetical Order 811

812 Chapter 29: Functions

somethings, really.) The lowest seven bits indicate the signal number that killed
the process (if any), and the eighth bit indicates whether the process dumped
cor e. You can check all possible failure possibilities, including signals and core
dumps, by inspecting $? ($CHILD_ERROR):

$exit_value = $? >> 8;
$signal_num = $? & 127; # or 0x7f, or 0177, or 0b0111_1111
$dumped_core = $? & 128; # or 0x80, or 0200, or 0b1000_0000

When the program has been run through the system shell* because you had only
one argument and that argument had shell metacharacters in it, normal retur n
codes are subject to that shell’s additional quirks and capabilities. In other words,
under those circumstances, you may be unable to recover the detailed information
described earlier.

syswr ite $! $@ X
ARG

syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET
syswrite FILEHANDLE, SCALAR, LENGTH
syswrite FILEHANDLE, SCALAR

This function attempts to write LENGTH bytes of data from variable SCALAR to the
specified FILEHANDLE using the write (2) syscall. The function retur ns the number of
bytes written, or undef on error. The OFFSET, if specified, says where in the string
to start writing from. (You might do this if you were using the string as a buffer,
for instance, or if you needed to recover from a partial write.) A negative OFFSET

specifies that writing should start that many bytes backward from the end of the
string. If SCALAR is empty, the only OFFSET per mitted is 0. An exception is raised if
LENGTH is negative or if OFFSET points outside the string.

To copy data from filehandle FROM into filehandle TO, you can use something like:

use Errno qw/EINTR/;
$blksize = (stat FROM)[11] || 16384; # preferred block size?
while ($len = sysread FROM, $buf, $blksize) {

if (!defined $len) {
next if $! == EINTR;
die "System read error: $!\n";

}
$offset = 0;
while ($len) { # Handle partial writes.

$written = syswrite TO, $buf, $len, $offset;
die "System write error: $!\n" unless defined $written;
$offset += $written;
$len -= $written;

}
}

* That’s /bin/sh by definition, or whatever makes sense on your platform, but not whatever shell the
user just happens to be using at the time.

You must be prepar ed to handle the problems that standard I/O normally handles
for you, such as partial writes. Because syswrite bypasses the C standard I/O
library, do not mix calls to it with reads (other than sysread), writes (like print,
printf, or write), or other stdio functions like seek, tell, or eof unless you are
into heavy wizardry.*

tell X
ARG

tell FILEHANDLE
tell

This function retur ns the current file position (in bytes, zero-based) for FILEHANDLE.
This value typically will be fed to the seek function at some future time to get
back to the current position. FILEHANDLE may be an expression giving the name of
the actual filehandle, or a refer ence to a filehandle object. If FILEHANDLE is omitted,
the function retur ns the position of the file last read. File positions are only mean-
ingful on regular files. Devices, pipes, and sockets have no file position.

Ther e is no systell function. Use sysseek(FH, 0, 1) for that. Seek seek for an
example telling how to use tell.

telldir X
ARG

X
U

telldir DIRHANDLE

This function retur ns the current position of the readdir routines on DIRHANDLE.
This value may be given to seekdir to access a particular location in a directory.
The function has the same caveats about possible directory compaction as the cor-
responding system library routine. This function might not be implemented every-
wher e that readdir is. Even if it is, no calculation may be done with the retur n
value. It’s just an opaque value, meaningful only to seekdir.

tie $@

tie VARIABLE, CLASSNAME, LIST

This function binds a variable to a package class that will provide the implementa-
tion for the variable. VARIABLE is the variable (scalar, array, or hash) or typeglob
(r epr esenting a filehandle) to be tied. CLASSNAME is the name of a class implement-
ing objects of an appropriate type.

Any additional arguments are passed to the appropriate constructor method of the
class, meaning one of TIESCALAR, TIEARRAY, TIEHASH, or TIEHANDLE. (If the appropri-
ate method is not found, an exception is raised.) Typically, these are arguments

* Or pain.

Functions

Perl Functions in Alphabetical Order 813

814 Chapter 29: Functions

such as might be passed to the dbm_open (3) function of C, but their meaning is
package dependent. The object retur ned by the constructor is in turn retur ned by
the tie function, which can be useful if you want to access other methods in
CLASSNAME. (The object can also be accessed through the tied function.) So, a class
for tying a hash to an ISAM implementation might provide an extra method to tra-
verse a set of keys sequentially (the “S” of ISAM), since your typical DBM imple-
mentation can’t do that.

Functions such as keys and values may retur n huge list values when used on large
objects like DBM files. You may prefer to use the each function to iterate over
such. For example:

use NDBM_File;
tie %ALIASES, "NDBM_File", "/etc/aliases", 1, 0

or die "Can’t open aliases: $!\n";
while (($key,$val) = each %ALIASES) {

print $key, ’ = ’, $val, "\n";
}
untie %ALIASES;

A class implementing a hash should provide the following methods:

TIEHASH CLASS, LIST
FETCH SELF, KEY
STORE SELF, KEY, VALUE
DELETE SELF, KEY
CLEAR SELF
EXISTS SELF, KEY
FIRSTKEY SELF
NEXTKEY SELF, LASTKEY
DESTROY SELF

A class implementing an ordinary array should provide the following methods:

TIEARRAY CLASS, LIST
FETCH SELF, SUBSCRIPT
STORE SELF, SUBSCRIPT, VALUE
FETCHSIZE SELF
STORESIZE SELF, COUNT
CLEAR SELF
PUSH SELF, LIST
POP SELF
SHIFT SELF
UNSHIFT SELF, LIST
SPLICE SELF, OFFSET, LENGTH, LIST
EXTEND SELF, COUNT
DESTROY SELF

A class implementing a scalar should provide the following methods:

TIESCALAR CLASS, LIST
FETCH SELF,
STORE SELF, VALUE
DESTROY SELF

A class implementing a filehandle should have the following methods:

TIEHANDLE CLASS, LIST
READ SELF, SCALAR, LENGTH, OFFSET
READLINE SELF
GETC SELF
WRITE SELF, SCALAR, LENGTH, OFFSET
PRINT SELF, LIST
PRINTF SELF, FORMAT, LIST
CLOSE SELF
DESTROY SELF

Not all methods indicated above need be implemented: the Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle modules provide base classes that have reasonable
defaults. See Chapter 14, Tied Variables, for a detailed discussion of all these meth-
ods. Unlike dbmopen, the tie function will not use or require a module for you—
you need to do that explicitly yourself. See the DB_File and Config modules for
inter esting tie implementations.

tied
tied VARIABLE

This function retur ns a refer ence to the object underlying the scalar, array, hash, or
typeglob contained in VARIABLE (the same value that was originally retur ned by the
tie call that bound the variable to a package). It retur ns the undefined value if
VARIABLE isn’t tied to a package. So, for example, you can use:

ref tied %hash

to find out which package your hash is tied to. (Presuming you’ve forgotten.)

time
time

This function retur ns the number of nonleap seconds since “the epoch”, tradition-
ally 00:00:00 on January 1st, 1970, UTC.* The retur ned value is suitable for feeding
to gmtime and localtime, for comparison with file modification and access times
retur ned by stat, and for feeding to utime.

* Not to be confused with the “epic”, which is about the making of Unix. (Other operating systems
may have a differ ent epoch, not to mention a differ ent epic.)

Functions

Perl Functions in Alphabetical Order 815

816 Chapter 29: Functions

$start = time();
system("some slow command");
$end = time();
if ($end - $start > 1) {

print "Program started: ", scalar localtime($start), "\n";
print "Program ended: ", scalar localtime($end), "\n";

}

times X
U

times

In list context, this function retur ns a four-element list giving the user and system
CPU times, in seconds (probably fractional), for this process and terminated chil-
dr en of this process.

($user, $system, $cuser, $csystem) = times();
printf "This pid and its kids have consumed %.3f seconds\n",

$user + $system + $cuser + $csystem;

In scalar context, retur ns just the user time. For example, to time the execution
speed of a section of Perl code:

$start = times();
...
$end = times();
printf "that took %.2f CPU seconds of user time\n",

$end - $start;

tr/// X
RO

tr///
y///

This is the transliteration (also called translation) operator, which is like the y///

operator in the Unix sed pr ogram, only better, in everybody’s humble opinion. See
Chapter 5.

tr uncate $! X
ARG

X
U

X
T

truncate FILEHANDLE, LENGTH
truncate EXPR, LENGTH

This function truncates the file opened on FILEHANDLE, or named by EXPR, to the
specified length. The function raises an exception if ftruncate (2) or an equivalent
isn’t implemented on your system. (You can always truncate a file by copying the
fr ont of it, if you have the disk space.) The function retur ns true on success, undef
otherwise.

uc $_ T

uc EXPR
uc

This function retur ns an uppercased version of EXPR. This is the internal function
implementing the \U escape in double-quoted strings. Perl will try to do the right
thing with respect to your current locale settings, but we’re still working out how
that interacts with Unicode. See the perllocalle manpage for the latest guess. In any
event, when Perl uses the Unicode tables, uc translates to uppercase rather than to
titlecase. See ucfirst for titlecase translation.

ucfir st $_ T

ucfirst EXPR
ucfirst

This function retur ns a version of EXPR with the first character capitalized (title-
cased in “Unicodese”), and other characters left alone. This is the internal function
implementing the \u escape in double-quoted strings. Your current LC_CTYPE locale
may be respected if you use locale and your data doesn’t look like Unicode, but
we make no guarantees at this time.

To force the initial character to titlecase and everything else to lowercase, use:

ucfirst lc $word

which is equivalent to "\u\L$word".

umask X
T

X
U

umask EXPR
umask

This function sets the umask for the process and retur ns the old one using the
umask (2) syscall. Your umask tells the operating system which permission bits to
disallow when creating a new file, including files that happen to be directories. If
EXPR is omitted, the function merely retur ns the current umask. For example, to
ensur e that the “user” bits are allowed, and the “other” bits disallowed, try some-
thing like:

umask((umask() & 077) | 7); # don’t change the group bits

Remember that a umask is a number, usually given in octal; it is not a string of
octal digits. See also oct, if all you have is a string. Remember also that the
umask’s bits are complemented compared to ordinary permissions.

The Unix permission rwxr-x- - - is repr esented as three sets of three bits, or three
octal digits: 0750 (the leading 0 indicates octal and doesn’t count as one of the

Functions

Perl Functions in Alphabetical Order 817

818 Chapter 29: Functions

digits). Since the umask’s bits are flipped, it repr esents disabled permissions bits.
The permission (or “mode”) values you supply to mkdir or sysopen ar e modified
by your umask, so even if you tell sysopen to create a file with permissions 0777, if
your umask is 0022, the file is created with permissions 0755. If your umask wer e
0027 (gr oup can’t write; others can’t read, write, or execute), then passing sysopen

a MASK of 0666 would create a file with mode 0640 (since 0666 & ˜0027 is 0640).

Her e’s some advice: supply a creation mode of 0666 for regular files (in sysopen)
and one of 0777 both for directories (in mkdir) and for executable files. This gives
users the freedom of choice: if they want protected files, they choose process
umasks of 022, 027, or even the particularly antisocial mask of 077. Programs
should rarely if ever make policy decisions better left to the user. The exception to
this rule is programs that write files that should be kept private: mail files, web
br owser cookies, .r hosts files, and so on.

If umask (2) is not implemented on your system and you are trying to restrict your
own access (that is, if EXPR & 0700) > 0), you’ll trigger a run-time exception. If
umask (2) is not implemented and you are not trying to restrict your own access,
the function simply retur ns undef.

undef X
RO

undef EXPR
undef

undef is the name by which we refer to the abstraction known as “the undefined
value”. It also conveniently happens to be the name of a function that always
retur ns the undefined value. We happily confuse the two.

Coincidentally, the undef function can also explicitly undefine an entity if you sup-
ply its name as an argument. The EXPR argument, if specified, must be an lvalue.
Hence you may only use this on a scalar value, an entire array or hash, a subrou-
tine name (using the & pr efix), or a typeglob. Any storage associated with the
object will be recover ed for reuse (though not retur ned to the system, for most
operating systems). The undef function will probably not do what you expect on
most special variables. Using it on a read-only variable like $1 raises an exception.

The undef function is a unary operator, not a list operator, so you can only unde-
fine one thing at a time. Here are some uses of undef as a unary operator:

undef $foo;
undef $bar{’blurfl’}; # Different from delete $bar{’blurfl’};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.

Without an argument, undef is just used for its value:

select(undef, undef, undef, $naptime);

return (wantarray ? () : undef) if $they_blew_it;
return if $they_blew_it; # same thing

You may use undef as a placeholder on the left side of a list assignment, in which
case the corresponding value from the right side is simply discarded. Apart from
that, you may not use undef as an lvalue.

($a, $b, undef, $c) = &foo; # Ignore third value returned

Also, do not try to compare anything to undef—it doesn’t do what you think. All it
does is compare against 0 or the null string. Use the defined function to determine
if a value is defined.

unlink $_ $! X
T

unlink LIST
unlink

This function deletes a list of files.* The function retur ns the number of filenames
successfully deleted. Some sample examples:

$count = unlink ’a’, ’b’, ’c’;
unlink @goners;
unlink glob("*.orig");

The unlink function will not delete directories unless you are superuser and the
supply -U command-line option to Perl. Even if these conditions are met, be
war ned that unlinking a directory can inflict Serious Damage on your filesystem.
Use rmdir instead.

Her e’s a simple rm command with very simple error checking:

#!/usr/bin/perl
@cannot = grep {not unlink} @ARGV;
die "$0: could not unlink @cannot\n" if @cannot;

unpack $@

unpack TEMPLATE, EXPR

This function does the reverse of pack: it expands a string (EXPR) repr esenting a
data structure into a list of values according to the TEMPLATE and retur ns those val-
ues. In scalar context, it can be used to unpack a single value. The TEMPLATE her e

* Actually, under a POSIX filesystem, it removes the directory entries (filenames) that refer to the real
files. Since a file may be refer enced (linked) from more than one directory, the file isn’t removed
until the last refer ence to it is removed.

Functions

Perl Functions in Alphabetical Order 819

820 Chapter 29: Functions

has much the same format as it has in the pack function — it specifies the order
and type of the values to be unpacked. See pack for a detailed description of TEM-
PLATE. An invalid element in the TEMPLATE, or an attempt to move outside the
string with the x, X, or @ for mats, raises an exception.

The string is broken into chunks described by the TEMPLATE. Each chunk is con-
verted separately to a value. Typically, the bytes of the string either are the result
of a pack, or repr esent a C structur e of some kind.

If the repeat count of a field is larger than the remainder of the input string allows,
the repeat count is silently decreased. (Normally, you’d use a repeat count of *
her e, anyway.) If the input string is longer than what TEMPLATE describes, the rest
of the string is ignored.

The unpack function is also useful for plain text data, too, not just binary data.
Imagine that you had a data file that contained records that looked like this:

1986 Ender’s Game Orson Scott Card
1985 Neuromancer William Gibson
1984 Startide Rising David Brin
1983 Foundation’s Edge Isaac Asimov
1982 Downbelow Station C. J. Cherryh
1981 The Snow Queen Joan D. Vinge

you can’t use split to parse out the fields because they have no distinct separator.
Instead, fields are deter mined by their byte-offset into the record. So even though
this is a regular text record, because it’s in a fixed format, you want to use unpack

to pull it apart:

while (<>) {
($year, $title, $author) = unpack("A4 x A23 A*", $_);
print "$author won ${year}’s Hugo for $title.\n";

}

(The reason we wrote ${year}’s ther e is because Perl would have treated $year’s

as meaning $year::s.)

Her e’s a complete uudecode pr ogram:

#!/usr/bin/perl
$_ = <> until ($mode,$file) = /ˆbegin\s*(\d*)\s*(\S*)/;
open(OUT,"> $file") if $file ne "";
while (<>) {

last if /ˆend/;
next if /[a-z]/;
next unless int((((ord() - 32) & 077) + 2) / 3) ==

int(length() / 4);
print OUT unpack "u", $_;

}
chmod oct($mode), $file;

In addition to fields allowed in pack, you may prefix a field with %number to pro-
duce a simple number-bit additive checksum of the items instead of the items them-
selves. Default is a 16-bit checksum. The checksum is calculated by summing
numeric values of expanded values (for string fields, the sum of ord($char) is
taken, and for bit fields, the sum of zeros and ones). For example, the following
computes the same number as the SysV sum (1) program:

undef $/;
$checksum = unpack ("%32C*", <>) % 65535;

The following efficiently counts the number of set bits in a bitstring:

$setbits = unpack "%32b*", $selectmask;

Her e’s a simple BASE64 decoder:

while (<>) {
tr#A-Za-z0-9+/##cd; # remove non-base64 chars
tr#A-Za-z0-9+/# -_#; # convert to uuencoded format
$len = pack("c", 32 + 0.75*length); # compute length byte
print unpack("u", $len . $_); # uudecode and print

}

unshift
unshift ARRAY, LIST

This function does the opposite of shift. (Or the opposite of push, depending on
how you look at it.) It prepends LIST to the front of the array, and retur ns the new
number of elements in the array:

unshift @ARGV, ’-e’, $cmd unless $ARGV[0] =˜ /ˆ-/;

Note the LIST is prepended whole, not one element at a time, so the prepended
elements stay in the same order. Use reverse to do the reverse.

untie
untie VARIABLE

Br eaks the binding between the variable or typeglob contained in VARIABLE and
the package that it’s tied to. See tie, and all of Chapter 14, but especially the sec-
tion “A Subtle Untying Trap”.

Functions

Perl Functions in Alphabetical Order 821

822 Chapter 29: Functions

use $! $@

use MODULE VERSION LIST
use MODULE VERSION ()
use MODULE VERSION
use MODULE LIST
use MODULE ()
use MODULE
use VERSION

The use declaration loads in a module, if it hasn’t been loaded before, and imports
subr outines and variables into the current package from the named module.
(Technically speaking, it imports some semantics into the current package from
the named module, generally by aliasing certain subroutine or variable names into
your package.) Most use declarations looks like this:

use MODULE LIST;

That is exactly equivalent to saying:

BEGIN { require MODULE; import MODULE LIST; }

The BEGIN forces the require and import to happen at compile time. The require

makes sure the module is loaded into memory if it hasn’t been yet. The import is
not a built-in—it’s just an ordinary class method call into the package named by
MODULE to tell that module to pull the list of features back into the current package.
The module can implement its import method any way it likes, though most mod-
ules just choose to derive their import method via inheritance from the Exporter
class that is defined in the Exporter module. See Chapter 11, Modules, and the
Exporter module for more infor mation. If no import method can be found, then
the call is skipped without murmur.

If you don’t want your namespace altered, explicitly supply an empty list:

use MODULE ();

That is exactly equivalent to the following:

BEGIN { require MODULE; }

If the first argument to use is a version number like 5.6.2, the currently executing
version of Perl must be at least as modern as the version specified. If the current
version of Perl is less than VERSION, an err or message is printed and Perl exits
immediately. This is useful for checking the current Perl version before loading
library modules that depend on newer versions, since occasionally we have to
“br eak” the misfeatures of older versions of Perl. (We try not to break things any
mor e than we have to. In fact, we often try to break things less than we have to.)

Speaking of not breaking things, Perl still accepts old version numbers of the form:

use 5.005_03;

However, in order to align better with industry standards, Perl 5.6 now accepts,
(and we prefer to see) the three-tuple form:

use 5.6.0; # That’s version 5, subversion 6, patchlevel 0.

If the VERSION argument is present after MODULE, then the use will call the VERSION

method in class MODULE with the given VERSION as an argument. Note that there is
no comma after VERSION ! The default VERSION method, which is inherited from the
UNIVERSAL class, croaks if the given version is larger than the value of the variable
$Module::VERSION.

See Chapter 32 for a list of standard modules.

Because use pr ovides a wide-open interface, pragmas (compiler directives) are
also implemented via modules. Examples of currently implemented pragmas
include:

use autouse ’Carp’ => qw(carp croak);
use bytes;
use constant PI => 4 * atan2(1,1);
use diagnostics;
use integer;
use lib ’/opt/projects/spectre/lib’;
use locale;
use sigtrap qw(die INT QUIT);
use strict qw(subs vars refs);
use warnings "deprecated";

Many of these pragmatic modules import semantics into the current lexical scope.
(This is unlike ordinary modules, which only import symbols into the current
package, which has little relation to the current lexical scope other than that the
lexical scope is being compiled with that package in mind. That is to say . . . oh,
never mind, see Chapter 11.)

Ther e’s a corr esponding declaration, no, that “unimports” any meanings originally
imported by use that have since become, er, unimportant:

no integer;
no strict ’refs’;
no utf8;
no warnings "unsafe";

See Chapter 31 for a list of standard pragmas.

Functions

Perl Functions in Alphabetical Order 823

824 Chapter 29: Functions

utime $! X
T

X
U

utime LIST

This function changes the access and modification times on each file of a list of
files. The first two elements of the list must be the numerical access and modifica-
tion times, in that order. The function retur ns the number of files successfully
changed. The inode change time of each file is set to the current time. Here’s an
example of a touch command that sets the modification date of the file (assuming
you’r e the owner) to about a month in the future:

#!/usr/bin/perl
montouch - post-date files now + 1 month
$day = 24 * 60 * 60; # 24 hours of seconds
$later = time() + 30 * $day; # 30 days is about a month
utime $later, $later, @ARGV;

and here’s a more sophisticated touch-like command with a smattering of error
checking:

#!/usr/bin/perl
montouch - post-date files now + 1 month
$later = time() + 30 * 24 * 60 * 60;
@cannot = grep {not utime $later, $later, $_} @ARGV;
die "$0: Could not touch @cannot.\n" if @cannot;

To read the times from existing files, use stat and then pass the appropriate fields
thr ough localtime or gmtime for printing.

values
values HASH

This function retur ns a list consisting of all the values in the indicated HASH. The
values are retur ned in an apparently random order, but it is the same order as
either the keys or each function would produce on the same hash. Oddly, to sort a
hash by its values, you usually need to use the keys function, so see the example
under keys for that.

You can modify the values of a hash using this function because the retur ned list
contains aliases of the values, not just copies. (In earlier versions, you needed to
use a hash slice for that.)

for (@hash{keys %hash}) { s/foo/bar/g } # old way
for (values %hash) { s/foo/bar/g } # now changes values

Using values on a hash that is bound to a humongous DBM file is bound to pro-
duce a humongous list, causing you to have a humongous process. You might pre-
fer to use the each function, which will iterate over the hash entries one by one
without slurping them all into a single gargantuan, er, humongous list.

vec X
RO

vec EXPR, OFFSET, BITS

The vec function provides compact storage of lists of unsigned integers. These
integers are packed as tightly as possible within an ordinary Perl string. The string
in EXPR is treated as a bit string made up of some arbitrary number of elements
depending on the length of the string.

OFFSET specifies the index of the particular element you’re inter ested in. The syn-
taxes for reading and writing the element are the same, since vec stor es or retur ns
the value of the element depending on whether you use it in an lvalue or an
rvalue context.

BITS specifies how wide each element is in bits, which must be a power of two: 1,
2, 4, 8, 16, or 32 (and also 64 on some platforms). (An exception is raised if any
other value is used.) Each element can therefor e contain an integer in the range
0..(2**BITS)-1. For the smaller sizes, as many elements as possible are packed
into each byte. When BITS is 1, ther e ar e eight elements per byte. When BITS is 2,
ther e ar e four elements per byte. When BITS is 4, ther e ar e two elements (tradi-
tionally called nybbles) per byte. And so on. Integers larger than a byte are stor ed
in big-endian order.

A list of unsigned integers can be stored in a single scalar variable by assigning
them individually to the vec function. (If EXPR is not a valid lvalue, an exception is
raised.) In the following example, the elements are each 4 bits wide:

$bitstring = "";
$offset = 0;

foreach $num (0, 5, 5, 6, 2, 7, 12, 6) {
vec($bitstring, $offset++, 4) = $num;

}

If an element off the end of the string is written to, Perl will first extend the string
with sufficiently many zero bytes.

The vectors stored in the scalar variable can be subsequently retrieved by specify-
ing the correct OFFSET.

$num_elements = length($bitstring)*2; # 2 elements per byte

foreach $offset (0 .. $num_elements-1) {
print vec($bitstring, $offset, 4), "\n";

}

If the selected element is off the end of the string, a value of 0 is retur ned.

Strings created with vec can also be manipulated with the logical operators |, &, ˆ,
and ˜. These operators will assume that a bit string operation is desired when both

Functions

Perl Functions in Alphabetical Order 825

826 Chapter 29: Functions

operands are strings. See the examples of this in Chapter 3, Unary and Binary
Operators, in the section “Bitwise Operators”.

If BITS == 1, a bitstring can be created to store a series of bits all in one scalar.
The ordering is such that vec($bitstring,0,1) is guaranteed to go into the lowest
bit of the first byte of the string.

@bits = (0,0,1,0, 1,0,1,0, 1,1,0,0, 0,0,1,0);

$bitstring = "";
$offset = 0;

foreach $bit (@bits) {
vec($bitstring, $offset++, 1) = $bit;

}

print "$bitstring\n"; # "TC", ie. ’0x54’, ’0x43’

A bit string can be translated to or from a string of 1’s and 0’s by supplying a “b*”
template to pack or unpack. Alter natively, pack can be used with a “b*” template to
cr eate the bit string from a string of 1’s and 0’s. The ordering is compatible with
that expected by vec.

$bitstring = pack "b*", join(’’, @bits);
print "$bitstring\n"; # "TC", same as before

unpack can be used to extract the list of 0’s and 1’s from the bit string.

@bits = split(//, unpack("b*", $bitstring));
print "@bits\n"; # 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0

If you know the exact length in bits, it can be used in place of the “*”.

See select for additional examples of using bitmaps generated with vec. See pack

and unpack for higher-level manipulation of binary data.

wait $! $? X
U

wait

This function waits for a child process to terminate and retur ns the PID of the
deceased process, or -1 if there are no child processes (or on some systems, if
child processes are being automatically reaped). The status is retur ned in $? as
described under system. If you get zombie child processes, you should be calling
this function, or waitpid.

If you expected a child and didn’t find it with wait, you probably had a call to
system, a close on a pipe, or backticks between the fork and the wait. These
constructs also do a wait (2) and may have harvested your child process. Use
waitpid to avoid this problem.

waitpid $! $? X
U

waitpid PID, FLAGS

This function waits for a particular child process to terminate and retur ns the PID
when the process is dead, -1 if there are no child processes, or 0 if the FLAGS spec-
ify nonblocking and the process isn’t dead yet. The status of the dead process is
retur ned in $? as described under system. To get valid flag values, you’ll need to
import the ":sys_wait_h" import tag group from the POSIX module. Here’s an
example that does a nonblocking wait for all pending zombie processes.

use POSIX ":sys_wait_h";
do {

$kid = waitpid(-1,&WNOHANG);
} until $kid == -1;

On systems that implement neither the waitpid (2) nor wait4 (2) syscall, FLAGS may
be specified only as 0. In other words, you can wait for a specific PID ther e, but
you can’t do so in nonblocking mode.

On some systems, a retur n value of -1 could mean that child processes are being
automatically reaped because you set $SIG{CHLD} = ’IGNORE’.

wantar ray
wantarray

This function retur ns true if the context of the currently executing subroutine is
looking for a list value, and false otherwise. The function retur ns a defined false
value ("") if the calling context is looking for a scalar, and the undefined false
value (undef) if the calling context isn’t looking for anything; that is, if it’s in void
context.

Her e’s ar e examples of typical usage:

return unless defined wantarray; # don’t bother doing more
my @a = complex_calculation();
return wantarray ? @a : \@a;

See also caller. This function should really have been named “wantlist”, but we
named it back when list contexts were still called array contexts.

warn $!

warn LIST
warn

This function produces an error message, printing LIST to STDERR just like die, but
doesn’t try to exit or throw an exception. For example:

Functions

Perl Functions in Alphabetical Order 827

828 Chapter 29: Functions

warn "Debug enabled" if $debug;

If LIST is empty and $@ alr eady contains a value (typically from a previous eval),
the string “\t...caught” is appended following $@ on STDERR. (This is similar to the
way die pr opagates err ors, except that warn doesn’t propagate (reraise) the excep-
tion.) If the message string supplied is empty, the message “Warning: Something’s
wrong” is used.

As with die, if the strings supplied don’t end in a newline, file and line number
infor mation is automatically appended. The warn function is unrelated to Perl’s -w
command-line option, but can be used in conjunction with it, such as when you
wish to emulate built-ins:

warn "Something wicked\n" if $ˆW;

No message is printed if there is a $SIG{_ _WARN_ _} handler installed. It is the han-
dler’s responsibility to deal with the message as it sees fit. One thing you might
want to do is promote a mere war ning into an exception:

local $SIG{__WARN_ _} = sub {
my $msg = shift;
die $msg if $msg =˜ /isn’t numeric/;

};

Most handlers must therefor e make arrangements to display the warnings that they
ar e not prepar ed to deal with, by calling warn again in the handler. This is per-
fectly safe; it won’t produce an endless loop because __WARN_ _ hooks are not
called from inside __WARN_ _ hooks. This behavior differs slightly from that of
$SIG{_ _DIE_ _} handlers (which don’t suppress the error text, but can instead call
die again to change it).

Using a __WARN_ _ handler provides a powerful way to silence all warnings, even
the so-called mandatory ones. Sometimes you need to wrap this in a BEGIN{}

block so that it can happen at compile time:

wipe out *all* compile-time warnings
BEGIN { $SIG{__WARN_ _} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!

no compile-time or run-time warnings before here
$DOWARN = 1; # *not* a built-in variable

run-time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See the use warnings pragma for lexically scoped control of warnings. See the
Carp module’s carp and cluck functions for other ways to produce warning mes-
sages.

wr ite $! $@ X
ARG

write FILEHANDLE
write

This function writes a formatted record (possibly multiline) to the specified file-
handle, using the format associated with that filehandle—see the section “Format
Variables” in Chapter 7. By default the format associated with a filehandle is the
one having the same name as the filehandle. However, the format for a filehandle
may be changed by altering the $˜ variable after you select that handle:

$old_fh = select(HANDLE);
$˜ = "NEWNAME";
select($old_fh);

or by saying:

use IO::Handle;
HANDLE->format_name("NEWNAME");

Since formats are put into a package namespace, you may have to fully qualify the
for mat name if the format was declared in a differ ent package:

$˜ = "OtherPack::NEWNAME";

Top-of-for m pr ocessing is handled automatically: if there is insuf ficient room on
the current page for the formatted record, the page is advanced by writing a form
feed, a special top-of-page format is used for the new page header, and then the
record is written. The number of lines remaining on the current page is in the vari-
able $-, which can be set to 0 to force a new page on the next write. (You may
need to select the filehandle first.) By default, the name of the top-of-page format
is the name of the filehandle with “_TOP” appended, but the format for a filehandle
may be changed altering the $ˆ variable after selecting that handle, or by saying:

use IO::Handle;
HANDLE->format_top_name("NEWNAME_TOP");

If FILEHANDLE is unspecified, output goes to the current default output filehandle,
which starts out as STDOUT, but may be changed by the single-argument form of
the select operator. If the FILEHANDLE is an expression, then the expression is
evaluated to determine the actual FILEHANDLE at run time.

If a specified format or the current top-of-page format does not exist, an exception
is raised.

The write function is not the opposite of read. Unfortunately. Use print for simple
string output. If you looked up this entry because you wanted to bypass standard
I/O, see syswrite.

Functions

Perl Functions in Alphabetical Order 829

830 Chapter 29: Functions

y// X
RO

y///

The transliteration (historically, also called translation) operator, also known as
tr///. See Chapter 5.

30
The Standard Perl Librar y

The standard Perl distribution contains much more than just the perl executable
that executes your scripts. It also includes hundreds of modules filled with
reusable code. Because the standard modules are available everywhere, if you use
one of them in your program, you can run your program anywhere Perl is
installed, without any extra installation steps.

Librar y Science
Befor e we enumerate these modules in the following chapters, let’s review a bit of
the terminology we’ve been splattering about.

namespace
A namespace is a place to keep names so they won’t be confused with names
in other namespaces. This leaves you with the simpler problem of not confus-
ing the namespaces themselves. There are two ways to avoid confusing
namespaces with each other: give them unique names, or give them unique
locations. Perl lets you do both: named namespaces are called packages and
unnamed namespaces are called lexical scopes. Since lexical scopes can be no
larger than a file, and since the standard modules are file-sized (at minimum),
it follows that all module interfaces must make use of named namespaces
(packages) if they’re to be used by anyone outside the file.

package
A package is Perl’s standard mechanism for declaring a named namespace. It’s
a simple mechanism for grouping together related functions and variables. Just
as two directories can both contain a (differ ent) file named fr ed, two differ ent

Library

831

832 Chapter 30: The Standard Perl Librar y

parts of a Perl program can each have its own $fred variable or &fred func-
tion. Even though these variables or functions seem to have the same name as
one another, those names reside in distinct namespaces managed by the pack-

age declaration. Package names are used to identify both modules and classes,
as described in Chapter 11, Modules, and in Chapter 12, Objects.

library
The term library is unfortunately rather overloaded in Perl culture. These days
we normally use the term to mean the entire set of Perl modules installed on
your system.

Historically, a Perl library was also a single file containing a collection of sub-
routines sharing some common purpose. Such a file often has the file exten-
sion .pl, short for “perl library”. We still use that extension for random bits of
Perl code that you pull in with do FILE or with require. Although it’s not a
full-fledged module, a library file typically declares itself to be in a distinct
package so related variables and subroutines can be kept together and don’t
accidentally interfer e with other variables in your program. There is no
mandatory extension; others besides .pl sometimes occur as explained later in
this chapter. These simple, unstructured library files have been largely super-
seded by the module.

module
A Perl module is a library file that conforms to certain specific conventions
that allow one or more files implementing that module to be brought in with a
single use declaration at compile time. Module filenames must always end in
.pm, because the use declaration assumes it. The use declaration will also
translate the package separator :: to whatever your directory separator is, so
that the directory structure in your Perl library can match your package struc-
tur e. Chapter 11 describes how to create your own Perl modules.

class
A class is just a module that implements methods for objects associated with
the module’s package name. If you’re inter ested in object-oriented modules,
see Chapter 12.

pragma
A pragma is just a special module that twiddles Perl’s internal knobs. See
Chapter 31, Pragmatic Modules.

extension
An extension is a Perl module that, in addition to loading a .pm file, also loads
a shar ed library implementing the module’s semantics in C or C++.

pr ogram
A Perl pr ogram is code designed to be run as an independent entity; also
known as a script when you don’t want anyone to expect much from it, an
application when it’s big and complicated, an executable when its caller
doesn’t care what language it was written in, or an enterprise solution when it
costs a fortune. Perl programs might exist as source code, bytecode, or native
machine code. If it’s something you might run from the command line, we’ll
call it a program.

A Tour of the Perl Librar y
You’ll save an enormous amount of time if you make the effort to familiarize your-
self with the standard Perl library, because there’s no reason to reinvent those par-
ticular wheels. You should be aware, however, that this collection contains a wide
range of material. Although some libraries may be extremely helpful, others might
be completely irrelevant to your needs. For example, if you’re only writing in
100% pure Perl, those modules that support the dynamic loading of C and C++
extensions aren’t going to help you much.

Perl expects to find library modules somewhere in its library “include” path, @INC.
This array specifies the ordered list of directories Perl searches when you load in
some library code using the keywords do, require, or use. You can easily list out
those directories by calling Perl with the -V switch for Very Verbose Version infor-
mation, or with this simple code:

% perl -le "print foreach @INC"
/usr/libdata/perl5/sparc-openbsd/5.00503
/usr/local/libdata/perl5/sparc-openbsd/5.00503
/usr/libdata/perl5
/usr/local/libdata/perl5
/usr/local/libdata/perl5/site_perl/sparc-openbsd
/usr/libdata/perl5/site_perl/sparc-openbsd
/usr/local/libdata/perl5/site_perl
/usr/libdata/perl5/site_perl
.

That’s only one sample of possible output. Every installation of Perl uses its own
paths. The important thing is that, although contents will vary depending upon
your vendor’s and your site’s installation policy, you can rely upon all standard
libraries being installed with Perl. If you want to find out where a file was actually
loaded from, consult the %INC variable. For a module file, you can find exactly
wher e Perl is getting it from with this command:

% perldoc -l MODULE

Library

A Tour of the Perl Librar y 833

834 Chapter 30: The Standard Perl Librar y

If you look through the directories in @INC and their subdirectories, you’ll find sev-
eral differ ent kinds of files installed. Most have names ending in .pm, but some
end in .pl, .ph, .al, or .so. The ones that most interest you are the first set, because
a suf fix of .pm indicates that the file is a proper Perl module. More on those in a
minute.

The few files you see there ending in .pl ar e those old Perl libraries we mentioned
earlier. They are included for compatibility with ancient releases of Perl from the
80s and early 90s. Because of this, Perl code that worked back in, say, 1990,
should continue to behave properly without any fuss even if you have a modern
version of Perl installed. When writing new code that makes use of the standard
Perl library, you should always elect to use the .pm version over any .pl, wher e
possible. That’s because modules don’t pollute your namespace the way many of
the old .pl files do.

One note on the use of the .pl extension: it means Perl library, not Perl program.
Although .pl is sometimes used to identify Perl programs on web servers that need
to distinguish executable programs from static content in the same directory, we
suggest that you use a suffix of .plx instead to indicate an executable Perl pro-
gram. (Similar advice holds for operating systems that choose interpreters based
on filename extensions.)

Files with extensions of .al ar e small pieces of larger modules will be automatically
loaded when you use their parent .pm file. If you build your module layout using
the standard h2xs tool that comes with Perl (and if you haven’t used Perl’s -A
flag), the make install pr ocedure will use the AutoLoader module to create these
little .al files for you.

The .ph files were made by the standard h2ph pr ogram, a somewhat aging but still
occasionally necessary tool that does its best to translate C prepr ocessor dir ectives
into Perl. The resulting .ph files contain constants sometimes needed by low-level
functions like ioctl, fcntl, or syscall. (Nowadays most of these values are mor e
conveniently and portably available in standard modules such as the POSIX, Errno,
Fcntl, or Socket modules.) See perlinstall for how to install these optional but
sometimes important components.

One last file extension you might encounter while poking around is .so (or what-
ever your system uses for shared libraries). These .so files are platfor m-dependent
portions of extension modules. Originally written in C or C++, these modules have
been compiled into dynamically relocatable object code. The end user doesn’t
need to be aware of their existence, however, because the module interface hides
them. When the user code says require Module or use Module, Perl loads Mod-
ule.pm and executes it, which lets the module pull in any other necessary pieces,

such as Module.so or any autoloaded .al components. In fact, the module could
load anything it jolly well pleases, including 582 other modules. It could download
all of CPAN if it felt like it, and maybe the last two years of fr eshmeat.net archives.

A module is not just a static chunk of code in Perl. It’s an active agent that figures
out how to implement an interface on your behalf. It may follow all the standard
conventions, or it may not. It’s allowed to do anything to warp the meaning of the
rest of your program, up to and including translating the rest of your program into
SPITBOL. This sort of chicanery is considered perfectly fair as long as it’s well doc-
umented. When you use such a Perl module, you’re agr eeing to its contract, not a
standard contract written by Perl.

So you’d best read the fine print.

Library

A Tour of the Perl Librar y 835

31
Pragmatic Modules

A pragma is a special kind of module that affects the compilation phase of your
pr ogram. Some pragmatic modules (or pragmata, for short (or pragmas, for
shorter)) may also affect the execution phase of your program. Think of these as
hints to the compiler. Because they need to be seen at compile time, they’ll only
work when invoked by a use or a no, because by the time a require or a do is run,
compilation is long since over.

By convention, pragma names are written in all lowercase because lowercase
module names are reserved for the Perl distribution itself. When writing your own
modules, use at least one capital letter in the module name to avoid conflict with
pragma names.

Unlike regular modules, most pragmas limit their effects to the rest of the inner-
most enclosing block from which they were invoked. In other words, they’re lexi-
cally scoped, just like my variables. Ordinarily, the lexical scope of an outer block
covers any inner block embedded within it, but an inner block may countermand
a lexically scoped pragma from an outer block by using the no statement:

use strict;
use integer;
{

no strict ’refs’; # allow symbolic references
no integer; # resume floating-point arithmetic
....

}

Mor e so than the other modules Perl ships with, the pragmas form an integral and
essential part of the Perl compilation environment. It’s hard to use the compiler
well if you don’t know how to pass hints to it, so we’ll put some extra effort into
describing pragmas.

836

Another thing to be aware of is that we often use pragmas to prototype features
that later get encoded into “real” syntax. So in some programs you’ll see depre-
cated pragmas like use attrs whose functionality is now supported directly by
subr outine declaration syntax. Similarly, use vars is in the process of being
replaced by our declarations. And use subs may someday be replaced by an over-

ride attribute on ordinary subroutine declarations. We’r e not in a terrible hurry to
br eak the old ways of doing things, but we do think the new ways are prettier.

use attributes
sub afunc : method;
my $closure = sub : method { ... };

use attributes;
@attrlist = attributes::get(\&afunc);

The attributes pragma has two purposes. The first is to provide an internal mech-
anism for declaring attribute lists, which are optional properties associated with
subr outine declarations and (someday soon) variable declarations. (Since it’s an
inter nal mechanism, you don’t generally use this pragma directly.) The second
purpose is to provide a way to retrieve those attribute lists at run time using the
attributes::get function call. In this capacity, attributes is just a standard mod-
ule, not a pragma.

Only a few built-in attributes are curr ently handled by Perl. Package-specific
attributes are allowed by an experimental extension mechanism described in the
section “Package-specific Attribute Handling” of the attributes (3) manpage.

Attribute setting occurs at compile time; attempting to set an unrecognized
attribute is a compilation error. (The error is trappable by eval, but it still stops the
compilation within that eval block.)

Only three built-in attributes for subroutines are curr ently implemented: locked,
method, and lvalue. See Chapter 6, Subr outines, and Chapter 17, Thr eads, for fur-
ther discussion of these. There are curr ently no built-in attributes for variables as
ther e ar e for subroutines, but we can think of several we might like, such as
constant.

The attributes pragma provides two subroutines for general use. They may be
imported if you ask for them.

get This function retur ns a (possibly empty) list of attributes given a single input
parameter that’s a refer ence to a subroutine or variable. The function raises an
exception by invoking Carp::croak if passed invalid arguments.

M
odules

use attributes 837

838 Chapter 31: Pragmatic Modules

reftype
This function acts somewhat like the built-in ref function, but it always
retur ns the underlying, built-in Perl data type of the refer enced value, ignoring
any package into which it might have been blessed.

Pr ecise details of attribute handling remain in flux, so you’d best check out the
online documentation included with your Perl release to see what state it’s all in.

use autouse
use autouse ’Carp’ => qw(carp croak);
carp "this carp was predeclared and autoused";

This pragma provides a mechanism for run-time demand loading of a particular
module only when a function from that module really gets called. It does this by
pr oviding a stub function that replaces itself with the real call once triggered. This
is similar in spirit to the way the standard AutoLoader and SelfLoader modules
behave. In short, it’s a perfor mance hack to help make your Perl program start up
faster (on average) by avoiding compilation of modules that might never ever be
called during a given execution run.

How autouse behaves depends on whether the module is already loaded. For
example, if the module Module is already loaded, then the declaration:

use autouse ’Module’ => qw(func1 func2($;$) Module::func3);

is equivalent to the simple import of two functions:

use Module qw(func1 func2);

This assumes that Module defines func2() with prototype ($;$), and that func1()
and func3() have no prototypes. (More generally, this also assumes that Module
uses Exporter’s standard import method; otherwise, a fatal error is raised.) In any
event, it completely ignores Module::func3 since that is presumably already
declar ed.

If, on the other hand, Module has not yet been loaded when the autouse pragma is
parsed, the pragma declares functions func1 and func2 to be in the current pack-
age. It also declares a function Module::func3 (which could be construed as mildly
antisocial, were it not for the fact that the nonexistence of the Module module has
even more antisocial consequences). When these functions are called, they make
sur e the Module in question is loaded and then replace themselves with calls to the
real functions just loaded.

Because the autouse pragma moves portions of your program’s execution from
compile time to run time, this can have unpleasant ramifications. For example, if
the module you autouse has some initialization that is expected to be done early,
this may not happen early enough. Autousing can also hide bugs in your code
when important checks are moved from compile time to run time.

In particular, if the prototype you’ve specified on autouse line is wrong, you will
not find out about it until the corresponding function is executed (which may be
months or years later, for a rarely called function). To partially alleviate this prob-
lem, you could write your code like this during code development:

use Chase;
use autouse Chase => qw(hue($) cry(&$));
cry "this cry was predeclared and autoused";

The first line ensures that errors in your argument specification will be found early.
When your program graduates from development into production mode, you can
comment out the regular loading of the Chase module and leave just the autousing
call in place. That way you get safety during development and perfor mance during
pr oduction.

use base
use base qw(Mother Father);

This pragma lets a programmer conveniently declare a derived class based upon
the listed parent classes. The declaration above is roughly equivalent to:

BEGIN {
require Mother;
require Father;
push @ISA, qw(Mother Father);

}

The use base pragma takes care of any require needed. When the strict ’vars’

pragma is in scope, use base lets you (in effect) assign to @ISA without first having
to declare our @ISA. (Since the use base pragma happens at compile time, it’s best
to avoid diddling @ISA on your own at run time.)

But beyond this, use base has another property. If any named base class makes
use of the fields facility described under use fields later in this chapter, then the
pragma initializes the package’s special field attributes from the base class. (Multi-
ple inheritance of field classes is not supported. The use base pragma raises an
exception if more than one named base class has fields.)

M
odules

use base 839

840 Chapter 31: Pragmatic Modules

Any base class not yet loaded will be loaded automatically via require. However,
whether to require a base class package is determined not by the customary
inspection of %INC, but by the absence of a global $VERSION in the base package.
This hack keeps Perl from repeatedly trying (and failing) to load a base class that
isn’t in its own requirable file (because, for example, it’s loaded as part of some
other module’s file). If $VERSION is not detected after successfully loading a file, use
base will define $VERSION in the base package, setting it to the string “-1, defined
by base.pm”.

use blib
Fr om the command line:

% perl -Mblib program [args...]
% perl -Mblib=DIR program [args...]

Fr om your Perl program:

use blib;
use blib ’DIR’;

This pragma is intended primarily as a way of testing arbitrary Perl programs
against an uninstalled version of a package through Perl’s -M command-line
switch. It assumes your directory structure was produced by the standard
ExtUtils::MakeMaker module.

The pragma looks for a blib dir ectory structur e starting in the directory named DIR

(or current directory if none was specified), and if it doesn’t find a blib dir ectory
ther e, works its way back up through your “..” dir ectories, scanning up to five
levels of parent directory.

use bytes
use bytes;
no bytes;

The use bytes pragma disables character semantics for the rest of the lexical scope
in which it appears. The no bytes pragma can be used to reverse the effect of use
bytes within the current lexical scope.

Perl normally assumes character semantics in the presence of character data (that
is, data from a source marked as being of a particular character encoding).

To understand the implications and differ ences between character semantics and
byte semantics, see Chapter 15, Unicode. A visit to Tokyo might also help.

use charnames
use charnames HOW;
print "\N{CHARSPEC} is a funny character";

This lexically scoped pragma enables named characters to be interpolated into
strings using the \N{CHARSPEC} notation:

use charnames ’:full’;
print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";

use charnames ’:short’;
print "\N{greek:Sigma} is an upper-case sigma.\n";

use charnames qw(cyrillic greek);
print "\N{sigma} is Greek sigma, and \N{be} is Cyrillic b.\n";

The pragma supports HOW arguments :full and :short, as well as specific script
names.* The HOW argument determines how the character specified by the CHARSPEC

in \N{CHARSPEC}} is to be searched for. If :full is present, the CHARSPEC is first
looked for in the Unicode character tables as a complete Unicode character name.
If :short is present and CHARSPEC has the form SCRIPTNAME:CHARNAME, CHARNAME is
looked for as a letter in script SCRIPTNAME. If HOW contains specific script names,
CHARSPEC is looked for as an individual CHARNAME in each of the given scripts, in the
specified order.

For lookup of CHARNAME inside a given script SCRIPTNAME, the pragma looks in the
table of standard Unicode names for patterns of the form:

SCRIPTNAME CAPITAL LETTER CHARNAME
SCRIPTNAME SMALL LETTER CHARNAME
SCRIPTNAME LETTER CHARNAME

If CHARNAME is entirely lowercase (as in \N{sigma}), the CAPITAL variant is ignored.
Otherwise, the SMALL variant is ignored.

You can write your own module that works like the charnames pragma but defines
character names differ ently. However, the interface to that is still experimental, so
see the manpage for the latest.

* By which we don’t mean Perl scripts. We mean “script” as in some particular style of written letters,
like Roman or Greek or Cyrillic. Unfortunately, “script” is the technical term for that, and we’re not
likely to persuade the Unicode Consortium to use a differ ent ter m.

M
odules

use charnames 841

842 Chapter 31: Pragmatic Modules

use constant
use constant BUFFER_SIZE => 4096;
use constant ONE_YEAR => 365.2425 * 24 * 60 * 60;
use constant PI => 4 * atan2 1, 1;
use constant DEBUGGING => 0;
use constant ORACLE => ’oracle@cs.indiana.edu’;
use constant USERNAME => scalar getpwuid($<);
use constant USERINFO => getpwuid($<);

sub deg2rad { PI * $_[0] / 180 }

print "This line does nothing" unless DEBUGGING;

references can be declared constant
use constant CHASH => { foo => 42 };
use constant CARRAY => [1,2,3,4];
use constant CPSEUDOHASH => [{ foo => 1}, 42];
use constant CCODE => sub { "bite $_[0]\n" };

print CHASH->{foo};
print CARRAY->[$i];
print CPSEUDOHASH->{foo};
print CCODE->("me");
print CHASH->[10]; # compile-time error

This pragma declares the named symbol to be an immutable constant* with the
given scalar or list value. You must make a separate declaration for each symbol.
Values are evaluated in list context. You may override this with scalar as we did
above.

Since these constants don’t have a $ on the front, you can’t interpolate them
dir ectly into double-quotish strings, although you may do so indirectly:

print "The value of PI is @{[PI]}.\n";

Because list constants are retur ned as lists, not as arrays, you must subscript a list-
valued constant using extra parentheses as you would any other list expression:

$homedir = USERINFO[7]; # WRONG
$homedir = (USERINFO)[7]; # ok

Although using all capital letters for constants is recommended to help them stand
out and to help avoid potential collisions with other keywords and subroutine
names, this is merely a convention. Constant names must begin with a letter, but it
need not be a capital one.

* Implemented as a subroutine taking no arguments and retur ning the same constant each time.

Constants are not private to the lexical scope in which they occur. Instead, they
ar e simply argumentless subroutines in the symbol table of the package issuing the
declaration. You may refer to a constant CONST fr om package Other as
Other::CONST. Read more about compile-time inlining of such subroutines in the
section “Inlining Constant Functions” in Chapter 6.

As with all use dir ectives, use constant happens at compile time. It’s therefor e
misleading at best to place a constant declaration inside a conditional statement,
such as if ($foo) { use constant ... }.

Omitting the value for a symbol gives it the value of undef in scalar context or the
empty list, (), in a list context. But it is probably best to declare these explicitly:

use constant CAMELIDS => ();
use constant CAMEL_HOME => undef;

Restr ictions on use constant
List constants are not currently inlined the way scalar constants are. And it is not
possible to have a subroutine or keyword with the same name as a constant. This
is probably a Good Thing.

You cannot declare mor e than one named constant at a time:

use constant FOO => 4, BAR => 5; # WRONG

That defines a constant named FOO whose retur n list is (4, "BAR", 5). You need
this instead:

use constant FOO => 4
use constant BAR => 5;

You can get yourself into trouble if you use a constant in a context that automati-
cally quotes bare names. (This is true for any subroutine call, not just constants.)
For example, you can’t say $hash{CONSTANT} because CONSTANT will be interpreted
as a string. Use $hash{CONSTANT()} or $hash{+CONSTANT} to prevent the quoting
mechanism from kicking in. Similarly, since the => operator quotes its left operand
if that operand is a bare name, you must say CONSTANT() => ’value’ instead of
CONSTANT => ’value’ .

At some point, you’ll be able to use a constant attribute on variable declarations:

my $PI : constant = 4 * atan2(1,1);

This has all the advantages of being a variable rather than a subroutine. It has all
the disadvantages of not being implemented yet.

M
odules

use constant 843

844 Chapter 31: Pragmatic Modules

use diagnostics
use diagnostics; # compile-time enable
use diagnostics -verbose;

enable diagnostics; # run-time enable
disable diagnostics; # run-time disable

This pragma expands the normal, terse diagnostics and suppresses duplicate warn-
ings. It augments the short versions with the more explicative and endearing
descriptions found in Chapter 33, Diagnostic Messages. Like other pragmas, it also
af fects the compilation phase of your program, not just the run phase.

When you use diagnostics at the start of your program, this automatically enables
Perl’s -w command-line switch by setting $ˆW to 1. The remainder of your whole
compilation will then be subject to enhanced diagnostics. These still go out on
STDERR.

Because of the interaction between run-time and compile-time issues, and because
it’s probably not a good idea anyway, you may not use no diagnostics to turn
them off at compile time. However, you may control their behavior at run time
using the disable and enable methods. (Make sure you do the use first, or else
you won’t be able to get at the methods.)

The -verbose flag first prints out the perldiag manpage’s introduction before any
other diagnostics are issued. The $diagnostics::PRETTY variable can be set (before
the use) to generate nicer escape sequences for pagers like less (1) or mor e (1):

BEGIN { $diagnostics::PRETTY = 1 }
use diagnostics;

Warnings dispatched from Perl and detected by this pragma are each displayed
only once. This is useful when you’re caught in a loop that’s generating the same
war ning (like uninitialized value) over and over again. Manually generated warn-
ings, such as those stemming from calls to warn or carp, are unaf fected by this
duplicate detection mechanism.

Her e ar e some examples of using the diagnostics pragma. The following file is
certain to trigger a few errors at both run time and compile time:

use diagnostics;
print NOWHERE "nothing\n";
print STDERR "\n\tThis message should be unadorned.\n";
warn "\tThis is a user warning";
print "\nDIAGNOSTIC TESTER: Please enter a <CR> here: ";
my $a, $b = scalar <STDIN>;
print "\n";
print $x/$y;

Her e’s the output:

Parentheses missing around "my" list at diagtest line 6 (#1)

(W parenthesis) You said something like

my $foo, $bar = @_;

when you meant

my ($foo, $bar) = @_;

Remember that "my", "our", and "local" bind tighter than comma.

Name "main::NOWHERE" used only once: possible typo at diagtest line 2 (#2)

(W once) Typographical errors often show up as unique variable
names. If you had a good reason for having a unique name,
then just mention it again somehow to suppress the message.
The our declaration is provided for this purpose.

Name "main::b" used only once: possible typo at diagtest line 6 (#2)
Name "main::x" used only once: possible typo at diagtest line 8 (#2)
Name "main::y" used only once: possible typo at diagtest line 8 (#2)

Filehandle main::NOWHERE never opened at diagtest line 2 (#3)

(W unopened) An I/O operation was attempted on a filehandle that
was never initialized. You need to do an open() or a socket()
call, or call a constructor from the FileHandle package.

This message should be unadorned.
This is a user warning at diagtest line 4.

DIAGNOSTIC TESTER: Please enter a <CR> here:
Use of uninitialized value in division (/) at diagtest line 8 (#4)

(W uninitialized) An undefined value was used as if it were
already defined. It was interpreted as a "" or a 0, but maybe
it was a mistake. To suppress this warning assign a defined
value to your variables.

Illegal division by zero at diagtest line 8 (#5)

(F) You tried to divide a number by 0. Either something was
wrong in your logic, or you need to put a conditional in to
guard against meaningless input.

Uncaught exception from user code:
Illegal division by zero at diagtest line 8.

Diagnostic messages derive from the perldiag.pod file. If an extant $SIG{_ _WARN_ _}
handler is discovered, this will still be honored, but only after the diagnos-

tics::splainthis function (the pragma’s $SIG{_ _WARN_ _} interceptor) has had its

M
odules

use diagnostics 845

846 Chapter 31: Pragmatic Modules

way with your warnings. Perl does not currently support stacked handlers, so this
is the best we can do for now. There is a $diagnostics::DEBUG variable you may
set if you’re desperately curious about what sorts of things are being intercepted:

BEGIN { $diagnostics::DEBUG = 1 }
use diagnostics;

use fields
In the Pet module:

package Pet;
use strict;
use fields qw(name weight _Pet_pid);
my $PID = 0;
sub new {

my Pet $self = shift;
unless (ref $self) {

$self = fields::new($self);
$self->{_Pet_pid} = "this is Pet’s secret ID";

}
$self->{name} = "Hey, you!";
$self->{weight} = 20;
return $self;

}
1;

In a separate program, demopet:

use Pet;
my Pet $rock = new Pet; # typed lexical

$rock->{name} = "quartz";
$rock->{weight} = "2kg";
$rock->{_Pet_pid} = 1233; # private attribute

$rock->{color} = "blue"; # generates compile-time error

In the Dog module:

package Dog;
use strict;
use base ’Pet’; # inherit fields and methods from Pet
use fields qw(name pedigree); # override Pet name attribute,

add new pedigree attribute
use fields qw(wag _Dog_private); # not shared with Pet
sub new {

my $class = shift;
my $self = fields::new($class);
$self->SUPER::new(); # init base fields
$self->{pedigree} = "none"; # init own fields
return $self;

}

In a separate program, demodog:

use Dog;

my Dog $spot = new Dog; # typed lexical

$spot->{name} = "Theloneus"; # not inherited
$spot->{weight} = "30lbs"; # inherited
$spot->{pedigree} = "mutt"; # not inherited

$spot->{color} = "brown"; # generates compile-time error
$spot->{_Pet_pid} = 3324; # generates compile-time error

The fields pragma provides a method of declaring class fields that can be type
checked at compile time. This relies on a feature known as pseudohashes: if a
typed lexical variable (my Pet $rock) is holding a refer ence (the Pet object) and is
used to access a hash element ($rock->{name}), and if there exists a package with
the same name as the declared type that has set up class fields using the fields

pragma, then the operation is turned into an array access at compile time, pro-
vided the field specified is valid.

The related base pragma will combine fields from base classes and any fields
declar ed using the fields pragma. This enables field inheritance to work properly.

Field names that start with an underscore character are made private to the class
and are not visible to subclasses. Inherited fields can be overridden but will gener-
ate a warning if warnings are enabled.

The effect of all this is that you can have objects with named fields which are as
compact as arrays and as fast to access. This only works as long as the objects are
accessed through properly typed lexical variables, though. If the variables are not
typed, access is only checked at run time, so your program runs slower because it
has to do both a hash access and an array access. In addition to field declarations,
the following functions are supported:

new

The fields::new function creates and blesses a pseudohash into the specified
class (which may also be specified by passing an object of that class). The
object is created with the fields declared earlier for that class using the fields

pragma. This makes it possible to write a constructor like this:

package Critter::Sounds;
use fields qw(cat dog bird);

sub new {
my Critter::Sounds $self = shift;
$self = fields::new($self) unless ref $self;
$self->{cat} = ’meow’; # scalar element
@$self{’dog’,’bird’} = (’bark’,’tweet’); # slice
return $self;

}

M
odules

use fields 847

848 Chapter 31: Pragmatic Modules

phash

The fields::phash function creates and initializes a plain (unblessed) pseudo-
hash. You should always use this function to create pseudohashes instead of
cr eating them directly, in case we decide to change the implementation.

If the first argument to phash is a refer ence to an array, the pseudohash will be
cr eated with keys from that array. If a second argument is supplied, it must also be
a refer ence to an array whose elements will be used as the values. If the second
array contains less elements than the first, the trailing elements of the pseudohash
will not be initialized. This makes it particularly useful for creating a pseudohash
fr om subr outine arguments:

sub dogtag {
my $tag = fields::phash([qw(name rank ser_num)], [@_]);

}

Alter natively, you can pass a list key/value pairs that will be used to construct the
pseudohash:

my $tag = fields::phash(name => "Joe",
rank => "captain",
ser_num => 42);

my $pseudohash = fields::phash(%args);

For more on pseudohashes, see the section “Pseudohashes” in Chapter 8, Refer-
ences.

The current implementation keeps the declared fields in the %FIELDS hash of the
calling package, but this may change in future versions, so it’s best to rely on this
pragma’s interface to manage your fields.

use filetest
$can_perhaps_read = -r "file"; # use the mode bits
{

use filetest ’access’; # intuit harder
$can_really_read = -r "file";

}
$can_perhaps_read = -r "file"; # use the mode bits again

This lexically scoped pragma tells the compiler to change the behavior of the
unary file test operators -r, -w, -x, -R, -W, and -X, documented in Chapter 3, Unary
and Binary Operators. The default behavior for these file tests is to use the mode
bits retur ned by the stat family of calls. However, this may not always be the right
thing to do, such as when a filesystem understands ACLs (access control lists). In
envir onments such as AFS where this matters, the use filetest pragma may help
the permission operators to retur n results more consistent with other tools.

Ther e may be a slight perfor mance decr ease in the affected file test operators
under use filetest, since on some systems the extended functionality needs to be
emulated.

Warning: any notion of using file tests for security purposes is a lost cause from
the start. There is a window open for race conditions, because there’s no way to
guarantee that the permissions will not change between the test and the real oper-
ation. If you are the least bit serious about security, you won’t use file test opera-
tors to decide whether something will work. Instead, just go ahead try the real
operation, then test for whether that operation succeeded. (You should be doing
that anyway.) See the section “Handling Timing Glitches” in Chapter 23, Security.

use filetest 'access'
Curr ently only one import, access, is implemented. Calling use filetext ’access’

enables the use of access (2) or similar syscalls when perfor ming file tests, and no

filetest ’access’ similarly disables it. This extended file test functionality is used
only when the operator’s operand (or, if you prefer, the unary function’s argu-
ment) is a real filename, not when it is a filehandle.

use integer
use integer;
$x = 10/3;
$x is now 3, not 3.33333333333333333

This lexically scoped pragma tells the compiler to use integer operations from here
thr ough the end of the enclosing block. On many machines, this doesn’t matter a
gr eat deal for most computations, but on those few remaining architectur es with-
out floating-point hardware, it can amount to a dramatic perfor mance dif ference.

Note that this pragma affects certain numeric operations, not the numbers them-
selves. For example, if you run this code:

use integer;
$x = 1.8;
$y = $x + 1;
$z = -1.8;

you’ll be left with $x == 1.8, $y == 2 and $z == -1. The $z case happens because
unary - counts as an operation, so the value 1.8 is truncated to 1 befor e its sign
bit is flipped. Likewise, functions that expect floating-point numbers, such as sqrt
or the trig functions, still receive and retur n floats even under use integer. So
sqrt(1.44) is 1.2, but 0 + sqrt(1.44) is now just 1.

Native integer arithmetic as provided by your C compiler is used. This means that
Perl’s own semantics for arithmetic operations might not be preserved. One

M
odules

use integer 849

850 Chapter 31: Pragmatic Modules

common source of trouble is the modulus of negative numbers. Perl may do it one
way, but your hardware may do it another:

% perl -le ’print (4 % -3)’
-2
% perl -Minteger -le ’print (4 % -3)’
1

use less
use less; # These are all UNIMPLEMENTED!

use less ’CPU’;
use less ’memory’;
use less ’time’;
use less ’disk’;
use less ’fat’; # great with "use locale";

Curr ently unimplemented, this pragma is intended to someday give hints to the
compiler, code-generator, or interpr eter to enable certain trade-offs.

It is not an error to ask to use less of something that Perl doesn’t know how to
make less of right now.

use lib
use lib "$ENV{HOME}/libperl"; # add ˜/libperl
no lib "."; # remove cwd

This pragma simplifies the manipulation of @INC at compile time. It is typically
used to add extra directories to Perl’s search path so that later do, require, and use

statements will find library files that aren’t located in Perl’s default search path. It’s
especially important with use, since that happens at compile time too, and setting
@INC nor mally (that is, at run time) would be too late.

Parameters to use lib ar e pr epended to the beginning of Perl’s search path. Say-
ing use lib LIST is almost the same as saying BEGIN { unshift(@INC, LIST) }, but
use lib LIST includes support for platform-specific directories. For each given
dir ectory $dir in its argument list, the lib pragma also checks to see whether a
dir ectory named $dir/$ar chname/auto exists. If so, the $dir/$ar chname dir ectory
is assumed to be a corresponding platform-specific directory, so is added to @INC

(in front of $dir).

To avoid redundant additions that slow access time and waste a small amount of
memory, trailing duplicate entries in @INC ar e removed when entries are added.

Nor mally, you should only add dir ectories to @INC. If you do need to delete direc-
tories from @INC, take care to delete only those that you yourself added, or those
that you’re somehow certain aren’t needed by other modules in your program.
Other modules may have added directories to your @INC that they need for correct
operation.

The no lib pragma deletes all instances of each named directory from @INC. It also
deletes any corresponding platform-specific directory as described earlier.

When the lib pragma is loaded, it saves the current value of @INC to the array
@lib::ORIG_INC, so to restor e the original, just copy that array to the real @INC.

Even though @INC typically includes dot (“.”), the current directory, this really isn’t
as useful as you’d think. For one thing, the dot entry comes at the end, not the
start, so that modules installed in the current directory don’t suddenly override sys-
tem versions. You could say use lib "." if that’s what you really want. More
annoyingly, it’s the current directory of the Perl process, not the directory that the
script was installed into, which makes it completely unreliable. If you create a pro-
gram plus some modules for that program to use, it will work while you’re devel-
oping, but it won’t work when you aren’t running in the directory the files live in.

One solution for this is to use the standard FindBin module:

use FindBin; # where was script installed?
use lib $FindBin::Bin; # use that dir for libs, too

The FindBin module tries to guess the full path to the directory in which the run-
ning process’s program was installed. Don’t use this for security purposes, because
malicious programs can usually deceive it if they try hard enough. But unless
you’r e intentionally trying to break the module, it should work as intended. The
module provides a $FindBin::Bin variable (which you may import) that contains
the module’s guess of where the program was installed. You can then use the lib

pragma to add that directory to your @INC, thus producing an executable-relative
path.

Some programs expect to be installed in a bin dir ectory and then find their library
modules in “cousin” files installed in a lib dir ectory at the same level as bin. For
example, programs might go in /usr/local/apache/bin or /opt/perl/bin, and libraries
go in /usr/local/apache/lib and /opt/perl/lib. This code takes care of that neatly:

use FindBin qw($Bin);
use lib "$Bin/../lib";

If you find yourself specifying the same use lib in several unrelated programs,
you might consider setting the PERL5LIB envir onment variable instead. See the
description of the PERL5LIB envir onment variable in Chapter 19, The Command-
Line Interface.

M
odules

use lib 851

852 Chapter 31: Pragmatic Modules

syntax for sh, bash, ksh, or zsh
$ PERL5LIB=$HOME/perllib; export PERL5LIB

syntax for csh or tcsh
% setenv PERL5LIB ˜/perllib

If you want to use optional directories on just this program without changing its
source, look into the -I command-line switch:

% perl -I ˜/perllib program-path args

See the Chapter 19 for more about using -I fr om the command line.

use locale
@x = sort @y; # ASCII sorting order
{

use locale;
@x = sort @y; # Locale-defined sorting order

}
@x = sort @y; # ASCII sorting order again

This lexically scoped pragma tells the compiler to enable (or disable, under no

locale) the use of POSIX locales for built-in operations. Enabling locales tells
Perl’s case-conversion functions and pattern-matching engine to be respectful of
your language environment, allowing for characters with diacritical markings, etc.
If this pragma is in effect and your C library knows about POSIX locales, Perl
looks to your LC_CTYPE setting for regular expressions and to your LC_COLLATE set-
ting for string comparisons like those in sort.

Since locales are mor e a for m of nationalization than of internationalization, the
use of locales may interact oddly with Unicode. See Chapter 15 for more on inter-
nationalization.

use open
use open IN => ":crlf", OUT => ":raw";

The open pragma declares one or more default disciplines for I/O operations. Any
open and readpipe (that is, qx// or backticks) operators found within the lexical
scope of this pragma that do not specify their own disciplines will use the
declar ed defaults. Neither open with an explicit set of disciplines, nor sysopen

under any cirumstances, is influenced by this pragma.

Only the two disciplines :raw and :crlf ar e curr ently available (though as of this
writing we expect a :utf8 discipline to be along shortly). On legacy systems that
distinguish between those two translation modes when opening files, the :raw

discipline corresponds to “binary mode”, and :crlf to “text mode”. (These two
disciplines are curr ently no-ops on platforms where binmode is a no-op, but only
for now; see the open function in Chapter 29, Functions, for a longer description
of the semantics we expect of various disciplines.)

Full-fledged support for I/O disciplines is currently unimplemented. When they
ar e eventually supported, this pragma will serve as one of the interfaces to declare
default disciplines for all I/O. At that time, any default disciplines declared by this
pragma will be available by the special discipline name “:DEFAULT” and usable
within handle constructors that allow disciplines to be specified. This will make it
possible to stack new disciplines over the default ones.

open (FH, "<:para :DEFAULT", $file) or die "can’t open $file: $!";

Once complete, full support for I/O disciplines will enable all supported disci-
plines to work on all platforms.

use overload
In the Number module:

package Number;
use overload "+" => \&myadd,

"-" => \&mysub,
"*=" => "multiply_by";

In your program:

use Number;
$a = new Number 57;
$b = $a + 5;

The built-in operators work well on strings and numbers, but make little sense
when applied to object refer ences (since, unlike C or C++, Perl doesn’t allow
pointer arithmetic). The overload pragma lets you redefine the meanings of these
built-in operations when applied to objects of your own design. In the previous
example, the call to the pragma redefines three operations on Number objects: addi-
tion will call the Number::myadd function, subtraction will call the Number::mysub

function, and the multiplicative assignment operator will call the multiply_by

method in class Number (or one of its base classes). We say of these operators that
they are now overloaded because they have additional meanings overlaid on them
(and not because they have too many meanings—though that may also be the
case).

For much more on overloading, see Chapter 13, Overloading.

M
odules

use overload 853

854 Chapter 31: Pragmatic Modules

use re
This pragma controls the use of regular expressions. It has four possible invoca-
tions: “taint” and “eval”, which are lexically scoped, plus “debug” and “debug-
color”, which aren’t.

use re ’taint’;
Contents of $match are tainted if $dirty was also tainted.
($match) = ($dirty =˜ /ˆ(.*)$/s);

Allow code interpolation:
use re ’eval’;
$pat = ’(?{ $var = 1 })’; # embedded code execution
/alpha${pat}omega/; # won’t fail unless under -T

and $pat is tainted

use re ’debug’; # like "perl -Dr"
/ˆ(.*)$/s; # output debugging info during

compile time and run time

use re ’debugcolor’; # same as ’debug’,
but with colored output

When use re ’taint’ is in effect and a tainted string is the target of a regex, the
number ed regex variables and values retur ned by the m// operator in list context
ar e all tainted. This is useful when regex operations on tainted data aren’t meant
to extract safe substrings, but to perfor m other transformations. See the discussion
on tainting in Chapter 23.

When use re ’eval’ is in effect, a regex is allowed to contain assertions that exe-
cute Perl code, which are of the form (?{ ... }), even when the regex contains
interpolated variables. Execution of code segments resulting from variable interpo-
lation into a regex is normally disallowed for security reasons: you don’t want pro-
grams that read patterns from config files, command-line arguments, or CGI form
fields to suddenly start executing arbitrary code if they weren’t designed to expect
this possibility. This use of the pragma allows only untainted strings to be interpo-
lated; tainted data will still cause an exception to be raised (if you’re running with
taint checks enabled). See also Chapter 5, Patter n Matching, and Chapter 23.

For the purposes of this pragma, interpolation of precompiled regular expressions
(pr oduced by the qr// operator) is not considered variable interpolation. Never-
theless, when you build the qr// patter n it needs to have use re ’eval’ in effect if
any of its interpolated strings contain code assertions. For example:

$code = ’(?{ $n++ })’; # code assertion
$str = ’\b\w+\b’ . $code; # build string to interpolate

$line =˜ /$str/; # this needs use re ’eval’

$pat = qr/$str/; # this also needs use re ’eval’
$line =˜ /$pat/; # but this doesn’t need use re ’eval’

Under use re ’debug’, Perl emits debugging messages when compiling and when
executing regular expressions. The output is the same as that obtained by running
a “debugging Perl” (one compiled with -DDEBUGGING passed to the C compiler) and
then executing your Perl program under Perl’s -Dr command-line switch. Depend-
ing on how complicated your pattern is, the resulting output can be overwhelm-
ing. Calling use re ’debugcolor’ enables more color ful output that can be useful,
pr ovided your terminal understands color sequences. Set your PERL_RE_TC envir on-
ment variable to a comma-separated list of relevant ter mcap (5) properties for
highlighting. For more details, see Chapter 20, The Perl Debugger.

use sigtrap
use sigtrap;
use sigtrap qw(stack-trace old-interface-signals); # same thing

use sigtrap qw(BUS SEGV PIPE ABRT);
use sigtrap qw(die INT QUIT);
use sigtrap qw(die normal-signals);
use sigtrap qw(die untrapped normal-signals);
use sigtrap qw(die untrapped normal-signals

stack-trace any error-signals);

use sigtrap ’handler’ => \&my_handler, ’normal-signals’;
use sigtrap qw(handler my_handler normal-signals stack-trace error-signals);

The sigtrap pragma installs some simple signal handlers on your behalf so that
you don’t have to worry about them. This is useful in situations where an
untrapped signal would cause your program to misbehave, like when you have
END {} blocks, object destructors, or other at-exit processing that needs to be run
no matter how your program happens to terminate.

The sigtrap pragma provides two simple signal handlers for your use. One pro-
vides a Perl stack trace, and the other throws an ordinary exception via die. Alter-
nately, you can supply your own handler for the pragma to install. You may
specify predefined sets of signals to trap; you can also supply your own explicit
list of signals. The pragma can optionally install handlers for only those signals
that have not otherwise been handled.

Arguments passed to use sigtrap ar e pr ocessed in order. When a user-supplied
signal name or the name of one of sigtrap’s predefined signal lists is encountered,
a handler is immediately installed. When an option is encountered, this affects
only those handlers installed later in processing the argument list.

M
odules

use sigtrap 855

856 Chapter 31: Pragmatic Modules

Signal Handlers
These options affect which handler will be used for signals installed later:

stack-trace

This pragma-supplied handler outputs a Perl stack trace to STDERR and then
tries to dump core. This is the default signal handler.

die

This pragma-supplied handler calls die via Carp::croak with a message indi-
cating the signal caught.

handler YOURHANDLER

YOURHANDLER will be used as the handler for signals installed later. YOURHANDLER
can be any value valid for assignment into %SIG. Remember that the proper
functioning of many C library calls (particularly standard I/O calls) cannot be
guaranteed within a signal handler. Worse, it’s hard to guess which bits of C
library code are called from which bits of Perl code. (On the other hand,
many of the signals that sigtrap traps are pretty vile—they’r e gonna take you
down anyway, so there’s not much harm in trying to do something, now is
ther e?)

Predefined Signal Lists
The sigtrap pragma has a few built-in lists of signals to trap:

normal-signals

These are the signals a program might normally expect to encounter, and
which, by default, cause it to terminate. They are the HUP, INT, PIPE, and TERM

signals.

error-signals

These are the signals that usually indicate a serious problem with the Perl
interpr eter or with your program. They are the ABRT, BUS, EMT, FPE, ILL, QUIT,
SEGV, SYS, and TRAP signals.

old-interface-signals

These are the signals that were trapped by default under an older version of
sigtrap’s interface. They are ABRT, BUS, EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS,
TERM, and TRAP. If no signals or signals lists are passed to use sigtrap, this list
is used.

If your platform does not implement a particular signal named in the predefined
lists, that signal name will be silently ignored. (The signal itself can’t be ignored,
because it doesn’t exist.)

Other Arguments to sigtrap
untrapped

This token suppresses the installation of handlers for subsequently listed sig-
nals if they’re alr eady been trapped or ignored.

any

This token installs handlers for all subsequently listed signals. This is the
default behavior.

signal
Any argument that looks like a signal name (that is, one matching the pattern
/ˆ[A-Z][A-Z0-9]*$/) requests sigtrap to handle that signal.

number
A numeric argument requir es the version number of the sigtrap pragma to be
at least number. This works is just like most regular modules that have a $VER-

SION package variable:

% perl -Msigtrap -le ’print $sigtrap::VERSION’
1.02

Examples of sigtrap
Pr ovide a stack trace for the old interface signals:

use sigtrap;

Same thing, but more explicitly:

use sigtrap qw(stack-trace old-interface-signals);

Pr ovide a stack trace only on the four listed signals:

use sigtrap qw(BUS SEGV PIPE ABRT);

Die on an INT or a QUIT signal:

use sigtrap qw(die INT QUIT);

Die on any of HUP, INT, PIPE, or TERM:

use sigtrap qw(die normal-signals);

Die on HUP, INT, PIPE, or TERM—except don’t change the behavior for signals that
have already been trapped or ignored elsewhere in the program:

use sigtrap qw(die untrapped normal-signals);

Die on receipt of any currently untrapped normal-signals; additionally, provide a
stack backtrace on receipt of any of the error-signals:

M
odules

use sigtrap 857

858 Chapter 31: Pragmatic Modules

use sigtrap qw(die untrapped normal-signals
stack-trace any error-signals);

Install the routine my_handler as the handler for the normal-signals:

use sigtrap ’handler’ => \&my_handler, ’normal-signals’;

Install my_handler as the handler for the normal-signals; provide a Perl stack
backtrace on receipt of any of the error-signals:

use sigtrap qw(handler my_handler normal-signals
stack-trace error-signals);

use strict
use strict; # Install all three strictures.

use strict "vars"; # Variables must be predeclared.
use strict "refs"; # Can’t use symbolic references.
use strict "subs"; # Bareword strings must be quoted.

use strict; # Install all...
no strict "vars"; # ...then renege on one.

This lexically scoped pragma changes some basic rules about what Perl considers
to be legal code. Sometimes these restrictions seem too strict for casual program-
ming, such as when you’re just trying to whip up a five-line filter program. The
larger your program, the more you need to be strict about it.

Curr ently, ther e ar e thr ee possible things to be strict about: subs, vars, and refs. If
no import list is supplied, all three restrictions are assumed.

str ict 'refs'
This generates a run-time error if you use symbolic refer ences, intentionally or
otherwise. See Chapter 8 for more about these.

use strict ’refs’;

$ref = \$foo; # Store "real" (hard) reference.
print $$ref; # Dereferencing is ok.

$ref = "foo"; # Store name of global (package) variable.
print $$ref; # WRONG, run-time error under strict refs.

Symbolic refer ences ar e suspect for various reasons. It’s surprisingly easy for even
well-meaning programmers to invoke them accidentally; strict ’refs’ guards
against that. Unlike real refer ences, symbolic refer ences can only refer to global
variables. They aren’t refer ence-counted. And there’s often a better way to do what
you’r e doing: instead of refer encing a symbol in a global symbol table, use a hash
as its own little mini-symbol table. It’s more efficient, more readable, and less error
pr one.

Nevertheless, some sorts of valid manipulation really do requir e dir ect access to
the package’s global symbol table of variables and function names. For example,
you might want to examine the @EXPORT list or the @ISA superclass of a given pack-
age whose name you don’t know in advance. Or you might want to install a
whole slew of function calls that are all aliases to the same closure. This is just
what symbolic refer ences ar e best at, but to use them while use strict is in effect,
you must first undo the “refs” strictur e:

make a bunch of attribute accessors
for my $methname (qw/name rank serno/) {

no strict ’refs’;
*$methname = sub { $_[0]->{ __PACKAGE_ _ . $methname };

}

str ict 'var s'
Under this stricture, a compile-time error is triggered if you attempt to access a
variable that hasn’t met at least one of the following criteria:

• Predefined by Perl itself, such as @ARGV, %ENV, and all the global punctuation
variables such as $. or $_.

• Declar ed with our (for a global) or my (for a lexical).

• Imported from another package. (The use vars pragma fakes up an import,
but use our instead.)

• Fully qualified using its package name and the double-colon package
separator.

Just using a local operator isn’t good enough to keep use strict ’vars’ happy
because, despite its name, that operator doesn’t change whether the named vari-
able is global or not. It just gives the variable a new, temporary value for the dura-
tion of block at run time. You still need to use our to declare a global variable, or
my to declare a lexical variable. You can, however, localize an our:

local our $law = "martial";

Globals predefined by Perl are exempt from these requir ements. This applies to
pr ogram-wide globals (those forced into package main like @ARGV or $_) and to
per-package variables like $a and $b, which are nor mally used by the sort func-
tion. Per-package variables used by modules like Exporter still need to be
declar ed using our:

our @EXPORT_OK = qw(name rank serno);

M
odules

use strict 859

860 Chapter 31: Pragmatic Modules

str ict 'subs'
This stricture makes Perl treat all barewords as syntax errors. A bar eword (“bear-
word” in some dialects) is any bare name or identifier that has no other interpreta-
tion forced by context. (Context is often forced by a nearby keyword or token, or
by predeclaration of the word in question.) Historically, barewords were inter-
pr eted as unquoted strings. This stricture outlaws that interpretation. If you mean
to use it as a string, quote it. If you mean to use it as a function call, predeclar e it
or use parentheses.

As a particular case of forced context, remember that a word that appears by itself
in curly braces or on the lefthand side of the => operator counts as being quoted,
and so is not subject to this restriction.

use strict ’subs’;

$x = whatever; # WRONG: bareword error!
$x = whatever(); # This always works, though.

sub whatever; # Predeclare function.
$x = whatever; # Now it’s ok.

These uses are permitted, because the => quotes:
%hash = (red => 1, blue => 2, green => 3);

$rednum = $hash{red}; # Ok, braces quote here.

But not this one:
@coolnums = @hash{blue, green}; # WRONG: bareword error.
@coolnums = @hash{"blue", "green"}; # Ok, words now quoted.
@coolnums = @hash{qw/blue green/}; # Likewise.

use subs
use subs qw/winken blinken nod/;
@x = winken 3..10;
@x = nod blinken @x

This pragma predeclar es as standard subroutines all the names in the argument
list. The advantage here is that you may now use those functions without paren-
theses as list operators, just as if you’d declared them yourself. This is not neces-
sarily as useful as full declarations, because it doesn’t allow prototypes or
attributes, such as:

sub winken(@);
sub blinken(\@) : locked;
sub nod($) : lvalue;

Because it is based on the standard import mechanism, the use subs pragma is not
lexically scoped but package scoped. That is, the declarations are effective for the
entir e file in which they appear, but only in the current package. You may not
rescind such declarations with no subs.

use var s
use vars qw($frobbed @munge %seen);

This pragma, once used to declare a global variable, is now somewhat deprecated
in favor of the our modifier. The previous declaration is better accomplished using:

our($frobbed, @munge, %seen);

or even:

our $frobbed = "F";
our @munge = "A" .. $frobbed;
our %seen = ();

No matter which of these you use, remember that they’re talking about package
globals, not file-scoped lexicals.

use war nings
use warnings; # same as importing "all"
no warnings; # same as unimporting "all"

use warnings::register;
if (warnings::enabled()) {

warnings::warn("some warning");
}

if (warnings::enabled("void")) {
warnings::warn("void", "some warning");

}

This lexically scoped pragma permits flexible control over Perl’s built-in warnings,
both those emitted by the compiler as well as those from the run-time system.

Once upon a time, the only control you had in Perl over the treatment of warnings
in your program was through either the -w command-line option or the $ˆW vari-
able. Although useful, these tend to be all-or-nothing affairs. The -w option ends
up enabling warnings in pieces of module code that you may not have written,
which is occasionally problematic for you and embarrassing for the original author.
Using $ˆW to either disable or enable blocks of code can be less than optimal

M
odules

use war nings 861

862 Chapter 31: Pragmatic Modules

because it works only during execution time, not during compile time.* Another
issue is that this program-wide global variable is scoped dynamically, not lexically.
That means that if you enable it in a block and then from there call other code,
you again risk enabling warnings in code not developed with such exacting stan-
dards in mind.

The warnings pragma circumvents these limitations by being a lexically scoped,
compile-time mechanism that permits finer control over where war nings can or
can’t be triggered. A hierarchy of warning categories (see Figure 31-1) has been
defined to allow groups of warnings to be enabled or disabled in isolation from
one another. (The exact categorization is experimental and subject to change.)
These categories can be combined by passing multiple arguments to use or no:

use warnings qw(void redefine);
no warnings qw(io syntax untie);

If multiple instances of the warnings pragma are active for a given scope, their
ef fects ar e cumulative:

use warnings "void"; # Only "void" warnings enabled.
...
use warnings "io"; # Both "void" and "io" warnings now enabled.
...
no warnings "void"; # Only "io" warnings now enabled.

To make fatal errors of all warnings enabled by a particular warnings pragma, use
the word FATAL at the front of the import list. This is useful when you would pre-
fer a certain condition that normally causes only a warning to abort your program.
Suppose, for example, that you considered it so improper to use an invalid string
as a number (which normally produces a value of 0) that you want this brazen act
to kill your program. While you’re at it, you decide that using uninitialized values
in places where real string or numeric values are expected should also be cause
for immediate suicide:

{
use warnings FATAL => qw(numeric uninitialized);
$x = $y + $z;

}

Now if either $y or $z is uninitialized (that is, holds the special scalar value,
undef), or if they contain strings that don’t cleanly convert into numeric values,
instead of going merrily on its way, or at most issuing a small complaint if you had
-w enabled, your program will now raise a exception. (Think of this as Perl run-
ning in Python mode.) If you aren’t trapping exceptions, that makes it a fatal error.
The exception text is the same as would normally appear in the warning message.

* In the absence of BEGIN blocks, of course.

taint

substr

signal

portable

untie

utf8

inplace

debugging

ambiguous

semicolon

deprecated

printf

pipe

unopened

newline

exec

closure

overflow

closed

internal

unsafe

io

syntax

all

severe

uninitialized

void

recursion

redefine

numeric

once

misc

digit

parenthesis

precedence

reserved

Figur e 31-1. Perl’s war ning categories

M
odules

use war nings 863

864 Chapter 31: Pragmatic Modules

The warnings pragma ignores the -w command-line switch and the value of the
$ˆW variable; the pragma’s settings take precedence. However, the -W command-
line flag overrides the pragma, enabling full warnings in all code within your pro-
gram, even code loaded with do, require, or use. In other words, with -W, Perl
pr etends that every block in your program has a use warnings ’all’ pragma.
Think of it as a lint (1) for Perl programs. (But see also the online documentation
for the B::Lint module.) The -X command-line flag works the other way around.
It pretends that every block has no warnings ’all’ in effect.

Several functions are provided to assist module authors who want to make their
module’s functions behave like built-in functions with respect to the lexical scop-
ing of the caller (that is, so that users of the module can lexically enable or disable
war nings the module might issue):

warnings::register

Registers the current module name as a new category of warnings, so that
users of your module can turn off war nings fr om it.

warnings::enabled(CATEGORY)

Retur ns true if the warnings category CATEGORY is enabled in the lexical scope
of the calling module. Otherwise, it retur ns false. If CATEGORY is not supplied,
the current package name is used.

warnings::warn(CATEGORY, MESSAGE)
If the calling module has not set CATEGORY to “FATAL”, prints MESSAGE to STDERR.
If the calling module has set CATEGORY to “FATAL”, prints MESSAGE to STDERR,
then dies. If CATEGORY is not supplied, the current package name is used.

32
Standard Modules

The previous edition of this book included comprehensive, definitive coverage for
all modules that were part of the standard Perl distribution. But if we did that
again now, you’d pay twice what you’re paying for this book, not to mention what
you’d have to pay the chiropractor after trying to carry the book home. Over the
last few years, more and more modules have come bundled standard; we’re up to
ar ound two hundred of them right now. Some of these, such as CGI, have remark-
ably extensive documentation in their own right. And if you’re using ActiveState’s
distribution of Perl, your standard library is even more luxed out.

So instead, we provide a complete listing of the standard modules, sorted by type,
along with a brief description of what each module does. Then we cherry pick a
few of our favorite modules by providing examples of typical uses, followed by a
short description of how they work, just to give you a taste of using them. The
descriptions are suggestive rather than comprehensive, and virtually all the mod-
ules have features beyond those shown. However, complete documentation for all
standard modules is included with every Perl distribution, so you can just look up
the details on your own system using the perldoc pr ogram, your system’s man (1)
command, or your favorite browser. See the section “Online Documentation” in
the Preface. Ask your Local Expert if you can’t find the docs, because they’re
almost certainly installed somewher e on your system. Even if they’re not, you can
always read the pod docs directly from the modules themselves, because all mod-
ule docs come embedded in their corresponding module (.pm) files, and pod was
designed to be somewhat readable. (Unlike, say, HTML.)

Pragm
ata

865

866 Chapter 32: Standard Modules

Listings by Type
Nor mal module names begin with an uppercase letter. Lowercase names indicate
pragmas that you’ll find documented in Chapter 31, Pragmatic Modules, rather
than in this chapter.

Data Types
These modules extend Perl’s type system (or lack thereof) in various ways.

Module Description

Class::Struct Cr eate struct-like Perl object classes
constant Declar e constant scalars and lists
integer Force Perl to do arithmetic with integers instead of floating point
Math::BigFloat Calculate with arbitrary length floating-point math
Math::BigInt Calculate with arbitrary length integer math
Math::Complex Calculate with complex numbers and associated mathematical

functions
Math::Trig Load many trigonometric and related functions
overload Overload Perl operators on objects
Symbol Manipulate Perl symbol tables and generate anonymous typeglobs
Time::Local Ef ficiently compute epoch time given localtime or gmtime

Str ing Processing, Language Text Processing,
Parsing, and Searching
These modules do things with (or to) text.

Module Description

Search::Dict Use a binary search for a string in a sorted text file
Text::Abbrev Cr eate an abbreviation table from a list
Text::ParseWords Parse text into a list of tokens or an array of arrays
Text::Soundex Use Knuth’s Soundex algorithm
Text::Tabs Expand or unexpand tabs like expand (1) and unexpand (1)
Text::Wrap Wrap lines to form simple paragraphs

Option, Argument, Parameter, and Configuration
File Processing
These modules process your command line.

Module Description

Getopt::Long
Pr ocess extended command-line options in long form (—xxx)

Getopt::Std Pr ocess single-character switches with switch clustering (-xyz)

Filenames, Filesystems, and File Locking
These modules provide cross-platfor m methods of file access.

Module Description

Cwd Get the pathname of the current working directory
File::Basename Portably parse a pathname into directory, basename, and

extension components
File::CheckTree Run many file test checks on a set of directory trees
File::Compare Portably compare contents of filenames or filehandles
File::Copy Portably copy filenames or filehandles or move filenames
File::DosGlob Do Microsoft-style fileglobbing
File::Find Traverse a file tree like find (1)
File::Glob Use Unix-style fileglobbing
File::Path Portably create or remove a series of directories
File::Spec Use portable filename operations (object-oriented interface)

File::Spec::Functions Use portable filename operations (functional interface)
File::Spec::Mac Use filename operations for Mac OS files
File::Spec::OS2 Use filename operations for OS/2 files
File::Spec::Unix Use filename operations for Unix files
File::Spec::VMS Use filename operations for VMS files
File::Spec::Win32 Use filename operations for Microsoft files
File::stat Override built-in stat and lstat functions with a method

inter face

Pragm
ata

Listings by Type 867

868 Chapter 32: Standard Modules

Filehandle, Director y Handle, and
Stream I/O Utilities
These modules provide object-oriented file, directory, and IPC access.

Module Description

DirHandle Use object methods for directory handles
FileCache Keep more files concurrently open for output than your system

per mits
FileHandle Use object methods for filehandles
IO Pr ovide a frontend to load all of IO::Dir, IO::File, IO::Handle,

IO::Pipe, IO::Seekable, and IO::Socket

IO::Dir Use object methods for directory handles
IO::File Use file-related object methods for filehandles
IO::Handle Use generic object methods for filehandles
IO::Pipe Use object methods for pipes
IO::Poll Pr ovide an object interface to poll (2) syscall
IO::Seekable Use object methods for seekable I/O objects
IO::Select Use a convenient OO interface to the select (2) syscall
SelectSaver Save and restor e selected filehandle

Inter nationalization and Locale
These modules help you perfor m Un-American Activities.

Module Description

bytes Enforce old byte-oriented semantics
charnames Define character names used in \N{name} escapes in string literals
I18N::Collate Compar e 8-bit scalar data according to current locale (deprecated)
locale Use or avoid POSIX locales for built-in operations
utf8 Turn on UTF-8 and Unicode support explicitly

Operating System Interfaces
These modules tweak your interface to the operating system.

Module Description

Fcntl Load the C library’s fcntl.h definitions as Perl constants
filetest Contr ol the file test operators (-r, -w, etc.) for nontraditional

filesystems
open Set default disciplines for open function calls
POSIX Use the Perl interface to POSIX 1003.1
Shell Run shell commands transparently within Perl
sigtrap Enable simple signal handling
Sys::Hostname Portably try every conceivable way to determine the current

hostname
Sys::Syslog Use the C library’s syslog (3) functions
Time::gmtime Override the built-in gmtime function with a method interface
Time::localtime Override the built-in localtime function with a method interface
Time::tm Pr ovide the internal object used by Time::gmtime and

Time::localtime

User::grent Override built-in getgr* functions with a method interface
User::pwent Override built-in getpw* functions with a method interface

Networking and Interprocess Communication
These modules provide abstract interfaces around the basic interfaces we wrote
about in Chapter 16, Interpr ocess Communication.

Module Description

IO::Socket Use a generic object interface to socket communications
IO::Socket::INET Use an object interface for Internet-domain sockets
IO::Socket::UNIX Use an object interface for Unix-domain (local) sockets
IPC::Msg Use object methods for working with System V messages (SysV Msg

IPC object class)
IPC::Open2 Open a process for simultaneous reading and writing
IPC::Open3 Open a process for reading, writing, and error handling
IPC::Semaphore Use object methods for System V semaphores
IPC::SysV Define constants for all System V IPC mechanisms
Net::hostent Override built-in gethost* functions with a method interface
Net::netent Override built-in getnet* functions with a method interface
Net::Ping Check a remote host for reachability
Net::protoent Override built-in getproto* functions with a method interface
Net::servent Override built-in getserv* functions with a method interface
Socket Load the C library socket.h definitions and structure manipulators

Pragm
ata

Listings by Type 869

870 Chapter 32: Standard Modules

World Wide Web
These modules interface to the WWW. You may have heard of it.

Module Description

CGI Access CGI forms and powerful automated HTML generation
CGI::Apache Make your CGI script work under the Perl-Apache API
CGI::Carp Write to the httpd (8) (or other) CGI error log
CGI::Cookie Set and get HTTP cookies
CGI::Fast Use the Fast CGI protocol
CGI::Pretty Pr oduce nicely formatted HTML code
CGI::Push Do server-push CGI scripting

DBM Interfaces
These modules load various database management libraries.

Module Description

AnyDBM_File Pr ovide a framework for multiple DBM libraries
DB_File Pr ovide tied access to the db (3) library (version 1.x Berkeley DB)
GDBM_File Pr ovide tied access to the gdbm (3) library
NDBM_File Pr ovide tied access to the ndbm (3) library
SDBM_File Pr ovide tied access to SDBM (simple DBM) files

User Interfaces
These modules provide a decent OS CLI I/O API, ASAP.

Module Description

Term::Cap Use the ter mcap (3) library
Term::Complete Do programmable command completion on word lists
Term::ReadLine Use any of several readline packages

Authentication, Security, and Encryption
These modules work with sandboxes.

Module Description

Opcode Enable or disable named opcodes when compiling Perl code for use
with the Safe module

ops Restrict unsafe operations when compiling
Safe Compile and execute code in restricted compartments

Perl Language Extensions and Internals
(Not to be confused with Intentions and Externals.)

Module Description

attributes Get or set subroutine or variable attributes
attrs Get or set subroutine or variable attributes (obsolete)
base Establish inheritance of base class at compile time
Data::Dumper Serialize Perl data structures
DB Access the Perl debugger’s experimental API
Devel::DProf Pr ofile a Perl program’s execution
Devel::Peek Load data debugging tools for XS programmers
diagnostics Force verbose warnings and suppress duplicates
Dumpvalue Pr ovide scr een dump of data
English Use longer variable names for built-in punctuation variables
Env Access environment variables in %ENV as regular scalars
Errno Load the C library’s err no.h definitions and tie the %! variable
Fatal Replace built-ins with versions that raise exceptions on failure
fields Declar e compile-time verified access to a class’s data attributes
less Request less of something from Perl (unimplemented)
re Alter default regular expression behavior
strict Restrict sloppy constructs
subs Pr edeclar e the subroutine names in current the package
vars Pr edeclar e global variables (obsolete—see our in Chapter 29,

Functions)

Convenient Classes
These modules provide base classes and other conveniences.

Module Description

Tie::Array Pr ovide a base class for tied arrays
Tie::Handle Pr ovide base class definitions for tied handles
Tie::Hash Pr ovide base class definitions for tied hashes
Tie::RefHash Pr ovide refer ences as hash keys
Tie::Scalar Pr ovide base class definitions for tied scalars
Tie::SubstrHash Hash a fixed-size table with a fixed-length key
UNIVERSAL Pr ovide a base class for all classes (blessed refer ences) Pragm

ata

Listings by Type 871

872 Chapter 32: Standard Modules

Warnings and Exceptions
What to do when things go rwong.

Module Description

Carp Pr ovide routines that warn and die fr om the perspective of the caller
warnings Contr ol war nings within the lexical scope

Documentation Support
And there’s an awful lot of documentation to support.

Module Description

Pod::Checker Check pod documents for syntax errors (used by
podchecker (1))

Pod::Functions List built-in functions by type
Pod::Html Convert pod files to HTML (used by pod2html (1))
Pod::InputObjects Manage documentation support
Pod::Man Convert pod to tr off (1) format for the man (1) system (used by

pod2man (1))
Pod::Parser Pr ovide a base class for creating pod filters and translators
Pod::Select Extract selected sections of pod from input (used by

podselect (1))
Pod::Text Convert pod data to formatted ASCII text (used by pod2text (1))
Pod::Text::Color Convert pod data to formatted ASCII text with ANSI color

escapes
Pod::Text::Termcap Convert pod data to ASCII text with terminal-specific escapes
Pod::Usage Print a usage message derived from embedded pod

documentation

Module Installation Support
These modules help other modules jump through various hoops.

Module Description

AutoLoader Load subroutines only on demand
AutoSplit Split a package for autoloading
autouse Postpone module loading until a function is used from that

module
blib Use the library from MakeMaker’s uninstalled version of an

extension
Config Access Perl configuration information
CPAN Query, download, and build Perl modules from CPAN sites
Devel::SelfStubber Generate stubs for a module using SelfLoader

DynaLoader Dynamically load C or C++ libraries as Perl extensions
Exporter Implement default import method for traditional modules
ExtUtils::Command Pr ovide utilities to replace common external commands in

Makefile
ExtUtils::Embed Pr ovide utilities for embedding Perl in C or C++ programs
ExtUtils::Install Install files into the system’s Perl library
ExtUtils::Installed Manage inventory of installed modules
ExtUtils::Liblist Deter mine which libraries to use and how to use them
ExtUtils::MakeMaker Cr eate a Makefile for a Perl extension
ExtUtils::Manifest Load tools to write and check a MANIFEST file
ExtUtils::Miniperl Write the C code for perlmain.c
ExtUtils::Mkbootstrap Cr eate a bootstrap file for use by DynaLoader

ExtUtils::Mksymlists Write linker options files for dynamic extension
ExtUtils::MM_Cygwin Override Unix behavior methods in ExtUtils::MakeMaker

ExtUtils::MM_OS2 Override Unix behavior methods in ExtUtils::MakeMaker

ExtUtils::MM_Unix Pr ovide methods used by ExtUtils::MakeMaker

ExtUtils::MM_VMS Override Unix behavior methods in ExtUtils::MakeMaker

ExtUtils::MM_Win32 Override Unix behavior methods in ExtUtils::MakeMaker

ExtUtils::Packlist Manage .packlist files
ExtUtils::testlib Add blib/* dir ectories to @INC

FindBin Locate installation directory of the Perl program that is running
lib Manipulate @INC at compile time
SelfLoader Load functions only on demand
XSLoader Dynamically load C or C++ libraries as Perl extensions

Pragm
ata

Listings by Type 873

874 Chapter 32: Standard Modules

Development Support
These modules are for timing and testing, to see how much faster and cleaner
your code doesn’t run anymore.

Module Description

Benchmark Compar e running times of alternate code versions
Test Use a simple framework for writing test scripts
Test::Harness Run standard test scripts with statistics

Perl Compiler and Code Generator
These modules support various backend code generators for Perl.

Module Description

B Load Perl code generators (a.k.a. the “Perl compiler”)
B::Asmdata Pr ovide autogenerated data about Perl ops to produce bytecode
B::Assembler Assemble Perl bytecode
B::Bblock Walk basic blocks in the syntax tree
B::Bytecode Use the Perl compiler’s bytecode backend
B::C Use the Perl compiler’s C translation backend
B::CC Use the Perl compiler’s optimized C translation backend
B::Debug Walk the Perl syntax tree, printing debug info about ops
B::Deparse Use the Perl compiler backend to repr oduce Perl code
B::Disassembler Disassemble Perl bytecode
B::Lint Catch dubious constructs
B::Showlex Show lexical variables used in functions or files
B::Stash Show what stashes are loaded
B::Terse Walk the Perl syntax tree, printing terse info about ops
B::Xref Generate cross-r efer ence reports for Perl programs
ByteLoader Load byte-compiled Perl code
O Pr ovide a generic interface to Perl compiler backends

Microsoft-Related Modules
If you got the Perl distribution for Microsoft systems from ActiveState, you already
have the following Microsoft-only modules included for you. If you just grabbed
the standard source distribution (maybe you want to build it under the Cygwin
Unix-emulation environment) but you’re running on Wintel, you can get all of
these modules from CPAN.

Module Description

Win32::ChangeNotify Monitor events related to files and directories
Win32::Console Use Win32 console and character mode functions
Win32::Event Use Win32 event objects from Perl
Win32::EventLog Pr ocess Win32 event logs from Perl
Win32::File Manage file attributes in Perl
Win32::FileSecurity Manage FileSecurity Discretionary Access Control Lists in Perl
Win32::IPC Load the base class for Win32 synchronization objects
Win32::Internet Access WININET.DLL functions
Win32::Mutex Use Win32 mutex objects from Perl
Win32::NetAdmin Manage network groups and users in Perl
Win32::NetResource Manage network resources in Perl
Win32::ODBC Use ODBC Extension for Win32
Win32::OLE Use OLE automation extensions
Win32::OLE::Const Extract constant definitions from TypeLib
Win32::OLE::Enum Use OLE Automation Collection Objects
Win32::OLE::NLS Use OLE National Language Support
Win32::OLE::Variant Cr eate and modify OLE VARIANT variables
Win32::PerfLib Access the Windows NT Perfor mance Counter
Win32::Process Cr eate and manipulate processes
Win32::Semaphore Use Win32 semaphore objects
Win32::Service Manage system services
Win32::Sound Play with Windows sounds
Win32::TieRegistry Mung the registry
Win32API::File Access low-level Win32 system API calls for files and directories
Win32API::Net Manage Windows NT LanManager accounts
Win32API::Registry Access low-level Win32 system API calls from WINREG.H

Benchmark
use Benchmark qw(timethese cmpthese timeit countit timestr);

You can always pass in code as strings:
timethese $count, {

’Name1’ => ’...code1...’,
’Name2’ => ’...code2...’,

};

Pragm
ata

Benchmark 875

876 Chapter 32: Standard Modules

Or as subroutines references:
timethese $count, {

’Name1’ => sub { ...code1... },
’Name2’ => sub { ...code2... },

};

cmpthese $count, {
’Name1’ => ’...code1...’,
’Name2’ => ’...code2...’,

};

$t = timeit $count, ’...code...’;
print "$count loops of code took:", timestr($t), "\n";

$t = countit $time, ’...code...’;
$count = $t->iters;
print "$count loops of code took:", timestr($t), "\n";

The Benchmark module can help you determine which of several possible choices
executes the fastest. The timethese function runs the specified code segments the
number of times requested and reports back how long each segment took. You
can get a nicely sorted comparison chart if you call cmpthese the same way.

Code segments may be given as function refer ences instead of strings (in fact, they
must be if you use lexical variables from the calling scope), but call overhead can
influence the timings. If you don’t ask for enough iterations to get a good timing,
the function emits a warning.

Lower-level interfaces are available that run just one piece of code either for some
number of iterations (timeit) or for some number of seconds (countit). These
functions retur n Benchmark objects (see the online documentation for a descrip-
tion). With countit, you know it will run in enough time to avoid warnings,
because you specified a minimum run time.

To get the most out of the Benchmark module, you’ll need a good bit of practice. It
isn’t usually enough to run a couple differ ent algorithms on the same data set,
because the timings only reflect how well those algorithms did on that particular
data set. To get a better feel for the general case, you’ll need to run several sets of
benchmarks, varying the data sets used.

For example, suppose you wanted to know the best way to get a copy of a string
without the last two characters. You think of four ways to do so (there are, of
course, several others): chop twice, copy and substitute, or use substr on either
the left- or righthand side of an assignment. You test these algorithms on strings of
length 2, 200, and 20_000:

use Benchmark qw/countit cmpthese/;
sub run($) { countit(5, @_) }
for $size (2, 200, 20_000) {

$s = "." x $len;
print "\nDATASIZE = $size\n";
cmpthese {

chop2 => run q{
$t = $s; chop $t; chop $t;

},
subs => run q{

($t = $s) =˜ s/..\Z//s;
},
lsubstr => run q{

$t = $s; substr($t, -2) = ’’;
},
rsubstr => run q{

$t = substr($s, 0, length($s)-2);
},

};
}

which produces the following output:

DATASIZE = 2
Rate subs lsubstr chop2 rsubstr

subs 181399/s -- -15% -46% -53%
lsubstr 214655/s 18% -- -37% -44%
chop2 338477/s 87% 58% -- -12%
rsubstr 384487/s 112% 79% 14% --

DATASIZE = 200
Rate subs lsubstr rsubstr chop2

subs 200967/s -- -18% -24% -34%
lsubstr 246468/s 23% -- -7% -19%
rsubstr 264428/s 32% 7% -- -13%
chop2 304818/s 52% 24% 15% --

DATASIZE = 20000
Rate rsubstr subs lsubstr chop2

rsubstr 5271/s -- -42% -43% -45%
subs 9087/s 72% -- -2% -6%
lsubstr 9260/s 76% 2% -- -4%
chop2 9660/s 83% 6% 4% --

With small data sets, the “rsubstr” algorithm runs 14% faster than the “chop2” algo-
rithm, but in large data sets, it runs 45% slower. On empty data sets (not shown
her e), the substitution mechanism is the fastest. So there is often no best solution
for all possible cases, and even these timings don’t tell the whole story, since
you’r e still at the mercy of your operating system and the C library Perl was built
with. What’s good for you may be bad for someone else. It takes a while to
develop decent benchmarking skills. In the meantime, it helps to be a good liar.

Pragm
ata

Benchmark 877

878 Chapter 32: Standard Modules

Carp
use Carp;
croak "We’re outta here!";

use Carp qw(:DEFAULT cluck);
cluck "This is how we got here!";

The Carp module lets you write modules whose functions report errors the way
built-in operators report errors — from the perspective of the users of your module.
The Carp module supplies routines that you use much like the standard built-in
functions warn and die, but that change the filename and line number so it looks
like the error originated from the user’s code instead of your code. In short, Carp
is great way to misdirect blame.

Ther e ar e actually four functions. The carp function works like the warn operator,
but with caller-r elative filename and line number information. The croak function
works like die does — raising an exception—but again gives caller-r elative infor-
mation. If you prefer a longer lament, use cluck and confess instead of carp and
croak respectively, and you’ll get a full stack backtrace reporting who called
whom and with what arguments (in the library with a lead pipe, no doubt). You
have to import cluck explicitly, because it’s not normally exported. People don’t
often want full stack traces on mere war nings, for some reason.

CGI
use CGI qw(:standard);
$who = param("Name");
$phone = param("Number");
@picks = param("Choices");

The CGI module helps manage HTML forms, especially multistage forms where
passing state from one stage to another is critical. The extremely simple example
above expects to process a form with two parameters that take single values, such
as text fields or radio buttons, and one that takes multiple values, like scrolling
lists specified as “MULTIPLE”. The module is several orders of magnitude fancier
than this, supporting such features as convenient cookie processing, persistent val-
ues for multiscreen shopping carts, and dynamic generation of HTML lists and
tables you might pull from a database—just to name a few. Support for turbo-
charged execution of precompiled Perl scripts through Apache’s mod_perl facility is
also provided. The O’Reilly book Writing Apache Modules with Perl and C, by
Lincoln Stein and Doug MacEachern, can tell you all about this.

CGI::Carp
use CGI::Carp;
warn "This is a complaint"; # Stamp it with progname and date.
die "But this one is serious"; # But don’t cause server 500 errors.

use CGI::Carp qw(carpout); # Import this function.
open(LOG, ">>/var/tmp/mycgi-log")

or die "Can’t append to mycgi-log: $!\n";
carpout(*LOG); # Now uses program-specific errlog.

use CGI::Carp qw(fatalsToBrowser);
die "Fatal error messages are now sent to browser, too";

The CGI::Carp module provides versions of the warn and die Perl built-in func-
tions, plus the Carp module’s carp, cluck, confess, and croak functions which are
mor e verbose and safer, too. They’re mor e verbose because each message
includes the date and time with the name of the program issuing the message,
which helps when you’re using a log file shared by a hundred differ ent pr ograms
scribbling a thousand differ ent messages on it at the same time.

The module is also kinder to web surfers, since prematur e death in a CGI script
tends to cause inscrutable “Server 500” err ors when the proper HTTP header
doesn’t get out to the server before your program pegs out, and this module
makes sure that doesn’t happen. The carpout function redir ects all warnings and
err ors to the filehandle specified. The fatalsToBrowser dir ective sends a copy of
such messages to the user’s browser, too. These facilities ease debugging of prob-
lems in CGI scripts.

Class::Str uct
use Class::Struct;

struct Manager => { # Creates a Manager->new() constructor.
name => ’$’, # Now name() method accesses a scalar value.
salary => ’$’, # And so does salary().
started => ’$’, # And so does started().

};

struct Shoppe => { # Creates a Shoppe->new() constructor.
owner => ’$’, # Now owner() method accesses a scalar.
addrs => ’@’, # And addrs() method accesses an array.
stock => ’%’, # And stock() method accesses a hash.
boss => ’Manager’, # Initializes with Manager->new().

};

$store = Shoppe->new();
$store->owner(’Abdul Alhazred’);
$store->addrs(0, ’Miskatonic University’);
$store->addrs(1, ’Innsmouth, Mass.’);

Pragm
ata

Class::Str uct 879

880 Chapter 32: Standard Modules

$store->stock("books", 208);
$store->stock("charms", 3);
$store->stock("potions", "none");
$store->boss->name(’Prof L. P. Haitch’);
$store->boss->salary(’madness’);
$store->boss->started(scalar localtime);

The Class::Struct module provides a way to “declare” a class as having objects
whose fields are of a specific type. The function that does this is called struct.
Because structures or records are not base types in Perl, each time you want to
cr eate a class to provide a record-like data object, you have to define a constructor
method along with accessor methods for each data field, sometimes called “wrap-
per” methods. The Class::Struct module’s struct function alleviates this tedium
by creating a class for you on the fly. You just tell it what data members should
exist and their types. The function creates a constructor method named new in the
package specified by the first argument, plus an attribute accessor method for each
member, as specified by the second argument, which should be a hash refer ence.

Field types are specified as either a built-in type using the customary “$”, “@”, “%”,
and “&” symbols, or as another class using the class name. The type of each field
will be enforced when you try to set the value.

Many standard modules use Class::Struct to create their objects and accessors,
including Net::hostent and User::pwent, whose source you can look at as a
model. See also the CPAN modules Tie::SecureHash and Class::Multimethods for
mor e elaborate approaches to autogeneration of classes and accessor methods. See
the section “Managing Instance Data” in Chapter 12, Objects.

Config
use Config;
if ($Config{cc} =˜ /gcc/) {

print "This perl was built by GNU C.\n";
}
use Config qw(myconfig config_sh config_vars);
print myconfig(); # like perl -V without a pattern
print config_sh(); # gives absolutely everything

config_vars qw/osname osvers archname/;

The configuration mechanism that builds and installs Perl assembles a wealth of
infor mation about your system. The Config module exports by default a tied hash
variable named %Config, which provides access to over 900 differ ent configuration
values. (These values are also available through Perl’s -V:PATTERN command-line
switch.) Config also provides three functions that give more shell-like access to
these values, as shown above. For instance, that last call might print out:

osname=’openbsd’;
osvers=’2.6’;
archname=’OpenBSD.sparc-openbsd’;

The module’s online documentation describes the configuration variables and their
possible values. Be aware that if you move your perl executable to a system other
than the one on which it was built, these values may not reflect the current reality;
for instance, if you’re running a Linux or a Solaris binary on a BSD system.

CPAN
Get interactive CPAN shell.
% perl -MCPAN -e shell

Just ask for upgrade recommendations.
% perl -MCPAN -e ’CPAN::Shell->r’

Install the named module in batch mode.
% perl -MCPAN -e "install Class::Multimethods"

The CPAN module is an automated, user-friendly interface to the Comprehensive
Perl Archive Network described in Chapter 22, CPAN. Unlike most modules you
encounter, it’s intended to be called from the command line, just like a little pro-
gram. The first time you call it, the module prompts for the default CPAN mirror
site and other information it needs. After that, you can fire up its interactive shell
to make queries and select modules to install, ask the module for recommenda-
tions on which modules need an upgrade, or just have it install one particular
module.

Cwd
use Cwd;
$dir = getcwd(); # Where am I?

use Cwd ’chdir’;
chdir "/tmp"; # Updates $ENV{PWD}.

use Cwd ’realpath’;
print realpath("/usr////spool//mqueue/../"); # prints /var/spool

The Cwd module provides platform-independent functions to determine your pro-
cess’s current working directory. This is better than shelling out to pwd (1) because
non-POSIX-confor ming systems aren’t guaranteed to have such a command, and
Perl runs on more than just POSIX platforms. The getcwd function, which is
exported by default, retur ns the current working directory using whatever mecha-

Pragm
ata

Cwd 881

882 Chapter 32: Standard Modules

nism is deemed safest on the current platform. If you import the chdir function, it
overrides the built-in operator with the module’s operator, which maintains the
$ENV{PWD} envir onment variable; commands you might launch later that would
car e about that variable would then have a consistent view of their world. The
realpath function resolves its pathname argument of any symbolic links and rela-
tive-path components to retur n a full path directory in canonical form, just like
realpath (3).

Data::Dumper
use Data::Dumper;
print Dumper($store);

When used on the example from Class::Struct, this prints:

$VAR1 = bless({
’Shoppe::owner’ => ’Abdul Alhazred’,
’Shoppe::stock’ => {

’charms’ => 3,
’books’ => 208,
’potions’ => ’none’

},
’Shoppe::boss’ => bless({

’Manager::name’ =>
’Prof L. P. Haitch’,

’Manager::salary’ =>
’madness’,

’Manager::started’ =>
’Sat Apr 1 16:18:13 2000’

}, ’Manager’),
’Shoppe::addrs’ => [

’Miskatonic University’,
’Innsmouth, Mass.’

]
}, ’Shoppe’);

The Data::Dumper module’s Dumper function takes a list of scalars (including refer-
ences, which can even refer to objects) and retur ns a printable or evalable string
that accurately repr oduces an faithful copy of the original. You could use this to
write out a saved version of a data structure to a regular disk file or into a DBM
file, or to pass it to another process over a pipe or socket connection. This module
can be used with MLDBM fr om CPAN and DB_File to implement a DBM file that can
transpar ently stor e complex data values, not just flat strings. Other stringification
(or serialization, or marshalling) modules include Storable and FreezeThaw, both
available from CPAN.

DB_File
use DB_File;

Tie a hash to a DBM-style file:

tie(%hash, "DB_File", $filename) # Open database.
or die "Can’t open $filename: $!";

$v = $hash{"key"}; # Retrieve from database.
$hash{"key"} = "value"; # Put value into database.
untie %hash;

Tie a hash to a B-tree file, but still access as a regular DBM hash:

tie(%hash, "DB_File", "mytree", O_RDWR|O_CREAT, 0666, $DB_BTREE)
or die "Cannot open file ‘mytree’: $!";

while (($k, $v) = each %hash) { # Do in-order traversal.
print "$k => $v\n";

}

Tie an array to a plain text file:

tie(@lines, "DB_File", $textfile, O_RDWR|O_CREAT, 0666, $DB_RECNO)
or die "Cannot open textfile $textfile: $!";

Write a few lines to the file, overwriting any old contents.
$lines[0] = "first line";
$lines[1] = "second line";
$lines[2] = "third line";

push @lines, "penult", "last"; # Append two lines to the file.
$wc = scalar @lines; # Count lines in file.
$last = pop @lines; # Delete and retrieve last line.

The DB_File module provides tied access to Berkeley DB.* The default tie func-
tion gives you a standard DBM-style database with some features that no other
DBM library provides: there are no size limits on either keys or values, and your
data is stored in a byte-order independent format.

The second tie mechanism uses B-trees to give you a true ISAM (indexed sequen-
tial access method) file, that is, a hash whose keys are automatically ordered —
alphabetically by default, but configurable by the user.

The third tie mechanism binds an array to a file of records (text lines by default)
so that changes to the array are automatically reflected on disk. This simulates ran-
dom access by line number on a regular text file. The standard interface conforms

* Pr oviding you have that library installed on your system. If not, you can build and install it easily
enough.

Pragm
ata

DB_File 883

884 Chapter 32: Standard Modules

to version 1.x of Berkeley DB; if you want to make use of the new features avail-
able in Berkeley DB 2.x or 3.x, use the CPAN module BerkeleyDB instead.

Starting with version 2.x, Berkeley DB has internal support for locking; earlier ver-
sions did not. See the section “File Locking” in Chapter 16 for a description of how
you can safely lock any kind of database file using flock on a semaphore file.

Dumpvalue
use Dumpvalue;

Dumpvalue->new->dumpValue($store);

When used on the example from Class::Struct, this prints:

’Shoppe::addrs’ => ARRAY(0x9c1d4)
0 ’Miskatonic University’
1 ’Innsmouth, Mass.’

’Shoppe::boss’ => Manager=HASH(0xa5754)
’Manager::name’ => ’Prof L. P. Haitch’
’Manager::salary’ => ’madness’
’Manager::started’ => ’Sat Apr 1 16:18:13 2000’

’Shoppe::owner’ => ’Abdul Alhazred’
’Shoppe::stock’ => HASH(0xfdbb4)

’books’ => 208
’charms’ => 3
’potions’ => ’none’

This is another module to help display complex data. It’s not so much meant for
marshalling as it is for pretty printing. It’s used by the Perl debugger’s x command.
As such, it offers a dizzying wealth of options to control the output format. It also
pr ovides convenient access to Perl’s package symbol tables to dump out the con-
tents of an entire package.

English
use English;

Use awk-style names.
$RS = ’’; # instead of $/
while (<>) {

next if $NR < 10; # instead of $.
...

}

Same thing, but even more cobolaciously.
$INPUT_RECORD_SEPARATOR = ’’;
while (<>) {

next if $INPUT_LINE_NUMBER < 10;
...

}

The English module provides cumbersome aliases for the built-in variables for
pr odigious typists with a visceral dislike for nonalphabetic identifiers (and a vis-
ceral like for the Caps Lock key). As with all imports, these aliases are only avail-
able in the current package. The variables are still available under their real
names. For example, once you use this module, you can use $PID if $$ bothers
you, or $PROGRAM_NAME if $0 makes you queasy. Some variables have more than
one alias. See Chapter 28, Special Names, for a complete description of all built-in
variables, along with their English aliases.

Er r no
use Errno;
unless (open(FH, $pathname)) {

if ($!{ENOENT}) { # We don’t need an import for this!
warn "$pathname does not exist\n";

}
else {

warn "open failed on ‘$pathname’: $!";
}

}

use Errno qw(EINTR EIO :POSIX);
if ($! == ENOENT) { }

The Errno module makes available the symbolic names for the error status values
set when a syscall fails, but does not export them by default. The module has a
single export tag, “:POSIX”, which exports only those symbols defined by the
POSIX 1003.1 standard. The module also makes the global %! variable magical
using tie. You can subscript into the %! hash using any valid errno on your sys-
tem, not just the POSIX ones, and its value is true only if that’s the current error.

Expor ter
Inside your MyModule.pm file:

package MyModule;

use strict;
use Exporter;

our $VERSION = 1.00; # Or higher...
our @ISA = qw(Exporter);

our @EXPORT = qw(f1 %h); # Symbols imported by default.
our @EXPORT_OK = qw(f2 f3); # Symbols imported only by request.
our %EXPORT_TAGS = (# Mappings for :shortcuts.

a => [qw(f1 f2 f3)],
b => [qw(f2 %h)],

);

Pragm
ata

Expor ter 885

886 Chapter 32: Standard Modules

Your code here.

1;

Fr om a program or another module that makes use of your module:

use MyModule; # Import everything in @EXPORT.
use MyModule (); # Load module, no imports at all.
use MyModule "f1", "f2", "%h"; # Two subs and a variable.
use MyModule qw(:DEFAULT f3); # All in @EXPORT + one sub.
use MyModule "f4"; # Fatal because f4 not exported.

Whenever anyone invokes a use declaration to load your module, it calls the
import method from your module to fetch any symbols it needs into the package
of the invoker. Your module (the one doing the exporting) can define the import

method any way it pleases, but the standard way is to inherit the method from the
Exporter class module. That is what the code above arranges.

The Exporter module serves as a base class for modules that wish to establish
their own exports. Oddly, object-oriented modules typically don’t use Exporter,
since they don’t normally export anything (method calls don’t need to be
exported). However, the Exporter module itself is accessed in an OO fashion
because of the @ISA array you installed, as in our example. When another program
or module uses your module, the import method is invoked as a class method in
your module: MyModule->import(LIST). However, since you didn’t define an
import method in your module, you’ll automatically make use of the
Exporter::import method through inheritance.

The module’s @EXPORT array contains a list of symbols (functions and even vari-
ables) that the calling code automatically imports with an unadorned use state-
ment. The @EXPORT_OK array holds symbols that can be imported if specifically
requested by name. The $VERSION number is consulted if the use statement
requests that a particular version (or newer) of the module. Many, many other fea-
tur es ar e available. See Chapter 11, Modules, as well as the online manpage for the
Exporter module.

Fatal
The Fatal module makes functions fail more spectacularly. It replaces functions
that normally retur n false upon failure with wrappers that raise an exception if the
real function retur ns false. That way you can safely use these functions without
testing their retur n values explicitly on each call.

Both user-defined functions and built-in functions may be wrapped, except for
those built-ins that cannot be expressed via prototypes. Attempting to override a

nonoverridable built-in raises an exception. These include system, print, printf,
exec, split, grep, and map—or mor e generally, any FUNC for which prototype

"CORE::FUNC" retur ns false, including the prototype function itself.

If the symbol :void appears in the import list, functions named later in the list are
limited to raising an exception when the function is called in void context—that
is, when the retur n value is ignored. (Be careful about the last statement in a sub-
routine.) For example:

use Fatal qw(:void open close);

open properly checked, so no exception is raised on failure.
if (open(FH, "< /nonesuch") { warn "no /nonesuch: $!"; }

close not properly checked, so failure raises an exception.
close FH;

Fcntl
use Fcntl; # Import standard fcntl.h constants.
use Fcntl ":flock"; # Import LOCK_* constants.
use Fcntl ":seek"; # Import SEEK_CUR, SEEK_SET, SEEK_END.
use Fcntl ":mode"; # Import S_* stat checking constants.
use Fcntl ":Fcompat"; # Import F* constants.

The Fcntl module provides constants for use with various Perl built-in functions.
The default set of imports includes constants like F_GETFL and F_SETFL for fcntl,
SEEK_SET and SEEK_END for seek and sysseek, and O_CREAT and O_EXCL for sysopen.
Supported import tags include “:flock” to access the LOCK_EX, LOCK_NB, LOCK_SH,
and LOCK_UN constants for flock; “:mode” to get at constants from sys/stat.h like
S_IRUSR and S_ISFIFO; “:seek” to get at the three arguments for seek and sysseek;
and “:Fcompat” to get the old-style symbols with a leading “F” but not “F_”, like
FAPPEND, FASYNC, and FNONBLOCK. See the online documentation for the Fcntl mod-
ule and your operating system’s documentation on the relevant syscalls, like
fcntl (2), lseek (2), open (2), and stat (2).

File::Basename
use File::Basename;

$fullname = "/usr/local/src/perl-5.6.1.tar.gz";

$file = basename($fullname);
file="perl-5.6.1.tar.gz"

$dir = dirname($fullname);
dir="/usr/local/src"

Pragm
ata

File::Basename 887

888 Chapter 32: Standard Modules

($file,$dir,$ext) = fileparse($fullname, qr/\..*/);
dir="/usr/local/src/" file="perl-5" ext=".6.1.tar.gz"

($file,$dir,$ext) = fileparse($fullname, qr/\.[ˆ.]*/);
dir="/usr/local/src/" file="perl-5.6.1.tar" ext=".gz"

($file,$dir,$ext) = fileparse($fullname, qr/\.\D.*/);
dir="/usr/local/src/" file="perl-5.6.1" ext=".tar.gz"

($file,$dir,$bak) = fileparse("/tmp/file.bak",
qr/˜+$/, qr/\.(bak|orig|save)/)

dir="/tmp/" file="file" ext=".bak"

($file,$dir,$bak) = fileparse("/tmp/file˜",
qr/˜+$/, qr/\.(bak|orig|save)/)

dir="/tmp/" file="file" ext="˜"

The File::Basename module provides functions to parse pathnames into their indi-
vidual components. The dirname function pulls out the directory portion and base-

name the nondirectory portion. The more elaborate fileparse function picks out
the full pathname into the directory name, the filename, and the suffix; you must
supply a list of regular expressions describing the suffixes that interest you. The
examples above illustrate how choice of suffix patterns affects the result. By
default, these functions parse pathnames according to the native conventions of
your current platform. The fileparse_set_fstype function selects a differ ent plat-
for m’s parsing rules, such as fileparse_set_fstype("VMS") to parse names using
VMS rules, even when running on non-VMS systems.

File::Compare
use File::Compare;

printf "fileA and fileB are %s.\n",
compare("fileA","fileB") ? "different" : "identical";

use File::Compare ’cmp’;
sub munge($) {

my $line = $_[0];
for ($line) {

s/ˆ\s+//; # Trim leading whitespace.
s/\s+$//; # Trim trailing whitespace.

}
return uc($line);

}

if (not cmp("fileA", "fileB", sub {munge $_[0] eq munge $_[1]}) {
print "fileA and fileB are kinda the same.\n";

}

The File::Compare module provides one function, compare, which compares the
contents of the two files passed to it. It retur ns 0 if the files contain the same data,
1 if they contain differ ent data, and -1 if an error was encountered in accessing the
named files. If you pass a subroutine refer ence as the third argument, that function
is repeatedly called to determine whether any two lines are equivalent. For com-
patibility with the cmp (1) program, you may explicitly import the function as cmp.
(This does not affect the binary cmp operator.)

File::Copy
use File::Copy;

copy("/tmp/fileA", "/tmp/fileA.orig") or die "copy failed: $!";
copy("/etc/motd", *STDOUT) or die "copy failed: $!";
move("/tmp/fileA", "/tmp/fileB") or die "move failed: $!";

use File::Copy qw/cp mv/; # Get normal Unix names.
cp "/tmp/fileA", "/tmp/fileA.orig" or die "copy failed: $!";
mv "/tmp/fileA", "/tmp/fileB" or die "move failed: $!";

The File::Copy module exports two functions, copy and move, that respectively
copy or rename their first argument to their second argument, similar to calling the
Unix cp (1) and mv (1) commands (names you may use if you import them explic-
itly). The copy function also accepts filehandles as arguments. These functions
retur n true when they work and false when they fail, setting $! ($OS_ERROR) as
appr opriate. (Unfortunately, you can’t tell whether something like “Permission
denied” applies to the first file or to the second one.) These functions are some-
thing of a compromise between convenience and precision. They do not support
the numerous options and optimizations found in cp (1) and mv (1), such as recur-
sive copying, automatic backups, retention of original timestamps and ownership
infor mation, and interactive confirmation. If you need any of those features, it’s
pr obably best to call your platform’s versions of those commands.* Just realize that
not all systems support the same commands or use the same options for them.

system("cp -R -pi /tmp/dir1 /tmp/dir2") == 0
or die "external cp command status was $?";

File::Find
use File::Find;

Print out all directories below current one.
find sub { print "$File::Find::name\n" if -d }, ".";

* Or get the PPT versions if your platform is tool-challenged.

Pragm
ata

File::Find 889

890 Chapter 32: Standard Modules

Compute total space used by all files in listed directories.
@dirs = @ARGV ? @ARGV : (’.’);
my $sum = 0;
find sub { $sum += -s }, @dirs;
print "@dirs contained $sum bytes\n";

Alter default behavior to go through symlinks
and visit subdirectories first.
find { wanted => \&myfunc, follow => 1, bydepth => 1 }, ".";

The File::Find module’s find function recursively descends directories. Its first
argument should be a refer ence to a function, and all following arguments should
be directories. The function is called on each filename from the listed directories.
Within that function, the $_ variable is set to the basename of the current filename
visited, and the process’s current working directory is by default set to that direc-
tory. The package variable $File::Find::name is the full pathname of the visited
filename. An alternative calling convention takes as its first argument a refer ence
to a hash containing option specifications, including “wanted”, “bydepth”, “follow”,
“follow_fast”, “follow_skip”, “no_chdir”, “untaint”, “untaint_pattern”, and
“untaint_skip”, as fully explained in the online documentation. This module is
also used by the standard find2perl (1) translator program that comes with Perl.

File::Glob
use File::Glob ’:glob’; # Override glob built-in.
@list = <*.[Cchy]>; # Now uses POSIX glob, not csh glob.

use File::Glob qw(:glob csh_glob);
@sources = bsd_glob("*.{C,c,h,y,pm,xs}", GLOB_CSH);
@sources = csh_glob("*.{C,c,h,y,pm,xs}"); # (same thing)

use File::Glob ’:glob’;
call glob with extra arguments
$homedir = bsd_glob(’˜jrhacker’, GLOB_TILDE | GLOB_ERR);
if (GLOB_ERROR) {

An error occurred expanding the home directory.
}

The File::Glob module’s bsd_glob function implements the glob (3) routine from
the C library. An optional second argument contains flags governing additional
matching properties. The :glob import tag imports both the function and the nec-
essary flags.

The module also implements a csh_glob function. This is what the built-in Perl
glob and GLOBPAT fileglobbing operators really call. Calling csh_glob is (mostly)
like calling bsd_glob this way:

bsd_glob(@_ ? $_[0] : $_,
GLOB_BRACE | GLOB_NOMAGIC | GLOB_QUOTE | GLOB_TILDE);

If you import the :glob tag, then all calls to the built-in fileglobbing operators in
the current package will really call the module’s bsd_glob function instead of its
csh_glob function. One reason you might want to do this is that, although
bsd_glob handles patterns with whitespace in them correctly, csh_glob handles
them, um, in the historical fashion. Old scripts would write <*.c *.h> to glob both
of those. Neither function is bothered by whitespace in the actual filenames, how-
ever.

The bsd_glob function takes an argument containing the fileglobbing pattern (not
a regular expression pattern) plus an optional flags argument. Filenames with a
leading dot are not matched unless specifically requested. The retur n value is
influenced by the flags in the second argument, which should be bitwise ORed
together:*

GLOB_BRACE

Pr eprocess the string to expand {pat,pat,...} strings as csh (1) would. The
patter n {} is left unexpanded for historical reasons, mostly to ease typing of
find (1) patterns.

GLOB_CSH

Synonym for GLOB_BRACE | GLOB_NOMAGIC | GLOB_QUOTE | GLOB_TILDE.

GLOB_ERR

Retur n an error when bsd_glob encounters a directory it cannot open or read.
Ordinarily, bsd_glob skips over the error, looking for more matches.

GLOB_MARK

Retur n values that are dir ectories with a slash appended.

GLOB_NOCASE

By default, filenames are case sensitive; this flag makes bsd_glob tr eat case dif-
fer ences as insignificant. (But see below for exceptions on MS-DOSish sys-
tems).

GLOB_NOCHECK

If the pattern does not match any pathname, then makes bsd_glob retur n a list
consisting of only the pattern, as /bin/sh does. If GLOB_QUOTE is set, its effect is
pr esent in the pattern retur ned.

* Due to restrictions in the syntax of the built-in glob operator, you may need to call the function as
bsd_glob if you want to pass it the second argument.

Pragm
ata

File::Glob 891

892 Chapter 32: Standard Modules

GLOB_NOMAGIC

Same as GLOB_NOCHECK but it only retur ns the pattern if it does not contain any
of the special characters *, ? or [. NOMAGIC is provided to simplify implement-
ing the historic csh (1) globbing behavior and should probably not be used
anywher e else.

GLOB_NOSORT

By default, the pathnames are sorted in ascending order (using normal charac-
ter comparisons irrespective of locale setting). This flag prevents that sorting
for a small increase in speed.

GLOB_QUOTE

Use the backslash character \ for quoting: every occurrence of a backslash fol-
lowed by a character in the pattern is replaced by that character, avoiding any
special interpretation of the character. (But see below for exceptions on MS-
DOSish systems).

GLOB_TILDE

Allow patterns whose first path component is ˜USER. If USER is omitted, the
tilde by itself (or followed by a slash) repr esents the current user’s home
dir ectory.

The bsd_glob function retur ns a (possibly empty) list of matching paths, which will
be tainted if that matters to your program. On error, GLOB_ERROR will be true and $!

($OS_ERROR) will be set to the standard system error. GLOB_ERROR is guaranteed to
be false if no error occurred, and to be either GLOB_ABEND or GLOB_NOSPACE other-
wise. (GLOB_ABEND means that the bsd_glob was stopped due to some error,
GLOB_NOSPACE because it ran out of memory.) If bsd_glob had already found some
matching paths when the error occurred, it retur ns the list of filenames found so
far, and also sets GLOB_ERROR. Note that this implementation of bsd_glob varies from
most others by not considering ENOENT and ENOTDIR as terminating error conditions.
Instead, it continues processing despite those errors, unless the GLOB_ERR flag is
set.

If no flag argument is supplied, your system’s defaults are followed, meaning that
filenames differing only in case are indistinguishable from one another on VMS,
OS/2, old Mac OS (but not Mac OS X), and Microsoft systems (but not when Perl
was built with Cygwin). If you supply any flags at all and still want this behavior,
then you must include GLOB_NOCASE in the flags. Whatever system you’re on, you
can change your defaults up front by importing the :case or :nocase flags.

On MS-DOSish systems, the backslash is a valid directory separator character.* In
this case, use of backslash as a quoting character (via GLOB_QUOTE) inter feres with

* Although technically, so is a slash—at least as far as those kernels and syscalls are concer ned; com-
mand shells are remarkably less enlightened.

the use of backslash as a directory separator. The best (simplest, most portable)
solution is to use slashes for directory separators, backslashes for quoting. How-
ever, this does not match some users’ expectations, so backslashes (under
GLOB_QUOTE) quote only the glob metacharacters [,], {, }, -, ˜, and \ itself. All
other backslashes are passed through unchanged, if you can manage to get them
by Perl’s own backslash quoting in strings. It may take as many as four back-
slashes to finally match one in the filesystem. This is so completely insane that
even MS-DOSish users should strongly consider using slashes. If you really want to
use backslashes, look into the standard File::DosGlob module, as it might be
mor e to your liking than Unix-flavored fileglobbing.

File::Spec
use File::Spec; # OO style

$path = File::Spec->catfile("subdir", "filename");
’subdir/filename’ on Unix, OS2, or Mac OS X
’subdir:filename’ on (old) Apple Macs
’subdir\filename’ on Microsoft

$path = File::Spec->catfile("", "dir1", "dir2", "filename");
’/dir1/dir2/filename’ on Unix, OS2, or Mac OS X
’:dir1:dir2:filename’ on (old) Apple Macs
’\dir1\dir2\filename’ on Microsoft

use File::Spec::Unix;
$path = File::Spec::Unix->catfile("subdir", "filename");

’subdir/filename’ (even when executed on non-Unix systems)

use File::Spec::Mac;
$path = File::Spec::Mac->catfile("subdir", "filename");

’subdir:filename’

use File::Spec::Win32;
$path = File::Spec::Win32->catfile("subdir", "filename";)

’subdir\filename’

Use functional interface instead.
use File::Spec::Functions;
$path = catfile("subdir", "filename");

The File::Spec family of modules lets you construct paths using directories and
filenames without hardcoding platform-specific directory separators. Supported
systems include Unix, VMS, Mac, and Win32. These modules all offer a catfile

class method that catenates together each path component using the specified
platfor m’s path separator. The File::Spec module retur ns dif ferent results depend-
ing on your current platform. The others retur n results specific to that platform.
The File::Spec::Functions module provides a functional interface.

Pragm
ata

File::Spec 893

894 Chapter 32: Standard Modules

File::stat
use File::stat;
$st = stat($file) or die "Can’t stat $file: $!";
if ($st->mode & 0111 and $st->nlink > 1)) {

print "$file is executable with many links\n";
}

use File::stat ":FIELDS";
stat($file) or die "Can’t stat $file: $!";
if ($st_mode & 0111 and $st_nlink > 1)) {

print "$file is executable with many links\n";
}

@statinfo = CORE::stat($file); # Access overridden built-in.

The File::stat module provides a method interface to Perl’s built-in stat and
lstat functions by replacing them with versions that retur n a File::stat object
(or undef on failure). This object has methods that retur n the like-named structure
field name from the traditional stat (2) syscall; namely, dev, ino, mode, nlink, uid,
gid, rdev, size, atime, mtime, ctime, blksize, and blocks. You may also import the
structur e fields into your own namespace as regular variables using the “:FIELDS”
import tag. (This still overrides your stat and lstat built-ins.) These fields show
up as scalar variables named with a “st_” in front of the field name. That is, the
$st_dev variable corresponds to the $st->dev method.

File::Temp
use File::Temp qw(tempfile tempdir);

$dir = tempdir(CLEANUP => 1);
($fh, $filename) = tempfile(DIR => $dir);
($fh, $filename) = tempfile($template, DIR => $dir);
($fh, $filename) = tempfile($template, SUFFIX => ".data");
$fh = tempfile();

use File::Temp ’:mktemp’;

($fh, $filename) = mkstemp("tmpfileXXXXX");
($fh, $filename) = mkstemps("tmpfileXXXXXX", $suffix);
$tmpdir = mkdtemp($template);
$unopened_file = mktemp($template);

New to version 5.6.1 of Perl, the File::Temp module provides convenient functions
for creating and opening temporary files securely. It’s better to use this module
than to try to pick a temporary file on your own. Otherwise, you’ll just fall into all
the same traps as everyone else before you. This module guards you against vari-
ous subtle race conditions, as well as the dangers of using directories that others
can write to; see Chapter 23, Security. The tempfile function retur ns both a

filehandle and filename. It’s safest to use the filehandle that’s already open and
ignor e the filename entirely (except perhaps for error messages). Once the file is
closed, it is automatically deleted. For compatibility with the C library, the :mktemp

import tag provides access to functions with names familiar to C programmers, but
please remember that filenames are always less secure than filehandles.

FileHandle
use FileHandle;

$fh = new FileHandle;
if ($fh->open("< file")) {

print $line while defined($line = $fh->getline);
$fh->close;

}

$pos = $fh->getpos; # like tell()
$fh->setpos($pos); # like seek()

($readfh, $writefh) = FileHandle::pipe();

autoflush STDOUT 1;

The FileHandle module mostly serves as a mechanism for cloaking Perl’s punctua-
tion variables in longer, mor e OO-looking calls. It is provided for compatibility
with older releases, but is now really only a frontend for several more specific
modules, like IO::Handle and IO::File.* Its best property is the low-level access it
pr ovides to certain rare functions from the C library (clear err (3), fgetpos (3),
fsetpos (3), and setvbuf (3)).

Variable Method

$| autoflush

$, output_field_separator

$\ output_record_separator

$/ input_record_separator

$. input_line_number

$% format_page_number

$= format_lines_per_page

$- format_lines_left

$˜ format_name

$ˆ format_top_name

$: format_line_break_characters

$ˆL format_formfeed

* Because it loads so much code, this module costs you a megabyte or so of memory.

Pragm
ata

FileHandle 895

896 Chapter 32: Standard Modules

Instead of saying:

$ofh = select(HANDLE);
$˜ = ’SomeFormat’;
$| = 1;
select($ofh);

you can just say:

use FileHandle;
HANDLE->format_name(’SomeFormat’);
HANDLE->autoflush(1);

Curr ently, thr ee methods (output_field_separator, output_record_separator, and
input_record_separator) only pretend to be per-handle methods: setting them on
one handle actually affects all filehandles. They are ther efor e only supported as
class methods, not as per-filehandle methods. This restriction may be lifted some-
day.

To get a lexically scoped filehandle, instead of using filehandle autovivification:

open my $fh, "< somefile"
or die "can’t open somefile: $!";

one could say:

use FileHandle;
my $fh = FileHandle->new("< somefile")

or die "can’t open somefile: $!";

FileHandle inherits from IO::File, which inherits from IO::Handle and IO::Seek-

able. Virtually all the module’s functionality is available more efficiently through
basic, unadorned Perl calls, except for the following, not all of which may be
implemented on all non-Unix platforms:

HANDLE->blocking(EXPR)

Called with an argument, enables nonblocking I/O if the argument is false,
and disables nonblocking (that is, enables blocking) if the argument is true.
The method retur ns the previously set value (which is still the current setting
if no argument was given). On error, blocking sets $! and retur ns undef. This
could be done using fcntl dir ectly, but the FileHandle inter face is much eas-
ier to use.

HANDLE->clearerr

Calls the C library function clear err (3) to clear the handle’s internal end-of-file
and error status indicators.

HANDLE->error

Calls the C library function ferr or (3) to test the error indicator for the given
handle, retur ning whether that internal indicator is set. The error indicator can
be reset reliably only via the clearerr method. (Some systems also reset it on
calls to the seek operator.)

HANDLE->formline(PICTURE, LIST)

This is the same as saving the old accumulator variable ($ˆA), calling the form-

line function with the given PICTURE and LIST, outputting the resulting con-
tents of the accumulator to the given handle, and finally restoring the original
accumulator. For example, here’s how to output a long text variable, with
automatic word-wrapping at column 72:

use FileHandle;
STDOUT->formline("ˆ" . ("<" x 72) . "˜˜\n", $long_text);

HANDLE->getpos

Calls the C library function fgetpos (3), providing an alternative interface to
tell. On some (non-UNIX) systems the retur n value may be a complex object,
and getpos and setpos may be the only way to portably reposition a text
str eam.

FileHandle->new_tmpfile

Calls the C library function tmpfile (3) to create a new temporary file opened
for read-write mode and retur ns a handle to this stream. On systems where
this is possible, the temporary file is anonymous—that is, it is unlinked after
cr eation, but held open. You should use this function, or POSIX::tmpnam as
described under the POSIX module, to safely create a temporary file without
exposing yourself to subtle but serious security problems through race condi-
tions. As of the 5.6.1 release of Perl, the File::Temp module is now the pre-
ferr ed inter face.

HANDLE->setbuf(BUFFER)

Calls the C library function setbuf (3) with the given BUFFER variable. It passes
undef to indicate unbuffer ed output. A variable used as a buffer by setbuf or
setvbuf must not be modified in any way until the handle is closed, or until
setbuf or setvbuf is called again. Otherwise, memory corruption may result,
and you will be sad.

HANDLE->setpos(EXPR)

Calls the C library function fsetpos (3), providing an alternative interface to
seek. The argument should only be the retur n value from getpos, described
earlier.

Pragm
ata

FileHandle 897

898 Chapter 32: Standard Modules

HANDLE->setvbuf(BUFFER, TYPE, SIZE)

Calls the C library function setvbuf (3) with the given BUFFER. The standard C
library constants _IONBF (unbuf fered), _IOLBF (line buffer ed), and _IOFBF (fully
buf fered) are available for the TYPE field if explicitly imported. See the warning
under setbuf.

HANDLE->sync

Calls the C library function fsync (3) to synchronize a file’s in-memory state
with the physical medium. Note that sync operates not on the handle, but on
the file descriptor, so any data held by buffers will not be synchronized unless
flushed first.

HANDLE->untaint

Marks the filehandle or directory handle as providing untainted data. When
running under taint mode (see Chapter 23), data read in from external files is
consider ed untrustworthy. Do not invoke this method blindly: you’re circum-
venting Perl’s best attempts to protect you from yourself.

Getopt::Long
If your program says:

use Getopt::Long;
GetOptions("verbose" => \$verbose,

"debug" => \$debug,
"output=s" => \$output);

it can be called from the command line like this:

% prog --verbose more args here
% prog --debug more args here
% prog -v -d more args here
% prog --output=somefile more args here
% prog -o somefile more args here

The Getopt::Long module provides a GetOptions function to process command-
line switches with long names. It includes support for things like abbreviating
switches, typed arguments like Boolean or string or integer or float, array variables
for repeating options, user-defined validation routines, POSIX-conforming versus
FSF-style processing, case-insensitive options, and traditional bundling of short
options — just to name a few out of its vast cornucopia of features. If this module
is overkill, consider the more traditional Getopt::Std module described next. If
this module is underkill, check out the CPAN module Getopt::Declare, which pro-
vides a more declarative syntax for option specification.

Getopt::Std
use Getopt::Std;

You can use getopt and getopts with globals:

our ($opt_o, $opt_i, $opt_f);
getopt(’oif’); # -o, -i, and -f all take arguments.

Sets global $opt_* variables.
getopts(’oif:’); # Now -o & -i are boolean; -f takes an arg.

Still sets global $opt_* as side effect.

Or you can use them with a private options hash:

my %opts; # We’ll place results here.
getopt(’oif’, \%opts); # All three still take arguments.
getopts(’oif:’, \%opts); # Now -o and -i are boolean flags

and only -f takes an argument.

The Getopt::Std module provides two functions, getopt and getopts, to help you
parse command-line arguments for single-character options. Of the two, getopts is
the more useful because it lets you specify that some options take arguments and
others don’t, whereas getopt assumes all options take arguments. By specifying to
getopts a letter with a colon after it, you indicate that that argument takes an argu-
ment; otherwise, a Boolean flag is expected. Standard option clustering is sup-
ported. Ordering doesn’t matter, so options taking no arguments may be grouped
together. Options that do take an argument must be the last in a group or by
themselves, and their argument may either come immediately after the option in
the same string, or else as the next program argument. Given the example getopts

use above, these are equivalent calls:

% prog -o -i -f TMPFILE more args here
% prog -o -if TMPFILE more args here
% prog -io -fTMPFILE more args here
% prog -iofTMPFILE more args here
% prog -oifTMPFILE more args here

IO::Socket
use IO::Socket;

As a client:

$socket = new IO::Socket::INET (PeerAddr => $remote_host,
PeerPort => $remote_port,
Proto => "tcp",
Type => SOCK_STREAM)

or die "Can’t connect to $remote_host:$remote_port : $!\n";

Pragm
ata

IO::Socket 899

900 Chapter 32: Standard Modules

Or use the simpler single-argument interface.
$socket = IO::Socket::INET->new("$remote_host:$remote_port");

"localhost:80", for example.

print $socket "data\n";
$line = <$socket>;

As a server:

$server = IO::Socket::INET->new(LocalPort => $server_port,
Type => SOCK_STREAM,
Reuse => 1,
Listen => 10) # or SOMAXCONN

or die "Can’t be a TCP server on port $server_port : $!\n";

while ($client = $server->accept()) {
$client is the new connection
$request = <$client>;
print $client "answer\n";
close $client;

}

Make simple TCP connecting function that returns a filehandle
for use in simple client programs.
sub tcp_connect {

my ($host, $service) = @_;
require IO::Socket;
return IO::Socket::INET->new(join ":", $host, $service);

}
my $fh = tcp_connect("localhost", "smtp"); # with scalar
local *FH = tcp_connect("localhost", "smtp"); # with handle

The IO::Socket module provides a higher-level approach to socket handling than
the raw Socket module. You may use it in an object-oriented fashion, although this
isn’t mandatory, because the retur n values are proper filehandles and may be used
as such, as shown in the tcp_connect function in the example. This module inher-
its methods from IO::Handle, and itself requir es IO::Socket::INET and
IO::Socket::UNIX. See the description of the FileHandle module for other interest-
ing features. See Chapter 16 for a description of using sockets.

IPC::Open2
use IPC::Open2;

local(*HIS_OUT, *HIS_IN); # Create local handles if needed.

$childpid = open2(*HIS_OUT, *HIS_IN, $program, @args)
or die "can’t open pipe to $program: $!";

print HIS_IN "here’s your input\n";
$his_output = <HIS_IN>;
close(HIS_OUT);
close(README);
waitpid($childpid, 0);

The IPC::Open2 module’s one exported function, open2, starts up another program
and provides both read and write access to that command. The first two argu-
ments should be valid filehandles (or else empty variables into which autogener-
ated filehandles can be placed). The remaining arguments are the program plus its
arguments, which if passed in separately will not be subject to shell interpolation.
This module does not reap the child process after it exits. Except for short pro-
grams where it’s acceptable to let the operating system take care of this, you need
to do this yourself. This is normally as simple as calling waitpid $pid, 0 when
you’r e done with that child process. Failure to do this can result in an accumula-
tion of defunct (“zombie”) processes.

In practice, this module doesn’t work well with many programs because of the
way buffering works in C’s standard I/O library. If you control the source code to
both programs, however, you can easily circumvent this restriction by flushing
your output buffers more frequently than the default. If you don’t, programs can
be annoyingly miserly in their hoarding of output. Another potential pitfall is dead-
lock: if both processes are reading at the same time, and no one is writing, then
your program will hang. See Chapter 16 for more discussion.

IPC::Open3
use IPC::Open3;

local(*HIS_IN, *HIS_OUT, *HIS_ERR);

$childpid = open3(*HIS_IN, *HIS_OUT, *HIS_ERR, $cmd, @args);
print HIS_IN "stuff\n";
close(HIS_IN); # Give end of file to kid.
@outlines = <HIS_OUT>; # Read till EOF.
@errlines = <HIS_ERR>; # XXX: block potential if massive
print "STDOUT:\n", @outlines, "\n";
print "STDERR:\n", @errlines, "\n";
close HIS_OUT;
close HIS_ERR;
waitpid($childpid, 0);
if ($?) {

print "That child exited with wait status of $?\n";
}

The IPC::Open3 module works like IPC::Open2 (the latter is implemented in terms
of the former), except that open3 pr ovides access to the standard input, the stan-
dard output, and the standard error handles of the program you launch. The same
caveats apply as with open2 (see the previous entry), plus a few more. The order
of arguments is differ ent in open3 than with open2. Instead of passing the handle to
read from first and the handle to write to second, this time it’s the other way
ar ound. Also, with open3, danger of deadlock is even greater than before. If you
try to read through end-of-file on one of the child’s two output handles, but

Pragm
ata

IPC::Open3 901

902 Chapter 32: Standard Modules

meanwhile there’s a great deal of output on the other handle, the peer process
blocks and appears to hang. Use either the four-argument form of select or the
standard IO::Select module to circumvent this. See Chapter 16 for more details.

Math::BigInt
use Math::BigInt;
$i = Math::BigInt->new($string);

use Math::BigInt ’:constant’;
print 2**200;

This prints:

+1606938044258990275541962092341162602522202993782792835301376

The Math::BigInt module provides objects that repr esent integers with arbitrary
pr ecision and overloaded arithmetical operators. Create these objects using the new

constructor, or, within a lexical scope, by importing the special value “:constant”,
after which all numeric literals through the end of that lexical scope are treated as
Math::BigInt objects. All standard integer operators are implemented, including
(as of the 5.6 release of Perl) the bitwise logical operators. Under the current
implementation, this module is not what you’d call blazingly fast, but this may be
addr essed in the future. (We’d like to see you how fast you ar e at calculating
2**200 in your head.)

Math::Complex
use Math::Complex;

$z = Math::Complex->make(5, 6);
$z = cplx(5, 6); # same thing, but shorter
$t = 4 - 3*i + $z; # do standard complex math
print "$t\n"; # prints 9+3i

print sqrt(-9), "\n"; # prints 3i

The Math::Complex module provides complex number objects with overloaded
operators. These are numbers with both real and imaginary portions, like those
satisfying even-numbered integral roots of negative numbers as shown above.
Besides arithmetical operators, many built-in math functions are also overridden
by versions that understand complex numbers, including abs, log, sqrt, sin, cos,
and atan2. Other functions provided are Re and Im to provide the real and imagi-
nary portions of their complex arguments, plus a full battery of extended trigono-
metric functions, such as tan, asin, acos, sinh, cosh, and tanh. The module also
exports the constant i, which, as you might imagine, holds the value of i ; that is,
the square root of –1.

Math::Trig
use Math::Trig;

$x = tan(0.9);
$y = acos(3.7);
$z = asin(2.4);

$halfpi = pi/2;

$rad = deg2rad(120);

Perl itself defines only three trigonometric functions: sin, cos, and atan2. The
Math::Trig module overrides these with fancier versions and supplies all the rest
of the trig functions, including tan, csc, cosec, sec, cot, cotan, asin, acos, atan,
sinh, cosh, tanh, and many others. Additionally, the constant pi is defined, as are
conversion functions like deg2rad and grad2rad. Support is provided for Cartesian,
spherical, and cylindrical coordinates systems. This module makes implicit use of
Math::Complex as needed (and vice versa) for computations requiring imaginary
numbers.

Net::hostent
use Socket;
use Net::hostent;

print inet_ntoa(gethost("www.perl.com")->addr); # prints 208.201.239.50
printf "%vd", gethost("www.perl.com")->addr; # same thing

print gethost("127.0.0.1")->name; # prints localhost

use Net::hostent ’:FIELDS’;
if (gethost($name_or_number)) {

print "name is $h_name\n";
print "aliases are $h_aliases\n";
print "addrs are ",

join ", " => map { inet_ntoa($_) } @h_addr_list;
}

This module’s default exports override the core gethostbyname and gethostbyaddr

functions, replacing them with versions that retur n a Net::hostent object (or undef
on failure). This object has attribute accessor methods that retur n the like-named
structur e field name from the C library’s struct hostent fr om netdb.h: name,
aliases, addrtype, length, or addr_list. The aliases and addr_list methods
retur n array refer ences; the rest retur n scalars. The addr method is equivalent to
the initial element in the addr_list array refer ence. The gethost function is a
fr ontend that forwards a numeric argument to gethostbyaddr by way of the

Pragm
ata

Net::hostent 903

904 Chapter 32: Standard Modules

Socket::inet_aton function and the rest to gethostbyname. As with the other
semipragmatic modules that override list-retur ning built-ins, if you import the
“:FIELDS” tag, you can access scalar or array package variables by the same names
as the method calls by using a leading “h_”. This still overrides your core func-
tions, though.

POSIX
use POSIX;

Round floats up or down to nearest integer.
$n = ceil($n); # round up
$n = floor($n); # round down

Produces "2000-04-01" for today.
$datestr = strftime("%Y-%m-%d", localtime);

Produces "Saturday 04/01/00" for same date.
$datestr = strftime("%A %D", localtime);

Try new temporary filenames until we get one
that didn’t already exist; see also File::Temp
on CPAN, or in v5.6.1.
do {

$name = tmpnam();
} until sysopen(FH, $name, O_CREAT|O_EXCL|O_RDWR, 0666);

Check for whether system has insecure chown giveaway.
if (sysconf(_PC_CHOWN_RESTRICTED)) {

print "Hurray -- only the superuser may call chown\n";
}

Find current system’s uname info.
my($kernel, $hostname, $release, $version, $hardware) = uname();

use POSIX ":sys_wait_h";
while (($dead_pid = waitpid(-1, &WNOHANG)) > 0) {

Do something with $dead_pid if you want.
}

Become new session/process-group leader (needed to create daemons
unaffected by keyboard signals or exiting login shells).
setsid(0) or die "setsid failed: $!";

Perl’s POSIX module permits you to access all (or nearly all) the standard POSIX
1003.1 identifiers, plus a few more from ANSI C that we didn’t know where else to
put. This module provides more functions than any other. See its online documen-
tation for the gory details or the POSIX Programmer’s Guide, by Donald Lewine
(O’Reilly, 1991).

Identifiers that are parameterless #defines in C, such as EINTR or O_NDELAY, are
automatically exported into your namespace as constant functions. Functions that
ar en’t nor mally available in Perl (like floor, ceil, strftime, uname, setsid, setlo-
cale, and sysconf) are exported by default. Functions with the same name as a
Perl built-in, like open, are not exported unless specifically requested, but most
folks are likely to prefer fully qualified function names to distinguish POSIX::open

fr om CORE::open.

A few functions are not implemented because they are C-specific. If you attempt
to call these, they print a message telling you that they aren’t implemented, and
suggest using the Perl equivalent should one exist. For example, trying to access
the setjmp function elicits the message “setjmp() is C-specific: use eval {}
instead”, and tmpfile tells you to “Use method IO::File::new_tmpfile()”. (But as
of 5.6.1 you should be using File::Temp instead.)

The POSIX module lets you get as close to the operating system (or those parts of
the POSIX standard addresses, at least) as any C programmer could. This lets you
do some phenomenally powerful and useful things, like blocking signals and con-
tr olling the terminal I/O settings. However, it also means that your code will end
up looking quasi-C-like. By way of useful demonstration of how to get around
input buffering, here’s an example of a complete program for getting unbuffer ed,
single-character input under any POSIX system:

#!/usr/bin/perl -w
use strict;
$| = 1;
for (1..4) {

my $got;
print "gimme: ";
$got = getone();
print "--> $got\n";

}
exit;

BEGIN {
use POSIX qw(:termios_h);
my ($term, $oterm, $echo, $noecho, $fd_stdin);
$fd_stdin = fileno(STDIN);
$term = POSIX::Termios->new();
$term->getattr($fd_stdin);
$oterm = $term->getlflag();
$echo = ECHO | ECHOK | ICANON;
$noecho = $oterm & ˜$echo;
sub cbreak {

$term->setlflag($noecho);
$term->setcc(VTIME, 1);
$term->setattr($fd_stdin, TCSANOW);

}

Pragm
ata

POSIX 905

906 Chapter 32: Standard Modules

sub cooked {
$term->setlflag($oterm);
$term->setcc(VTIME, 0);
$term->setattr($fd_stdin, TCSANOW);

}
sub getone {

my $key = "";
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

}
}
END { cooked() }

The POSIX module’s manpage provides a complete listing of which functions and
constants it exports. It has so many that you’ll often wind up importing only a sub-
set of them, such as “:sys_wait_h”, “:sys_stat_h”, or “:termios_h". An example of
blocking signals with the POSIX module is given in Chapter 16.

Safe
use Safe;

$sandbox = Safe->new(); # anonymous sandbox
$sandbox = Safe->new("PackName"); # in that symbol table

Enable or disable opcodes by group or name.
$sandbox->permit(qw(:base_core));
$sandbox->permit_only(qw(:base_core :base_loop :base_mem));
$sandbox->deny("die");

like do(), but in the sandbox
$ok = $sandbox->rdo($filename);

like do(), but in the sandbox
$ok = $sandbox->reval($code); # without ’use strict’
$ok = $sandbox->reval($code, 1); # with ’use strict’

The Safe module attempts to provide a restricted environment to protect the rest
of the program from dangerous operations. It uses two differ ent strategies to do
this. Much as an anonymous FTP daemon’s use of chr oot (2) alters the view of the
root of the filesystem, creating a compartment object with Safe->new("PackName")

alters that compartment’s view of its own namespace. The compartment now sees
as its root symbol table (main::) the symbol table that the rest of the program sees
as PackName::. What looks like Frobnitz:: on the inside of the compartment is
really PackName::Frobnitz:: on the outside. If you don’t give an argument to the
constructor, a random new package name is selected for you.

The second and more important facility that a Safe compartment provides is a way
to limit code that is deemed legal within an eval. You can tweak the allowable
opcode set (legal Perl operations) using method calls on your Safe object. Two
methods are available to compile code in a Safe compartment: rdo (“r estricted
do”) for files and reval (“r estricted eval”) for strings. These are like do on a file-
name and eval on a string but execute in a restricted namespace with limited
opcodes. The first argument is the filename or string to compile, and the optional
second argument is whether the code should be compiled under use strict.

This module is scheduled for a rewrite (we intend to isolate the sandbox into a
dif ferent interpreter thread for additional safety), so be sure to check the Safe

manpage for updates. See also Chapter 23.

Socket
use Socket;

$proto = getprotobyname(’udp’);
socket(SOCK, PF_INET, SOCK_DGRAM, $proto)

or die "socket: $!";
$iaddr = gethostbyname(’hishost.com’);
$port = getservbyname(’time’, ’udp’);
$sin = sockaddr_in($port, $iaddr);
send(SOCK, 0, 0, $sin)

or die "send: $!";

$proto = getprotobyname(’tcp’);
socket(SOCK, PF_INET, SOCK_STREAM, $proto)

or die "socket: $!";
$port = getservbyname(’smtp’, ’tcp’);
$sin = sockaddr_in($port,inet_aton("127.1"));
$sin = sockaddr_in(7,inet_aton("localhost"));
$sin = sockaddr_in(7,INADDR_LOOPBACK);
connect(SOCK,$sin)

or die "connect: $!";

($port, $iaddr) = sockaddr_in(getpeername(SOCK));
$peer_host = gethostbyaddr($iaddr, AF_INET);
$peer_addr = inet_ntoa($iaddr);

$proto = getprotobyname(’tcp’);
socket(SOCK, PF_UNIX, SOCK_STREAM, $proto)

or die "connect: $!";
unlink(’/tmp/usock’); # XXX: intentionally ignore failure
$sun = sockaddr_un(’/tmp/usock’);
connect(SOCK,$sun) or die "connect: $!";

use Socket qw(:DEFAULT :crlf);
Now you can use CR(), LF(), and CRLF() or
$CR, $LF, and $CRLF for line-endings.

Pragm
ata

Socket 907

908 Chapter 32: Standard Modules

The Socket module provides access to constants from the C library’s sys/socket.h
#include file to use with Perl’s low-level socket functions. It also provides two
functions, inet_aton and inet_ntoa, to convert between ASCII (like “127.0.0.1”)
and packed network repr esentations of IP addresses, and two special
packer/unpacker functions, sockaddr_in and sockaddr_un, which manipulate the
binary socket addresses needed by those low-level calls. The :crlf import tag
gives symbolic names for the various end-of-line conventions so you don’t have to
rely upon native interpretations of \r and \n, which vary. Most Internet protocols
pr efer CRLF but tolerate LF. The standard IO::Socket module provides a higher-
level interface to TCP. See Chapter 16.

Symbol
use Symbol "delete_package";
delete_package("Foo::Bar");
print "deleted\n" unless exists $Foo::{"Bar::"};

use Symbol "gensym";
$sym1 = getsym(); # Returns new, anonymous typeglob.
$sym2 = getsym(); # Yet another new, anonymous typeglob.

package Demo;
use Symbol "qualify";
$sym = qualify("x"); # "Demo::x"
$sym = qualify("x", "Foo"); # "Foo::x"
$sym = qualify("Bar::x"); # "Bar::x"
$sym = qualify("Bar::x", "Foo"); # "Bar::x"

use Symbol "qualify_to_ref";
sub pass_handle(*) {

my $fh = qualify_to_ref(shift, caller);
...

}
Now you can call pass_handle with FH, "FH", *FH, or *FH.

The Symbol module provides functions to help manipulate global names: type-
globs, format names, filehandles, package symbol tables, and anything else you
might want to name via a symbol table. The delete_package function completely
clears out a package’s namespace (effectively anonymizing any extra refer ences to
the symbol table’s refer ents, including refer ences fr om pr ecompiled code). The
gensym function retur ns an anonymous typeglob each time it is called. (This func-
tion isn’t used so much these days, now that undefined scalars autovivify into
pr oper filehandles when used as arguments to open, pipe, socket, and the like).

The qualify function takes a name that may or may not be completely package-
qualified, and retur ns a name that is. If it needs to prepend the package name, it

will use the name specified via the second argument (or if omitted, your current
package name). The qualify_to_ref function works similarly, but produces a ref-
er ence to the typeglob the symbol would repr esent. This is important in functions
that accept filehandles, directory handles, or format names as arguments but don’t
requir e these to be passed by refer ence. For example, functions prototyped with a
typeglob accept any of these forms, but don’t automatically convert barewords to
symbol table refer ences. By converting that argument with qualify_to_ref, you
can now use the supplied handle even with strict refs in effect. You may also
bless it into objectdom, since it’s a proper refer ence.

Sys::Hostname
use Sys::Hostname;
$hostname = hostname();

The Sys::Hostname module supplies just one function, hostname, which makes up
for that fact by busting its behind to try to figure out what your current host calls
itself. On those systems that support the standard gethostname (2) syscall, this is
used, as it’s the most efficient method.* On other systems, output from the stan-
dard hostname (1) is used. On still others, it calls the uname (3) function in your C
library, which is also accessible as POSIX::uname fr om Perl. If these strategies all
fail, more valiant attempts are made. Whatever your native system thinks makes
sense, Perl tries its best to go along with it. On some systems, this hostname may
not be fully qualified with the domain name; see the Net::Domain module from
CPAN if you need that.

Another consideration is that hostname retur ns just one value, but your system
could have multiple network interfaces configured, so you might not get back the
name associated with the interface you’re inter ested in if you’re planning on using
this module for certain sorts of socket programming. There are cases where you’ll
pr obably have to scrounge around in the output from the ifconfig (8) command, or
your system’s moral equivalent.

Sys::Syslog
use Sys::Syslog; # Misses setlogsock.
use Sys::Syslog qw(:DEFAULT setlogsock); # Also gets setlogsock.

openlog($program, ’cons,pid’, ’user’);
syslog(’info’, ’this is another test’);
syslog(’mail|warning’, ’this is a better test: %d’, time());
closelog();

* Which is available directly as the unexported Sys::Hostname::ghname function, but don’t tell anyone
we told you.

Pragm
ata

Sys::Syslog 909

910 Chapter 32: Standard Modules

syslog(’debug’, ’this is the last test’);

setlogsock(’unix’);
openlog("$program $$", ’ndelay’, ’user’);
syslog(’info’, ’problem was %m’); # %m == $! in syslogese
syslog(’notice’, ’fooprogram: this is really done’);

setlogsock("unix"); # "inet" or "unix"
openlog("myprogname", $logopt, $facility);
syslog($priority, $format, @args);
$oldmask = setlogmask($mask_priority);
closelog();

The Sys::Syslog module acts like your C library’s syslog (3) function, sending mes-
sages to your system log daemon, syslogd (8). It is especially useful in daemons
and other programs lacking a terminal to receive diagnostic output, or for security-
minded programs that want to produce a more lasting record of their actions (or
someone else’s actions). Supported functions are:

openlog IDENT, OPTLIST, FACILITY

Establishes a connection with your friendly syslog daemon. IDENT is the string
to log messages under (like $0, your program name). OPTLIST is a string with
comma-separated options such as "cons", "pid", and "ndelay". FACILITY is
something like “auth”, “daemon”, “kern”, “lpr”, “mail”, “news” or “user” for sys-
tem programs, and one of “local0” .. “local7” for local ones. Further mes-
sages are logged using the given facility and identifying string.

syslog PRIORITY, FORMAT, ARGS

Sends a message to the daemon using the given PRIORITY. The FORMAT is just
like printf—filling in percent escapes using the following ARGS—except that
following the conventions of the standard syslog (3) library function, the spe-
cial escape “%m” interpolates errno (Perl’s $! variable) at that point.

setlogsock TYPE

TYPE must be either “inet” or “unix”. Some systems’ daemons do not by
default pay attention to incoming Internet-domain syslog messages, so you
might set this to “unix” instead, since it’s not the default.

closelog

Severs the connection with the daemon.

For this module to work prior to the 5.6.0 release of Perl, your sysadmin had to
run h2ph (1) on your sys/syslog.h include file to create a sys/syslog.ph library file.
However, this wasn’t done by default at Perl installation time. Later releases now
use an XS interface, so the sys/syslog.ph pr eparation is no longer needed.

Term::Cap
use Term::Cap;

$ospeed = eval {
require POSIX;
my $termios = POSIX::Termios->new();
$termios->getattr;
$termios->getospeed;

} || 9600;

$terminal = Term::Cap->Tgetent({ TERM => undef, OSPEED => $ospeed });
$terminal->Tputs(’cl’, 1, STDOUT); # Clear screen.
$terminal->Tgoto(’cm’, $col, $row, STDOUT); # Position cursor.

The Term::Cap module provides access to your system’s ter mcap (3) library rou-
tines. See your system documentation for details. Systems that have only
ter minfo (5) and not ter mcap (5) will lose. (Many terminfo systems can emulate
ter mcap.) However, on CPAN you can find a Term::Info module, as well as
Term::ReadKey, Term::ANSIColor, and various Curses modules to help you with
single-key input, colored output, or managing terminal screens, at a higher level
than Term::Cap or Term::Info.

Te xt::Wrap
use Text::Wrap; # Imports wrap().

@lines = (<<"EO_G&S" =˜ /\S.*\S/g);

This particularly rapid,
unintelligible
patter isn’t generally
heard,
and if
it is, it
doesn’t matter.

EO_G&S

$Text::Wrap::columns = 50;
print wrap(" " x 8, " " x 3, @lines), "\n";

This prints:

This particularly rapid, unintelligible
patter isn’t generally heard, and if it is, it
doesn’t matter.

The Text::Wrap module implements a simple paragraph formatter. Its wrap func-
tion formats a single paragraph at a time by breaking lines at word boundaries.
The first argument is the prefix prepended to the first line retur ned. The second

Pragm
ata

Te xt::Wrap 911

912 Chapter 32: Standard Modules

argument is the prefix string used for all lines save the first. All remaining argu-
ments are joined together using a newline as the separator and retur ned as one
refor matted paragraph string. You’ll have to figure out your terminal’s width your-
self, or at least specify what you want in $Text::Wrap::columns. Although one
could use the TIOCGWINSZ ioctl call to figure out the number of columns, it would
be easier for those not used to C programming to install the CPAN module
Term::ReadKey and use that module’s GetTerminalSize routine.

Time::Local
use Time::Local;
$time = timelocal($sec,$min,$hours,$mday,$mon,$year);
$time = timegm($sec,$min,$hours,$mday,$mon,$year);

$time = timelocal(50, 45, 3, 18, 0, 73);
print "Scalar localtime gives: ", scalar(localtime($time)), "\n";
$time += 28 * 365.2425 * 24 * 60 * 60;
print "Twenty-eight years of seconds later, it’s now\n\t",

scalar(localtime($time)), "\n";

This prints:

Scalar localtime gives: Thu Jan 18 03:45:50 1973
Twenty-eight years of seconds later, it’s now

Wed Jan 17 22:43:26 2001

The Time::Local module provides two functions, timelocal and timegm, that work
like inverse functions for the standard localtime and gmtime functions, respec-
tively. That is, they take a list of numeric values for the various components of
what localtime retur ns in list context and figure out what input to localtime

would produce those values. You might do this if you wanted to compare or run
calculations on two differ ent dates. Although these are not general-purpose func-
tions for parsing dates and times, if you can arrange to have your input in the right
for mat, they often suffice. As you can see from the example above, however, time
has its oddities, and even simple calculations often fail to do the job intended due
to leap years, leap seconds, and the phase of the moon. Two large but fully fea-
tur ed CPAN modules address these issues and more: Date::Calc and Date::Manip.

Time::localtime
use Time::localtime;
printf "Year is %d\n", localtime->year() + 1900;

$now = ctime();

use Time::localtime;
use File::stat;
$date_string = ctime(stat($file)->mtime);

This module’s overrides the core localtime function, replacing it with a version
that retur ns a Time::tm object (or undef on failure). The Time::gmtime module does
the same thing, except it replaces the core gmtime function, instead. The retur ned
object has methods that access the like-named structure field names from the C
library’s struct tm out of time.h; namely sec, min, hour, mday, mon, year, wday, yday,
and isdst. The ctime function provides a way of getting at (the scalar sense of)
the original CORE::localtime function. Note that the values retur ned ar e straight
out of a struct tm, so they have the same ranges found there; see the example
above for the correct way to produce a four-digit year. The POSIX::strftime func-
tion is even more useful for formatting dates and times in a variety of appealing
styles.

User::g rent
use User::grent;
$gr = getgrgid(0) or die "No group zero";
if ($gr->name eq "wheel" && @{$gr->members} > 1) {

print "gid zero name wheel, with other members";
}

$gr = getgr($whoever); # Accepts both string or number.

use User::grent ’:FIELDS’;
getgrgid(0) or die "No group zero";
if ($gr_name eq "wheel" && @gr_members > 1) {

print "gid zero name wheel, with other members";
}

This module’s default exports override the core getgrent, getgruid, and getgrnam

functions, replacing them with versions that retur n a User::grent object (or undef
on failure). This object has methods that access the like-named structure fields
fr om the C library’s struct group out of grp.h; namely name, passwd, gid, and mem-

bers (not mem as in C!). The first three retur n scalars, the last an array refer ence.
You may also import the structure fields into your own namespace as regular vari-
ables using the “:FIELDS” import tag, although this still overrides your core func-
tions. The variables (three scalars and an array) are named with a preceding “gr_”.
The getgr function is a simple frontend switch that forwards any numeric argu-
ment to getgrgid and any string argument to getgrnam.

User::pwent
use User::pwent; # Default overrides built-ins only.
$pw = getpwnam("daemon") or die "No daemon user";
if ($pw->uid == 1 && $pw->dir =˜ m#ˆ/(bin|tmp)?$#) {

print "gid 1 on root dir";
}

Pragm
ata

User::pwent 913

914 Chapter 32: Standard Modules

$pw = getpw($whoever); # Accepts both string or number.
$real_shell = $pw->shell || ’/bin/sh’;
for (($fullname, $office, $workphone, $homephone) =

split /\s*,\s*/, $pw->gecos)
{

s/&/ucfirst(lc($pw->name))/ge;
}

use User::pwent qw(:FIELDS); # Sets globals in current package.
getpwnam("daemon") or die "No daemon user";
if ($pw_uid == 1 && $pw_dir =˜ m#ˆ/(bin|tmp)?$#) {

print "gid 1 on root dir";
}

use User::pwent qw/pw_has/;
if (pw_has(qw[gecos expire quota])) { }
if (pw_has("name uid gid passwd")) { }
printf "Your struct pwd supports [%s]\n", scalar pw_has();

By default, this module’s exports override the core getpwent, getpwuid, and getpw-

nam functions, replacing them with versions that retur n a User::pwent object (or
undef on failure). It is often better to use the module than the core functions it
replaces, because the built-ins overload or even omit various slots in the retur n list
in the name of backward compatibility.

The retur ned object has methods that access the similarly named structure field
name from the C’s passwd structur e fr om pwd.h, stripped of their leading “pw_”
parts, namely name, passwd, uid, gid, change, age, quota, comment, class, gecos, dir,
shell, and expire. The passwd, gecos, and shell fields are tainted. You may also
import the structure fields into your own namespace as regular variables using the
“:FIELDS” import tag, although this still overrides your core functions. Access these
fields as scalar variables named with a “pw_” prepended to the method name. The
getpw function is a simple frontend switch that forwards a numeric argument to
getpwuid and a string argument to getpwnam.

Perl believes that no machine ever has more than one of change, age, or quota

implemented, nor more than one of either comment or class. Some machines do
not support expire, gecos, or allegedly, even passwd. You may call these methods
no matter what machine you’re on, but they’ll retur n undef if unimplemented. See
passwd (5) and getpwent (3) for details.

You can determine whether these fields are implemented by asking the importable
pw_has function about them. It retur ns true if all parameters are supported fields
on the build platform or false if one or more wer e not, and it raises an exception if
you ask about a field whose name it doesn’t recognize. If you pass no arguments,
it retur ns the list of fields your C library thinks are supported.

Interpr etation of the gecos field varies between systems but often holds four
comma-separated fields containing the user’s full name, office location, work
phone number, and home phone number. An & in the gecos field should be
replaced by the user’s properly capitalized login name. The shell field, if blank,
must be assumed to be /bin/sh, although Perl does not do this for you. The passwd

is one-way hashed gobbledygook, not clear text, and may not be unhashed save
by brute-force guessing. Secure systems often use a more secur e hashing than
DES. On systems supporting shadow password systems, Perl automatically retur ns
the shadow password entry when called by a suitably empowered user, even if
your underlying vendor-pr ovided C library was too short-sighted to realize it
should do this.

Pragm
ata

User::pwent 915

33
Diagnostic Messages

These messages are classified as follows (listed in increasing order of desperation):

Class Meaning

(W) A war ning (optional)
(D) A depr ecation (optional)
(S) A sever e war ning (mandatory)
(F) A fatal error (trappable)
(P) An inter nal err or (panic) that you should never see (trappable)
(X) A very fatal error (nontrappable)
(A) An alien error message (not generated by Perl)

The majority of messages from the first three classifications above (W, D, and S)
can be controlled using the warnings pragma or the -w and -W switches. If a mes-
sage can be controlled by the warnings pragma, its warning category is given after
the classification letter; for example, (W misc) indicates a miscellaneous warning.
The warnings pragma is described in Chapter 31, Pragmatic Modules.

Warnings may be captured rather than printed by setting $SIG{_ _WARN_ _} to a ref-
er ence to a routine that will be called on each warning. You can also capture con-
tr ol befor e a trappable error “dies” by setting $SIG{_ _DIE_ _} to a subroutine
refer ence, but if you don’t call die within the handler, the exception is still thrown
when you retur n fr om it. In other words, you’re not allowed to “de-fatalize” an
exception that way. You must use eval for that.

Default warnings are always enabled unless they are explicitly disabled with the
warnings pragma or the -X switch.

916

In the following messages, %s stands for an interpolated string that is determined
only when the message is generated. (Similarly, %d stands for an interpolated num-
ber — think printf for mats, but we use %d to mean a number in any base here.)
Note that some messages begin with %s—which means that listing them alphabeti-
cally is problematical. You should search among these messages if the one you are
looking for does not appear in the expected place. The symbols "%-?@ sort before
alphabetic characters, while [and \ sort after.

If you decide a bug is a Perl bug and not your bug, you should try to reduce it to
a minimal test case and then report it with the perlbug pr ogram that comes with
Perl.

"%s" variable %s masks earlier declaration in same %s

(W misc) A my or our variable has been redeclar ed in the current scope or
statement, effectively eliminating all access to the previous instance. This is
almost always a typographical error. Note that the earlier variable will still exist
until the end of the scope or until all closure refer ents to it are destr oyed.

"my sub" not yet implemented

(F) Lexically scoped subroutines are not yet implemented. Don’t try that yet.

"my" variable %s can’t be in a package

(F) Lexically scoped variables aren’t in a package, so it doesn’t make sense to
try to declare one with a package qualifier in front. Use local if you want to
localize a package variable.

"no" not allowed in expression

(F) The no keyword is recognized and executed at compile time and retur ns
no useful value.

"our" variable %s redeclared

(W misc) You seem to have already declared the same global once before in
the current lexical scope.

"use" not allowed in expression

(F) The use keyword is recognized and executed at compile time and retur ns
no useful value.

’!’ allowed only after types %s

(F) The ’!’ is allowed in pack and unpack only after certain types.

’|’ and ’<’ may not both be specified on command line

(F) This is an error peculiar to VMS. Perl does its own command-line redir ec-
tion. It found that STDIN was a pipe and that you also tried to redir ect STDIN
using <. Only one STDIN str eam to a customer, please.

Diagnostics

Chapter 33: Diagnostic Messages 917

918 Chapter 33: Diagnostic Messages

’|’ and ’>’ may not both be specified on command line

(F) This is an error peculiar to VMS. Perl does its own command-line redir ec-
tion and thinks you tried to redir ect STDOUT both to a file and into a pipe to
another command. You need to choose one or the other, though nothing’s
stopping you from piping into a program or Perl script that splits the output
into two streams, such as:

open(OUT,">$ARGV[0]") or die "Can’t write to $ARGV[0]: $!";
while (<STDIN>) {

print;
print OUT;

}
close OUT;

/ cannot take a count

(F) You had an unpack template indicating a counted-length string, but you
have also specified an explicit size for the string.

/ must be followed by a, A, or Z

(F) You had an unpack template indicating a counted-length string, which must
be followed by one of the letters a, A or Z to indicate what sort of string is to
be unpacked.

/ must be followed by a*, A*, or Z*

(F) You had a pack template indicating a counted-length string. Curr ently, the
only things that can have their length counted are a*, A* or Z*.

/ must follow a numeric type

(F) You had an unpack template that contained a #, but this did not follow
some numeric unpack specification.

% may only be used in unpack

(F) You can’t pack a string by supplying a checksum, because the checksum-
ming process loses information, and you can’t go the other way.

Repeat count in pack overflows

(F) You can’t specify a repeat count so large that it overflows your signed inte-
gers.

Repeat count in unpack overflows

(F) You can’t specify a repeat count so large that it overflows your signed inte-
gers.

/%s/: Unrecognized escape \\%c passed through

(W regexp) You used a backslash-character combination that is not recognized
by Perl. This combination appears in an interpolated variable or a ’-delimited
regular expression. The character was understood literally.

/%s/: Unrecognized escape \\%c in character class passed through

(W regexp) You used a backslash-character combination that is not recognized
by Perl inside character classes. The character was understood literally.

/%s/ should probably be written as "%s"

(W syntax) You have used a pattern wher e Perl expected to find a string, as in
the first argument to join. Perl will treat the true or false result of matching
the pattern against $_ as the string, which is probably not what you had in
mind.

%s (...) interpreted as function

(W syntax) You’ve run afoul of the rule that says that any list operator fol-
lowed by parentheses turns into a function, with all the list operators argu-
ments found inside the parentheses.

%s() called too early to check prototype

(W prototype) You’ve called a function that has a prototype before the parser
saw a definition or declaration for it, and Perl could not check that the call
confor ms to the prototype. You need to either add an early prototype declara-
tion for the subroutine in question, or move the subroutine definition ahead of
the call to get proper prototype checking. Alternatively, if you are certain that
you’r e calling the function correctly, you may put an ampersand before the
name to avoid the warning.

%s argument is not a HASH or ARRAY element

(F) The argument to exists must be a hash or array element, such as:

$foo{$bar}
$ref->{"susie"}[12]

%s argument is not a HASH or ARRAY element or slice

(F) The argument to delete must be either a hash or array element, such as:

$foo{$bar}
$ref->{"susie"}[12]

or a hash or array slice, such as:

@foo[$bar, $baz, $xyzzy]
@{$ref->[12]}{"susie", "queue"}

%s argument is not a subroutine name

(F) The argument to exists for exists &sub must be a subroutine name, and
not a subroutine call. exists &sub() will generate this error.

Diagnostics

Chapter 33: Diagnostic Messages 919

920 Chapter 33: Diagnostic Messages

%s did not return a true value

(F) A required (or used) file must retur n a true value to indicate that it com-
piled correctly and ran its initialization code correctly. It’s traditional to end
such a file with a 1;, though any true value would do.

%s found where operator expected

(S) The Perl lexer knows whether to expect a term or an operator. If it sees
what it knows to be a term when it was expecting to see an operator, it gives
you this warning. Usually it indicates that an operator or delimiter was omit-
ted, such as a semicolon.

%s had compilation errors

(F) The final summary message when a perl -c fails.

%s has too many errors

(F) The parser has given up trying to parse the program after 10 errors. Fur-
ther error messages would likely be uninformative.

%s matches null string many times

(W regexp) The pattern you’ve specified would be an infinite loop if the regu-
lar expression engine didn’t specifically check for that.

%s never introduced

(S internal) The symbol in question was declared but somehow went out of
scope before it could possibly have been used.

%s package attribute may clash with future reserved word: %s

(W reserved) A lowercase attribute name was used that had a package-specific
handler. That name might have a meaning to Perl itself some day, even
though it doesn’t yet. Perhaps you should use a mixed-case attribute name,
instead.

%s syntax OK

(F) The final summary message when a perl -c succeeds.

%s: Command not found
(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself with perl scriptname.

%s: Expression syntax

(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself with perl scriptname.

%s: Undefined variable

(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself with perl scriptname.

%s: not found

(A) You’ve accidentally run your script through the Bourne shell instead of
Perl. Check the #! line, or manually feed your script Perl yourself with perl
scriptname.

(in cleanup) %s

(W misc) This prefix usually indicates that a DESTROY method raised the indi-
cated exception. Since destructors are usually called by the system at arbitrary
points during execution, and often a vast number of times, the warning is
issued only once for any number of failures that would otherwise result in the
same message being repeated.

Failur e of user callbacks dispatched using the G_KEEPERR flag could also result
in this warning. See perlcall (1).

(Missing semicolon on previous line?)

(S) This is an educated guess made in conjunction with the message “%s found

where operator expected.” Don’t automatically put a semicolon on the previ-
ous line just because you saw this message.

-P not allowed for setuid/setgid script

(F) The script would have to be opened by the C prepr ocessor by name,
which provides a race condition that breaks security.

-T and -B not implemented on filehandles

(F) Perl can’t peek at the standard I/O buffer of filehandles when it doesn’t
know about your kind of standard I/O. You’ll have to use a filename instead.

-p destination: %s

(F) An error occurred during the implicit output invoked by the -p command-
line switch. (This output goes to STDOUT unless you’ve redir ected it with
select.)

500 Server error

See Server error.

?+* follows nothing in regexp

(F) You started a regular expression with a quantifier. Backslash it if you
meant it literally.

@ outside of string

(F) You had a pack template that specified an absolute position outside the
string being unpacked.

<> should be quotes

(F) You wrote require <file> when you should have written require ’file’.

Diagnostics

Chapter 33: Diagnostic Messages 921

922 Chapter 33: Diagnostic Messages

\1 better written as $1

(W syntax) Outside of patterns, backrefer ences live on as variables. The use of
backslashes is grandfathered on the righthand side of a substitution, but stylis-
tically it’s better to use the variable form because other Perl programmers will
expect it, and it works better if there are mor e than nine backrefer ences.

accept() on closed socket %s

(W closed) You tried to do an accept on a closed socket. Did you forget to
check the retur n value of your socket call?

Allocation too large: %lx

(X) You can’t allocate more than 64K on an MS-DOS machine.

Applying %s to %s will act on scalar(%s)

(W misc) The pattern match (//), substitution (s///), and transliteration
(tr///) operators work on scalar values. If you apply one of them to an array
or a hash, it will convert the array or hash to a scalar value—the length of an
array or the population info of a hash—and then work on that scalar value.
This is probably not what you meant to do.

Arg too short for msgsnd

(F) msgsnd requir es a string at least as long as sizeof(long).

Ambiguous use of %s resolved as %s

(W ambiguous|S) You said something that may not be interpreted the way
you thought. Normally it’s pretty easy to disambiguate it by supplying a miss-
ing quote, operator, pair of parentheses, or declaration.

Ambiguous call resolved as CORE::%s(), qualify as such or use &

(W ambiguous) A subroutine you have declared has the same name as a Perl
keyword, and you have used the name without qualification for calling one or
the other. Perl decided to call the built-in because the subroutine is not
imported.

To force interpretation as a subroutine call, either put an ampersand before
the subroutine name or qualify the name with its package. Alternatively, you
can import the subroutine (or pretend that it’s imported with the use subs

pragma).

To silently interpret it as the Perl operator, use the CORE:: pr efix on the opera-
tor (e.g., CORE::log($x)) or declar e the subroutine to be an object method.

Args must match #! line

(F) The setuid emulator requir es that the arguments Perl was invoked with
match the arguments specified on the #! line. Since some systems impose a
one-argument limit on the #! line, try combining switches; for example, turn
-w -U into -wU.

Argument "%s" isn’t numeric

(W numeric) The indicated string was fed as an argument to an operator that
expected a numeric value instead. If you’re fortunate, the message will identify
which operator was so unfortunate.

Array @%s missing the @ in argument %d of %s()

(D deprecated) Really old Perls let you omit the @ on array names in some
spots. This is now heavily deprecated.

assertion botched: %s

(P) The malloc package that comes with Perl had an internal failure.

Assertion failed: file "%s"

(P) A general assertion failed. The file in question must be examined.

Assignment to both a list and a scalar

(F) If you assign to a conditional operator, the second and third arguments
must either both be scalars or both be lists. Otherwise, Perl won’t know which
context to supply to the right side.

Attempt to free non-arena SV: 0x%lx

(P internal) All SV objects are supposed to be allocated from arenas that will
be garbage collected on exit. An SV was discovered to be outside any of those
ar enas.

Attempt to free nonexistent shared string

(P internal) Perl maintains a refer ence-counted inter nal table of strings to opti-
mize the storage and access of hash keys and other strings. This message indi-
cates that someone tried to decrement the refer ence count of a string that can
no longer be found in the table.

Attempt to free temp prematurely

(W debugging) Mortalized values are supposed to be freed by the internal
free_tmps routine. This message indicates that something else is freeing the SV
befor e the free_tmps routine gets a chance, which means that the free_tmps

routine will be freeing an unrefer enced scalar when it does try to free it.

Attempt to free unreferenced glob pointers

(P internal) The refer ence counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar

(W internal) Perl went to decrement the refer ence count of a scalar to see if it
would go to 0, and discovered that it had already gone to 0 earlier and should
have been freed and, in fact, probably was freed. This could indicate that
SvREFCNT_dec was called too many times, or that SvREFCNT_inc was called too
few times, or that the SV was mortalized when it shouldn’t have been, or that
memory has been corrupted.

Diagnostics

Chapter 33: Diagnostic Messages 923

924 Chapter 33: Diagnostic Messages

Attempt to join self

(F) You tried to join a thread from within itself, which is an impossible task.
You may be joining the wrong thread, or you may need to move the join to
some other thread.

Attempt to pack pointer to temporary value

(W pack) You tried to pass a temporary value (like the result of a function, or
a computed expression) to the p template of pack template. This means the
result contains a pointer to a location that could become invalid anytime, even
befor e the end of the current statement. Use literals or global values as argu-
ments to the p template of pack to avoid this warning.

Attempt to use reference as lvalue in substr

(W substr) You supplied a refer ence as the first argument to substr used as an
lvalue, which is pretty strange. Perhaps you forgot to derefer ence it first.

Bad arg length for %s, is %d, should be %d

(F) You passed a buffer of the wrong size to one of msgctl, semctl or shmctl.
In C parlance, the correct sizes are, respectively, sizeof(struct msqid_ds *),
sizeof(struct semid_ds *), and sizeof(struct shmid_ds *).

Bad filehandle: %s

(F) A symbol was passed to something wanting a filehandle, but the symbol
has no filehandle associated with it. Perhaps you didn’t do an open, or did it in
another package.

Bad free() ignored

(S malloc) An internal routine called free on something that had never been
malloced in the first place. Mandatory, but can be disabled by setting environ-
ment variable PERL_BADFREE to 1.

This message can be seen quite often with DB_File on systems with “hard”
dynamic linking, like AIX and OS/2. It’s a bug in Berkeley DB.

Bad hash

(P) One of the internal hash routines was passed a null HV pointer.

Bad index while coercing array into hash

(F) The index looked up in the hash found as the 0th element of a pseudo-
hash is not legal. Index values must be 1 or greater.

Bad name after %s::

(F) You started to name a symbol by using a package prefix and then didn’t
finish the symbol. In particular, you can’t interpolate outside of quotes, so:

$var = ’myvar’;
$sym = mypack::$var;

is not the same as:

$var = ’myvar’;
$sym = "mypack::$var";

Bad realloc() ignored

(S malloc) An internal routine called realloc on something that had never
been malloced in the first place. Mandatory, but can be disabled by setting
envir onment variable PERL_BADFREE to 1.

Bad symbol for array

(P) An internal request asked to add an array entry to something that wasn’t a
symbol table entry.

Bad symbol for filehandle

(P) An internal request asked to add a filehandle entry to something that
wasn’t a symbol table entry.

Bad symbol for hash

(P) An internal request asked to add a hash entry to something that wasn’t a
symbol table entry.

Badly placed ()’s

(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself with perl scriptname.

Bareword "%s" not allowed while "strict subs" in use

(F) With strict subs in use, a bareword is only allowed as a subroutine iden-
tifier, in curly brackets or to the left of the => symbol. Perhaps you need to
pr edeclar e a subr outine?

Bareword "%s" refers to nonexistent package

(W bareword) You used a qualified bareword of the form Foo::, but the com-
piler saw no other uses of that namespace before that point. Perhaps you
need to predeclar e a package?

Bareword found in conditional

(W bareword) The compiler found a bareword where it expected a condi-
tional, which often indicates that an || or && was parsed as part of the last
argument of the previous construct, for example:

open FOO || die;

It may also indicate a misspelled constant that has been interpreted as a bare-
word:

use constant TYPO => 1;
if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Diagnostics

Chapter 33: Diagnostic Messages 925

926 Chapter 33: Diagnostic Messages

BEGIN failed—compilation aborted

(F) An untrapped exception was raised while executing a BEGIN subr outine.
Compilation stops immediately and the interpreter is exited.

BEGIN not safe after errors--compilation aborted

(F) Perl found a BEGIN subr outine (or a use dir ective, which implies a BEGIN)
after one or more compilation errors had already occurred. Since the intended
envir onment for the BEGIN could not be guaranteed (due to the errors), and
since subsequent code likely depends on its correct operation, Perl just gave
up.

Binary number > 0b11111111111111111111111111111111 non-portable

(W portable) The binary number you specified is larger than 2**32-1

(4,294,967,295) and therefor e nonportable between systems.

bind() on closed socket %s

(W closed) You tried to do a bind on a closed socket. Did you forget to check
the retur n value of your socket call?

Bit vector size > 32 non-portable

(W portable) Using bit vector sizes larger than 32 is nonportable.

Bizarre copy of %s in %s

(P) Perl detected an attempt to copy an internal value that is not copiable.

Buffer overflow in prime_env_iter: %s

(W internal) A warning peculiar to VMS. While Perl was preparing to iterate
over %ENV, it encounter ed a logical name or symbol definition which was too
long, so it was truncated to the string shown.

Callback called exit

(F) A subroutine invoked from an external package via call_sv exited by call-
ing exit.

Can’t "goto" out of a pseudo block

(F) A goto statement was executed to jump out of what might look like a
block, except that it isn’t a proper block. This usually occurs if you tried to
jump out of a sort block or subroutine, which is a no-no.

Can’t "goto" into the middle of a foreach loop

(F) A goto statement was executed to jump into the middle of a foreach loop.
You can’t get there from her e.

Can’t "last" outside a loop block

(F) A last statement was executed to break out of the current block, except
that there’s this itty-bitty problem called there isn’t a current block. Note that
an if or else block doesn’t count as a “loopish” block, nor does a block given
to sort, map, or grep. You can usually double the curlies to get the same effect,
though, because the inner curlies will be considered a block that loops once.

Can’t "next" outside a loop block

(F) A next statement was executed to reiterate the current block, but there
isn’t a current block. Note that an if or else block doesn’t count as a “loop-
ish” block, nor does a block given to sort, map, or grep. You can usually dou-
ble the curlies to get the same effect though, because the inner curlies will be
consider ed a block that loops once.

Can’t read CRTL environ

(S) This is a warning peculiar to VMS. Perl tried to read an element of %ENV
fr om the CRTL’s internal environment array and discovered the array was miss-
ing. You need to figure out where your CRTL misplaced its environ or define
PERL_ENV_TABLES (see perlvms (1)) so that the environ array is not searched.

Can’t "redo" outside a loop block

(F) A redo statement was executed to restart the current block, but there isn’t a
curr ent block. Note that an if or else block doesn’t count as a “loopish”
block, nor does a block given to sort, map, or grep. You can usually double
the curlies to get the same effect though, because the inner curlies will be
consider ed a block that loops once.

Can’t bless non-reference value

(F) Only hard refer ences may be blessed. This is how Perl “enforces” encapsu-
lation of objects.

Can’t break at that line

(S internal) This warning is intended to be printed only while running within
the debugger, indicating the line number specified wasn’t the location of a
statement that could be stopped at.

Can’t call method "%s" in empty package "%s"

(F) You called a method correctly, and it correctly indicated a package func-
tioning as a class, but that package doesn’t have anything defined in it, let
alone methods.

Can’t call method "%s" on unblessed reference

(F) A method call must know in what package it’s supposed to run. It ordinar-
ily finds this out from the object refer ence you supply, but you didn’t supply
an object refer ence in this case. A refer ence isn’t an object refer ence until it
has been blessed.

Can’t call method "%s" without a package or object reference

(F) You used the syntax of a method call, but the slot filled by the object refer-
ence or package name contains an expression that retur ns a defined value that
is neither an object refer ence nor a package name. Something like this will
repr oduce the error:

Diagnostics

Chapter 33: Diagnostic Messages 927

928 Chapter 33: Diagnostic Messages

$BADREF = 42;
process $BADREF 1,2,3;
$BADREF->process(1,2,3);

Can’t call method "%s" on an undefined value

(F) You used the syntax of a method call, but the slot filled by the object refer-
ence or package name contains an undefined value. Something like this will
repr oduce the error:

$BADREF = undef;
process $BADREF 1,2,3;
$BADREF->process(1,2,3);

Can’t chdir to %s

(F) You called perl -x/foo/bar, but /foo/bar is not a directory that you can
chdir to, possibly because it doesn’t exist.

Can’t check filesystem of script "%s" for nosuid

(P) For some reason you can’t check the filesystem of the script for nosuid.

Can’t coerce %s to integer in %s

(F) Certain types of SVs, in particular symbol table entries (typeglobs), can’t be
forced to stop being what they are. So you can’t say things like:

*foo += 1;

You can say:

$foo = *foo;
$foo += 1;

but then $foo no longer contains a glob.

Can’t coerce %s to number in %s

(F) Certain types of SVs, in particular symbol table entries (typeglobs), can’t be
forced to stop being what they are.

Can’t coerce %s to string in %s

(F) Certain types of SVs, in particular symbol table entries (typeglobs), can’t be
forced to stop being what they are.

Can’t coerce array into hash

(F) You used an array where a hash was expected, but the array has no infor-
mation on how to map from keys to array indices. You can do that only with
arrays that have a hash refer ence at index 0.

Can’t create pipe mailbox

(P) This is an error peculiar to VMS. The process is suffering from exhausted
quotas or other plumbing problems.

Can’t declare class for non-scalar %s in "%s"

(S) Currently, only scalar variables can declared with a specific class qualifier
in a my or our declaration. The semantics may be extended for other types of
variables in future.

Can’t declare %s in "%s"

(F) Only scalar, array, and hash variables may be declared as my or our vari-
ables. They must have ordinary identifiers as names.

Can’t do inplace edit on %s: %s

(S inplace) The creation of the new file failed for the indicated reason.

Can’t do inplace edit without backup

(F) You’r e on a system such as MS-DOS that gets confused if you try reading
fr om a deleted (but still opened) file. You have to say -i.bak, or some such.

Can’t do inplace edit: %s would not be unique

(S inplace) Your filesystem does not support filenames longer than 14 charac-
ters and Perl was unable to create a unique filename during inplace editing
with the -i switch. The file was ignored.

Can’t do inplace edit: %s is not a regular file

(S inplace) You tried to use the -i switch on a special file, such as a file in
/dev, or a FIFO. The file was ignored.

Can’t do setegid!

(P) The setegid call failed for some reason in the setuid emulator of suidperl.

Can’t do seteuid!

(P) The setuid emulator of suidperl failed for some reason.

Can’t do setuid

(F) This typically means that ordinary perl tried to exec suidperl to do setuid
emulation, but couldn’t exec it. It looks for a name of the form sperl5.000 in
the same directory that the perl executable resides under the name perl5.000,
typically /usr/local/bin on Unix machines. If the file is there, check the execute
per missions. If it isn’t, ask your sysadmin why not.

Can’t do waitpid with flags

(F) This machine doesn’t have either waitpid or wait4, so only waitpid with-
out flags is emulated.

Can’t do {n,m} with n > m

(F) Minima must be less than or equal to maxima. If you really want your reg-
exp to match something 0 times, just use {0}.

Diagnostics

Chapter 33: Diagnostic Messages 929

930 Chapter 33: Diagnostic Messages

Can’t emulate -%s on #! line

(F) The #! line specifies a switch that doesn’t make sense at this point. For
example, it would be kind of silly to put a -x on the #! line.

Can’t exec "%s": %s

(W exec) A system, exec, or piped open call could not execute the named pro-
gram for the indicated reason. Typical reasons include the permissions were
wr ong on the file, the file wasn’t found in $ENV{PATH}, the executable in ques-
tion was compiled for another architectur e, or the #! line in a script points to
an interpreter that can’t be run for similar reasons. (Or maybe your system
doesn’t support #! at all.)

Can’t exec %s

(F) Perl was trying to execute the indicated program for you because that’s
what the #! line said to do. If that’s not what you wanted, you may need to
mention perl on the #! line somewhere.

Can’t execute %s

(F) You used the -S switch, but the copies of the script to execute found in
the PATH did not have correct permissions.

Can’t find %s on PATH, ’.’ not in PATH

(F) You used the -S switch, but the script to execute could not be found in
the PATH, or at least not with the correct permissions. The script exists in the
curr ent dir ectory, but PATH pr ohibits running it.

Can’t find %s on PATH

(F) You used the -S switch, but the script to execute could not be found in
the PATH.

Can’t find label %s

(F) You said to goto a label that isn’t mentioned anywhere that it’s possible for
us to go to.

Can’t find string terminator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means that the
closing delimiter was omitted. Because bracketed quotes count nesting levels,
the following is missing its final parenthesis:

print q(The character ’(’ starts a side comment.);

If you’re getting this error from a here document, you may have included
unseen whitespace before or after your closing tag. A good programmer’s edi-
tor will have a way to help you find these characters.

Can’t fork

(F) A fatal error occurred trying to fork.

Can’t get filespec - stale stat buffer?

(S) This warning is peculiar to VMS. This arises because of the differ ence
between access checks under VMS and under the Unix model Perl assumes.
Under VMS, access checks are done by filename, rather than by bits in the
stat buf fer, so that ACLs and other protections can be taken into account.
Unfortunately, Perl assumes that the stat buf fer contains all the necessary
infor mation and passes it, instead of the filespec, to the access-checking rou-
tine. It will try to retrieve the filespec using the device name and FID present
in the stat buffer, but if you have made a subsequent call to the CRTL stat

routine, this won’t work because the device name is overwritten with each
call. If this warning appears, the name lookup failed and the access-checking
routine gave up and retur ned false, just to be conservative. (Note: the access-
checking routine knows about the Perl stat operator and file tests, so you
shouldn’t ever see this warning in response to a Perl command; it arises only
if some internal code takes stat buffers lightly.)

Can’t get pipe mailbox device name

(P) This error is peculiar to VMS. After creating a mailbox to act as a pipe, Perl
can’t retrieve its name for later use.

Can’t get SYSGEN parameter value for MAXBUF

(P) This error is peculiar to VMS. Perl asked $GETSYI how big you want your
mailbox buffers to be, and it didn’t get an answer.

Can’t goto subroutine outside a subroutine

(F) The deeply magical goto SUBROUTINE call can only replace one subroutine
call for another. It can’t manufacture one out of whole cloth. In general, you
should be calling it out of only an AUTOLOAD routine anyway.

Can’t goto subroutine from an eval-string

(F) The goto SUBROUTINE call can’t be used to jump out of an eval string. (You
can use it to jump out of an eval BLOCK, but you probably don’t want to.)

Can’t ignore signal CHLD, forcing to default

(W signal) Perl has detected that it is being run with the SIGCHLD signal (some-
times known as SIGCLD) disabled. Since disabling this signal will interfer e with
pr oper deter mination of exit status of child processes, Perl has reset the signal
to its default value. This situation typically indicates that the parent program
under which Perl may be running (e.g., cr on) is being very careless.

Diagnostics

Chapter 33: Diagnostic Messages 931

932 Chapter 33: Diagnostic Messages

Can’t localize through a reference

(F) You said something like local $$ref, which Perl can’t currently handle
because when it goes to restor e the old value of whatever $ref pointed to
after the scope of the local is finished, it can’t be sure that $ref will still be a
refer ence.

Can’t localize lexical variable %s

(F) You used local on a variable name that was previously declared as a lexi-
cal variable using my. This is not allowed. If you want to localize a package
variable of the same name, qualify it with the package name.

Can’t localize pseudohash element

(F) You said something like local $ar->{’key’}, wher e $ar is a refer ence to a
pseudohash. That hasn’t been implemented yet, but you can get a similar
ef fect by localizing the corresponding array element directly —local

$ar->[$ar->[0]{’key’}].

Can’t locate auto/%s.al in @INC

(F) A function (or method) was called in a package that allows autoloading,
but there is no function to autoload. Most probable causes are a misprint in a
function/method name or a failure to AutoSplit the file, say, by doing make

install.

Can’t locate %s

(F) You said to do (or require, or use) a file that couldn’t be found. Perl looks
for the file in all the locations mentioned in @INC, unless the filename included
the full path to the file. Perhaps you need to set the PERL5LIB or PERL5OPT

envir onment variable to say where the extra library is, or maybe the script
needs to add the library name to @INC. Or maybe you just misspelled the name
of the file.

Can’t locate object method "%s" via package "%s"

(F) You called a method correctly, and it correctly indicated a package func-
tioning as a class, but that package doesn’t define that particular method, nor
does any of its base classes.

Can’t locate package %s for @%s::ISA

(W syntax) The @ISA array contained the name of another package that doesn’t
seem to exist.

Can’t make list assignment to \%ENV on this system

(F) List assignment to %ENV is not supported on some systems, notably VMS.

Can’t modify %s in %s

(F) You aren’t allowed to assign to the item indicated or otherwise try to
change it, such as with an autoincrement.

Can’t modify non-lvalue subroutine call

(F) Subroutines meant to be used in lvalue context should be declared as
such.

Can’t modify nonexistent substring

(P) The internal routine that does assignment to a substr was handed a NULL.

Can’t msgrcv to read-only var

(F) The target of a msgrcv must be modifiable to be used as a receive buffer.

Can’t open %s: %s

(S inplace) The implicit opening of a file through use of the <> filehandle,
either implicitly under the -n or -p command-line switches or explicitly, failed
for the indicated reason. Usually this is because you don’t have read permis-
sion for a file which you named on the command line.

Can’t open bidirectional pipe

(W pipe) You tried to say open(CMD, "|cmd|"), which is not supported. You
can try any of several modules in the Perl library to do this, such as
IPC::Open2. Alter natively, dir ect the pipe’s output to a file using >, and then
read it in under a differ ent filehandle.

Can’t open error file %s as stderr

(F) This is an error peculiar to VMS. Perl does its own command-line redir ec-
tion, and it couldn’t open the file specified after 2> or 2>> on the command
line for writing.

Can’t open input file %s as stdin

(F) This is an error peculiar to VMS. Perl does its own command-line redir ec-
tion, and it couldn’t open the file specified after < on the command line for
reading.

Can’t open output file %s as stdout

(F) This is an error peculiar to VMS. Perl does its own command-line redir ec-
tion, and it couldn’t open the file specified after > or >> on the command line
for writing.

Can’t open output pipe (name: %s)

(P) This is an error peculiar to VMS. Perl does its own command-line redir ec-
tion, and it couldn’t open the pipe into which to send data destined for STD-
OUT.

Can’t open perl script "%s": %s

(F) The script you specified can’t be opened for the indicated reason.

Diagnostics

Chapter 33: Diagnostic Messages 933

934 Chapter 33: Diagnostic Messages

Can’t redefine active sort subroutine %s

(F) Perl optimizes the internal handling of sort subroutines and keeps pointers
into them. You tried to redefine one such sort subroutine when it was cur-
rently active, which is not allowed. If you really want to do this, you should
write sort { &func } @x instead of sort func @x.

Can’t remove %s: %s, skipping file

(S inplace) You requested an inplace edit without creating a backup file. Perl
was unable to remove the original file to replace it with the modified file. The
file was left unmodified.

Can’t rename %s to %s: %s, skipping file

(S inplace) The rename done by the -i switch failed for some reason, proba-
bly because you don’t have write permission to the directory.

Can’t reopen input pipe (name: %s) in binary mode

(P) An error peculiar to VMS. Perl thought STDIN was a pipe, and tried to
reopen it to accept binary data. Alas, it failed.

Can’t reswap uid and euid

(P) The setreuid call failed for some reason in the setuid emulator of suidperl.

Can’t return outside a subroutine

(F) The return statement was executed in mainline code, that is, where ther e
was no subroutine call to retur n out of.

Can’t return %s from lvalue subroutine

(F) Perl detected an attempt to retur n illegal lvalues (such as temporary or
readonly values) from a subroutine used as an lvalue. This is not allowed.

Can’t stat script "%s"

(P) For some reason, you can’t fstat the script even though you have it open
alr eady. Bizarr e.

Can’t swap uid and euid

(P) The setreuid call failed for some reason in the setuid emulator of suidperl.

Can’t take log of %g

(F) For ordinary real numbers, you can’t take the logarithm of a negative num-
ber or zero. There’s a Math::Complex package that comes standard with Perl,
though, if you really want to do that for the negative numbers.

Can’t take sqrt of %g

(F) For ordinary real numbers, you can’t take the square root of a negative
number. Ther e’s a Math::Complex package that comes standard with Perl,
though, if you really want to do that.

Can’t undef active subroutine

(F) You can’t undefine a routine that’s currently running. You can, however,
redefine it while it’s running, and you can even undef the redefined subrou-
tine while the old routine is running. Go figure.

Can’t unshift

(F) You tried to unshift an “unreal” array that can’t be unshifted, such as the
main Perl stack.

Can’t upgrade that kind of scalar

(P) The internal sv_upgrade routine adds “members” to an SV, making it into a
mor e specialized kind of SV. The top several SV types are so specialized, how-
ever, that they cannot be interconverted. This message indicates that such a
conversion was attempted.

Can’t upgrade to undef

(P) The undefined SV is the bottom of the totem pole, in the scheme of
upgradability. Upgrading to undef indicates an error in the code calling
sv_upgrade.

Can’t use %%! because Errno.pm is not available

(F) The first time the %! hash is used, Perl automatically loads the Errno mod-
ule. The Errno module is expected to tie the %! hash to provide symbolic
names for $! err no values.

Can’t use "my %s" in sort comparison

(F) The global variables $a and $b ar e reserved for sort comparisons. You
mentioned $a or $b in the same line as the <=> or cmp operator, and the vari-
able had earlier been declared as a lexical variable. Either qualify the sort vari-
able with the package name, or rename the lexical variable.

Bad evalled substitution pattern

(F) You’ve used the /e switch to evaluate the replacement for a substitution,
but Perl found a syntax error in the code to evaluate, most likely an unex-
pected right brace }.

Can’t use %s for loop variable

(F) Only a simple scalar variable may be used as a loop variable on a foreach.

Can’t use %s ref as %s ref

(F) You’ve mixed up your refer ence types. You have to derefer ence a refer-
ence of the type needed. You can use the ref function to test the type of the
refer ence, if need be.

Can’t use \%c to mean $%c in expression

(W syntax) In an ordinary expression, backslash is a unary operator that cre-
ates a refer ence to its argument. The use of backslash to indicate a backrefer-
ence to a matched substring is valid only as part of a regular expression

Diagnostics

Chapter 33: Diagnostic Messages 935

936 Chapter 33: Diagnostic Messages

patter n. Trying to do this in ordinary Perl code produces a value that prints
out looking like SCALAR(0xdecaf). Use the $1 for m instead.

Can’t use bareword ("%s") as %s ref while "strict refs" in use

(F) Only hard refer ences ar e allowed by strict refs. Symbolic refer ences ar e
disallowed.

Can’t use string ("%s") as %s ref while "strict refs" in use

(F) Only hard refer ences ar e allowed by strict refs. Symbolic refer ences ar e
disallowed.

Can’t use an undefined value as %s reference

(F) A value used as either a hard refer ence or a symbolic refer ence must be a
defined value. This helps to delurk some insidious errors.

Can’t use global %s in "my"

(F) You tried to declare a magical variable as a lexical variable. This is not
allowed because the magic can be tied to only one location (namely the
global variable) and it would be incredibly confusing to have variables in your
pr ogram that looked like magical variables but weren’t.

Can’t use subscript on %s

(F) The compiler tried to interpret a bracketed expression as a subscript. But
to the left of the brackets was an expression that didn’t look like an array ref-
er ence, or anything else subscriptable.

Can’t weaken a nonreference

(F) You attempted to weaken something that was not a refer ence. Only refer-
ences can be weakened.

Can’t x= to read-only value

(F) You tried to repeat a constant value (often the undefined value) with an
assignment operator, which implies modifying the value itself. Perhaps you
need to copy the value to a temporary variable, and repeat that.

Can’t find an opnumber for "%s"

(F) A string of a form CORE::word was given to prototype, but there is no built-
in with the name word.

Can’t resolve method ‘%s’ overloading ‘%s’ in package ‘%s’

(F|P) An error occurred when resolving overloading specified by a method
name (as opposed to a subroutine refer ence): no such method callable via the
package. If the method name is ???, this is an internal error.

Character class [:%s:] unknown

(F) The class in the character class [: :] syntax is unknown.

Character class syntax [%s] belongs inside character classes

(W unsafe) The character class constructs [: :], [= =], and [. .] go inside
character classes, for example: /[012[:alpha:]345]/. Note that the [= =] and
[. .] constructs are not currently implemented; they are simply placeholders
for future extensions.

Character class syntax [. .] is reserved for future extensions

(W regexp) Within regular expression character classes ([]), the syntax begin-
ning with [. and ending with .] is reserved for future extensions. If you need
to repr esent those character sequences inside a regular expression character
class, just quote the square brackets with the backslash: \[. and .\].

Character class syntax [= =] is reserved for future extensions

(W regexp) Within regular expression character classes ([]), the syntax begin-
ning with [= and ending with =] is reserved for future extensions. If you need
to repr esent those character sequences inside a regular expression character
class, just quote the square brackets with the backslash: \[= and =\].

chmod() mode argument is missing initial 0

(W chmod) A novice will sometimes say:

chmod 777, $filename

not realizing that 777 will be interpreted as a decimal number, equivalent to
01411. Octal constants are intr oduced with a leading 0 in Perl, as in C.

Close on unopened file <%s>

(W unopened) You tried to close a filehandle that was never opened.

Compilation failed in require

(F) Perl could not compile a file specified in a require statement. Perl uses
this generic message when none of the errors that it encountered were sever e
enough to halt compilation immediately.

Complex regular subexpression recursion limit (%d) exceeded

(W regexp) The regular expression engine uses recursion in complex situa-
tions where backtracking is requir ed. Recursion depth is limited to 32,766, or
perhaps less in architectur es wher e the stack cannot grow arbitrarily. (“Simple”
and “medium” situations are handled without recursion and are not subject to
a limit.) Try shortening the string under examination; looping in Perl code
(e.g., with while) rather than in the regular expression engine; or rewriting the
regular expression so that it is simpler or backtracks less.

connect() on closed socket %s

(W closed) You tried to do a connect on a closed socket. Did you forget to
check the retur n value of your socket call?

Diagnostics

Chapter 33: Diagnostic Messages 937

938 Chapter 33: Diagnostic Messages

Constant is not %s reference

(F) A constant value (perhaps declared using the use constant pragma) is
being derefer enced, but it amounts to the wrong type of refer ence. The mes-
sage indicates the type of refer ence that was expected. This usually indicates a
syntax error in derefer encing the constant value.

Constant subroutine %s redefined

(S|W redefine) You redefined a subroutine that had previously been eligible
for inlining.

Constant subroutine %s undefined

(W misc) You undefined a subroutine that had previously been eligible for
inlining.

constant(%s): %s

(F) The parser found inconsistencies either while attempting to define an over-
loaded constant or when trying to find the character name specified in the
\N{...} escape. Perhaps you forgot to load the corresponding overload or
charnames pragma?

Copy method did not return a reference

(F) The method that overloads = is buggy.

CORE::%s is not a keyword

(F) The CORE:: namespace is reserved for Perl keywords.

Corrupt malloc ptr 0x%lx at 0x%lx

(P) The malloc package that comes with Perl had an internal failure.

corrupted regexp pointers

(P) The regular expression engine got confused by what the regular expres-
sion compiler gave it.

corrupted regexp program

(P) The regular expression engine got passed a regexp program without a
valid magic number.

Deep recursion on subroutine "%s"

(W recursion) This subroutine has called itself (directly or indirectly) 100 times
mor e than it has retur ned. This probably indicates an infinite recursion, unless
you’r e writing strange benchmark programs, in which case it indicates some-
thing else.

defined(@array) is deprecated

(D deprecated) defined is not usually useful on arrays because it checks for an
undefined scalar value. If you want to see if the array is empty, just use if

(@array) { # not empty }.

defined(%hash) is deprecated

(D deprecated) defined is not usually useful on hashes because it checks for
an undefined scalar value. If you want to see if the hash is empty, just use if

(%hash) { # not empty }.

Delimiter for here document is too long

(F) In a here document construct like <<FOO, the label FOO is too long for Perl
to handle. You have to be seriously twisted to write code that triggers this
err or.

Did not produce a valid header

See Server error.

(Did you mean &%s instead?)

(W) You probably referr ed to an imported subroutine &FOO as $FOO or some
such.

(Did you mean "local" instead of "our"?)

(W misc) Remember that our does not localize the declared global variable.
You have declared it again in the same lexical scope, which seems superflu-
ous.

(Did you mean $ or @ instead of %?)

(W) You probably said %hash{$key} when you meant $hash{$key} or
@hash{@keys}. On the other hand, maybe you just meant %hash and got carried
away.

Died

(F) You passed die an empty string (the equivalent of die "") or you called it
with no args and both $@ and $_ wer e empty.

(Do you need to predeclare %s?)

(S) This is an educated guess made in conjunction with the message “%s found
wher e operator expected”. It often means a subroutine or module name is
being refer enced that hasn’t been declared yet. This may be because of order-
ing problems in your file or because of a missing sub, package, require, or use
statement. If you’re refer encing something that isn’t defined yet, you don’t
actually have to define the subroutine or package before the current location.
You can use an empty sub foo; or package FOO; to enter a “forward” declara-
tion.

Document contains no data

See Server error.

Don’t know how to handle magic of type ’%s’

(P) The internal handling of magical variables has been cursed.

Diagnostics

Chapter 33: Diagnostic Messages 939

940 Chapter 33: Diagnostic Messages

do_study: out of memory

(P) This should have been caught by safemalloc instead.

Duplicate free() ignored

(S malloc) An internal routine called free on something that had already been
fr eed.

elseif should be elsif

(S) There is no keyword “elseif” in Perl because Larry thinks it’s ugly. Your
code will be interpreted as an attempt to call a method named elseif for the
class retur ned by the following block. This is unlikely to be what you want.

%s failed- -call queue aborted

(F) An untrapped exception was raised while executing a CHECK, INIT, or END
subr outine. Pr ocessing of the remainder of the queue of such routines has
been prematur ely ended.

entering effective %s failed

(F) While under the use filetest pragma, switching the real and effective
UIDs or GIDs failed.

Error converting file specification %s

(F) This is an error peculiar to VMS. Because Perl may have to deal with file
specifications in either VMS or Unix syntax, it converts them to a single form
when it must operate on them directly. Either you’ve passed an invalid file
specification to Perl, or you’ve found a case the conversion routines don’t han-
dle. Drat.

%s: Eval-group in insecure regular expression

(F) Perl detected tainted data when trying to compile a regular expression that
contains the (?{ ... }) zer o-width assertion, which is unsafe.

%s: Eval-group not allowed, use re ’eval’

(F) A regular expression contained the (?{ ... }) zer o-width assertion, but
that construct is only allowed when the use re ’eval’ pragma is in effect.

%s: Eval-group not allowed at run time

(F) Perl tried to compile a regular expression containing the (?{ ... }) zer o-
width assertion at run time, as it would when the pattern contains interpolated
values. Since that is a security risk, it is not allowed. If you insist, you may still
do this by explicitly building the pattern from an interpolated string at run
time and using that in an eval.

Excessively long <> operator

(F) The contents of a <> operator may not exceed the maximum size of a Perl
identifier. If you’r e just trying to glob a long list of filenames, try using the
glob operator or putting the filenames into a variable and globbing that.

Execution of %s aborted due to compilation errors

(F) The final summary message when a Perl compilation fails.

Exiting eval via %s

(W exiting) You are exiting an eval by unconventional means, such as a goto

or a loop control statement.

Exiting format via %s

(W exiting) You are exiting a format by unconventional means, such as a goto

or a loop control statement.

Exiting pseudoblock via %s

(W exiting) You are exiting a rather special block construct (like a sort block
or subroutine) by unconventional means, such as a goto or a loop control
statement.

Exiting subroutine via %s

(W exiting) You are exiting a subroutine by unconventional means, such as a
goto or a loop control statement.

Exiting substitution via %s

(W exiting) You are exiting a substitution by unconventional means, such as a
return, a goto, or a loop control statement.

Explicit blessing to ’’ (assuming package main)

(W misc) You are blessing a refer ence to a zero-length string. This has the
ef fect of blessing the refer ence into the package main. This is usually not what
you want. Consider providing a default target package, such as bless($ref,

$p || ’MyPackage’);

false [] range "%s" in regexp

(W regexp) A character class range must start and end at a literal character,
not another character class like \d or [:alpha:]. The - in your false range is
interpr eted as a literal -. Consider quoting the - like this: \-.

Fatal VMS error at %s, line %d

(P) This is an error peculiar to VMS. Something untoward happened in a VMS
system service or RTL routine; Perl’s exit status should provide more details.
The filename in at %s and the line number in line %d tell you which section of
the Perl source code is distressed.

fcntl is not implemented

(F) Your machine apparently doesn’t implement fcntl. What is this, a PDP-11
or something?

Filehandle %s never opened

(W unopened) An I/O operation was attempted on a filehandle that was never
initialized. You need to do an open or a socket call, or call a constructor from
the FileHandle module.

Diagnostics

Chapter 33: Diagnostic Messages 941

942 Chapter 33: Diagnostic Messages

Filehandle %s opened only for input

(W io) You tried to write on a read-only filehandle. If you intended it to be a
read-write filehandle, you needed to open it with +< or +> or +>> instead of
with < or nothing. If you intended only to write the file, use > or >>.

Filehandle %s opened only for output

(W io) You tried to read from a filehandle opened only for writing. If you
intended it to be a read/write filehandle, you needed to open it with +< or +>
or +>> instead of with < or nothing. If you intended only to read from the file,
use <.

Final $ should be \$ or $name

(F) You must now decide whether the final $ in a string was meant to be a lit-
eral dollar sign or was meant to introduce a variable name that happens to be
missing. So you have to add either the backslash or the name.

Final @ should be \@ or @name

(F) You must now decide whether the final @ in a string was meant to be a lit-
eral “at” sign or was meant to introduce a variable name that happens to be
missing. So you have to add either the backslash or the name.

flock() on closed filehandle %s

(W closed) The filehandle you’re attempting to flock got itself closed some
time before now. Check your logic flow. flock operates on filehandles. Are
you attempting to call flock on a dirhandle by the same name?

Format %s redefined

(W redefine) You redefined a format. To suppr ess this warning, say:

{
no warnings;
eval "format NAME =...";

}

Format not terminated

(F) A format must be terminated by a line with a solitary dot. Perl got to the
end of your file without finding such a line.

Found = in conditional, should be ==

(W syntax) You said:

if ($foo = 123)

when you meant:

if ($foo == 123)

(or something like that).

gdbm store returned %d, errno %d, key "%s"

(S) A warning from the GDBM_File extension that a store failed.

gethostent not implemented

(F) Your C library apparently doesn’t implement gethostent, probably because
if it did, it’d feel morally obligated to retur n every hostname on the Internet.

get%sname() on closed socket %s

(W closed) You tried to get a socket or peer socket name on a closed socket.
Did you forget to check the retur n value of your socket call?

getpwnam returned invalid UIC %#o for user "%s"

(S) A warning peculiar to VMS. The call to sys$getuai underlying the getpwnam

operator retur ned an invalid UIC.

getsockopt() on closed socket %s

(W closed) You tried to get a socket option on a closed socket. Did you for-
get to check the retur n value of your socket call?

glob failed (%s)

(W glob) Something went wrong with the external program(s) used for glob
and <*.c>. Usually, this means that you supplied a glob patter n that caused
the external program to fail and exit with a nonzero status. If the message
indicates that the abnormal exit resulted in a core dump, this may also mean
that your csh (C shell) is broken. If so, you should change all of the csh-
related variables in config.sh: If you have tcsh, make the variables refer to it as
if it were csh (e.g., full_csh=’/usr/bin/tcsh’); otherwise, make them all
empty (except that d_csh should be ’undef’) so that Perl will think csh is miss-
ing. In either case, after editing config.sh, run ./Configur e -S and rebuild Perl.

Glob not terminated

(F) The lexer saw a left angle bracket in a place where it was expecting a
ter m, so it’s looking for the corresponding right angle bracket and not finding
it. Chances are you left some needed parentheses out earlier in the line, and
you really meant a < symbol.

Global symbol "%s" requires explicit package name

(F) You’ve said use strict vars, which indicates that all variables must either
be lexically scoped (using my), declared beforehand using our, or explicitly
qualified to say which package the global variable is in (using ::).

Got an error from DosAllocMem

(P) This is an error peculiar to OS/2. Most probably you’re using an obsolete
version of Perl, so this error should not happen anyway.

Diagnostics

Chapter 33: Diagnostic Messages 943

944 Chapter 33: Diagnostic Messages

goto must have label

(F) Unlike with next or last, you’r e not allowed to goto an unspecified desti-
nation.

Had to create %s unexpectedly

(S internal) A routine asked for a symbol from a symbol table that ought to
have existed already, but for some reason it didn’t and had to be created on
an emergency basis to prevent a core dump.

Hash %%s missing the % in argument %d of %s()

(D deprecated) Really old Perl let you omit the % on hash names in some
spots. This is now heavily deprecated.

Hexadecimal number > 0xffffffff non-portable

(W portable) The hexadecimal number you specified is larger than 2**32-1

(4,294,967,295) and therefor e nonportable between systems.

Identifier too long

(F) Perl limits identifiers (names for variables, functions, etc.) to about 250
characters for simple names, and somewhat more for compound names (like
$A::B). You’ve exceeded Perl’s limits. Future versions of Perl are likely to elim-
inate these arbitrary limitations.

Ill-formed CRTL environ value "%s"

(W internal) This is a warning peculiar to VMS. Perl tried to read the CRTL’s
inter nal envir on array and encountered an element without the = delimiter
used to separate keys from values. The element is ignored.

Ill-formed message in prime_env_iter: |%s|

(W internal) This is a warning peculiar to VMS. Perl tried to read a logical
name or CLI symbol definition when preparing to iterate over %ENV and didn’t
see the expected delimiter between key and value, so the line was ignored.

Illegal character %s (carriage return)

(F) Perl normally treats carriage retur ns in the program text as it would any
other whitespace, which means you should never see this error when Perl was
built using standard options. For some reason, your version of Perl appears to
have been built without this support. Talk to your Perl administrator.

Illegal division by zero

(F) You tried to divide a number by 0. Either something was wrong in your
logic, or you need to put a conditional in to guard against meaningless input.

Illegal modulus zero

(F) You tried to divide a number by 0 to get the remainder. Most numbers
don’t take to this kindly.

Illegal binary digit %s

(F) You used a digit other than 0 or 1 in a binary number.

Illegal octal digit %s

(F) You used an 8 or 9 in a octal number.

Illegal binary digit %s ignored

(W digit) You may have tried to use a digit other than 0 or 1 in a binary num-
ber. Interpr etation of the binary number stopped before the offending digit.

Illegal octal digit %s ignored

(W digit) You may have tried to use an 8 or 9 in a octal number. Interpr etation
of the octal number stopped before the 8 or 9.

Illegal hexadecimal digit %s ignored

(W digit) You may have tried to use a character other than 0 thr ough 9, A
thr ough F, or a thr ough f in a hexadecimal number. Interpr etation of the hex-
adecimal number stopped before the illegal character.

Illegal number of bits in vec

(F) The number of bits in vec (the third argument) must be a power of two
fr om 1 to 32 (or 64, if your platform supports that).

Illegal switch in PERL5OPT: %s

(X) The PERL5OPT envir onment variable may only be used to set the following
switches: -[DIMUdmw].

In string, @%s now must be written as \@%s

(F) It used to be that Perl would try to guess whether you wanted an array
interpolated or a literal @. It did this when the string was first used at run time.
Now strings are parsed at compile time, and ambiguous instances of @ must be
disambiguated, either by prepending a backslash to indicate a literal, or by
declaring (or using) the array within the program before the string (lexically).
(Someday it will simply assume that an unbackslashed @ interpolates an array.)

Insecure dependency in %s

(F) You tried to do something that the tainting mechanism didn’t like. The
tainting mechanism is turned on when you’re running setuid or setgid, or
when you specify -T to turn it on explicitly. The tainting mechanism labels all
data that’s derived directly or indirectly from the user, who is considered to be
unworthy of your trust. If any such data is used in a “dangerous” operation,
you get this error.

Insecure directory in %s

(F) You can’t use system, exec, or a piped open in a setuid or setgid script if
$ENV{PATH} contains a directory that is writable by the world.

Diagnostics

Chapter 33: Diagnostic Messages 945

946 Chapter 33: Diagnostic Messages

Insecure $ENV{%s} while running %s

(F) You can’t use system, exec, or a piped open in a setuid or setgid script if
any of $ENV{PATH}, $ENV{IFS}, $ENV{CDPATH}, $ENV{ENV}, or $ENV{BASH_ENV} ar e
derived from data supplied (or potentially supplied) by the user. The script
must set the path to a known value, using trustworthy data.

Integer overflow in %s number

(W overflow) The hexadecimal, octal, or binary number you have specified
either as a literal or as an argument to hex or oct is too big for your architec-
tur e and has been converted to a floating-point number. On 32-bit machines,
the largest hex, octal, or binary number repr esentable without overflow is
0xFFFFFFFF, 037777777777, or 0b11111111111111111111111111111111 respec-
tively. Note that Perl transparently promotes all numbers to a floating-point
repr esentation inter nally—subject to loss of precision errors in subsequent
operations.

Internal inconsistency in tracking vforks

(S) This is a warning peculiar to VMS. Perl keeps track of the number of times
you’ve called fork and exec, to deter mine whether the current call to exec

should affect the current script or a subprocess (see “exec LIST” in
perlvms (1)). Somehow, this count has become scrambled, so Perl is making a
guess and treating this exec as a request to terminate the Perl script and exe-
cute the specified command.

internal disaster in regexp

(P) Something went badly wrong in the regular expression parser.

internal urp in regexp at /%s/

(P) Something went badly awry in the regular expression parser.

Invalid %s attribute: %s

(F) The indicated attribute for a subroutine or variable was not recognized by
Perl or by a user-supplied handler.

Invalid %s attributes: %s

(F) The indicated attributes for a subroutine or variable were not recognized
by Perl or by a user-supplied handler.

invalid [] range "%s" in regexp

(F) The range specified in a character class had a minimum character greater
than the maximum character.

Invalid conversion in %s: "%s"

(W printf) Perl does not understand the given format conversion.

Invalid separator character %s in attribute list

(F) Something other than a colon or whitespace was seen between the ele-
ments of an attribute list. If the previous attribute had a parenthesized parame-
ter list, perhaps that list was terminated too soon.

Invalid type in pack: ’%s’

(F) The given character is not a valid pack type.

(W pack) The given character is not a valid pack type, but it used to be
silently ignored.

Invalid type in unpack: ’%s’

(F) The given character is not a valid unpack type.

(W unpack) The given character is not a valid unpack type, but it used to be
silently ignored.

ioctl is not implemented

(F) Your machine apparently doesn’t implement ioctl, which is pretty strange
for a machine that supports C.

junk on end of regexp

(P) The regular expression parser is confused.

Label not found for "last %s"

(F) You named a loop to break out of, but you’re not currently in a loop of
that name, not even if you count where you were called from.

Label not found for "next %s"

(F) You named a loop to continue, but you’re not currently in a loop of that
name, not even if you count where you were called from.

Label not found for "redo %s"

(F) You named a loop to restart, but you’re not currently in a loop of that
name, not even if you count where you were called from.

leaving effective %s failed

(F) While under the use filetest pragma, switching the real and effective
UIDs or GIDs failed.

listen() on closed socket %s

(W closed) You tried to do a listen on a closed socket. Did you forget to
check the retur n value of your socket call?

Lvalue subs returning %s not implemented yet

(F) Due to limitations in the current implementation, array and hash values
cannot be retur ned in subroutines used in lvalue context.

Diagnostics

Chapter 33: Diagnostic Messages 947

948 Chapter 33: Diagnostic Messages

Malformed PERLLIB_PREFIX

(F) This is an error peculiar to OS/2. PERLLIB_PREFIX should be of the form:

prefix1;prefix2

or:

prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of a built-in
library search path, prefix2 is substituted. The error may appear if compo-
nents are not found, or are too long. See PERLLIB_PREFIX in the README.os2
file bundled with the Perl distribution.

Method for operation %s not found in package %s during blessing

(F) An attempt was made to specify an entry in an overloading table that
doesn’t resolve to a valid subroutine.

Method %s not permitted

See Server error.

Might be a runaway multi-line %s string starting on line %d

(S) An advisory indicating that the previous error may have been caused by a
missing delimiter on a string or pattern, because the string eventually ended
earlier on the current line.

Misplaced _ in number

(W syntax) An underline in a decimal constant wasn’t at a 3-digit boundary.

Missing $ on loop variable

(F) Apparently, you’ve been programming in csh too much. Variables are
always mentioned with the $ in Perl, unlike in the shells, where it can vary
fr om one line to the next.

Missing %sbrace%s on \N{}

(F) You used the wrong syntax of character name literal \N{charname} within
double-quotish context.

Missing comma after first argument to %s function

(F) While certain functions allow you to specify a filehandle or an “indirect
object” before the argument list, this ain’t one of them.

Missing command in piped open

(W pipe) You used the open(FH, "| command") or open(FH, "command |") con-
struction, but the command was missing or blank.

(Missing operator before %s?)

(S) This is an educated guess made in conjunction with the message “%s found
wher e operator expected”. Often the missing operator is a comma.

Missing right curly or square bracket

(F) The lexer counted more opening curly or square brackets than closing
ones. As a general rule, you’ll find it’s missing near the place you were last
editing.

Modification of a read-only value attempted

(F) You tried, directly or indirectly, to change the value of a constant. You
didn’t, of course, try 2 = 1, because the compiler catches that. But an easy
way to do the same thing is:

sub mod { $_[0] = 1 }
mod(2);

Another way is to assign to a substr that’s off the end of the string.

Modification of non-creatable array value attempted, subscript %d

(F) You tried to make an array value spring into existence, and the subscript
was probably negative, even counting from end of the array backward.

Modification of non-creatable hash value attempted, subscript "%s"

(P) You tried to make a hash value spring into existence, and it couldn’t be
cr eated for some peculiar reason.

Module name must be constant

(F) Only a bare module name is allowed as the first argument to a use.

msg%s not implemented

(F) You don’t have System V message IPC on your system.

Multidimensional syntax %s not supported

(W syntax) Multidimensional arrays aren’t written like $foo[1,2,3]. They’r e
written like $foo[1][2][3], as in C.

Missing name in "my sub"

(F) The reserved syntax for lexically scoped subroutines requir es that they
have a name with which they can be found.

Name "%s::%s" used only once: possible typo

(W once) Typographical errors often show up as unique variable names. If
you had a good reason for having a unique name, then just mention it again
somehow to suppress the message. The our declaration is provided for this
purpose.

Diagnostics

Chapter 33: Diagnostic Messages 949

950 Chapter 33: Diagnostic Messages

Negative length

(F) You tried to do a read/write/send/recv operation with a buffer length that
is less than 0. This is difficult to imagine.

nested *?+ in regexp

(F) You can’t quantify a quantifier without intervening parentheses. So things
like ** or +* or ?* ar e illegal.

Note, however, that the minimal matching quantifiers, *?, +?, and ?? appear to
be nested quantifiers, but aren’t.

No #! line

(F) The setuid emulator requir es that scripts have a well-formed #! line even
on machines that don’t support the #! construct.

No %s allowed while running setuid

(F) Certain operations are deemed to be too insecure for a setuid or setgid
script to even attempt. Generally speaking, there will be another way to do
what you want that is, if not secure, at least securable.

No -e allowed in setuid scripts

(F) A setuid script can’t be specified by the user.

No %s specified for -%c

(F) The indicated command-line switch needs a mandatory argument, but you
haven’t specified one.

No comma allowed after %s

(F) A list operator that has a filehandle or “indirect object” is not allowed to
have a comma between that and the following arguments. Otherwise, it would
be interpreted as just another argument.

One obscure situation where this message occurs is when you expect a con-
stant to be imported into your namespace with use or import, but no such
importing took place (say, because your operating system doesn’t support that
particular constant). You should have used an explicit import list for the con-
stants you expect to see. An explicit import list would probably have caught
this error earlier. Or maybe there’s just a typo in the name of the constant.

No command into which to pipe on command line

(F) This is an error peculiar to VMS. Perl handles its own command-line redi-
rection and found a | at the end of the command line, so it doesn’t know
wher e you want to pipe the output from this command.

No DB::DB routine defined

(F) The currently executing code was compiled with the -d switch, but for
some reason the perl5db.pl file (or some facsimile thereof) didn’t define a rou-
tine to be called at the beginning of each statement. Which is odd, because
the file should have been requir ed automatically and should have blown up
the requir e if it didn’t parse right.

No dbm on this machine

(P) This is counted as an internal error; every machine should supply a DBM
nowadays because Perl comes with SDBM.

No DBsub routine

(F) The currently executing code was compiled with the -d switch, but for
some reason the perl5db.pl file (or some facsimile thereof) didn’t define a
DB::sub routine to be called at the beginning of each ordinary subroutine call.

No error file after 2> or 2>> on command line

(F) This is an error peculiar to VMS. Perl handles its own command-line redi-
rection, and found a 2> or a 2>> on the command line, but it can’t find the
name of the file to which to write data destined for STDERR.

No input file after < on command line

(F) This is an error peculiar to VMS. Perl handles its own command-line redi-
rection and found a < on the command line, but it can’t find the name of the
file from which to read data for STDIN.

No output file after > on command line

(F) This is an error peculiar to VMS. Perl handles its own command-line redi-
rection and found a lone > at the end of the command line, but it doesn’t
know where you wanted to redir ect STDOUT.

No output file after > or >> on command line

(F) This is an error peculiar to VMS. Perl handles its own command-line redi-
rection and found a > or a >> on the command line, but it can’t find the name
of the file to which to write data destined for STDOUT.

No package name allowed for variable %s in "our"

(F) Fully qualified variable names are not allowed in our declarations, because
they don’t make much sense under existing semantics. Such syntax is reserved
for future extensions.

No Perl script found in input

(F) You called perl -x, but no line was found in the file beginning with #! and
containing the word “perl”.

Diagnostics

Chapter 33: Diagnostic Messages 951

952 Chapter 33: Diagnostic Messages

No setregid available

(F) Configur e didn’t find anything resembling the setregid call for your
system.

No setreuid available

(F) Configur e didn’t find anything resembling the setreuid call for your
system.

No space allowed after -%c

(F) The argument to the indicated command-line switch must follow immedi-
ately after the switch, without intervening spaces.

No such pseudohash field "%s"

(F) You tried to access an array as a hash, but the field name used is not
defined. The hash at index 0 should map all valid field names to array indices
for that to work.

No such pseudohash field "%s" in variable %s of type %s

(F) You tried to access a field of a typed variable, but the type does not know
about the field name. The field names are looked up in the %FIELDS hash in
the type package at compile time. The %FIELDS hash is usually set up with the
fields pragma.

No such pipe open

(P) This is an error peculiar to VMS. The internal routine my_pclose tried to
close a pipe that hadn’t been opened. This should have been caught earlier as
an attempt to close an unopened filehandle.

No such signal: SIG%s

(W signal) The signal name you specified as a subscript to %SIG was not rec-
ognized. Say kill -l in your shell to see the valid signal names on your system.

no UTC offset information; assuming local time is UTC

(S) This is a warning peculiar to VMS. Perl was unable to find the local time
zone offset, so it assumes that the local system time and the UTC are equiva-
lent. If they’re not, define the logical name SYS$TIMEZONE_DIFFERENTIAL to
translate to the number of seconds that need to be added to UTC to get local
time.

Not a CODE reference

(F) Perl was trying to evaluate a refer ence to a code value (that is, a subrou-
tine) but found a refer ence to something else instead. You can use the ref

function to find out what kind of ref it really was.

Not a format reference

(F) We’r e not sure how you managed to generate a refer ence to an anony-
mous format, but this message indicates that you did and that it didn’t exist.

Not a GLOB reference

(F) Perl was trying to evaluate a refer ence to a “typeglob” (that is, a symbol
table entry that looks like *foo) but found a refer ence to something else
instead. You can use the ref function to find out what kind of ref it really was.

Not a HASH reference

(F) Perl was trying to evaluate a refer ence to a hash value but found a refer-
ence to something else instead. You can use the ref function to find out what
kind of ref it really was.

Not a perl script

(F) The setuid emulator requir es that scripts have a well-formed #! line even
on machines that don’t support the #! construct. The line must mention
“perl”.

Not a SCALAR reference

(F) Perl was trying to evaluate a refer ence to a scalar value but found a refer-
ence to something else instead. You can use the ref function to find out what
kind of ref it really was.

Not a subroutine reference

(F) Perl was trying to evaluate a refer ence to a code value (that is, a subrou-
tine) but found a refer ence to something else instead. You can use the ref

function to find out what kind of ref it really was.

Not a subroutine reference in overload table

(F) An attempt was made to specify an entry in an overloading table that
doesn’t somehow point to a valid subroutine.

Not an ARRAY reference

(F) Perl was trying to evaluate a refer ence to an array value but found a refer-
ence to something else instead. You can use the ref function to find out what
kind of ref it really was.

Not enough arguments for %s

(F) The function requir es mor e arguments than you specified.

Not enough format arguments

(W syntax) A format specified more pictur e fields than the next line supplied.

Null filename used

(F) You can’t requir e the null filename, especially because on many machines
that means the current directory!

Diagnostics

Chapter 33: Diagnostic Messages 953

954 Chapter 33: Diagnostic Messages

Null picture in formline

(F) The first argument to formline must be a valid format picture specification.
The argument was found to be empty, which probably means you supplied it
an uninitialized value.

NULL OP IN RUN

(P debugging) Some internal routine called run with a null opcode pointer.

Null realloc

(P) An attempt was made to realloc NULL.

NULL regexp argument

(P) The internal pattern-matching routines blew it big time.

NULL regexp parameter

(P) The internal pattern-matching routines are out of their gourd.

Number too long

(F) Perl limits the repr esentation of decimal numbers in programs to about
about 250 characters. You’ve exceeded that length. Future versions of Perl are
likely to eliminate this arbitrary limitation. In the meantime, try using scientific
notation (e.g., 1e6 instead of 1_000_000).

Octal number > 037777777777 non-portable

(W portable) The octal number you specified is larger than 2**32-1

(4,294,967,295) and therefor e nonportable between systems.

Octal number in vector unsupported

(F) Numbers with a leading 0 ar e not currently allowed in vectors. The octal
number interpretation of such numbers may be supported in a future version.

Odd number of elements in hash assignment

(W misc) You specified an odd number of elements to initialize a hash, which
is odd because hashes come in key/value pairs.

Offset outside string

(F) You tried to do a read/write/send/recv operation with an offset pointing
outside the buffer. This is difficult to imagine. The sole exception to this rule is
that sysreading past the buffer will extend the buffer and zero-pad the new
ar ea.

oops: oopsAV

(S internal) An internal warning indicating that the grammar is screwed up.

oops: oopsHV

(S internal) An internal warning indicating that the grammar is screwed up.

Operation ‘%s’: no method found, %s

(F) An attempt was made to perfor m an overloaded operation for which no
handler was defined. While some handlers can be autogenerated in terms of
other handlers, there is no default handler for any operation, unless the fall-

back overloading key is specified to be true.

Operator or semicolon missing before %s

(S ambiguous) You used a variable or subroutine call when the parser was
expecting an operator. The parser has assumed you really meant to use an
operator, but this is highly likely to be incorrect. For example, if you acciden-
tally say *foo *foo, it will be interpreted as if you’d said *foo * ’foo’.

Out of memory!

(X) Perl’s internal malloc function retur ned 0, indicating that the remaining
memory (or virtual memory) was insufficient to satisfy the request. Perl has no
option but to exit immediately.

Out of memory for yacc stack

(F) The yacc parser wanted to grow its stack so it could continue parsing, but
realloc wouldn’t give it more memory, virtual or otherwise.

Out of memory during request for %s

(X|F) The malloc function retur ned 0, indicating that the remaining memory
(or virtual memory) was insufficient to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on
the way Perl was compiled. By default, it is not trappable. However, if com-
piled for this purpose, Perl may use the contents of $ˆM as an emergency pool
after dieing with this message. In this case, the error is trappable once.

Out of memory during "large" request for %s

(F) Perl’s internal malloc function retur ned 0, indicating that the remaining
memory (or virtual memory) was insufficient to satisfy the request. However,
the request was judged large enough (compile-time default is 64K), so a possi-
bility to shut down by trapping this error is granted.

Out of memory during ridiculously large request

(F) You can’t allocate more than 2**31+“small amount” bytes. This error is
most likely to be caused by a typo in the Perl program (e.g., $arr[time]

instead of $arr[$time]).

page overflow

(W io) A single call to write pr oduced mor e lines than can fit on a page.

panic: ck_grep

(P) The program failed an internal consistency check while trying to compile a
grep.

Diagnostics

Chapter 33: Diagnostic Messages 955

956 Chapter 33: Diagnostic Messages

panic: ck_split

(P) The program failed an internal consistency check while trying to compile a
split.

panic: corrupt saved stack index

(P) The savestack was requested to restor e mor e localized values than there
ar e in the savestack.

panic: del_backref

(P) The program failed an internal consistency check while trying to reset a
weak refer ence.

panic: die %s

(P) We popped the context stack to an eval context and then discovered it
wasn’t an eval context.

panic: do_match

(P) The internal pp_match routine was called with invalid operational data.

panic: do_split

(P) Something terrible went wrong in setting up for the split.

panic: do_subst

(P) The internal pp_subst routine was called with invalid operational data.

panic: do_trans

(P) The internal do_trans routine was called with invalid operational data.

panic: frexp

(P) The library function frexp failed, making printf("%f") impossible.

panic: goto

(P) We popped the context stack to a context with the specified label and then
discover ed it wasn’t a context in which we know how to do a goto.

panic: INTERPCASEMOD

(P) The lexer got into a bad state at a case modifier.

panic: INTERPCONCAT

(P) The lexer got into a bad state parsing a string with brackets.

panic: kid popen errno read

(F) The forked child retur ned an incomprehensible message about its errno.

panic: last

(P) We popped the context stack to a block context and then discovered it
wasn’t a block context.

panic: leave_scope clearsv

(P) A writable lexical variable became read-only somehow within the scope.

panic: leave_scope inconsistency

(P) The savestack probably got out of sync. At least, there was an invalid enum

on the top of it.

panic: malloc

(P) Something requested a negative number of bytes of malloc.

panic: magic_killbackrefs

(P) The program failed an internal consistency check while trying to reset all
weak refer ences to an object.

panic: mapstart

(P) The compiler is screwed up with respect to the map function.

panic: null array

(P) One of the internal array routines was passed a null AV pointer.

panic: pad_alloc

(P) The compiler got confused about which scratchpad it was allocating and
fr eeing temporaries and lexicals from.

panic: pad_free curpad

(P) The compiler got confused about which scratchpad it was allocating and
fr eeing temporaries and lexicals from.

panic: pad_free po

(P) An invalid scratchpad offset was detected internally.

panic: pad_reset curpad

(P) The compiler got confused about which scratchpad it was allocating and
fr eeing temporaries and lexicals from.

panic: pad_sv po

(P) An invalid scratchpad offset was detected internally.

panic: pad_swipe curpad

(P) The compiler got confused about which scratchpad it was allocating and
fr eeing temporaries and lexicals from.

panic: pad_swipe po

(P) An invalid scratchpad offset was detected internally.

panic: pp_iter

(P) The foreach iterator got called in a nonloop context frame.

panic: realloc

(P) Something requested a negative number of bytes of realloc.

panic: restartop

(P) Some internal routine requested a goto (or something like it) but didn’t
supply the destination.

Diagnostics

Chapter 33: Diagnostic Messages 957

958 Chapter 33: Diagnostic Messages

panic: return

(P) We popped the context stack to a subroutine or eval context and then dis-
cover ed it wasn’t a subroutine or eval context.

panic: scan_num

(P) Perl’s internal scan_num got called on something that wasn’t a number.

panic: sv_insert

(P) The sv_insert routine was told to remove more string than there was
string.

panic: top_env

(P) The compiler attempted to do a goto, or something weird like that.

panic: yylex

(P) The lexer got into a bad state while processing a case modifier.

panic: %s

(P) An internal error.

Parentheses missing around "%s" list

(W parenthesis) You said something like:

my $foo, $bar = @_;

when you meant:

my ($foo, $bar) = @_;

Remember that my, our, and local bind tighter than the comma.

Perl %3.3f required--this is only version %s, stopped

(F) The module in question uses features of a version of Perl more recent than
the currently running version. How long has it been since you upgraded, any-
way?

PERL_SH_DIR too long

(F) This is an error peculiar to OS/2. PERL_SH_DIR is the directory that contains
the sh shell. See PERL_SH_DIR in the README.os2 file bundled with the Perl
distribution.

Permission denied

(F) The setuid emulator in suidperl decided you were up to no good.

pid %x not a child

(W exec) This is a warning peculiar to VMS; waitpid was asked to wait for a
pr ocess that isn’t a subprocess of the current process. While this is fine from
VMS’s perspective, it’s probably not what you intended.

POSIX getpgrp can’t take an argument

(F) Your system has POSIX getpgrp, which takes no argument, unlike the BSD
version, which takes a PID.

Possible Y2K bug: %s

(W y2k) You are concatenating the number 19 with another number, which
could be a potential year 2000 problem.

Possible attempt to put comments in qw() list

(W qw) qw lists contain items separated by whitespace; as with literal strings,
comment characters are not ignored but are instead treated as literal data.
(You may have used delimiters other than the parentheses shown here; braces
ar e also frequently used.)

You probably wrote something like this:

@list = qw(
a # a comment
b # another comment

);

when you should have written this:

@list = qw(
a
b

);

If you really want comments, build your list the old-fashioned way, with
quotes and commas:

@list = (
’a’, # a comment
’b’, # another comment

);

Possible attempt to separate words with commas

(W qw) qw lists contain items separated by whitespace; therefor e, commas
ar en’t needed to separate the items. (You may have used delimiters other than
the parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

qw(a, b, c);

which puts literal commas into some of the list items. Write it without commas
if you don’t want them to appear in your data:

qw(a b c);

Diagnostics

Chapter 33: Diagnostic Messages 959

960 Chapter 33: Diagnostic Messages

Possible memory corruption: %s overflowed 3rd argument

(F) An ioctl or fcntl retur ned mor e than Perl was bargaining for. Perl
guesses a reasonable buffer size but puts a sentinel byte at the end of the
buf fer just in case. This sentinel byte got clobbered, and Perl assumes that
memory is now corrupted.

pragma "attrs" is deprecated, use "sub NAME : ATTRS" instead

(W deprecated) You have written something like this:

sub doit
{

use attrs qw(locked);
}

You should use the new declaration syntax instead:

sub doit : locked
{

...

The use attrs pragma is now obsolete and is only provided for backward
compatibility.

Precedence problem: open %s should be open(%s)

(S precedence) The old irregular construct:

open FOO || die;

is now misinterpreted as:

open(FOO || die);

because of the strict regularization of Perl 5’s grammar into unary and list
operators. (The old open was a little of both.) You must put parentheses
ar ound the filehandle or use the new or operator instead of ||.

Premature end of script headers

See Server error.

print() on closed filehandle %s

(W closed) The filehandle you’re printing on got itself closed sometime before
now. Check your logic flow.

printf() on closed filehandle %s

(W closed) The filehandle you’re writing to got itself closed sometime before
now. Check your logic flow.

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while Unix appli-
cations die in silence. It is considered a feature of the OS/2 port. One can eas-
ily disable this warning by setting appropriate signal handlers. See also “Pro-
cess terminated by SIGTERM/SIGINT” in the README.os2 file bundled with the
Perl distribution.

Prototype mismatch: %s vs %s

(S unsafe) The subroutine being declared or defined had previously been
declar ed or defined with a differ ent function prototype.

Range iterator outside integer range

(F) One (or both) of the numeric arguments of the range operator .. ar e out-
side the range that can be repr esented by integers internally. One possible
workar ound is to force Perl to use magical string increments by prepending 0

to your numbers.

readline() on closed filehandle %s

(W closed) The filehandle you’re reading from got itself closed sometime
befor e now. Check your logic flow.

realloc() of freed memory ignored

(S malloc) An internal routine called realloc on something that had already
been freed.

Reallocation too large: %lx

(F) You can’t allocate more than 64K on an MS-DOS machine.

Recompile perl with -DDEBUGGING to use -D switch

(F debugging) You can’t use the -D option unless the code to produce the
desir ed output is compiled into Perl, which entails some overhead, which is
why it’s currently left out of your copy.

Recursive inheritance detected in package ’%s’

(F) More than 100 levels of inheritance were used. This probably indicates an
unintended loop in your inheritance hierarchy.

Recursive inheritance detected while looking for method ’%s’ in package

’%s’

(F) More than 100 levels of inheritance were encounter ed while a method was
invoked. This probably indicates an unintended loop in your inheritance hier-
archy.

Reference found where even-sized list expected

(W misc) You gave a single refer ence when Perl was expecting a list with an
even number of elements (for assignment to a hash). This usually means that
you used the anonymous hash constructor when you meant to use parens. In
any case, a hash requir es key/value pairs:

Diagnostics

Chapter 33: Diagnostic Messages 961

962 Chapter 33: Diagnostic Messages

%hash = { one => 1, two => 2, }; # WRONG
%hash = [qw(an anon array /)]; # WRONG
%hash = (one => 1, two => 2,); # right
%hash = qw(one 1 two 2); # also fine

Reference is already weak

(W misc) You have attempted to weaken a refer ence that is already weak.
Doing so has no effect.

Reference miscount in sv_replace()

(W internal) The internal sv_replace function was handed a new SV with a
refer ence count of other than 1.

regexp *+ operand could be empty

(F) The part of the regexp subject to either the * or + quantifier could match
an empty string.

regexp memory corruption

(P) The regular expression engine got confused by what the regular expres-
sion compiler gave it.

regexp out of space

(P) This is a “can’t happen” error, because safemalloc should have caught it
earlier.

Reversed %s= operator

(W syntax) You wrote your assignment operator backward. The = must always
come last, to avoid ambiguity with subsequent unary operators.

Runaway format

(F) Your format contained the ˜˜ repeat-until-blank sequence, but it produced
200 lines at once, and the 200th line looked exactly like the 199th line. Appar-
ently, you didn’t arrange for the arguments to exhaust themselves either by
using ˆ instead of @ (for scalar variables) or by shifting or popping (for array
variables).

Scalar value @%s[%s] better written as $%s[%s]

(W syntax) You’ve used an array slice (indicated by @) to select a single ele-
ment of an array. Generally, it’s better to ask for a scalar value (indicated by
$). The differ ence is that $foo[&bar] always behaves like a scalar, both when
assigning to it and when evaluating its argument, while @foo[&bar] behaves
like a list when you assign to it and provides a list context to its subscript,
which can do weird things if you’re expecting only one subscript.

On the other hand, if you were actually hoping to treat the array element as a
list, you need to look into how refer ences work, because Perl will not magi-
cally convert between scalars and lists for you.

Scalar value @%s{%s} better written as $%s{%s}

(W syntax) You’ve used a hash slice (indicated by @) to select a single element
of a hash. Generally, it’s better to ask for a scalar value (indicated by $). The
dif ference is that $foo{&bar} always behaves like a scalar, both when assign-
ing to it and when evaluating its argument, while @foo{&bar} behaves like a
list when you assign to it, and provides a list context to its subscript, which
can do weird things if you’re expecting only one subscript.

On the other hand, if you were actually hoping to treat the hash element as a
list, you need to look into how refer ences work, because Perl will not magi-
cally convert between scalars and lists for you.

Script is not setuid/setgid in suidperl

(F) Oddly, the suidperl pr ogram was invoked on a script without a setuid or
setgid bit set. This doesn’t make much sense.

Search pattern not terminated

(F) The lexer couldn’t find the final delimiter of a // or m{} construct. Remem-
ber that bracketing delimiters count nesting levels. Omitting the leading $ fr om
a variable $m may cause this error.

%sseek() on unopened file

(W unopened) You tried to use the seek or sysseek function on a filehandle
that either was never opened or has since been closed.

select not implemented

(F) This machine doesn’t implement the select system call.

sem%s not implemented

(F) You don’t have System V semaphore IPC on your system.

semi-panic: attempt to dup freed string

(S internal) The internal newSVsv routine was called to duplicate a scalar that
had previously been marked as free.

Semicolon seems to be missing

(W semicolon) A nearby syntax error was probably caused by a missing semi-
colon, or possibly some other missing operator, such as a comma.

send() on closed socket %s

(W closed) The socket you’re sending to got itself closed sometime before
now. Check your logic flow.

Sequence (? incomplete

(F) A regular expression ended with an incomplete extension (?.

Diagnostics

Chapter 33: Diagnostic Messages 963

964 Chapter 33: Diagnostic Messages

Sequence (?#... not terminated

(F) A regular expression comment must be terminated by a closing parenthe-
sis. Embedded parentheses aren’t allowed.

Sequence (?%s...) not implemented

(F) A proposed regular expression extension has reserved the character but
has not yet been written.

Sequence (?%s...) not recognized

(F) You used a regular expression extension that doesn’t make sense.

Server error

This is the error message generally seen in a browser window when you try to
run a CGI program (including SSI) over the web. The actual error text varies
widely from server to server. The most frequently seen variants are “500
Server error”, “Method (something) not permitted”, “Document contains no
data”, “Premature end of script headers”, and “Did not produce a valid
header”.

This is a CGI error, not a Perl error.

You need to make sure your script is executable, is accessible by the user CGI
is running the script under (which is probably not the user account you tested
it under), does not rely on any environment variables (like PATH) from the user
it isn’t running under, and isn’t in a location where the CGI server can’t find it,
basically, more or less. Please see the following for more infor mation:

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html
http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html
ftp://rtfm.mit.edu/pub/usenet/news.answers/www/cgi-faq
http://hoohoo.ncsa.uiuc.edu/cgi/inter face.html
http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

You should also look at the Perl FAQ.

setegid() not implemented

(F) You tried to assign to $), but your operating system doesn’t support the
setegid system call (or equivalent), or at least Configur e didn’t think so.

seteuid() not implemented

(F) You tried to assign to $>, but your operating system doesn’t support the
seteuid system call (or equivalent), or at least Configur e didn’t think so.

setpgrp can’t take arguments

(F) Your system has the setpgrp fr om BSD 4.2, which takes no arguments,
unlike POSIX setpgid, which takes a process ID and process group ID.

setrgid() not implemented

(F) You tried to assign to $(, but your operating system doesn’t support the
setrgid system call (or equivalent), or at least Configur e didn’t think so.

setruid() not implemented

(F) You tried to assign to $<, but your operating system doesn’t support the
setruid system call (or equivalent), or at least Configur e didn’t think so.

setsockopt() on closed socket %s

(W closed) You tried to set a socket option on a closed socket. Did you forget
to check the retur n value of your socket call?

Setuid/gid script is writable by world

(F) The setuid emulator won’t run a script that is writable by the world,
because the world might have written on it already.

shm%s not implemented

(F) You don’t have System V shared memory IPC on your system.

shutdown() on closed socket %s

(W closed) You tried to do a shutdown on a closed socket. Seems a bit super-
fluous.

SIG%s handler "%s" not defined

(W signal) The signal handler named in %SIG doesn’t, in fact, exist. Perhaps
you put it into the wrong package?

sort is now a reserved word

(F) An ancient error message that almost nobody ever runs into anymore. But
befor e sort was a keyword, people sometimes used it as a filehandle.

Sort subroutine didn’t return a numeric value

(F) A sort comparison routine must retur n a number. You probably blew it by
not using <=> or cmp, or by not using them correctly.

Sort subroutine didn’t return single value

(F) A sort comparison subroutine cannot retur n a list value with more or less
than one element.

Split loop

(P) The split was looping infinitely. (Obviously, a split shouldn’t iterate
mor e times than there are characters of input, which is what happened.)

Stat on unopened file >%s>

(W unopened) You tried to use the stat function (or an equivalent file test)
on a filehandle that either was never opened or has since been closed.

Diagnostics

Chapter 33: Diagnostic Messages 965

966 Chapter 33: Diagnostic Messages

Statement unlikely to be reached

(W exec) You did an exec with some statement after it other than a die. This
is almost always an error, because exec never retur ns unless there was a fail-
ur e. You probably wanted to use system instead, which does retur n. To sup-
pr ess this warning, put the exec in a block by itself.

Strange *+?{} on zero-length expression

(W regexp) You applied a regular expression quantifier in a place where it
makes no sense, such as on a zero-width assertion. Try putting the quantifier
inside the assertion instead. For example, the way to match abc pr ovided that
it is followed by three repetitions of xyz is /abc(?=(?:xyz){3})/, not
/abc(?=xyz){3}/.

Stub found while resolving method ‘%s’ overloading ‘%s’ in package ‘%s’

(P) Overloading resolution over @ISA tr ee may be broken by importation
stubs. Stubs should never be implicitly created, but explicit calls to can may
br eak this.

Subroutine %s redefined

(W redefine) You redefined a subroutine. To suppr ess this warning, say:

{
no warnings;
eval "sub name { ... }";

}

Substitution loop

(P) The substitution was looping infinitely. (Obviously, a substitution shouldn’t
iterate more times than there are characters of input, which is what hap-
pened.)

Substitution pattern not terminated

(F) The lexer couldn’t find the interior delimiter of an s/// or s{}{} construct.
Remember that bracketing delimiters count nesting levels. Omitting the leading
$ fr om variable $s may cause this error.

Substitution replacement not terminated

(F) The lexer couldn’t find the final delimiter of an s/// or s{}{} construct.
Remember that bracketing delimiters count nesting levels. Omitting the leading
$ fr om variable $s may cause this error.

substr outside of string

(W substr|F) You tried to refer ence a substr that pointed outside of a string.
That is, the absolute value of the offset was larger than the length of the
string. This warning is fatal if substr is used in an lvalue context (as the left-
hand side of an assignment or as a subroutine argument, for example).

suidperl is no longer needed since %s

(F) Your Perl was compiled with -DSETUID_SCRIPTS_ARE_SECURE_NOW, but a
version of the setuid emulator somehow got run anyway.

switching effective %s is not implemented

(F) While under the use filetest pragma, we cannot switch the real and
ef fective UIDs or GIDs.

syntax error

(F) This message probably means you had a syntax error. Common reasons
include:

• A keyword is misspelled.

• A semicolon is missing.

• A comma is missing.

• An opening or closing parenthesis is missing.

• An opening or closing brace is missing.

• A closing quote is missing.

Often another error message will be associated with the syntax error with
mor e infor mation. (Sometimes it helps to turn on -w.) The err or message itself
often tells you where in the line Perl decided to give up. Sometimes the actual
err or is several tokens before this, because Perl is good at understanding ran-
dom input. Occasionally, the line number may be misleading, and once in a
blue moon the only way to figure out what’s triggering the error is to call perl
-c repeatedly, chopping away half the program each time to see if the error
goes away. Sort of the cybernetic version of 20 questions.

syntax error at line %d: ‘%s’ unexpected

(A) You’ve accidentally run your script through the Bourne shell instead of
Perl. Check the #! line, or manually feed your script into Perl yourself.

System V %s is not implemented on this machine

(F) You tried to do something with a function beginning with sem, shm, or msg
but System V IPC is not implemented in your machine. (In some machines,
the functionality can exist but may be unconfigured.)

syswrite() on closed filehandle %s

(W closed) The filehandle you’re writing to got itself closed sometime before
now. Check your logic flow.

Target of goto is too deeply nested

(F) You tried to use goto to reach a label that was too deeply nested for Perl
to reach. Perl is doing you a favor by refusing.

Diagnostics

Chapter 33: Diagnostic Messages 967

968 Chapter 33: Diagnostic Messages

tell() on unopened file

(W unopened) You tried to use the tell function on a filehandle that either
was never opened or has since been closed.

Test on unopened file %s

(W unopened) You tried to invoke a file test operator on a filehandle that isn’t
open. Check your logic.

That use of $[is unsupported

(F) Assignment to $[is now strictly circumscribed and interpreted as a com-
piler directive. You may say only one of:

$[= 0;
$[= 1;
...
local $[= 0;
local $[= 1;
...

This is to prevent the problem of one module inadvertently changing the array
base out from under another module.

The %s function is unimplemented

The function indicated isn’t implemented on this architectur e, according to the
pr obings of Configur e.

The crypt() function is unimplemented due to excessive paranoia

(F) Configur e couldn’t find the crypt function on your machine, probably
because your vendor didn’t supply it, probably because they think the U.S.
gover nment thinks it’s a secret or at least will continue to pretend that it is.

The stat preceding -l _ wasn’t an lstat

(F) It makes no sense to test the current stat buffer for symbolic linkhood if
the last stat that wrote to the stat buffer already went past the symlink to get
to the real file. Use an actual filename instead.

This Perl can’t reset CRTL environ elements (%s)

This Perl can’t set CRTL environ elements (%s=%s)

(W internal) These are war nings peculiar to VMS. You tried to change or
delete an element of the CRTL’s internal environ array, but your copy of Perl
wasn’t built with a CRTL that contained the internal setenv function. You’ll
need to rebuild Perl with a CRTL that does, or redefine PERL_ENV_TABLES (see
perlvms (1)) so that the environ array isn’t the target of the change to %ENV that
pr oduced the warning.

times not implemented

(F) Your version of the C library apparently doesn’t do times. I suspect you’re
not running on Unix.

Too few args to syscall

(F) There has to be at least one argument to syscall to specify the system call
to call, silly dilly.

Too late for "-T" option

(X) The #! line (or local equivalent) in a Perl script contains the -T option, but
Perl was not invoked with -T in its command line. This is an error because
by the time Perl discovers a -T in a script, it’s too late to properly taint every-
thing from the environment. So Perl gives up.

If the Perl script is being executed as a command using the #! mechanism (or
its local equivalent), this error can usually be fixed by editing the #! line so
that the -T option is a part of Perl’s first argument: e.g., change perl -n -T to
perl -T -n.

If the Perl script is being executed as perl scriptname, then the -T option must
appear on the command line: perl -T scriptname.

Too late for "-%s" option

(X) The #! line (or local equivalent) in a Perl script contains the -M or -m
option. This is an error because -M and -m options are not intended for use
inside scripts. Use a use declaration instead.

Too late to run %s block

(W void) A CHECK or INIT block is being defined during run time proper, when
the opportunity to run them has already passed. Perhaps you are loading a file
with require or do when you should be using use instead. Or perhaps you
should put the require or do inside a BEGIN block.

Too many (’s

Too many)’s

(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Too many args to syscall

(F) Perl supports a maximum of only 14 arguments to syscall.

Too many arguments for %s

(F) The function requir es fewer arguments than you specified.

trailing \ in regexp

(F) The regular expression ends with an unbackslashed backslash. Backslash
it.

Transliteration pattern not terminated

(F) The lexer couldn’t find the interior delimiter of a tr/// or tr[][] or y///
or y[][] construct. Omitting the leading $ fr om variables $tr or $y may cause
this error.

Diagnostics

Chapter 33: Diagnostic Messages 969

970 Chapter 33: Diagnostic Messages

Transliteration replacement not terminated

(F) The lexer couldn’t find the final delimiter of a tr/// or tr[][] construct.

truncate not implemented

(F) Your machine doesn’t implement a file truncation mechanism that Config-
ur e knows about.

Type of arg %d to %s must be %s (not %s)

(F) This function requir es the argument in that position to be of a certain type.
Arrays must be @NAME or @{EXPR}. Hashes must be %NAME or %{EXPR}. No
implicit derefer encing is allowed—use the {EXPR} for m as an explicit derefer-
ence.

umask: argument is missing initial 0

(W umask) A umask of 222 is incorrect. It should be 0222 because octal literals
always start with 0 in Perl, as in C.

umask not implemented

(F) Your machine doesn’t implement the umask function, and you tried to use
it to restrict permissions for yourself (EXPR & 0700).

Unable to create sub named "%s"

(F) You attempted to create or access a subroutine with an illegal name.

Unbalanced context: %d more PUSHes than POPs

(W internal) The exit code detected an internal inconsistency in how many
execution contexts were enter ed and left.

Unbalanced saves: %d more saves than restores

(W internal) The exit code detected an internal inconsistency in how many
values were temporarily localized.

Unbalanced scopes: %d more ENTERs than LEAVEs

(W internal) The exit code detected an internal inconsistency in how many
blocks were enter ed and left.

Unbalanced tmps: %d more allocs than frees

(W internal) The exit code detected an internal inconsistency in how many
mortal scalars were allocated and freed.

Undefined format "%s" called

(F) The format indicated doesn’t seem to exist. Perhaps it’s really in another
package?

Undefined sort subroutine "%s" called

(F) The sort comparison routine specified doesn’t seem to exist. Perhaps it’s in
a dif ferent package?

Undefined subroutine &%s called

(F) The subroutine indicated hasn’t been defined, or if it was, it has since been
undefined.

Undefined subroutine called

(F) The anonymous subroutine you’re trying to call hasn’t been defined, or if it
was, it has since been undefined.

Undefined subroutine in sort

(F) The sort comparison routine specified is declared but doesn’t seem to have
been defined yet.

Undefined top format "%s" called

(F) The format indicated doesn’t seem to exist. Perhaps it’s really in another
package?

Undefined value assigned to typeglob

(W misc) An undefined value was assigned to a typeglob, such as *foo =

undef. This does nothing. It’s possible that you really mean undef *foo.

unexec of %s into %s failed!

(F) The unexec routine failed for some reason. See your local FSF repr esenta-
tive, who probably put it there in the first place.

Unknown BYTEORDER

(F) There are no byte-swapping functions for a machine with this byte order.

Unknown open() mode ’%s’

(F) The second argument of three-argument open is not in the list of valid
modes: <, >, >>, +<, +>, +>>, -|, |-.

Unknown process %x sent message to prime_env_iter: %s

(P) This is an error peculiar to VMS. Perl was reading values for %ENV befor e
iterating over it, and someone else stuck a message in the stream of data Perl
expected. Someone’s very confused, or perhaps trying to subvert Perl’s popu-
lation of %ENV for nefarious purposes.

unmatched () in regexp

(F) Unbackslashed parentheses must always be balanced in regular expres-
sions. If you’re a vi user, the % key is valuable for finding the matching paren-
thesis.

Unmatched right %s bracket

(F) The lexer counted more closing curly or square brackets than opening
ones, so you’re probably missing a matching opening bracket. As a general
rule, you’ll find the missing one (so to speak) near the place you were last
editing.

Diagnostics

Chapter 33: Diagnostic Messages 971

972 Chapter 33: Diagnostic Messages

unmatched [] in regexp

(F) The brackets around a character class must match. If you wish to include a
closing bracket in a character class, backslash it or put it first.

Unquoted string "%s" may clash with future reserved word

(W reserved) You used a bareword that might someday be claimed as a
reserved word. It’s best to put such a word in quotes, or capitalize it some-
how, or insert an underbar into it. You might also declare it as a subr outine.

Unrecognized character %s

(F) The Perl parser has no idea what to do with the specified character in your
Perl script (or eval). Perhaps you tried to run a compressed script, a binary
pr ogram, or a directory as a Perl program.

Unrecognized escape \\%c passed through

(W misc) You used a backslash-character combination that is not recognized
by Perl.

Unrecognized signal name "%s"

(F) You specified a signal name to the kill function that was not recognized.
Say kill -l in your shell to see the valid signal names on your system.

Unrecognized switch: -%s (-h will show valid options)

(F) You specified an illegal option to Perl. Don’t do that. (If you think you
didn’t do that, check the #! line to see if it’s supplying the bad switch on your
behalf.)

Unsuccessful %s on filename containing newline

(W newline) A file operation was attempted on a filename, and that operation
failed, probably because the filename contained a newline, probably because
you forgot to chop or chomp it off.

Unsupported directory function "%s" called

(F) Your machine doesn’t support opendir and readdir.

Unsupported function fork

(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be differ ent flavors of Perl
executables, some of which may support fork, some not. Try changing the
name you call Perl by to perl_, perl_ _, and so on.

Unsupported function %s

(F) This machine doesn’t implement the indicated function, apparently. At
least, Configur e doesn’t think so.

Unsupported socket function "%s" called

(F) Your machine doesn’t support the Berkeley socket mechanism, or at least
that’s what Configur e thought.

Unterminated <> operator

(F) The lexer saw a left angle bracket in a place where it was expecting a
ter m, so it’s looking for the corresponding right angle bracket and not finding
it. Chances are you left some needed parentheses out earlier in the line, and
you really meant a < symbol.

Unterminated attribute parameter in attribute list

(F) The lexer saw an opening (left) parenthesis character while parsing an
attribute list, but the matching closing (right) parenthesis character was not
found. You may need to add (or remove) a backslash character to get your
par entheses to balance.

Unterminated attribute list

(F) The lexer found something other than a simple identifier at the start of an
attribute, and it wasn’t a semicolon or the start of a block. Perhaps you termi-
nated the parameter list of the previous attribute too soon.

Use of $# is deprecated

(D deprecated) This was an ill-advised attempt to emulate a poorly defined
awk featur e. Use an explicit printf or sprintf instead.

Use of $* is deprecated

(D deprecated) This variable magically activated multiline pattern matching,
both for you and for any luckless subroutine that you happen to call. You
should use the //m and //s modifiers now to do that without the dangerous
action-at-a-distance effects of $*.

Use of %s in printf format not supported

(F) You attempted to use a feature of printf that is accessible from only C.
This usually means there’s a better way to do it in Perl.

Use of bare << to mean <<"" is deprecated

(D deprecated) You are now encouraged to use the explicitly quoted form if
you wish to use an empty line as the terminator of the here document.

Use of implicit split to @_ is deprecated

(D deprecated) You make a lot of work for the compiler when you clobber a
subr outine’s argument list, so it’s better to assign the results of a split explic-
itly to an array (or list).

Diagnostics

Chapter 33: Diagnostic Messages 973

974 Chapter 33: Diagnostic Messages

Use of inherited AUTOLOAD for non-method %s() is deprecated

(D deprecated) As an (ahem) accidental feature, AUTOLOAD subr outines wer e
looked up as methods (using the @ISA hierarchy) even when the subroutines
to be autoloaded were called as plain functions (e.g., Foo::bar()), not as
methods (e.g., Foo->bar() or $obj->bar()).

This bug was rectified in Perl 5.005, which used method lookup only for
methods’ AUTOLOADs. However, a significant base of existing code may be using
the old behavior. So, as an interim step, Perl 5.004 issued this optional warn-
ing when nonmethods used inherited AUTOLOADs.

The simple rule is this: inheritance will not work when autoloading nonmeth-
ods. The simple fix for old code is this: in any module that used to depend on
inheriting AUTOLOAD for nonmethods from a base class named BaseClass, exe-
cute *AUTOLOAD = \&BaseClass::AUTOLOAD during startup.

In code that currently says use AutoLoader; @ISA = qw(AutoLoader);, you
should remove AutoLoader fr om @ISA and change use AutoLoader; to use

AutoLoader ’AUTOLOAD’;.

Use of reserved word "%s" is deprecated

(D deprecated) The indicated bareword is a reserved word. Future versions of
Perl may use it as a keyword, so you’re better off either explicitly quoting the
word in a manner appropriate for its context of use, or using a differ ent name
altogether. The warning can be suppressed for subroutine names by either
adding an & pr efix or using a package qualifier, e.g., &our() or Foo::our().

Use of %s is deprecated

(D deprecated) The construct indicated is no longer recommended, generally
because there’s a better way to do it, and also because the old way has bad
side effects.

Use of uninitialized value%s

(W uninitialized) An undefined value was used as if it were alr eady defined. It
was interpreted as a "" or a 0, but maybe it was a mistake. To suppr ess this
war ning assign a defined value to your variables.

Useless use of "re" pragma

(W) You did a use re without any arguments. That isn’t very useful.

Useless use of %s in void context

(W void) You did something without a side effect in a context that does noth-
ing with the retur n value, such as a statement that doesn’t retur n a value from
a block or the left side of a scalar comma operator. For example, you’d get
this if you mixed up your C precedence with Python precedence and said:

$one, $two = 1, 2;

when you meant to say:

($one, $two) = (1, 2);

Another common error is using ordinary parentheses to construct a list refer-
ence when you should be using square or curly brackets, for example, if you
say:

$array = (1,2);

when you should have said:

$array = [1,2];

The square brackets explicitly turn a list value into a scalar value, while paren-
theses do not. So when a parenthesized list is evaluated in a scalar context,
the comma is treated like C’s comma operator, which throws away the left
argument, which is not what you want.

untie attempted while %d inner references still exist

(W untie) A copy of the object retur ned fr om tie (or tied) was still valid
when untie was called.

Value of %s can be "0"; test with defined()

(W misc) In a conditional expression, you used <HANDLE>, <*> (glob), each, or
readdir as a Boolean value. Each of these constructs can retur n a value of "0";
that would make the conditional expression false, which is probably not what
you intended. When using these constructs in conditional expressions, test
their values with the defined operator.

Value of CLI symbol "%s" too long

(W misc) This is a warning peculiar to VMS. Perl tried to read the value of an
%ENV element from a CLI symbol table and found a resultant string longer than
1,024 characters. The retur n value has been truncated to 1,024 characters.

Variable "%s" is not imported%s

(F) While use strict in effect, you referr ed to a global variable that you
appar ently thought was imported from another module, because something
else of the same name (usually a subroutine) is exported by that module. It
usually means you put the wrong funny character on the front of your vari-
able.

Diagnostics

Chapter 33: Diagnostic Messages 975

976 Chapter 33: Diagnostic Messages

Variable "%s" may be unavailable

(W closure) An inner (nested) anonymous subr outine is inside a named sub-
routine, and outside that is another subroutine; and the anonymous (inner-
most) subroutine is refer encing a lexical variable defined in the outermost sub-
routine. For example:

sub outermost { my $a; sub middle { sub { $a } } }

If the anonymous subroutine is called or refer enced (dir ectly or indirectly)
fr om the outermost subroutine, it will share the variable as you would expect.
But if the anonymous subroutine is called or refer enced when the outermost
subr outine is not active, it will see the value of the shared variable as it was
befor e and during the first call to the outermost subroutine, which is probably
not what you want.

In these circumstances, it is usually best to make the middle subroutine anony-
mous, using the sub {} syntax. Perl has specific support for shared variables in
nested anonymous subroutines; a named subroutine in between interfer es
with this feature.

Variable "%s" will not stay shared

(W closure) An inner (nested) named subr outine is refer encing a lexical vari-
able defined in an outer subroutine.

When the inner subroutine is called, it will probably see the value of the outer
subr outine’s variable as it was before and during the first call to the outer sub-
routine; in this case, after the first call to the outer subroutine is complete, the
inner and outer subroutines will no longer share a common value for the vari-
able. In other words, the variable will no longer be shared.

Further more, if the outer subroutine is anonymous and refer ences a lexical
variable outside itself, then the outer and inner subroutines will never shar e
the given variable.

This problem can usually be solved by making the inner subroutine anony-
mous, using the sub {} syntax. When inner anonymous subs that refer ence
variables in outer subroutines are called or refer enced, they are automatically
rebound to the current values of such variables.

Variable syntax

(A) You’ve accidentally run your script through csh instead of Perl. Check the
#! line, or manually feed your script into Perl yourself.

Version number must be a constant number

(P) The attempt to translate a use Module n.n LIST statement into its equiva-
lent BEGIN block found an internal inconsistency with the version number.

perl: warning: Setting locale failed.

(S) The whole warning message will look something like:

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:

LC_ALL = "En_US",
LANG = (unset)

are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

(Which locale settings failed will vary.) This error means that Perl detected
that you or your system administrator have set up the so-called variable sys-
tem but Perl could not use those settings. This was not dead serious, fortu-
nately: there is a “default locale” called “C” that Perl can and will use, so the
script will be run. Before you really fix the problem, however, you will get the
same error message each time you run Perl. How to really fix the problem can
be found in perllocale (1), under the section “Locale Problems”.

Warning: something’s wrong

(W) You passed warn an empty string (the equivalent of warn ""), or you
called it with no arguments and $_ was empty.

Warning: unable to close filehandle %s properly

(S) The implicit close done by an open got an error indication on the close.
This usually indicates your filesystem ran out of disk space.

Warning: Use of "%s" without parentheses is ambiguous

(S ambiguous) You wrote a unary operator followed by something that looks
like a binary operator but could also be interpreted as a term or unary opera-
tor. For instance, if you know that the rand function has a default argument of
1.0, and you write:

rand + 5;

you may think you wrote the same thing as:

rand() + 5;

but in actual fact, you got:

rand(+5);

So use parentheses to say what you really mean.

Diagnostics

Chapter 33: Diagnostic Messages 977

978 Chapter 33: Diagnostic Messages

write() on closed filehandle %s

(W closed) The filehandle you’re writing to got itself closed sometime before
now. Check your logic flow.

X outside of string

(F) You had a pack template that specified a relative position before the begin-
ning of the string being unpacked.

x outside of string

(F) You had a pack template that specified a relative position after the end of
the string being unpacked.

Xsub "%s" called in sort

(F) The use of an external subroutine as a sort comparison is not yet sup-
ported.

Xsub called in sort

(F) The use of an external subroutine as a sort comparison is not yet sup-
ported.

You can’t use -l on a filehandle

(F) A filehandle repr esents an opened file, and when you opened the file, it
alr eady went past any symlink you are presumably trying to look for. Use a
filename instead.

YOU HAVEN’T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!

(F) And you probably never will, because you probably don’t have the
sources to your kernel, and your vendor probably doesn’t give a rip about
what you want. Your best bet is to put a setuid C wrapper around your script
with the wrapsuid script in the eg dir ectory of the Perl distribution.

You need to quote "%s"

(W syntax) You assigned a bareword as a signal handler name. Unfortunately,
you already have a subroutine of that name declared, which means that Perl 5
will try to call the subroutine when the assignment is executed, which is prob-
ably not what you want. (If it is what you want, put an & in front.)

Glossar y

When we italicize a word or phrase in here, it
usually means you can find it defined elsewhere
in the glossary. Think of them as hyperlinks.

accessor method
A method used to indirectly inspect or update
an object ’s state (its instance variables).

actual arguments
The scalar values that you supply to a func-
tion or subr outine when you call it. For
instance, when you call power("puff"), the
string "puff" is the actual argument. See also
ar gument and for mal ar guments.

address operator
Some languages work directly with the mem-
ory addresses of values, but this can be like
playing with fire. Perl provides a set of
asbestos gloves for handling all memory man-
agement. The closest to an address operator in
Perl is the backslash operator, but it gives you
a har d refer ence, which is much safer than a
memory address.

algor ithm
A well-defined sequence of steps, clearly
enough explained that even a computer could
do them.

alias
A nickname for something, which behaves in
all ways as though you’d used the original
name instead of the nickname. Temporary
aliases are implicitly created in the loop vari-
able for foreach loops, in the $_ variable for

map or grep operators, in $a and $b during
sort’s comparison function, and in each ele-
ment of @_ for the actual arguments of a sub-
routine call. Permanent aliases are explicitly
cr eated in packages by importing symbols or
by assignment to typeglobs. Lexically scoped
aliases for package variables are explicitly cre-
ated by the our declaration.

alter natives
A list of possible choices from which you may
select only one, as in “Would you like door A,
B, or C?” Alternatives in regular expressions
ar e separated with a single vertical bar: |.
Alter natives in normal Perl expressions are
separated with a double vertical bar: ||. Logi-
cal alternatives in Boolean expr essions ar e
separated with either || or or.

anonymous
Used to describe a refer ent that is not directly
accessible through a named variable. Such a
refer ent must be indirectly accessible through
at least one har d refer ence. When the last
hard refer ence goes away, the anonymous ref-
er ent is destroyed without pity.

architecture
The kind of compluter you’re working on,
wher e one “kind” of computer means all those
computers sharing a compatible machine lan-
guage. Since Perl programs are (typically) sim-
ple text files, not executable images, a Perl
pr ogram is much less sensitive to the architec-
tur e it’s running on than programs in other
languages, such as C, that are compiled into

Glossary

979

980 Glossary

machine code. See also platfor m and operat-
ing system.

ar gument
A piece of data supplied to a pr ogram, sub-
routine, function, or method to tell it what it’s
supposed to do. Also called a “parameter”.

ARGV
The name of the array containing the ar gu-
ment vector fr om the command line. If you
use the empty <> operator, ARGV is the name of
both the filehandle used to traverse the argu-
ments and the scalar containing the name of
the current input file.

ar ithmetical operator
A symbol such as + or / that tells Perl to do
the arithmetic you were supposed to learn in
grade school.

ar ray
An ordered sequence of values, stor ed such
that you can easily access any of the values
using an integer subscript that specifies the
value’s of fset in the sequence.

ar ray context
An archaic expression for what is more cor-
rectly referr ed to as list context.

ASCII
The American Standard Code for Information
Interchange (a 7-bit character set adequate
only for poorly repr esenting English text).
Often used loosely to describe the lowest 128
values of the various ISO-8859-X character
sets, a bunch of mutually incompatible 8-bit
codes best described as half ASCII. See also
Unicode.

asser tion
A component of a regular expression that
must be true for the pattern to match but does
not necessarily match any characters itself.
Often used specifically to mean a zer o-width
assertion.

assignment
An operator whose assigned mission in life is
to change the value of a variable.

assignment operator
Either a regular assignment, or a compound
operator composed of an ordinary assignment
and some other operator, that changes the
value of a variable in place, that is, relative
to its old value. For example, $a += 2 adds 2
to $a.

associative array
See hash. Please.

associativity
Deter mines whether you do the left operator
first or the right operator first when you have
“A operator B operator C” and the two opera-
tors are of the same precedence. Operators
like + ar e left associative, while operators like
** ar e right associative. See Chapter 3, Unary
and Binary Operators, for a list of operators
and their associativity.

asynchronous
Said of events or activities whose relative tem-
poral ordering is indeterminate because too
many things are going on at once. Hence, an
asynchr onous event is one you didn’t know
when to expect.

atom
A regular expression component potentially
matching a substring containing one or more
characters and treated as an indivisible syntac-
tic unit by any following quantifier. (Contrast
with an assertion that matches something of
zer o width and may not be quantified.)

atomic operation
When Democritus gave the word “atom” to
the indivisible bits of matter, he meant literally
something that could not be cut: a- (not) +
tomos (cuttable). An atomic operation is an
action that can’t be interrupted, not one for-
bidden in a nuclear-fr ee zone.

attr ibute
A new feature that allows the declaration of
variables and subr outines with modifiers as in
sub foo : locked method. Also, another name
for an instance variable of an object.

autogeneration
A featur e of operator overloading of objects,
wher eby the behavior of certain operators can
be reasonably deduced using more fundamen-
tal operators. This assumes that the over-
loaded operators will often have the same
relationships as the regular operators. See
Chapter 13, Overloading.

autoincrement
To add one to something automatically, hence
the name of the the ++ operator. To instead
subtract one from something automatically is
known as an “autodecrement”.

autoload
To load on demand. (Also called “lazy” load-
ing.) Specifically, to call an AUTOLOAD subr ou-
tine on behalf of an undefined subroutine.

autosplit
To split a string automatically, as the -a switch
does when running under -p or -n in order to
emulate awk. (See also the AutoSplit module,
which has nothing to do with the -a switch,
but a lot to do with autoloading.)

autovivification
A Greco-Roman word meaning “to bring one-
self to life”. In Perl, storage locations (lvalues)
spontaneously generate themselves as needed,
including the creation of any har d refer ence
values to point to the next level of storage.
The assignment $a[5][5][5][5][5] = "quin-
tet" potentially creates five scalar storage
locations, plus four refer ences (in the first four
scalar locations) pointing to four new anony-
mous arrays (to hold the last four scalar loca-
tions). But the point of autovivification is that
you don’t have to worry about it.

AV
Short for “array value”, which refers to one of
Perl’s internal data types that holds an array.
The AV type is a subclass of SV.

awk
Descriptive editing term—short for “awk-
ward”. Also coincidentally refers to a venera-
ble text-processing language from which Perl
derived some of its high-level ideas.

backreference
A substring captur ed by a subpattern within
unador ned par entheses in a regex. Back-
slashed decimal numbers (\1, \2, etc.) later in
the same pattern refer back to the correspond-
ing subpattern in the current match. Outside
the pattern, the numbered variables ($1, $2,
etc.) continue to refer to these same values, as
long as the pattern was the last successful
match of the current dynamic scope.

backtracking
The practice of saying, “If I had to do it all
over, I’d do it differ ently,” and then actually
going back and doing it all over differ ently.
Mathematically speaking, it’s retur ning fr om
an unsuccessful recursion on a tree of possi-
bilities. Perl backtracks when it attempts to
match patterns with a regular expression, and
its earlier attempts don’t pan out. See “The

Little Engine That /Could(n’t)?/” in Chapter 5,
Patter n Matching.

backward compatibility
Means you can still run your old program
because we didn’t break any of the features or
bugs it was relying on.

bareword
A word sufficiently ambiguous to be deemed
illegal under use strict ’subs’. In the
absence of that stricture, a bareword is treated
as if quotes were around it.

base class
A generic object type; that is, a class fr om
which other, mor e specific classes are derived
genetically by inheritance. Also called a
“superclass” by people who respect their
ancestors.

big-endian
Fr om Swift: someone who eats eggs big end
first. Also used of computers that store the
most significant byte of a word at a lower byte
addr ess than the least significant byte. Often
consider ed superior to little-endian machines.
See also little-endian.

binar y
Having to do with numbers repr esented in
base 2. That means there’s basically two num-
bers, 0 and 1. Also used to describe a “non-
text file”, presumably because such a file
makes full use of all the binary bits in its
bytes. With the advent of Unicode, this distinc-
tion, already suspect, loses even more of its
meaning.

binar y operator
An operator that takes two operands.

bind
To assign a specific network address to a
socket.

bit
An integer in the range from 0 to 1, inclusive.
The smallest possible unit of information stor-
age. An eighth of a byte or of a dollar. (The
ter m “Pieces of Eight” comes from being able
to split the old Spanish dollar into 8 bits, each
of which still counted for money. That’s why a
25-cent piece today is still “two bits”.)

bit shift
The movement of bits left or right in a com-
puter word, which has the effect of multiply-
ing or dividing by a power of 2.

Glossary

Glossar y 981

982 Glossary

bit string
A sequence of bits that is actually being
thought of as a sequence of bits, for once.

bless
In corporate life, to grant official approval to a
thing, as in, “The VP of Engineering has
blessed our WebCruncher project.” Similarly in
Perl, to grant official approval to a refer ent so
that it can function as an object, such as a
WebCruncher object. See the bless function in
Chapter 29, Functions.

block
What a pr ocess does when it has to wait for
something: “My process blocked waiting for
the disk.” As an unrelated noun, it refers to a
large chunk of data, of a size that the operat-
ing system likes to deal with (normally a
power of two such as 512 or 8192). Typically
refers to a chunk of data that’s coming from or
going to a disk file.

BLOCK
A syntactic construct consisting of a sequence
of Perl statements that is delimited by braces.
The if and while statements are defined in
ter ms of BLOCKs, for instance. Sometimes we
also say “block” to mean a lexical scope; that
is, a sequence of statements that act like a
BLOCK, such as within an eval or a file, even
though the statements aren’t delimited by
braces.

block buf fer ing
A method of making input and output effi-
cient by passing one block at a time. By
default, Perl does block buffering to disk files.
See buf fer and command buffering.

Boolean
A value that is either true or false.

Boolean context
A special kind of scalar context used in condi-
tionals to decide whether the scalar value
retur ned by an expression is true or false.
Does not evaluate as either a string or a num-
ber. See context.

breakpoint
A spot in your program where you’ve told the
debugger to stop execution so you can poke
ar ound and see whether anything is wrong
yet.

broadcast
To send a datagram to multiple destinations
simultaneously.

BSD
A psychoactive drug, popular in the 80s, prob-
ably developed at U. C. Berkeley or there-
abouts. Similar in many ways to the
pr escription-only medication called “System
V”, but infinitely more useful. (Or, at least,
mor e fun.) The full chemical name is “Berke-
ley Standard Distribution”.

bucket
A location in a hash table containing (poten-
tially) multiple entries whose keys “hash” to
the same hash value according to its hash
function. (As internal policy, you don’t have
to worry about it, unless you’re into internals,
or policy.)

buf fer
A temporary holding location for data. Block
buf fering means that the data is passed on to
its destination whenever the buffer is full. Line
buf fering means that it’s passed on whenever
a complete line is received. Command buffer-
ing means that it’s passed every time you do a
print command (or equivalent). If your output
is unbuffer ed, the system processes it one
byte at a time without the use of a holding
ar ea. This can be rather inefficient.

built-in
A function that is predefined in the language.
Even when hidden by overriding, you can
always get at a built-in function by qualifying
its name with the CORE:: pseudo-package.

bundle
A group of related modules on CPAN. (Also,
sometimes refers to a group of command-line
switches grouped into one switch cluster.)

byte
A piece of data worth eight bits in most
places.

bytecode
A pidgin-like language spoken among ’droids
when they don’t wish to reveal their orienta-
tion (see endian). Named after some similar
languages spoken (for similar reasons)
between compilers and interpreters in the late
20th century. These languages are character-
ized by repr esenting everything as a non-
architectur e-dependent sequence of bytes.

C
A language beloved by many for its inside-out
type definitions, inscrutable pr ecedence rules,
and heavy overloading of the function-call
mechanism. (Well, actually, people first
switched to C because they found lowercase
identifiers easier to read than upper.) Perl is
written in C, so it’s not surprising that Perl
borr owed a few ideas from it.

C preprocessor
The typical C compiler’s first pass, which pro-
cesses lines beginning with # for conditional
compilation and macro definition and does
various manipulations of the program text
based on the current definitions. Also known
as cpp (1).

call by reference
An ar gument-passing mechanism in which
the for mal ar guments refer directly to the
actual arguments, and the subr outine can
change the actual arguments by changing the
for mal arguments. That is, the formal argu-
ment is an alias for the actual argument. See
also call by value.

call by value
An ar gument-passing mechanism in which
the for mal ar guments refer to a copy of the
actual arguments, and the subr outine cannot
change the actual arguments by changing the
for mal arguments. See also call by refer ence.

callback
A handler that you register with some other
part of your program in the hope that the
other part of your program will trigger your
handler when some event of interest tran-
spir es.

canonical
Reduced to a standard form to facilitate com-
parison.

captur ing
The use of parentheses around a subpatter n
in a regular expression to store the matched
substring as a backr efer ence. (Captur ed strings
ar e also retur ned as a list in list context.)

character
A small integer repr esentative of a unit of
orthography. Historically, characters were usu-
ally stored as fixed-width integers (typically in
a byte, or maybe two, depending on the char-
acter set), but with the advent of UTF-8, char-
acters are often stored in a variable number of

bytes depending on the size of the integer that
repr esents the character. Perl manages this
transpar ently for you, for the most part.

character class
A squar e-bracketed list of characters used in a
regular expression to indicate that any charac-
ter of the set may occur at a given point.
Loosely, any predefined set of characters so
used.

character proper ty
A predefined character class matchable by the
\p metasymbol. Many standard properties are
defined for Unicode.

circumfix operator
An operator that surrounds its operand, like
the angle operator, or par entheses, or a hug.

class
A user-defined type, implemented in Perl via a
package that provides (either directly or by
inheritance) methods (that is, subr outines) to
handle instances of the class (its objects). See
also inheritance.

class method
A method whose invocant is a package name,
not an object refer ence. A method associated
with the class as a whole.

client
In networking, a pr ocess that initiates contact
with a server pr ocess in order to exchange
data and perhaps receive a service.

cloister
A cluster used to restrict the scope of a regu-
lar expression modifier.

closure
An anonymous subr outine that, when a refer-
ence to it is generated at run time, keeps track
of the identities of externally visible lexical
variables even after those lexical variables
have supposedly gone out of scope. They’r e
called “closures” because this sort of behavior
gives mathematicians a sense of closure.

cluster
A par enthesized subpatter n used to group
parts of a regular expression into a single
atom.

CODE
The word retur ned by the ref function when
you apply it to a refer ence to a subroutine.
See also CV.

Glossary

Glossar y 983

984 Glossary

code generator
A system that writes code for you in a low-
level language, such as code to implement
the backend of a compiler. See pr ogram
generator.

code subpattern
A regular expression subpatter n whose real
purpose is to execute some Perl code, for
example, the (?{...}) and (??{...}) sub-
patter ns.

collating sequence
The order into which characters sort. This is
used by string comparison routines to decide,
for example, where in this glossary to put
“collating sequence”.

command
In shell pr ogramming, the syntactic combina-
tion of a program name and its arguments.
Mor e loosely, anything you type to a shell (a
command interpreter) that starts it doing
something. Even more loosely, a Perl state-
ment, which might start with a label and typi-
cally ends with a semicolon.

command buffering
A mechanism in Perl that lets you store up the
output of each Perl command and then flush
it out as a single request to the operating sys-
tem. It’s enabled by setting the $| ($AUTOFLUSH)
variable to a true value. It’s used when you
don’t want data sitting around not going
wher e it’s supposed to, which may happen
because the default on a file or pipe is to use
block buffering.

command name
The name of the program currently executing,
as typed on the command line. In C, the com-
mand name is passed to the program as the
first command-line argument. In Perl, it comes
in separately as $0.

command-line arguments
The values you supply along with a program
name when you tell a shell to execute a com-
mand. These values are passed to a Perl pro-
gram through @ARGV.

comment
A remark that doesn’t affect the meaning of
the program. In Perl, a comment is introduced
by a # character and continues to the end of
the line.

compilation unit
The file (or string, in the case of eval) that is
curr ently being compiled.

compile phase
Any time before Perl starts running your main
pr ogram. See also run phase. Compile phase
is mostly spent in compile time, but may also
be spent in run time when BEGIN blocks, use
declarations, or constant subexpressions are
being evaluated. The startup and import code
of any use declaration is also run during com-
pile phase.

compile time
The time when Perl is trying to make sense of
your code, as opposed to when it thinks it
knows what your code means and is merely
trying to do what it thinks your code says to
do, which is run time.

compiler
Strictly speaking, a program that munches up
another program and spits out yet another file
containing the program in a “more exe-
cutable” form, typically containing native
machine instructions. The perl pr ogram is not
a compiler by this definition, but it does con-
tain a kind of compiler that takes a program
and turns it into a more executable form (syn-
tax trees) within the perl pr ocess itself, which
the interpr eter then interprets. There are,
however, extension modules to get Perl to act
mor e like a “real” compiler. See Chapter 18,
Compiling.

composer
A “constructor” for a refer ent that isn’t really
an object, like an anonymous array or a hash
(or a sonata, for that matter). For example, a
pair of braces acts as a composer for a hash,
and a pair of brackets acts as a composer for
an array. See the section “Creating References”
in Chapter 8, Refer ences.

concatenation
The process of gluing one cat’s nose to
another cat’s tail. Also, a similar operation on
two strings.

conditional
Something “iffy”. See Boolean context.

connection
In telephony, the temporary electrical circuit
between the caller’s and the callee’s phone. In
networking, the same kind of temporary cir-
cuit between a client and a server.

constr uct
As a noun, a piece of syntax made up of
smaller pieces. As a transitive verb, to create
an object using a constructor.

constr uctor
Any class method, instance method, or sub-
routine that composes, initializes, blesses, and
retur ns an object. Sometimes we use the term
loosely to mean a composer.

context
The surroundings, or environment. The con-
text given by the surrounding code deter-
mines what kind of data a particular
expr ession is expected to retur n. The three
primary contexts are list context, scalar con-
text, and void context. Scalar context is some-
times subdivided into Boolean context,
numeric context, string context, and void con-
text. Ther e’s also a “don’t care” context (which
is dealt with in Chapter 2, Bits and Pieces, if
you care).

continuation
The treatment of more than one physical line
as a single logical line. Makefile lines are con-
tinued by putting a backslash before the new-
line. Mail headers as defined by RFC 822 are
continued by putting a space or tab after the
newline. In general, lines in Perl do not need
any form of continuation mark, because
whitespace (including newlines) is gleefully
ignor ed. Usually.

core dump
The corpse of a pr ocess, in the form of a file
left in the working directory of the process,
usually as a result of certain kinds of fatal
err or.

CPAN
The Comprehensive Perl Archive Network.
(See the Preface and Chapter 22, CPAN, for
details.)

cracker
Someone who breaks security on computer
systems. A cracker may be a true hacker or
only a script kiddie.

cur rent packa ge
The package in which the current statement is
compiled. Scan backwards in the text of your
pr ogram thr ough the current lexical scope or
any enclosing lexical scopes till you find a
package declaration. That’s your current pack-
age name.

cur rent working director y
See working directory.

cur rently selected output channel
The last filehandle that was designated with
select(FILEHANDLE); STDOUT, if no filehandle
has been selected.

CV
An internal “code value” typedef, holding a
subr outine. The CV type is a subclass of SV.

dangling statement
A bar e, single statement, without any braces,
hanging off an if or while conditional. C
allows them. Perl doesn’t.

data structure
How your various pieces of data relate to
each other and what shape they make when
you put them all together, as in a rectangular
table or a triangular-shaped tree.

data type
A set of possible values, together with all the
operations that know how to deal with those
values. For example, a numeric data type has
a certain set of numbers that you can work
with and various mathematical operations that
you can do on the numbers but would make
little sense on, say, a string such as "Kilroy".
Strings have their own operations, such as
concatenation. Compound types made of a
number of smaller pieces generally have oper-
ations to compose and decompose them, and
perhaps to rearrange them. Objects that model
things in the real world often have operations
that correspond to real activities. For instance,
if you model an elevator, your elevator object
might have an open_door() method.

data gram
A packet of data, such as a UDP message, that
(fr om the viewpoint of the programs involved)
can be sent independently over the network.
(In fact, all packets are sent independently at
the IP level, but str eam pr otocols such as TCP
hide this from your program.)

DBM
Stands for “Data Base Management” routines,
a set of routines that emulate an associative
array using disk files. The routines use a
dynamic hashing scheme to locate any entry
with only two disk accesses. DBM files allow
a Perl program to keep a persistent hash
acr oss multiple invocations. You can tie your
hash variables to various DBM

Glossary

Glossar y 985

986 Glossary

implementations — see AnyDBM_File (3) and
the entry on DB_File in Chapter 32, Standar d
Modules.

declaration
An assertion that states something exists and
perhaps describes what it’s like, without giv-
ing any commitment as to how or where
you’ll use it. A declaration is like the part of
your recipe that says, “two cups flour, one
large egg, four or five tadpoles . . . ” See state-
ment for its opposite. Note that some declara-
tions also function as statements. Subroutine
declarations also act as definitions if a body is
supplied.

decrement
To subtract a value from a variable, as in
“decr ement $x” (meaning to remove 1 from its
value) or “decrement $x by 3”.

default
A value chosen for you if you don’t supply a
value of your own.

defined
Having a meaning. Perl thinks that some of
the things people try to do are devoid of
meaning, in particular, making use of variables
that have never been given a value and per-
for ming certain operations on data that isn’t
ther e. For example, if you try to read data past
the end of a file, Perl will hand you back an
undefined value. See also false, and the
defined operator in Chapter 29.

delimiter
A character or string that sets bounds to an
arbitrarily-sized textual object, not to be con-
fused with a separator or ter minator. “To
delimit” really just means “to surround” or “to
enclose” (like these parentheses are doing).

dereference
A fancy computer science term meaning “to
follow a refer ence to what it points to”. The
“de” part of it refers to the fact that you’re tak-
ing away one level of indir ection.

der ived class
A class that defines some of its methods in
ter ms of a more generic class, called a base
class. Note that classes aren’t classified exclu-
sively into base classes or derived classes: a
class can function as both a derived class and
a base class simultaneously, which is kind of
classy.

descr iptor
See file descriptor.

destroy
To deallocate the memory of a refer ent (first
triggering its DESTROY method, if it has one).

destr uctor
A special method that is called when an object
is thinking about destr oying itself. A Perl pro-
gram’s DESTROY method doesn’t do the actual
destruction; Perl just triggers the method in
case the class wants to do any associated
cleanup.

de vice
A whiz-bang hardware gizmo (like a disk or
tape drive or a modem or a joystick or a
mouse) attached to your computer, that the
operating system tries to make look like a file
(or a bunch of files). Under Unix, these fake
files tend to live in the /dev dir ectory.

directive
A pod dir ective. See Chapter 26, Plain Old
Documentation.

director y
A special file that contains other files. Some
operating systems call these “folders”, “draw-
ers”, or “catalogs”.

director y handle
A name that repr esents a particular instance of
opening a directory to read it, until you close
it. See the opendir function.

dispatch
To send something to its correct destination.
Often used metaphorically to indicate a trans-
fer of programmatic control to a destination
selected algorithmically, often by lookup in a
table of function refer ences or, in the case of
object methods, by traversing the inheritance
tr ee looking for the most specific definition for
the method.

distr ibution
A standard, bundled release of a system of
softwar e. The default usage implies source
code is included. If that is not the case, it will
be called a “binary-only” distribution.

dweomer
An enchantment, illusion, phantasm, or jug-
glery. Said when Perl’s magical dwimmer
ef fects don’t do what you expect, but rather
seem to be the product of arcane dweomer-

craft, sorcery, or wonder working. [From Old
English]

dwimmer
DWIM is an acronym for “Do What I Mean”,
the principle that something should just do
what you want it to do without an undue
amount of fuss. A bit of code that does
“dwimming” is a “dwimmer”. Dwimming can
requir e a great deal of behind-the-scenes
magic, which (if it doesn’t stay properly
behind the scenes) is called a dweomer
instead.

dynamic scoping
Dynamic scoping works over a dynamic
scope, making variables visible throughout the
rest of the block in which they are first used
and in any subr outines that are called by the
rest of the block. Dynamically scoped vari-
ables can have their values temporarily
changed (and implicitly restor ed later) by a
local operator. (Compar e lexical scoping.)
Used more loosely to mean how a subroutine
that is in the middle of calling another subrou-
tine “contains” that subroutine at run time.

eclectic
Derived from many sources. Some would say
too many.

element
A basic building block. When you’re talking
about an array, it’s one of the items that make
up the array.

embedding
When something is contained in something
else, particularly when that might be consid-
er ed surprising: “I’ve embedded a complete
Perl interpreter in my editor!”

empty subclass test
The notion that an empty derived class should
behave exactly like its base class.

en passant
When you change a value as it is being
copied. [From French, “in passing”, as in the
exotic pawn-capturing maneuver in chess.]

encapsulation
The veil of abstraction separating the inter face
fr om the implementation (whether enforced
or not), which mandates that all access to an
object ’s state be through methods alone.

endian
See little-endian and big-endian.

environment
The collective set of envir onment variables
your pr ocess inherits from its parent. Accessed
via %ENV.

environment var iable
A mechanism by which some high-level agent
such as a user can pass its prefer ences down
to its future offspring (child pr ocesses, grand-
child processes, great-grandchild processes,
and so on). Each environment variable is a
key/value pair, like one entry in a hash.

EOF
End of File. Sometimes used metaphorically as
the terminating string of a her e document.

er rno
The error number retur ned by a syscall when
it fails. Perl refers to the error by the name $!

(or $OS_ERROR if you use the English module).

er ror
See exception or fatal error.

escape sequence
See metasymbol.

exception
A fancy term for an error. See fatal error.

exception handling
The way a program responds to an error. The
exception handling mechanism in Perl is the
eval operator.

ex ec
To thr ow away the current pr ocess ’s program
and replace it with another without exiting the
pr ocess or relinquishing any resources held
(apart from the old memory image).

ex ecuta ble file
A file that is specially marked to tell the oper-
ating system that it’s okay to run this file as a
pr ogram. Usually shortened to “executable”.

ex ecute
To run a pr ogram or subr outine. (Has nothing
to do with the kill built-in, unless you’re try-
ing to run a signal handler.)

ex ecute bit
The special mark that tells the operating sys-
tem it can run this program. There are actually
thr ee execute bits under Unix, and which bit
gets used depends on whether you own the
file singularly, collectively, or not at all.

Glossary

Glossar y 987

988 Glossary

exit status
See status.

expor t
To make symbols from a module available for
import by other modules.

expression
Anything you can legally say in a spot where
a value is requir ed. Typically composed of lit-
erals, variables, operators, functions, and sub-
routine calls, not necessarily in that order.

extension
A Perl module that also pulls in compiled C or
C++ code. More generally, any experimental
option that can be compiled into Perl, such as
multithr eading.

false
In Perl, any value that would look like "" or
"0" if evaluated in a string context. Since
undefined values evaluate to "", all undefined
values are false, but not all false values are
undefined.

FA Q
Fr equently Asked Question (although not nec-
essarily frequently answered, especially if the
answer appears in the Perl FAQ shipped stan-
dard with Perl).

fatal error
An uncaught exception, which causes termina-
tion of the pr ocess after printing a message on
your standar d err or str eam. Err ors that hap-
pen inside an eval ar e not fatal. Instead, the
eval ter minates after placing the exception
message in the $@ ($EVAL_ERROR) variable. You
can try to provoke a fatal error with the die

operator (known as throwing or raising an
exception), but this may be caught by a
dynamically enclosing eval. If not caught, the
die becomes a fatal error.

field
A single piece of numeric or string data that is
part of a longer string, recor d, or line. Vari-
able-width fields are usually split up by sepa-
rators (so use split to extract the fields),
while fixed-width fields are usually at fixed
positions (so use unpack). Instance variables
ar e also known as “fields”.

FIFO
First In, First Out. See also LIFO. Also, a nick-
name for a named pipe.

file
A named collection of data, usually stored on
disk in a dir ectory in a filesystem. Roughly like
a document, if you’re into office metaphors. In
moder n filesystems, you can actually give a
file more than one name. Some files have spe-
cial properties, like directories and devices.

file descriptor
The little number the operating system uses to
keep track of which opened file you’r e talking
about. Perl hides the file descriptor inside a
standar d I/O str eam and then attaches the
str eam to a filehandle.

file test operator
A built-in unary operator that you use to
deter mine whether something is true about a
file, such as -o $filename to test whether
you’r e the owner of the file.

fileglob
A “wildcard” match on filenames. See the glob

function.

filehandle
An identifier (not necessarily related to the
real name of a file) that repr esents a particular
instance of opening a file until you close it. If
you’r e going to open and close several differ-
ent files in succession, it’s fine to open each
of them with the same filehandle, so you
don’t have to write out separate code to pro-
cess each file.

filename
One name for a file. This name is listed in a
dir ectory, and you can use it in an open to tell
the operating system exactly which file you
want to open, and associate the file with a
filehandle which will carry the subsequent
identity of that file in your program, until you
close it.

filesystem
A set of dir ectories and files residing on a par-
tition of the disk. Sometimes known as a “par-
tition”. You can change the file’s name or
even move a file around from directory to
dir ectory within a filesystem without actually
moving the file itself, at least under Unix.

filter
A program designed to take a str eam of input
and transform it into a stream of output.

fla g
We tend to avoid this term because it means
so many things. It may mean a command-line
switch that takes no argument itself (such as
Perl’s -n and -p flags) or, less frequently, a
single-bit indicator (such as the O_CREAT and
O_EXCL flags used in sysopen).

floating point
A method of storing numbers in “scientific
notation”, such that the precision of the num-
ber is independent of its magnitude (the deci-
mal point “floats”). Perl does its numeric work
with floating-point numbers (sometimes called
“floats”), when it can’t get away with using
integers. Floating-point numbers are mer e
appr oximations of real numbers.

flush
The act of emptying a buf fer, often before it’s
full.

FMTEYEWTK
Far More Than Everything You Ever Wanted
To Know. An exhaustive treatise on one nar-
row topic, something of a super-FAQ. See
Tom for far more.

fork
To create a child pr ocess identical to the par-
ent process at its moment of conception, at
least until it gets ideas of its own. A thread
with protected memory.

formal arguments
The generic names by which a subr outine
knows its ar guments. In many languages, for-
mal arguments are always given individual
names, but in Perl, the formal arguments are
just the elements of an array. The formal argu-
ments to a Perl program are $ARGV[0],
$ARGV[1], and so on. Similarly, the formal
arguments to a Perl subroutine are $_[0],
$_[1], and so on. You may give the arguments
individual names by assigning the values to a
my list. See also actual arguments.

format
A specification of how many spaces and digits
and things to put somewhere so that whatever
you’r e printing comes out nice and pretty.

freely availa ble
Means you don’t have to pay money to get it,
but the copyright on it may still belong to
someone else (like Larry).

freely redistr ibutable
Means you’re not in legal trouble if you give a
bootleg copy of it to your friends and we find
out about it. In fact, we’d rather you gave a
copy to all your friends.

freeware
Historically, any software that you give away,
particularly if you make the source code avail-
able as well. Now often called open source
softwar e. Recently there has been a trend to
use the term in contradistinction to open
sour ce softwar e, to refer only to free software
released under the Free Software Foundation’s
GPL (General Public License), but this is diffi-
cult to justify etymologically.

function
Mathematically, a mapping of each of a set of
input values to a particular output value. In
computers, refers to a subr outine or operator
that retur ns a value. It may or may not have
input values (called ar guments).

funny character
Someone like Larry, or one of his peculiar
friends. Also refers to the strange prefixes that
Perl requir es as noun markers on its variables.

garba ge collection
A misnamed feature—it should be called,
“expecting your mother to pick up after you”.
Strictly speaking, Perl doesn’t do this, but it
relies on a refer ence-counting mechanism to
keep things tidy. However, we rar ely speak
strictly and will often refer to the refer ence-
counting scheme as a form of garbage collec-
tion. (If it’s any comfort, when your inter-
pr eter exits, a “real” garbage collector runs to
make sure everything is cleaned up if you’ve
been messy with circular refer ences and
such.)

GID
Gr oup ID — in Unix, the numeric group ID
that the operating system uses to identify you
and members of your gr oup.

glob
Strictly, the shell’s * character, which will
match a “glob” of characters when you’re try-
ing to generate a list of filenames. Loosely, the
act of using globs and similar symbols to do
patter n matching. See also fileglob and type-
glob.

Glossary

Glossar y 989

990 Glossary

global
Something you can see from anywhere, usu-
ally used of variables and subr outines that are
visible everywhere in your program. In Perl,
only certain special variables are truly
global — most variables (and all subroutines)
exist only in the current package. Global vari-
ables can be declared with our. See “Global
Declarations” in Chapter 4, Statements and
Declarations.

global destruction
The garbage collection of globals (and the
running of any associated object destructors)
that takes place when a Perl interpr eter is
being shut down. Global destruction should
not be confused with the Apocalypse, except
perhaps when it should.

glue language
A language such as Perl that is good at hook-
ing things together that weren’t intended to be
hooked together.

gr anular ity
The size of the pieces you’re dealing with,
mentally speaking.

gr eedy
A subpatter n whose quantifier wants to match
as many things as possible.

gr ep
Originally from the old Unix editor command
for “Globally search for a Regular Expression
and Print it”, now used in the general sense of
any kind of search, especially text searches.
Perl has a built-in grep function that searches
a list for elements matching any given crite-
rion, whereas the gr ep (1) program searches
for lines matching a regular expression in one
or more files.

gr oup
A set of users of which you are a member. In
some operating systems (like Unix), you can
give certain file access permissions to other
members of your group.

GV
An internal “glob value” typedef, holding a
typeglob. The GV type is a subclass of SV.

hacker
Someone who is brilliantly persistent in solv-
ing technical problems, whether these involve
golfing, fighting orcs, or programming. Hacker

is a neutral term, morally speaking. Good
hackers are not to be confused with evil
crackers or clueless script kiddies. If you con-
fuse them, we will presume that you are
either evil or clueless.

handler
A subr outine or method that is called by Perl
when your program needs to respond to some
inter nal event, such as a signal, or an
encounter with an operator subject to operator
overloading. See also callback.

hard reference
A scalar value containing the actual address
of a refer ent, such that the refer ent’s refer ence
count accounts for it. (Some hard refer ences
ar e held internally, such as the implicit refer-
ence from one of a typeglob ’s variable slots to
its corresponding refer ent.) A hard refer ence
is differ ent fr om a symbolic refer ence.

hash
An unordered association of key/value pairs,
stor ed such that you can easily use a string
key to look up its associated data value. This
glossary is like a hash, where the word to be
defined is the key, and the definition is the
value. A hash is also sometimes septisyllabi-
cally called an “associative array”, which is a
pr etty good reason for simply calling it a
“hash” instead.

hash table
A data structure used internally by Perl for
implementing associative arrays (hashes) effi-
ciently. See also bucket.

header file
A file containing certain requir ed definitions
that you must include “ahead” of the rest of
your program to do certain obscure opera-
tions. A C header file has a .h extension. Perl
doesn’t really have header files, though histor-
ically Perl has sometimes used translated .h
files with a .ph extension. See require in
Chapter 29. (Header files have been super-
seded by the module mechanism.)

here document
So called because of a similar construct in
shells that pretends that the lines following
the command ar e a separate file to be fed to
the command, up to some terminating string.
In Perl, however, it’s just a fancy form of
quoting.

hexadecimal
A number in base 16, “hex” for short. The dig-
its for 10 through 16 are customarily repr e-
sented by the letters a thr ough f. Hexadecimal
constants in Perl start with 0x. See also the hex

function in Chapter 29.

home director y
The directory you are put into when you log
in. On a Unix system, the name is often
placed into $ENV{HOME} or $ENV{LOGDIR} by
login, but you can also find it with
(getpwuid($<))[7]. (Some platforms do not
have a concept of a home directory.)

host
The computer on which a program or other
data resides.

hubr is
Excessive pride, the sort of thing Zeus zaps
you for. Also the quality that makes you write
(and maintain) programs that other people
won’t want to say bad things about. Hence,
the third great virtue of a programmer. See
also laziness and impatience.

HV
Short for a “hash value” typedef, which holds
Perl’s internal repr esentation of a hash. The HV

type is a subclass of SV.

identifier
A legally formed name for most anything in
which a computer program might be inter-
ested. Many languages (including Perl) allow
identifiers that start with a letter and contain
letters and digits. Perl also counts the under-
scor e character as a valid letter. (Perl also has
mor e complicated names, such as qualified
names.)

impatience
The anger you feel when the computer is
being lazy. This makes you write programs
that don’t just react to your needs, but actually
anticipate them. Or at least that pretend to.
Hence, the second great virtue of a program-
mer. See also laziness and hubris.

implementation
How a piece of code actually goes about
doing its job. Users of the code should not
count on implementation details staying the
same unless they are part of the published
inter face.

impor t
To gain access to symbols that are exported
fr om another module. See use in Chapter 29.

increment
To incr ease the value of something by 1 (or
by some other number, if so specified).

indexing
In olden days, the act of looking up a key in
an actual index (such as a phone book), but
now merely the act of using any kind of key
or position to find the corresponding value,
even if no index is involved. Things have
degenerated to the point that Perl’s index
function merely locates the position (index) of
one string in another.

indirect filehandle
An expr ession that evaluates to something that
can be used as a filehandle : a string (filehan-
dle name), a typeglob, a typeglob refer ence, or
a low-level IO object.

indirect object
In English grammar, a short noun phrase
between a verb and its direct object indicating
the beneficiary or recipient of the action. In
Perl, print STDOUT "$foo\n"; can be under-
stood as “verb indirect-object object” where
STDOUT is the recipient of the print action, and
"$foo" is the object being printed. Similarly,
when invoking a method, you might place the
invocant between the method and its argu-
ments:

$gollum = new Pathetic::Creature "Smeagol";
give $gollum "Fisssssh!";
give $gollum "Precious!";

indirect object slot
The syntactic position falling between a
method call and its arguments when using the
indir ect object invocation syntax. (The slot is
distinguished by the absence of a comma
between it and the next argument.) STDERR is
in the indirect object slot here:

print STDERR "Awake! Awake! Fear, Fire,
Foes! Awake!\n";

indirection
If something in a program isn’t the value
you’r e looking for but indicates where the
value is, that’s indirection. This can be done
with either symbolic refer ences or har d
refer ences.

Glossary

Glossar y 991

992 Glossary

infix
An operator that comes in between its
operands, such as multiplication in 24 * 7.

inher itance
What you get from your ancestors, genetically
or otherwise. If you happen to be a class,
your ancestors are called base classes and your
descendants are called derived classes. See
single inheritance and multiple inheritance.

instance
Short for “an instance of a class”, meaning an
object of that class.

instance var iable
An attribute of an object ; data stored with the
particular object rather than with the class as a
whole.

integer
A number with no fractional (decimal) part. A
counting number, like 1, 2, 3, and so on, but
including 0 and the negatives.

interface
The services a piece of code promises to pro-
vide forever, in contrast to its implementation,
which it should feel free to change whenever
it likes.

interpolation
The insertion of a scalar or list value some-
wher e in the middle of another value, such
that it appears to have been there all along. In
Perl, variable interpolation happens in double-
quoted strings and patterns, and list interpola-
tion occurs when constructing the list of val-
ues to pass to a list operator or other such
construct that takes a LIST.

interpreter
Strictly speaking, a program that reads a sec-
ond program and does what the second pro-
gram says directly without turning the
pr ogram into a differ ent for m first, which is
what compilers do. Perl is not an interpreter
by this definition, because it contains a kind
of compiler that takes a program and turns it
into a more executable form (syntax trees)
within the perl pr ocess itself, which the Perl
run-time system then interprets.

invocant
The agent on whose behalf a method is
invoked. In a class method, the invocant is a
package name. In an instance method, the
invocant is an object refer ence.

invocation
The act of calling up a deity, daemon, pro-
gram, method, subroutine, or function to get it
do what you think it’s supposed to do. We
usually “call” subroutines but “invoke” meth-
ods, since it sounds cooler.

I/O
Input from, or output to, a file or device.

IO
An internal I/O object. Can also mean indir ect
object.

IP
Inter net Pr otocol, or Intellectual Property.

IPC
Interpr ocess Communication.

is-a
A relationship between two objects in which
one object is considered to be a more specific
version of the other, generic object: “A camel
is a mammal.” Since the generic object really
only exists in a Platonic sense, we usually add
a little abstraction to the notion of objects and
think of the relationship as being between a
generic base class and a specific derived class.
Oddly enough, Platonic classes don’t always
have Platonic relationships — see inheritance.

iteration
Doing something repeatedly.

iterator
A special programming gizmo that keeps track
of where you are in something that you’re try-
ing to iterate over. The foreach loop in Perl
contains an iterator; so does a hash, allowing
you to each thr ough it.

IV
The integer four, not to be confused with six,
Tom’s favorite editor. IV also means an inter-
nal Integer Value of the type a scalar can
hold, not to be confused with an NV.

JAPH
“Just Another Perl Hacker,” a clever but cryptic
bit of Perl code that when executed, evaluates
to that string. Often used to illustrate a partic-
ular Perl feature, and something of an ungo-
ing Obfuscated Perl Contest seen in Usenix
signatur es.

ke y
The string index to a hash, used to look up
the value associated with that key.

ke yword
See reserved words.

la bel
A name you give to a statement so that you
can talk about that statement elsewhere in the
pr ogram.

laziness
The quality that makes you go to great effort
to reduce overall energy expenditure. It makes
you write labor-saving programs that other
people will find useful, and document what
you wrote so you don’t have to answer so
many questions about it. Hence, the first great
virtue of a programmer. Also hence, this book.
See also impatience and hubris.

left shift
A bit shift that multiplies the number by some
power of 2.

leftmost longest
The prefer ence of the regular expression
engine to match the leftmost occurrence of a
patter n, then given a position at which a
match will occur, the prefer ence for the
longest match (presuming the use of a gr eedy
quantifier). See Chapter 5 for much mor e on
this subject.

lexeme
Fancy term for a token.

lexer
Fancy term for a tokener.

lexical analysis
Fancy term for tokenizing.

lexical scoping
Looking at your Oxfor d English Dictionary
thr ough a micr oscope. (Also known as static
scoping, because dictionaries don’t change
very fast.) Similarly, looking at variables stored
in a private dictionary (namespace) for each
scope, which are visible only from their point
of declaration down to the end of the lexical
scope in which they are declar ed. —Syn.
static scoping. —Ant. dynamic scoping.

lexical var iable
A variable subject to lexical scoping, declar ed
by my. Often just called a “lexical”. (The our

declaration declares a lexically scoped name
for a global variable, which is not itself a lexi-
cal variable.)

librar y
Generally, a collection of procedur es. In
ancient days, referr ed to a collection of sub-
routines in a .pl file. In modern times, refers
mor e often to the entire collection of Perl
modules on your system.

LIFO
Last In, First Out. See also FIFO. A LIFO is
usually called a stack.

line
In Unix, a sequence of zero or mor e non-
newline characters terminated with a newline
character. On non-Unix machines, this is emu-
lated by the C library even if the underlying
operating system has differ ent ideas.

line buffering
Used by a standar d I/O output stream that
flushes its buf fer after every newline. Many
standard I/O libraries automatically set up
line buffering on output that is going to the
ter minal.

line number
The number of lines read previous to this one,
plus 1. Perl keeps a separate line number for
each source or input file it opens. The current
source file’s line number is repr esented by
__LINE_ _. The current input line number (for
the file that was most recently read via <FH>)
is repr esented by the $. ($INPUT_LINE_NUMBER)
variable. Many error messages report both val-
ues, if available.

link
Used as a noun, a name in a dir ectory, repr e-
senting a file. A given file can have multiple
links to it. It’s like having the same phone
number listed in the phone directory under
dif ferent names. As a verb, to resolve a par-
tially compiled file’s unresolved symbols into
a (nearly) executable image. Linking can gen-
erally be static or dynamic, which has nothing
to do with static or dynamic scoping.

LIST
A syntactic construct repr esenting a comma-
separated list of expressions, evaluated to pro-
duce a list value. Each expr ession in a LIST is
evaluated in list context and interpolated into
the list value.

list
An ordered set of scalar values.

Glossary

Glossar y 993

994 Glossary

list context
The situation in which an expr ession is
expected by its surroundings (the code calling
it) to retur n a list of values rather than a single
value. Functions that want a LIST of argu-
ments tell those arguments that they should
pr oduce a list value. See also context.

list operator
An operator that does something with a list of
values, such as join or grep. Usually used for
named built-in operators (such as print,
unlink, and system) that do not requir e par en-
theses around their ar gument list.

list value
An unnamed list of temporary scalar values
that may be passed around within a program
fr om any list-generating function to any func-
tion or construct that provides a list context.

literal
A token in a programming language such as a
number or string that gives you an actual
value instead of merely repr esenting possible
values as a variable does.

little-endian
Fr om Swift: someone who eats eggs little end
first. Also used of computers that store the
least significant byte of a word at a lower byte
addr ess than the most significant byte. Often
consider ed superior to big-endian machines.
See also big-endian.

local
Not meaning the same thing everywhere. A
global variable in Perl can be localized inside
a dynamic scope via the local operator.

log ical operator
Symbols repr esenting the concepts “and”, “or”,
“xor”, and “not”.

lookahead
An assertion that peeks at the string to the
right of the current match location.

lookbehind
An assertion that peeks at the string to the left
of the current match location.

loop
A construct that perfor ms something repeat-
edly, like a roller coaster.

loop control statement
Any statement within the body of a loop that
can make a loop prematur ely stop looping or
skip an iteration. Generally you shouldn’t try
this on roller coasters.

loop label
A kind of key or name attached to a loop
(or roller coaster) so that loop control state-
ments can talk about which loop they want to
contr ol.

lvalua ble
Able to serve as an lvalue.

lvalue
Term used by language lawyers for a storage
location you can assign a new value to, such
as a variable or an element of an array. The
“l” is short for “left”, as in the left side of an
assignment, a typical place for lvalues. An
lvaluable function or expression is one to
which a value may be assigned, as in
pos($x) = 10.

lvalue modifier
An adjectival pseudofunction that warps the
meaning of an lvalue in some declarative fash-
ion. Currently there are thr ee lvalue modifiers:
my, our, and local.

ma gic
Technically speaking, any extra semantics
attached to a variable such as $!, $0, %ENV, or
%SIG, or to any tied variable. Magical things
happen when you diddle those variables.

ma gical increment
An incr ement operator that knows how to
bump up alphabetics as well as numbers.

ma gical var iables
Special variables that have side effects when
you access them or assign to them. For exam-
ple, in Perl, changing elements of the %ENV

array also changes the corresponding environ-
ment variables that subprocesses will use.
Reading the $! variable gives you the current
system error number or message.

Makefile
A file that controls the compilation of a pro-
gram. Perl programs don’t usually need a
Makefile because the Perl compiler has plenty
of self-control.

man
The Unix program that displays online docu-
mentation (manual pages) for you.

manpa ge
A “page” from the manuals, typically accessed
via the man (1) command. A manpage con-
tains a SYNOPSIS, a DESCRIPTION, a list of
BUGS, and so on, and is typically longer than
a page. There are manpages documenting
commands, syscalls, library functions, devices,
pr otocols, files, and such. In this book, we call
any piece of standard Perl documentation
(like perlop or perldelta) a manpage, no matter
what format it’s installed in on your system.

matching
See patter n matching.

member data
See instance variable.

memor y
This always means your main memory, not
your disk. Clouding the issue is the fact that
your machine may implement virtual memory;
that is, it will pretend that it has more memory
than it really does, and it’ll use disk space to
hold inactive bits. This can make it seem like
you have a little more memory than you really
do, but it’s not a substitute for real memory.
The best thing that can be said about virtual
memory is that it lets your perfor mance
degrade gradually rather than suddenly when
you run out of real memory. But your pro-
gram can die when you run out of virtual
memory too, if you haven’t thrashed your disk
to death first.

metacharacter
A character that is not supposed to be treated
nor mally. Which characters are to be treated
specially as metacharacters varies greatly from
context to context. Your shell will have certain
metacharacters, double-quoted Perl strings
have other metacharacters, and regular
expr ession patter ns have all the double-quote
metacharacters plus some extra ones of their
own.

metasymbol
Something we’d call a metacharacter except
that it’s a sequence of more than one charac-
ter. Generally, the first character in the
sequence must be a true metacharacter to get
the other characters in the metasymbol to mis-
behave along with it.

method
A kind of action that an object can take if you
tell it to. See Chapter 12, Objects.

minimalism
The belief that “small is beautiful.” Paradoxi-
cally, if you say something in a small lan-
guage, it turns out big, and if you say it in a
big language, it turns out small. Go figure.

mode
In the context of the stat (2) syscall, refers to
the field holding the per mission bits and the
type of the file.

modifier
See statement modifier, regular expression
modifier, and lvalue modifier, not necessarily
in that order.

module
A file that defines a package of (almost) the
same name, which can either export symbols
or function as an object class. (A module’s
main .pm file may also load in other files in
support of the module.) See the use built-in.

modulus
An integer divisor when you’re inter ested in
the remainder instead of the quotient.

monger
Short for Perl Monger, a purveyor of Perl.

mor tal
A temporary value scheduled to die when the
curr ent statement finishes.

multidimensional array
An array with multiple subscripts for finding a
single element. Perl implements these using
refer ences—see Chapter 9, Data Structures.

multiple inheritance
The features you got from your mother and
father, mixed together unpredictably. (See also
inheritance, and single inheritance.) In com-
puter languages (including Perl), the notion
that a given class may have multiple direct
ancestors or base classes.

named pipe
A pipe with a name embedded in the filesys-
tem so that it can be accessed by two unre-
lated pr ocesses.

namespace
A domain of names. You needn’t worry about
whether the names in one such domain have
been used in another. See package.

Glossary

Glossar y 995

996 Glossary

network address
The most important attribute of a socket, like
your telephone’s telephone number. Typically
an IP address. See also port.

newline
A single character that repr esents the end of a
line, with the ASCII value of 012 octal under
Unix (but 015 on a Mac), and repr esented by
\n in Perl strings. For Windows machines writ-
ing text files, and for certain physical devices
like terminals, the single newline gets auto-
matically translated by your C library into a
line feed and a carriage retur n, but normally,
no translation is done.

NFS
Network File System, which allows you to
mount a remote filesystem as if it were local.

null character
A character with the ASCII value of zero. It’s
used by C to terminate strings, but Perl allows
strings to contain a null.

null list
A list value with zero elements, repr esented in
Perl by ().

null string
A string containing no characters, not to be
confused with a string containing a null char-
acter, which has a positive length and is true.

numer ic context
The situation in which an expression is
expected by its surroundings (the code calling
it) to retur n a number. See also context and
string context.

NV
Short for Nevada, no part of which will ever
be confused with civilization. NV also means
an internal floating-point Numeric Value of the
type a scalar can hold, not to be confused
with an IV.

nybb le
Half a byte, equivalent to one hexadecimal
digit, and worth four bits.

object
An instance of a class. Something that
“knows” what user-defined type (class) it is,
and what it can do because of what class it is.
Your program can request an object to do
things, but the object gets to decide whether it
wants to do them or not. Some objects are
mor e accommodating than others.

octal
A number in base 8. Only the digits 0 through
7 are allowed. Octal constants in Perl start
with 0, as in 013. See also the oct function.

of fset
How many things you have to skip over when
moving from the beginning of a string or array
to a specific position within it. Thus, the mini-
mum offset is zero, not one, because you
don’t skip anything to get to the first item.

one-liner
An entire computer program crammed into
one line of text.

open source software
Pr ograms for which the source code is freely
available and freely redistributable, with no
commercial strings attached. For a more
detailed definition, see http://www.open-
sour ce.org/osd.html.

operand
An expr ession that yields a value that an oper-
ator operates on. See also pr ecedence.

operating system
A special program that runs on the bare
machine and hides the gory details of manag-
ing pr ocesses and devices. Usually used in a
looser sense to indicate a particular culture of
pr ogramming. The loose sense can be used at
varying levels of specificity. At one extreme,
you might say that all versions of Unix and
Unix-lookalikes are the same operating system
(upsetting many people, especially lawyers
and other advocates). At the other extreme,
you could say this particular version of this
particular vendor’s operating system is differ-
ent from any other version of this or any other
vendor’s operating system. Perl is much more
portable across operating systems than many
other languages. See also ar chitecture and
platfor m.

operator
A gizmo that transforms some number of
input values to some number of output val-
ues, often built into a language with a special
syntax or symbol. A given operator may have
specific expectations about what types of data
you give as its arguments (operands) and
what type of data you want back from it.

operator overloading
A kind of overloading that you can do on
built-in operators to make them work on

objects as if the objects were ordinary scalar
values, but with the actual semantics supplied
by the object class. This is set up with the
overload pragma—see Chapter 13.

options
See either switches or regular expression
modifiers.

overloading
Giving additional meanings to a symbol or
construct. Actually, all languages do overload-
ing to one extent or another, since people are
good at figuring out things from context.

over riding
Hiding or invalidating some other definition of
the same name. (Not to be confused with
overloading, which adds definitions that must
be disambiguated some other way.) To con-
fuse the issue further, we use the word with
two overloaded definitions: to describe how
you can define your own subr outine to hide a
built-in function of the same name (see
“Overriding Built-in Functions” in Chapter 11,
Modules) and to describe how you can define
a replacement method in a derived class to
hide a base class ’s method of the same name
(see Chapter 12).

owner
The one user (apart from the superuser) who
has absolute control over a file. A file may
also have a gr oup of users who may exercise
joint ownership if the real owner permits it.
See per mission bits.

packa ge
A namespace for global variables, subr ou-
tines, and the like, such that they can be kept
separate from like-named symbols in other
namespaces. In a sense, only the package is
global, since the symbols in the package’s
symbol table are only accessible from code
compiled outside the package by naming the
package. But in another sense, all package
symbols are also globals—they’r e just well-
organized globals.

pad
Short for scratchpad.

parameter
See ar gument.

parent class
See base class.

par se tree
See syntax tree.

par sing
The subtle but sometimes brutal art of
attempting to turn your possibly malformed
pr ogram into a valid syntax tree.

patch
To fix by applying one, as it were. In the
realm of hackerdom, a listing of the differ-
ences between two versions of a program as
might be applied by the patch (1) program
when you want to fix a bug or upgrade your
old version.

PA TH
The list of dir ectories the system searches to
find a program you want to execute. The list is
stor ed as one of your envir onment variables,
accessible in Perl as $ENV{PATH}.

pathname
A fully qualified filename such as
/usr/bin/perl. Sometimes confused with PATH.

patter n
A template used in patter n matching.

patter n matching
Taking a pattern, usually a regular expression,
and trying the pattern various ways on a string
to see whether there’s any way to make it fit.
Often used to pick interesting tidbits out of a
file.

per mission bits
Bits that the owner of a file sets or unsets to
allow or disallow access to other people.
These flag bits are part of the mode word
retur ned by the stat built-in when you ask
about a file. On Unix systems, you can check
the ls (1) manpage for more infor mation.

Pern
What you get when you do Perl++ twice.
Doing it only once will curl your hair. You
have to increment it eight times to shampoo
your hair. Lather, rinse, iterate.

pipe
A dir ect connection that carries the output of
one pr ocess to the input of another without an
inter mediate temporary file. Once the pipe is
set up, the two processes in question can read
and write as if they were talking to a normal
file, with some caveats.

Glossary

Glossar y 997

998 Glossary

pipeline
A series of pr ocesses all in a row, linked by
pipes, wher e each passes its output stream to
the next.

platfor m
The entire hardwar e and software context in
which a program runs. A program written in a
platfor m-dependent language might break if
you change any of: machine, operating sys-
tem, libraries, compiler, or system configura-
tion. The perl interpr eter has to be compiled
dif ferently for each platform because it is
implemented in C, but programs written in
the Perl language are largely platform-
independent.

pod
The markup used to embed documentation
into your Perl code. See Chapter 26.

pointer
A variable in a language like C that contains
the exact memory location of some other
item. Perl handles pointers internally so you
don’t have to worry about them. Instead, you
just use symbolic pointers in the form of keys
and variable names, or har d refer ences, which
ar en’t pointers (but act like pointers and do in
fact contain pointers).

polymorphism
The notion that you can tell an object to do
something generic, and the object will inter-
pr et the command in differ ent ways depend-
ing on its type. [<Gk many shapes]

por t
The part of the address of a TCP or UDP
socket that directs packets to the correct pro-
cess after finding the right machine, some-
thing like the phone extension you give when
you reach the company operator. Also, the
result of converting code to run on a differ ent
platfor m than originally intended, or the verb
denoting this conversion.

por table
Once upon a time, C code compilable under
both BSD and SysV. In general, code that can
be easily converted to run on another plat-
for m, wher e “easily” can be defined however
you like, and usually is. Anything may be con-
sider ed portable if you try hard enough. See
mobile home or London Bridge.

por ter
Someone who “carries” software from one
platfor m to another. Porting programs written
in platform-dependent languages such as C
can be difficult work, but porting programs
like Perl is very much worth the agony.

POSIX
The Portable Operating System Interface spec-
ification.

postfix
An operator that follows its operand, as in
$x++.

pp
An internal shorthand for a “push-pop” code,
that is, C code implementing Perl’s stack
machine.

pragma
A standard module whose practical hints and
suggestions are received (and possibly
ignor ed) at compile time. Pragmas are named
in all lowercase.

precedence
The rules of conduct that, in the absence of
other guidance, determine what should hap-
pen first. For example, in the absence of
par entheses, you always do multiplication
befor e addition.

prefix
An operator that precedes its operand, as in
++$x.

preprocessing
What some helper pr ocess did to transform the
incoming data into a form mor e suitable for
the current process. Often done with an
incoming pipe. See also C prepr ocessor.

procedure
A subr outine.

process
An instance of a running program. Under
multitasking systems like Unix, two or more
separate processes could be running the same
pr ogram independently at the same time—in
fact, the fork function is designed to bring
about this happy state of affairs. Under other
operating systems, processes are sometimes
called “threads”, “tasks”, or “jobs”, often with
slight nuances in meaning.

program generator
A system that algorithmically writes code for
you in a high-level language. See also code
generator.

progressive matching
Patter n matching that picks up where it left
of f befor e.

proper ty
See either instance variable or character
pr operty.

protocol
In networking, an agreed-upon way of send-
ing messages back and forth so that neither
corr espondent will get too confused.

prototype
An optional part of a subr outine declaration
telling the Perl compiler how many and what
flavor of arguments may be passed as actual
ar guments, so that you can write subroutine
calls that parse much like built-in functions.
(Or don’t parse, as the case may be.)

pseudofunction
A construct that sometimes looks like a func-
tion but really isn’t. Usually reserved for lvalue
modifiers like my, for context modifiers like
scalar, and for the pick-your-own-quotes con-
structs, q//, qq//, qx//, qw//, qr//, m//, s///,
y///, and tr///.

pseudohash
A refer ence to an array whose initial element
happens to hold a refer ence to a hash. You
can treat a pseudohash refer ence as either an
array refer ence or a hash refer ence.

pseudoliteral
An operator that looks something like a
literal, such as the output-grabbing operator,
‘command‘.

public domain
Something not owned by anybody. Perl is
copyrighted and is thus not in the public
domain — it’s just fr eely available and fr eely
redistributable.

pumpkin
A notional “baton” handed around the Perl
community indicating who is the lead integra-
tor in some arena of development.

pumpking
A pumpkin holder, the person in charge of
pumping the pump, or at least priming it.

Must be willing to play the part of the Great
Pumpkin now and then.

PV
A “pointer value”, which is Perl Internals Talk
for a char*.

qualified
Possessing a complete name. The symbol
$Ent::moot is qualified; $moot is unqualified. A
fully qualified filename is specified from the
top-level directory.

quantifier
A component of a regular expression specify-
ing how many times the foregoing atom may
occur.

reada ble
With respect to files, one that has the proper
per mission bit set to let you access the file.
With respect to computer programs, one that’s
written well enough that someone has a
chance of figuring out what it’s trying to do.

reaping
The last rites perfor med by a parent pr ocess
on behalf of a deceased child process so that
it doesn’t remain a zombie. See the wait and
waitpid function calls.

record
A set of related data values in a file or str eam,
often associated with a unique key field. In
Unix, often commensurate with a line, or a
blank-line-ter minated set of lines (a “para-
graph”). Each line of the /etc/passwd file is a
record, keyed on login name, containing
infor mation about that user.

recur sion
The art of defining something (at least partly)
in terms of itself, which is a naughty no-no in
dictionaries but often works out okay in com-
puter programs if you’re car eful not to recurse
for ever, which is like an infinite loop with
mor e spectacular failure modes.

reference
Wher e you look to find a pointer to informa-
tion somewhere else. (See indir ection.) Refer-
ences come in two flavors, symbolic refer ences
and har d refer ences.

referent
Whatever a refer ence refers to, which may or
may not have a name. Common types of ref-
er ents include scalars, arrays, hashes, and sub-
routines.

Glossary

Glossar y 999

1000 Glossary

regex
See regular expression.

regular expression
A single entity with various interpretations,
like an elephant. To a computer scientist, it’s a
grammar for a little language in which some
strings are legal and others aren’t. To nor mal
people, it’s a pattern you can use to find what
you’r e looking for when it varies from case to
case. Perl’s regular expressions are far from
regular in the theoretical sense, but in regular
use they work quite well. Here’s a regular
expr ession: /Oh s.*t./. This will match strings
like “Oh say can you see by the dawn’s early
light” and “Oh sit!”. See Chapter 5.

regular expression modifier
An option on a pattern or substitution, such as
/i to render the pattern case insensitive. See
also cloister.

regular file
A file that’s not a dir ectory, a device, a named
pipe or socket, or a symbolic link. Perl uses the
-f file test operator to identify regular files.
Sometimes called a “plain” file.

relational operator
An operator that says whether a particular
ordering relationship is true about a pair of
operands. Perl has both numeric and string
relational operators. See collating sequence.

reser ved words
A word with a specific, built-in meaning to a
compiler, such as if or delete. In many lan-
guages (not Perl), it’s illegal to use reserved
words to name anything else. (Which is why
they’r e reserved, after all.) In Perl, you just
can’t use them to name labels or filehandles.
Also called “keywords”.

retur n value
The value pr oduced by a subr outine or
expr ession when evaluated. In Perl, a retur n
value may be either a list or a scalar.

RFC
Request For Comment, which despite the
timid connotations is the name of a series of
important standards documents.

right shift
A bit shift that divides a number by some
power of 2.

root
The superuser (UID == 0). Also, the top-level
dir ectory of the filesystem.

RTFM
What you are told when someone thinks you
should Read The Fine Manual.

run phase
Any time after Perl starts running your main
pr ogram. See also compile phase. Run phase is
mostly spent in run time but may also be
spent in compile time when require, do FILE,
or eval STRING operators are executed or
when a substitution uses the /ee modifier.

run time
The time when Perl is actually doing what
your code says to do, as opposed to the ear-
lier period of time when it was trying to figure
out whether what you said made any sense
whatsoever, which is compile time.

run-time pattern
A patter n that contains one or more variables
to be interpolated before parsing the pattern
as a regular expression, and that therefor e
cannot be analyzed at compile time, but must
be re-analyzed each time the pattern match
operator is evaluated. Run-time patterns are
useful but expensive.

RV
A recr eational vehicle, not to be confused
with vehicular recr eation. RV also means an
inter nal Refer ence Value of the type a scalar
can hold. See also IV and NV if you’re not
confused yet.

rvalue
A value that you might find on the right side
of an assignment. See also lvalue.

scalar
A simple, singular value; a number, string, or
refer ence.

scalar context
The situation in which an expr ession is
expected by its surroundings (the code calling
it) to retur n a single value rather than a list of
values. See also context and list context. A
scalar context sometimes imposes additional
constraints on the retur n value — see string
context and numeric context. Sometimes we
talk about a Boolean context inside condition-

als, but this imposes no additional constraints,
since any scalar value, whether numeric or
string, is alr eady true or false.

scalar literal
A number or quoted string—an actual value
in the text of your program, as opposed to a
variable.

scalar value
A value that happens to be a scalar as
opposed to a list.

scalar var iable
A variable pr efixed with $ that holds a single
value.

scope
How far away you can see a variable from,
looking through one. Perl has two visibility
mechanisms: it does dynamic scoping of local
variables, meaning that the rest of the block,
and any subr outines that are called by the rest
of the block, can see the variables that are
local to the block. Perl does lexical scoping of
my variables, meaning that the rest of the
block can see the variable, but other subrou-
tines called by the block cannot see the vari-
able.

scratchpad
The area in which a particular invocation of a
particular file or subroutine keeps some of its
temporary values, including any lexically
scoped variables.

scr ipt
A text file that is a program intended to be
executed dir ectly rather than compiled to
another form of file before execution. Also, in
the context of Unicode, a writing system for a
particular language or group of languages,
such as Greek, Bengali, or Klingon.

scr ipt kiddie
A cracker who is not a hacker, but knows just
enough to run canned scripts. A cargo-cult
pr ogrammer.

sed
A venerable Stream EDitor from which Perl
derives some of its ideas.

semaphore
A fancy kind of interlock that prevents multi-
ple thr eads or pr ocesses fr om using up the
same resources simultaneously.

separator
A character or string that keeps two sur-
rounding strings from being confused with
each other. The split function works on sepa-
rators. Not to be confused with delimiters or
ter minators. The “or” in the previous sentence
separated the two alternatives.

ser ialization
Putting a fancy data structure into linear order
so that it can be stored as a string in a disk
file or database or sent through a pipe. Also
called marshalling.

ser ver
In networking, a pr ocess that either advertises
a service or just hangs around at a known
location and waits for clients who need ser-
vice to get in touch with it.

ser vice
Something you do for someone else to make
them happy, like giving them the time of day
(or of their life). On some machines, well-
known services are listed by the getservent

function.

setg id
Same as setuid, only having to do with giving
away gr oup privileges.

setuid
Said of a program that runs with the privileges
of its owner rather than (as is usually the case)
the privileges of whoever is running it. Also
describes the bit in the mode word (per mis-
sion bits) that controls the feature. This bit
must be explicitly set by the owner to enable
this feature, and the program must be care-
fully written not to give away more privileges
than it ought to.

shared memory
A piece of memory accessible by two differ ent
pr ocesses who otherwise would not see each
other’s memory.

shebang
Irish for the whole McGillicuddy. In Perl cul-
tur e, a portmanteau of “sharp” and “bang”,
meaning the #! sequence that tells the system
wher e to find the interpreter.

shell
A command-line interpr eter. The program that
interactively gives you a prompt, accepts one
or more lines of input, and executes the

Glossary

Glossar y 1001

1002 Glossary

pr ograms you mentioned, feeding each of
them their proper ar guments and input data.
Shells can also execute scripts containing such
commands. Under Unix, typical shells include
the Bourne shell (/bin/sh), the C shell
(/bin/csh), and the Korn shell (/bin/ksh). Perl
is not strictly a shell because it’s not interac-
tive (although Perl programs can be interac-
tive).

side effects
Something extra that happens when you eval-
uate an expr ession. Nowadays it can refer to
almost anything. For example, evaluating a
simple assignment statement typically has the
“side effect” of assigning a value to a variable.
(And you thought assigning the value was
your primary intent in the first place!) Like-
wise, assigning a value to the special variable
$| ($AUTOFLUSH) has the side effect of forcing a
flush after every write or print on the cur-
rently selected filehandle.

signal
A bolt out of the blue; that is, an event trig-
ger ed by the operating system, probably when
you’r e least expecting it.

signal handler
A subr outine that, instead of being content to
be called in the normal fashion, sits around
waiting for a bolt out of the blue before it will
deign to execute. Under Perl, bolts out of the
blue are called signals, and you send them
with the kill built-in. See the %SIG hash in
Chapter 28, Special Names, and the section
“Signals” in Chapter 16, Interpr ocess Commu-
nication.

single inheritance
The features you got from your mother, if she
told you that you don’t have a father. (See
also inheritance and multiple inheritance.) In
computer languages, the notion that classes
repr oduce asexually so that a given class can
only have one direct ancestor or base class.
Perl supplies no such restriction, though you
may certainly program Perl that way if you
like.

slice
A selection of any number of elements fr om a
list, array, or hash.

slurp
To read an entire file into a string in one oper-
ation.

socket
An endpoint for network communication
among multiple pr ocesses that works much
like a telephone or a post office box. The
most important thing about a socket is its net-
work address (like a phone number). Differ ent
kinds of sockets have differ ent kinds of
addr esses—some look like filenames, and
some don’t.

soft reference
See symbolic refer ence.

source filter
A special kind of module that does pr eprocess-
ing on your script just before it gets to the
tokener.

stack
A device you can put things on the top of,
and later take them back off in the opposite
order in which you put them on. See LIFO.

standard
Included in the official Perl distribution, as in
a standard module, a standard tool, or a stan-
dard Perl manpage.

standard error
The default output str eam for nasty remarks
that don’t belong in standar d output. Repr e-
sented within a Perl program by the filehandle
STDERR. You can use this stream explicitly, but
the die and warn built-ins write to your stan-
dard error stream automatically.

standard I/O
A standard C library for doing buf fered input
and output to the operating system. (The
“standard” of standard I/O is only marginally
related to the “standard” of standard input and
output.) In general, Perl relies on whatever
implementation of standard I/O a given oper-
ating system supplies, so the buffering charac-
teristics of a Perl program on one machine
may not exactly match those on another
machine. Normally this only influences effi-
ciency, not semantics. If your standard I/O
package is doing block buffering and you
want it to flush the buffer more often, just set
the $| variable to a true value.

standard input
The default input str eam for your program,
which if possible shouldn’t care wher e its data
is coming from. Represented within a Perl
pr ogram by the filehandle STDIN.

standard output
The default output str eam for your program,
which if possible shouldn’t care wher e its data
is going. Represented within a Perl program
by the filehandle STDOUT.

stat structure
A special internal spot in which Perl keeps the
infor mation about the last file on which you
requested information.

statement
A command to the computer about what to
do next, like a step in a recipe: “Add mar-
malade to batter and mix until mixed.” A
statement is distinguished from a declaration,
which doesn’t tell the computer to do any-
thing, but just to learn something.

statement modifier
A conditional or loop that you put after the
statement instead of before, if you know what
we mean.

static
Varying slowly compared to something else.
(Unfortunately, everything is relatively stable
compar ed to something else, except for cer-
tain elementary particles, and we’re not so
sur e about them.) In computers, where things
ar e supposed to vary rapidly, “static” has a
der ogatory connotation, indicating a slightly
dysfunctional variable, subr outine, or method.
In Perl culture, the word is politely avoided.

static method
No such thing. See class method.

static scoping
No such thing. See lexical scoping.

static var iable
No such thing. Just use a lexical variable in a
scope larger than your subr outine.

status
The value retur ned to the parent pr ocess when
one of its child processes dies. This value is
placed in the special variable $?. Its upper
eight bits ar e the exit status of the defunct
pr ocess, and its lower eight bits identify the
signal (if any) that the process died from. On
Unix systems, this status value is the same as
the status word retur ned by wait (2). See sys-

tem in Chapter 29.

STDERR
See standar d err or.

STDIN
See standar d input.

STDIO
See standar d I/O.

STDOUT
See standar d output.

stream
A flow of data into or out of a process as a
steady sequence of bytes or characters, with-
out the appearance of being broken up into
packets. This is a kind of inter face—the
underlying implementation may well break
your data up into separate packets for deliv-
ery, but this is hidden from you.

str ing
A sequence of characters such as “He said
!@#*&%@#*?!”. A string does not have to be
entir ely printable.

str ing context
The situation in which an expression is
expected by its surroundings (the code calling
it) to retur n a string. See also context and
numeric context.

str ingification
The process of producing a string repr esenta-
tion of an abstract object.

str uct
C keyword introducing a structure definition
or name.

str ucture
See data structure.

subclass
See derived class.

subpatter n
A component of a regular expression patter n.

subroutine
A named or otherwise accessible piece of pro-
gram that can be invoked from elsewhere in
the program in order to accomplish some sub-
goal of the program. A subroutine is often
parameterized to accomplish differ ent but
related things depending on its input ar gu-
ments. If the subroutine retur ns a meaningful
value, it is also called a function.

subscr ipt
A value that indicates the position of a partic-
ular array element in an array.

Glossary

Glossar y 1003

1004 Glossary

substitution
Changing parts of a string via the s/// opera-
tor. (We avoid use of this term to mean vari-
able interpolation.)

substr ing
A portion of a string, starting at a certain char-
acter position (of fset) and proceeding for a
certain number of characters.

superclass
See base class.

super user
The person whom the operating system will
let do almost anything. Typically your system
administrator or someone pretending to be
your system administrator. On Unix systems,
the root user. On Windows systems, usually
the Administrator user.

SV
Short for “scalar value”. But within the Perl
interpr eter every refer ent is treated as a mem-
ber of a class derived from SV, in an object-
oriented sort of way. Every value inside Perl is
passed around as a C language SV* pointer.
The SV struct knows its own “refer ent type”,
and the code is smart enough (we hope) not
to try to call a hash function on a subr outine.

switch
An option you give on a command line to
influence the way your program works, usu-
ally introduced with a minus sign. The word is
also used as a nickname for a switch state-
ment.

switch cluster
The combination of multiple command-line
switches (e.g., -a -b -c) into one switch
(e.g., -abc). Any switch with an additional
ar gument must be the last switch in a cluster.

switch statement
A program technique that lets you evaluate an
expr ession and then, based on the value of the
expr ession, do a multiway branch to the
appr opriate piece of code for that value. Also
called a “case structure”, named after the simi-
lar Pascal construct. Most switch statements in
Perl are spelled for. See “Case Structures” in
Chapter 4.

symbol
Generally, any token or metasymbol. Often
used more specifically to mean the sort of
name you might find in a symbol table.

symbol table
Wher e a compiler remembers symbols. A pro-
gram like Perl must somehow remember all
the names of all the variables, filehandles, and
subr outines you’ve used. It does this by plac-
ing the names in a symbol table, which is
implemented in Perl using a hash table. Ther e
is a separate symbol table for each package to
give each package its own namespace.

symbolic debugger
A program that lets you step through the exe-
cution of your program, stopping or printing
things out here and there to see whether any-
thing has gone wrong, and if so, what. The
“symbolic” part just means that you can talk to
the debugger using the same symbols with
which your program is written.

symbolic link
An alternate filename that points to the real
filename, which in turn points to the real file.
Whenever the operating system is trying to
parse a pathname containing a symbolic link,
it merely substitutes the new name and con-
tinues parsing.

symbolic reference
A variable whose value is the name of another
variable or subroutine. By der efer encing the
first variable, you can get at the second one.
Symbolic refer ences ar e illegal under use
strict ’refs’.

synchronous
Pr ogramming in which the orderly sequence
of events can be determined; that is, when
things happen one after the other, not at the
same time.

syntactic sugar
An alternative way of writing something more
easily; a shortcut.

syntax
Fr om Gr eek, “with-arrangement”. How things
(particularly symbols) are put together with
each other.

syntax tree
An internal repr esentation of your program
wher ein lower-level constructs dangle off the
higher-level constructs enclosing them.

syscall
A function call directly to the operating sys-
tem. Many of the important subroutines and
functions you use aren’t direct system calls,

but are built up in one or more layers above
the system call level. In general, Perl program-
mers don’t need to worry about the distinc-
tion. However, if you do happen to know
which Perl functions are really syscalls, you
can predict which of these will set the $!

($ERRNO) variable on failure. Unfortunately,
beginning programmers often confusingly
employ the term “system call” to mean what
happens when you call the Perl system func-
tion, which actually involves many syscalls. To
avoid any confusion, we nearly always use
say “syscall” for something you could call indi-
rectly via Perl’s syscall function, and never
for something you would call with Perl’s sys-
tem function.

tainted
Said of data derived from the grubby hands of
a user and thus unsafe for a secure program
to rely on. Perl does taint checks if you run a
setuid (or setgid) program, or if you use the
-T switch.

TCP
Short for Transmission Control Protocol. A
pr otocol wrapped around the Internet Proto-
col to make an unreliable packet transmission
mechanism appear to the application program
to be a reliable str eam of bytes. (Usually.)

ter m
Short for a “terminal”, that is, a leaf node of a
syntax tree. A thing that functions grammati-
cally as an operand for the operators in an
expr ession.

ter minator
A character or string that marks the end of
another string. The $/ variable contains the
string that terminates a readline operation,
which chomp deletes from the end. Not to
be confused with delimiters or separators.
The period at the end of this sentence is a
ter minator.

ter nary
An operator taking three operands. Sometimes
pr onounced trinary.

text
A string or file containing primarily printable
characters.

thread
Like a forked process, but without fork ’s
inher ent memory protection. A thread is
lighter weight than a full process, in that a

pr ocess could have multiple threads running
ar ound in it, all fighting over the same pro-
cess’s memory space unless steps are taken to
pr otect thr eads fr om each other. See
Chapter 17, Thr eads.

tie
The bond between a magical variable and its
implementation class. See the tie function in
Chapter 29 and Chapter 14, Tied Variables.

TMTOWTDI
Ther e’s Mor e Than One Way To Do It, the
Perl Motto. The notion that there can be more
than one valid path to solving a programming
pr oblem in context. (This doesn’t mean that
mor e ways are always better or that all possi-
ble paths are equally desirable—just that
ther e need not be One True Way.)

token
A morpheme in a programming language, the
smallest unit of text with semantic signifi-
cance.

tokener
A module that breaks a program text into a
sequence of tokens for later analysis by a
parser.

tokenizing
Splitting up a program text into tokens. Also
known as “lexing”, in which case you get
“lexemes” instead of tokens.

toolbo x approach
The notion that, with a complete set of simple
tools that work well together, you can build
almost anything you want. Which is fine if
you’r e assembling a tricycle, but if you’re
building a defranishizing comboflux regurgala-
tor, you really want your own machine shop
in which to build special tools. Perl is sort of a
machine shop.

transliterate
To tur n one string repr esentation into another
by mapping each character of the source
string to its corresponding character in the
result string. See the tr/// operator in
Chapter 5.

tr igger
An event that causes a handler to be run.

tr inary
Not a stellar system with three stars, but an
operator taking three operands. Sometimes
pr onounced ter nary.

Glossary

Glossar y 1005

1006 Glossary

trof f
A venerable typesetting language from which
Perl derives the name of its $% variable and
which is secretly used in the production of
Camel books.

tr ue
Any scalar value that doesn’t evaluate to 0 or
"".

tr uncating
Emptying a file of existing contents, either
automatically when opening a file for writing
or explicitly via the truncate function.

type
See data type and class.

type casting
Converting data from one type to another.
C per mits this. Perl does not need it. Nor
want it.

typed lexical
A lexical variable that is declared with a class
type: my Pony $bill.

typedef
A type definition in the C language.

typeglob
Use of a single identifier, prefixed with *. For
example, *name stands for any or all of $name,
@name, %name, &name, or just name. How you use
it determines whether it is interpreted as all or
only one of them. See “Typeglobs and File-
handles” in Chapter 2.

typemap
A description of how C types may be trans-
for med to and from Perl types within an
extension module written in XS.

UDP
User Datagram Protocol, the typical way to
send datagrams over the Internet.

UID
A user ID. Often used in the context of file or
pr ocess ownership.

umask
A mask of those per mission bits that should
be forced off when creating files or directo-
ries, in order to establish a policy of whom
you’ll ordinarily deny access to. See the umask

function.

unar y operator
An operator with only one operand, like ! or
chdir. Unary operators are usually prefix oper-
ators; that is, they precede their operand. The
++ and -- operators can be either prefix or
postfix. (Their position does change their
meanings.)

Unicode
A character set comprising all the major char-
acter sets of the world, more or less. See
http://www.unicode.or g.

Unix
A very large and constantly evolving language
with several alternative and largely incompati-
ble syntaxes, in which anyone can define any-
thing any way they choose, and usually do.
Speakers of this language think it’s easy to
lear n because it’s so easily twisted to one’s
own ends, but dialectical differ ences make
tribal intercommunication nearly impossible,
and travelers are often reduced to a pidgin-
like subset of the language. To be universally
understood, a Unix shell programmer must
spend years of study in the art. Many have
abandoned this discipline and now communi-
cate via an Esperanto-like language called
Perl. In ancient times, Unix was also used to
refer to some code that a couple of people at
Bell Labs wrote to make use of a PDP-7 com-
puter that wasn’t doing much of anything else
at the time.

value
An actual piece of data, in contrast to all the
variables, refer ences, keys, indexes, operators,
and whatnot that you need to access the
value.

variable
A named storage location that can hold any
of various kinds of value, as your program
sees fit.

variable interpolation
The interpolation of a scalar or array variable
into a string.

variadic
Said of a function that happily receives an
indeter minate number of actual arguments.

vector
Mathematical jargon for a list of scalar values.

vir tual
Pr oviding the appearance of something with-
out the reality, as in: virtual memory is not
real memory. (See also memory.) The oppo-
site of “virtual” is “transparent”, which means
pr oviding the reality of something without the
appearance, as in: Perl handles the variable-
length UTF-8 character encoding transpar-
ently.

void context
A for m of scalar context in which an expr es-
sion is not expected to retur n any value at all
and is evaluated for its side effects alone.

v-str ing
A “version” or “vector” string specified with a
v followed by a series of decimal integers in
dot notation, for instance, v1.20.300.4000.
Each number turns into a character with the
specified ordinal value. (The v is optional
when there are at least three integers.)

warning
A message printed to the STDERR str eam to the
ef fect that something might be wrong but isn’t
worth blowing up over. See warn in
Chapter 29 and the use warnings pragma in
Chapter 31, Pragmatic Modules.

watch expression
An expression which, when its value changes,
causes a breakpoint in the Perl debugger.

whitespace
A character that moves your cursor but
doesn’t otherwise put anything on your
scr een. Typically refers to any of: space, tab,
line feed, carriage retur n, or form feed.

word
In normal “computerese”, the piece of data of
the size most efficiently handled by your com-
puter, typically 32 bits or so, give or take a
few powers of 2. In Perl culture, it more often
refers to an alphanumeric identifier (including
underscor es), or to a string of nonwhitespace
characters bounded by whitespace or string
boundaries.

working director y
Your current dir ectory, from which relative
pathnames are interpr eted by the operating
system. The operating system knows your cur-
rent directory because you told it with a chdir

or because you started out in the place where
your parent pr ocess was when you were bor n.

wrapper
A program or subroutine that runs some other
pr ogram or subroutine for you, modifying
some of its input or output to better suit your
purposes.

WYSIWYG
What You See Is What You Get. Usually used
when something that appears on the screen
matches how it will eventually look, like Perl’s
format declarations. Also used to mean the
opposite of magic because everything works
exactly as it appears, as in the three-argument
for m of open.

XS
An extraordinarily exported, expeditiously
excellent, expressly eXternal Subroutine, exe-
cuted in existing C or C++ or in an exciting
new extension language called (exasperat-
ingly) XS. Examine Chapter 21, Inter nals and
Exter nals, for the exact explanation.

XSUB
An external subr outine defined in XS.

yacc
Yet Another Compiler Compiler. A parser gen-
erator without which Perl probably would not
have existed. See the file perly.y in the Perl
source distribution.

zero width
A subpatter n assertion matching the null
string between characters.

zombie
A process that has died (exited) but whose
par ent has not yet received proper notification
of its demise by virtue of having called wait or
waitpid. If you fork, you must clean up after
your child processes when they exit, or else
the process table will fill up and your system
administrator will Not Be Happy with you.

Glossary

Glossar y 1007

Index

Symbols
& (ampersand)

& (bitwise and) operator, 101
&& (logical and) operator, 27, 102, 314
&&= (assignment) operator, 107
&= (assignment) operator, 107
Perl version 5, changes in use, 16
addr ess-of operator (in C), 110
in filenames, 752
pr ototype character, 227
for subroutine names, 53-54, 96, 127,

218
omitting in prototypes, 226

in variable names, 292
* (asterisk), 96

der efer ence operator (in C), 110
** (exponentiation) operator, 92
**= (exponentiation assignment) opera-

tor, 107
metacharacter, 141, 158
*= (multiplication assignment) operator,

107
* (multiplicative) operator, 89, 94
pr ototype character, 227
quantifier, 38, 159, 176
typeglob, 6, 54, 78

@ (at sign)
@+ array of ending positions, 667
@- array of starting positions, 667
@_ array, 184, 219, 659
for array names, 6, 53
changes in use, Perl versions, 591

in debugger, 508
in picture lines, 235
pr ototype character, 227
inside strings, escaping with backslash,

62
\ (backslash)

\ . . . metasymbol, 159
\\ (backslash)

double quotes, interpreting with, 7
to escape metacharacters, 140, 158
interpr etation by regex parser, 191
metacharacter, 141
for multiline commands, 507
\Q notation for backslashing nonal-

phanumeric characters, 61
quoted strings, avoiding overuse in, 63
quotemeta function for, 768
refer ence operator, 93, 245

‘ (backtick), 62, 427 (see also qx//)
operator, 72, 80, 605
security and, 567
shell programming, Perl vs., 590

! (bang)
complemented character sets, using for,

174
in debugger commands, 515
!! debugger command, 515
! (logical negation) operator, 92

overloading, 352
!= (not equal to) operator, 28, 101, 586
!˜ (not binding) operator, 93, 144-145

1009

1010 Index

{ } (braces), 264, 586, 603
{ metacharacter, 141, 158
bar e blocks, creating with, 123
hash composer, 246
identifiers in, 62
pr ecedence of, 89
quantifier, 159
search patterns, clarifying with use, 65
for statement blocks, 31, 113

[] (brackets)
[metacharacter, 141, 158
array composer, 245
to match characters, 201
character classes, 159, 162, 166
pr ecedence of, 89

ˆ (car et)
bitwise xor operator, 101
ˆ= (assignment) operator, 107
inverting character class, 166
in matching, 150
beginning of line assertion, 38, 40, 179
matching, 201
metacharacter, 141, 158
in picture lines, 235

: (colon)
in ?: (conditional) operator (see ?: opera-

tor)
:: for package identifiers, 65, 291, 591
:: in module names, translating to sys-

tem directory separators, 300
:: in fully qualified names, 55

, (comma)
delimiting list values, 72, 74
err or in print statements, 586
key/value pairs and, 10, 76
large numbers and, 60
operator, 108

(see also => operator)
scalar context, 592

as separator, 12
$ (dollar sign), 12

in debugger, 508
line boundary, 179
in matching, 150
metacharacter, 141, 158
pr ototype character, 227
scalar variable interpolation and, 62
for scalar variable names, 6, 9, 52, 55

$#
pr efix for last array index, 76
obsolete variable for numeric output,

657
$0 ($PROGRAM_NAME), 672
$1 et al., 657
$a and $b (sort variables), 658
$ˆA ($ACCUMULATOR), 240, 658
$_ ($ARG) variable, 36, 39, 658

angle operator and, 80
for each statement and, 118
glob function with, 84
gr ep function and, 730
map function and, 740

$ˆC ($COMPILING), 660
$? ($CHILD_ERROR), 55, 659

backtick operator and, 80
close function and, 693

$ˆD ($DEBUGGING), 493, 660
$ˆE ($EXTENDED_OS_ERROR), 663
$) ($EFFECTIVE_GROUP_ID), 660, 672
$> ($EFFECTIVE_USER_ID), 661
$! ($ERRNO, $OS_ERROR), 27, 626
$@ ($EVAL_ERROR), 661
$ˆF ($SYSTEM_FD_MAX), 675
$: ($FORMAT_LINE_BREAK_CHARAC-

TERS), 236, 663
$- ($FORMAT_LINES_LEFT), 237, 240,

663
$= ($FORMAT_LINES_PER_PAGE), 237,

663
$˜ ($FORMAT_NAME), 237, 664
$% ($FORMAT_PAGE_NUMBER), 237,

664
$ˆ ($FORMAT_TOP_NAME), 237, 240,

587, 664
for mline function output, 717

$ˆH (hints for the Perl parser), 664
$ˆI ($INPLACE_EDIT), 665
$[(index of first array element), 657
$. ($INPUT_LINE_NUMBER), 665

resetting with close function, 693
$/ ($INPUT_RECORD_SEPARATOR),

492, 666
$ˆL ($FORMAT_FORMFEED), 237, 663
$+ ($LAST_PAREN_MATCH), 668
$" ($LIST_SEPARATOR), 65, 668
$ˆM (memory pool), 668

$ (dollar sign) (cont’d)
$& ($MATCH), 146, 594, 669
$ˆO ($OSNAME), 621, 669
$! ($OS_ERROR), 669
$| ($OUTPUT_AUTOFLUSH), 237, 670
$, ($OUTPUT_FIELD_SEPARATOR), 670
$\ ($OUPUT_RECORD_SEPARATOR),

497, 670
$ˆP ($PERLDB), 671
$] ($PERL_VERSION), 669
$$ ($PID, $PROCESS_ID), 55
$’ ($POSTMATCH), 146, 184, 594, 671
$‘ ($PREMATCH), 146, 594, 672
$$ ($PROCESS_ID), 672
$ˆR ($LAST_REGEXP_CODE_RESULT),

211-212, 668
$(($REAL_GROUP_ID), 672
$< ($REAL_USER_ID), 672
$ˆS ($EXCEPTIONS_BEING_CAUGHT),

662
$; ($SUBSCRIPT_SEPARATOR), 78, 674
$ˆT ($BASETIME), 100, 659
$ˆV ($PERL_VERSION), 671
$ˆW ($WARNING), 137, 675
${ˆWARNING_BITS}, 676
${ˆWIDE_SYSTEM_CALLS}, 404, 676
$ˆX ($EXECUTABLE_NAME), 662

. (dot), 96
.. (range operator), 103
. . . (range operator), 103
character wildcard, 37, 147
(concatenation) operator, 23

autogeneration via stringification
handler, 352

quantifiers, use in, 38
separating integers in v-strings, 67

" (double quotes), 60, 143, 264
(see also qq// and the print function)
conversion operator, stringification, 351
in formline arguments, 717
in replacement string, 152
translation escape processing, 192

= (equal sign), 77
= (assignment) operator, 6, 107
= = (equal to) operator, 24, 28, 101, 586
=> (corr esponds to) operator, 108
=˜ (patter n binding) operator, 36, 93

using with pattern matching opera-
tors, 144

= => curr ent line marker, 508
debugger command, 516

- (hyphen), 96, 201
-= (assignment) operator, 107
- - (autodecr ement) operator, 91
-*- for emacs, 488
- - command-line switch, 492
-> (arrow) operator, 90, 253

method invocation with, 312
arithmetic negation operator, 92
in character ranges, 166
character set subtraction, 173
debugger command, 514
subtractive operator, 95

< (left angle bracket)
< (less than) operator, 21, 28, 100
<= (less than or equal) operator, 28, 100
<=> (comparison) operator, 28, 101, 789
<< for here documents, 66
<< (left-shift) operator, 95
<<= (assignment) operator, 107
<> construct (see angle operator)
in debugger commands, 515
in filenames, 748
for filename globbing, 83
for left justification, 239
for line input, 80

() (par entheses), 12, 88-89, 605
(. . .) grouping, 159
(?:PATTERN) notation, clustering without

capturing, 185
for backrefer ences, 41, 182, 184
conditional operator, use with, 105
in functions, 677
gr ouping operator, 142, 201
for list values, 72
metacharacter, 141, 158
null lists, repr esenting, 73
as quote characters, 74

% (percent sign), 96
for checksums, 821
for hash names, 10, 53
modulus operator, 94
%= (modulus assignment) operator, 107
pr ototype character, 227
signifying variable type, 6

Index 1011

1012 Index

+ (plus sign), 96
additive operator, 95
++ (autoincrement) operator, 26, 91
in filenames, 748
metacharacter, 141, 158
+= (plus equals) operator, 107
+ unary operator, 89, 92
+? quantifier, 159
in quantifiers, 37, 176

(pound)
for comments, 49

/x pattern modifier, using with, 148
in formats, 235
quoting character, whitespace and, 64
#! (shebang) notation, 19, 487, 1001

security problems caused by, 569
simulating on non-Unix systems, 489

? (question mark), 96
?: (conditional) operator, 105, 125
metacharacter, 141, 158
in quantifiers, 38, 159, 176
?? quantifier, 159
?? operator (see m?? operator)

? (question mark) regex extensions
(?=), 202
(?!), 202
(?>), 204
(?<=), 202
(?<!), 202

> (right angle bracket)
in debugger commands, 515
in filenames, 748
for filename globbing, 83
gr eater than operator, 21, 28, 100
>= (gr eater than or equal) operator, 100
>>= (right-shift assignment) operator,

107
line input operator (see angle operator)
for right justification, 239
>> (right-shift) operator, 95

=> (equals sign, greater-than sign)
comma separator, Perl alternative to, 10

; (semicolon), 111
in debugger commands, 509
err ors, omitting trailing, 586
in filenames, security risks of, 566
Perl statements, terminating with, 49
simple statements, ending in, 111

’ (single quotes), 60

as delimiters, variable interpolation and,
63

/ (slash), 96
debugger command, 514
delimiters, replacing as, 63
division operator, 94
/= (division assignment) operator, 107
// (see m// operator)
root directory, 692

˜ (tilde)
bitwise negation operator, 92
to suppress blank lines, 236

_ (underscor e), 55
global filehandle, 657
large numbers and, 657
Perl versions, changes in use, 591
in variable names, 605

| (vertical bar)
. . . | . . . alter nation, 142, 159, 187
bitwise or operator, 101
|= (bitwise or assignment) operator, 107
centering with, 238
|| debugger command, 516
in filenames, 748
|| (logical or) operator, 102, 189, 314

pr ecedence, chdir vs., 89
||= (logical or assignment) operator,

107
metacharacter, 141, 158
-| piping pseudocommand, 429
|- piping pseudocommand, 428

Number s
0+ (numification) operator, 351
0 but true, 713

-w exemption, 712
-0 command-line switch, 487, 492
32-bit systems, 623
64-bit systems, 623

A
-A (access age) file test operator, 100
\A (string boundary), 179
-a (autosplit) command-line switch, 492,

663
abbr eviations, text, 866
abs (absolute value) function, 683

abstraction, 288
in object-oriented programming, 311

accept function, 683
access checks, setting in constructor, 341
access time, file, 801, 824
accessing

array of hashes, 279
elements, tied arrays, 374
hashes of arrays, 276
multidimensional arrays, 271
multidimensional hashes, 281
overridden methods, 324
records of elaborate data structures, 283
slices of multidimensional arrays, 272

accessor methods, 319, 979
class data methods, working like, 344
cr eating, 332
generating with autoloading, 337
generating with closures, 338
pseudohashes and, 334

$ACCUMULATOR, 658
actions (debugger)

command execution, specifying from
debugger, 514

listing all, 512
ActiveState Perl distribution

Micr osoft-only modules, 875
PPM (Perl Package Manager), 552

ActiveState Perl distribution, installing on
Windows systems, 490

adding additional array elements, 821
addition, 23

overloaded plus (+) operator, 349
additive operators, 95
addr esses

C language, Perl vs., 589
getting from hostnames, 722
network, getting from hostnames, 721
network, translating to names, 720, 722
packed socket, 727
reused, displaying contents of, 521
socket names as, 684

addr ess-of operator (in C), 110, 979
.al filename extensions, 297
alar m function, 683

patter n match, timing out, 584
alert (bell), 61
algorithms, 979

Perl modules for, 549

aliases, 979
for characters, 163
debugger command for, 516
for/for each loops, creating with, 125
symbol table entries, 56, 79
symbol table key, assignment to

typeglob, 294
aliasing

for/for each loops, 118
searching and replacing elements in

arrays, 154
ALRM signal, 417
alter nation, 142, 979

character classes and, 166
interior, limiting scope of, 185
match one or the other (. . . | . . .), 159
in patterns, 187
pr ecedence, patter n matching, 198

anchors, 40, 178
and (&&) logical operator, 27, 102-103, 109,

606
pr ecedence, and operator vs. &&, 314

and (&) bitwise operator, 101
angle operator, 80, 386, 495, 588
anonymous, 979

array composer, 245
arrays

hash of, creating, 275
two-dimensional array slice, 272

hash composer, 246
hashes

adding to multidimensional hashes,
280

array of, creating, 277
data structue for objects, 317

pipes, 426-428
refer ents, 244
subr outine composer, 247
subr outines, 217

giving names at run time, 295
AnyDBM_File module, 870
Apache web server, 539

CGI::Apache module, 870
mod_perl extension, 475
Perl modules for, 550

appending
elements to arrays, 270, 767
members to existing hash, 278

Index 1013

1014 Index

arctangent (see atan2)
$ARG (English for $_), 658
argument, 980

(see also parameters)
@ARGV array, 82, 659
ARGV filehandle, 659, 980
$ARGV variable, 659, 980
ARGVOUT filehandle, 659
arithmetic operators, 92, 980

binary arithmetic operators, 23
order of evaluation, 23
overloading, 349, 352

arity, 86
highest to lowest, listing of, 87

arrays, 5, 8, 51, 65, 980
(see also lists)
@_ arrays, 219

copying values to my list, 220
anonymous, objects implemented as,

333
use fields pragma, overcoming prob-

lems with, 334
anonymous, refer ences to, 245
appending elements to, 767
associative (see hashes)
AV (array value) typedef in C, corre-

sponding to, 531
context (see list context)
deleting elements of, 785, 793
elements, giving temporary values to,

738
exists function and, 710
first element of, 657
of hashes, 277-279

accessing and printing, 279
generating, 278

hashes of, 275-277
initializing with x operator, 94
last element of, 76
length of, 76
list values vs., 73
lists and, 72-76
multidimensional, 13, 268
names for, 53
negative subscripts, counting from end

of array, 592

nested, 268-275
two-dimensional arrays, creating and

accessing, 269
output style, changing in debugger, 521
parsing text into, 866
passing by refer ence into or out of

functions, 224
per formance and, 598
pop function and, 764
pr epending elements to, 821
pr ocessing, functions for, 680
refer ences to, 244
replacing/r emoving elements, 793
subscript separator (see $; variable)
s/// (substitution) operator and, 154
tainted, 559
tied

delete function and, 593
tying, 372-378

methods for, 373-377
notational convenience, 377
Tie::Array module, 871

variables of, 65
arr ow (->) operator, 90, 253, 312
artificial languages, 4
ASCII, 48, 980

converting to characters, 692
converting to Unicode, 406
values for characters, 755

ASP, Perl modules for
assertions (in patterns), 141, 159, 980

character classes and, 166
defining your own, 215
lookar ound assertions, 202
positional, 178-182

\A and ˆ assertions (string
boundary), 179

\G positional assertion, 151
\z, \Z, and $ assertions, 179
\b and \B (word and nonword

boundary), 180
pr ecedence, patter n matching, 199

assigning to lists, 75
assignment, 980

to ?: (conditional) operator, 106
elements, two-dimensional arrays, 270
of tied variables, 369
tied array element, 374

assignment operators, 24-25, 51, 980
overloading, 353, 357

(see also copy constructor)
pr ecedence

Perl versions, differ ences in, 592
values, retur ning, 25

assignment operators, 107
associative arrays (see hashes)
associativity of operators, 86, 100, 980
* (see asterisk, under Symbols)
astr onomy

Perl modules for, 551
async function (in Thread module), 450
atan2 (arctangent) function, 684
$atime file statistic, 801
atoms, 199, 980

pr ecedence, patter n matching, 201
attributes, 980

attributes pragma, 871
class, 745

storing state for, 343
files, test operators for, 28
locked and method, using with threads,

342
locked, subroutines, 458
lvalue, subroutines, 342
in object-oriented programming, 319
objects, hashes of, 13
subclass, overriding superclass ancestor,

333
subr outines, 231-233

names, syntax for, 231
variable interpolation and, 756

attrs module (obsolete), 871
audio

Perl modules for, 551
authentication

modules for, 550, 870
authorization

Perl modules for, 550
autodecr ement (- -) operator, 26, 91

magical, 353
autoflushing buffers, 670
autogeneration, overloading, 352, 980

autoincr ement and autodecrement, 353
pr eventing, 358

autoincr ement (++) operator, 26, 91, 354,
980

AUTOLOAD subroutine, 127, 296-298, 328
AutoLoader module, 297, 873
autoloading, 981

generating accessors with, 337
methods, 328

automatic
line-end processing, 497

autosplit mode (with -a switch), 492, 981
AutoSplit module, 297, 873

portability of, 625
autouse pragma, 873
autovivification, 90, 710, 981

of filehandles, 431, 748
typeglobs, 385

AV (inter nal array value), 531, 981
awk, 35, 981

converting to/from Perl, 78

B
-b (block special) file test, 98
-B (binary) file test, 98
\B (nonword boundary) assertion, 180
\b (word boundary) assertion, 40, 141, 180

for backspace, 166, 201
B module, 874
B::Asmdata module, 874
B::Assemble module, 874
B::Bblock module, 874
B::Bytecode module, 477, 874
B::C and B::CC modules, 478
B::C module, 874
B::CC module, 874
B::Debug module, 874
B::Deparse module, 480, 874
B::Disassembler module, 874
B::Lint module, 479, 874
B::Showlex module, 874
B::Stash module, 874
B::Terse module, 874
B::Xr ef module, 479, 874
backends, compiler, 476, 874

generic interface to, 874
modules, 476
modules, calling, 476

backquotes (‘), 7
backr efer ences, 41, 150, 182, 587, 657, 981

(see also patterns, backrefer ence)
accessing with numbered variables, 183

Index 1015

1016 Index

backr efer ences (cont’d)
cr eating with parentheses, 184
deriving patterns from matched sub-

strings, 213
backslash (\)

interpr eting with double quotes, 7
backspace, 61

\b assertion in character classes, 166,
180, 201

backticks, portability of
backtracking, 197, 981

nonbacktracking subpatterns, 204
in pattern matching, 197

backup files, 496
bar (see vertical bar under Symbols)
bar e blocks, 123-126

case structures, doing with, 124
bar e identifiers, 65
bar ewords, 64, 981

avoiding, reasons for, 588
Perl versions, changes in, 591
strict pragma, checking use of, 138

base classes, 309, 871, 981
constructors and, 321
overridden methods, invoking all, 327
overriding methods of, 324
for pod filters and translators, 872
UNIVERSAL module, providing for all

classes, 871
base module, 871
basename, files, 867
$BASETIME, 659
basetime ($ˆT), 659
BASIC programming language

logical operators borrowed from, 26
BEGIN blocks, 465, 531

altering compiler parsing of file, 482
initializing variables before calling

subr outines, 223
modifications to @INC array, handling

with, 300
order of running, 481

beginnings of strings, matching, 179
Benchmark module, 874

comparing running times of alternate
code versions, 875-877

bidir ectional communication, pipes,
430-432

bidir ectional rendering, Unicode properties,
171

big-endian, 623, 981
/bin/sh, 488
binary, 981

mode on filehandles, 685
operators (see binary operators)
pack function, 757-762

binary files, 753
decompiling with B::Deparse module,

480
as regular files, 29

binary operators, 22, 36, 86-110, 981
overloading, 348

bind function, 684, 981
binding

DBM file to hash, 696
operators (=˜, !˜), 36, 93, 144
variables to packages, 363, 813, 821

binmode function, 685, 753
biology

Perl modules for, 551
bit, 981
bit vector, providing array interface to, 398
bitmasks, 781
bit-shift operators (<<, >>), 95, 107, 981
bitwise

negation (˜) operator, 92
operators, 101, 109

overloading, 353
blank lines, truth value of, 32
bless function, 248, 258, 317, 686, 982

constructors, using with, 317
refer ence as argument for, 244
tie vs., 364

blib pragma, 536, 873
$blksize file statistic, 801
block properties, Unicode, 171
blocking calls

lock, threads, 455
blocking, shared locks, 420
blocking signals, 418
blocks, 30, 50, 111, 113, 121, 252, 982

bar e, 123-126
continue block, 115
loops and, 735
package declarations, span of, 290
(see also statements)

$blocks file statistic, 801
Boolean, 982

context, 70, 982
bool conversion operator, 351
m// (match) operator in, 150

definition of truth, 29
operators, 29
values, 7

bootstrapping modules, 535, 873
boundaries, words (matching), 180
boundary assertions, 40
bounded array, creating, 373
{ } (braces)

quantifiers, 38
hash key, enclosing in, 12

brackets []
array subscripts, enclosing in, 9
lists, converting to scalars, 12

br eak command (in C), 589
br eak statement (see the last operator)
br eakpoints, 982

deleting, 511
listing all, 512
setting for debugger, 506
setting on load, 509
setting with debugger commands, 511
watch expressions, causing, 512

br oadcast, 982
BSD, 982
BSD::Resource module

per-pr ocess resource limits, setting, 584
buckets, 982
buf fering, 982

bi-dir ectional pipes, problems with, 431
block, 982
single-character input and, 718
unflushed buffers in Perl versions, 715

bug reports, xxxi
bugs, 917
building CPAN modules, 552
built-in, 982

data types, 50-52
functions

character semantics, operating on,
405

listing by type, 872
overriding, 306
subr outines, pr ototyping to emulate,

226

methods
overridden, calling via CORE pseu-

dopackage, 324
bundles, 549, 982
byte meanings, character class shortcuts,

167
bytecode, 466, 530, 982
ByteLoader module, 477, 874
bytes, 47, 982

bit-shift operators, 95
characters vs., 402, 680
reading, 769, 810

bytes module, 868

C
-c (character special) file test, 98
-c (check syntax) command-line switch,

493, 531, 660
-C (inode change time) file test, 100
-C (native wide characters) command-line

switch, 404
\C (matching single byte in C language)

wildcard metasymbol, 164, 406
/c modifier, 156

failed matches, searching past, 181
C language, 983

accessing Perl from enclosing frame-
work, 476

C code generators, 478
C stack, storing C variables on, 474
C-style logical operators, 102
fcntl.h definitions, loading as Perl con-

stants, 869
library functions, 678
library, signals triggering core dumps in,

413
operators missing in Perl, 110
operators, precedence relationships, 88
Perl, extending with, 530, 532-538

cr eating extensions, 534-537
exter nal C library, using functions

fr om, 538
XSUBs and XS language, 533

Perl functions, wrapping around, 533
Perl, running from

Perl stack, manipulating, 542
Perl, using from, 538-544

adding Perl interpreter, 539

Index 1017

1018 Index

C language, Perl, using from (cont’d)
compiling embedded Perl programs,

539
Perl statement, evaluating, 541
Perl subroutine, calling from, 540
XSUB input and output, 537

pr eprocessor, 983
pr ogramming, dif ferences from Perl, 589
structs, 761
syslog functions, using in Perl, 869
wrapper programs, 570

C prepr ocessor, 499
caching, 267, 323, 381, 397, 422, 434, 550,

609
callbacks, 260, 983
caller function, 687

Perl versions, changes in retur n value,
592

calling
by refer ence, 219, 224, 983
subr outines indir ectly, 218
by value, 220, 983

can method (in package UNIVERSAL), 326
canonical decomposition, characters, 170
canonicalization, 983

characters, information on, 406
capitalization, 54, 817

bar ewords, pr oblems with, 64
changing, 157
escape sequences for, 61
label names, 115
lc and lcfirst functions, 736
method names, tied variables, 365
in module names, 866
module names, 300
package/module names, 605
subr outine names, 218
uppercase, converting to (\u escape),

152
capturing in patterns, 182-185, 983

suppr essing in clustering, 185
words, alphanumeric, 151

ˆ (see caret, under Symbols)
Carp module, 367, 872, 878
carriage retur ns, 622

(see also newlines)

case
case-sensitive matching, switching off,

147, 157, 193
escape sequences for

pr ocessing during variable interpola-
tion pass, 162

matching, /i operator, 147
translation operators, using Unicode

tables, 407
case structure, 124
casting, strings and
cat command (Unix), 381
categories

of characters, 169
of functions, 680-681

cbr eak option, 718
C/C++ languages, static variables
centering, 238
/cg pattern modifier, 150
CGI

Perl modules for, 550, 870
managing HTML forms with CGI.pm,

878
CGI scripts

input, evaluating (Safe module), 579
taint mode, necessity of running under,

559
CGI::Apache module, 870
CGI::Carp module, 870, 879
CGI::Cookie module, 870
CGI::Fast module, 870
CGI::Pr etty module, 870
CGI::Push module, 870
character classes, 37, 165-176, 201, 983

confusing with array subscripts, 65
custom, 166
matching against character properties in

Unicode, 407
metasymbols used within, 162
Perl classic, 174
Perl shortcuts for, 167
POSIX-style, 174-176
pr edefined, availability of, 407
Unicode properties, 167-174
wildcard metasymbols and, 164

character semantics
ef fects of, 405

character sets
ordering and ranges of characters in,

156
portability of, 628
Unicode, 401-410

characters, 47, 201, 983
(see also patterns and character classes)
$[variable, 657
aliases for, 163
bytes vs., 402, 680
converting between fixed 8-bit and vari-

able-length UTF-8, 403
decomposition of, 170
deleting, 689
in formats, 758
getting ASCII values of, 755
getting from ASCII values, 692
getting from Unicode values, 692
hexadecimal (see hexadecimal charac-

ters)
length in, 736
metacharacters, 140
metasymbols, 166
octal (see octal characters)
in patterns, 140-142
pr operties, 173

defining your own, 173
(see also Unicode)

pr ototype, 227
replacing in strings, 156
single-character input, 718
wildcard matches for, 164
special, 201

char names pragma, 868
charts, generating, 234
chdir command

calling without argument, 503
chdir function, 688

pr ecedence and, 89
CHECK blocks, 465, 531

order of running, 481
checking

taint, 559
checksums, 821
chemistry

Perl modules for, 551
$CHILD_ERROR, 659
child processes, 826

ID, retur ning, 715

starting readable, 427
starting writable, 426
(see also processes)

chmod function, 19, 688
chomp function, 22, 689
chop function, 22, 690

(see also chomp function)
chown function, 691
chr function, 408, 692
chr oot function, 692
chr oot syscall, 577
circular refer ences, 266

br eaking, 331
overloading, avoiding in, 356

circumfix operator, 983
class methods, 308, 983

constructors as, 318
package names as invocants for, 311
Thr ead class, 450

Class::Contract module, 341
Class::Multimethods module, 325
Class::Struct module, 866, 879
classes, 289, 308, 983

base (see base classes)
data, managing for, 343-346

storing refer ences to class data in
object itself, 345

definitions of
object-oriented modules as, 299

functions dealing with, 681
generating with Class::Struct module,

336
implementing tie, 364
implementing tied filehandles, 384
implementing tied hashes, 378
inheritance among, 321-330

base module, 871
method autoloading, 328
overridden methods, accessing, 324
private methods, avoiding with, 329
UNIVERSAL class and, 326-328

@ISA array, including with base pragma,
323

modules vs., 289
objects, giving to, 317
package, 90, 813, 821
packages as, 310
pseudohash implementations of, 744

Index 1019

1020 Index

classes (cont’d)
quoting packages for, 316
scalar-tying, 366-370
version number, retur ning, 327

classes, Perl, 165
clearing hashes, 382
clients, networking, 983

getting name of, 442
clients, TCP, 439
cloisters, 186, 983
close function, 428, 693
closedir function, 694
close-on-exec flag, 675
closing server connections (half-close), 440
closing tied filehandles, 387
closur es, 132, 259-263, 983

assigning to glob to define subroutine,
297

cr eating, 217
as function templates, 261
generating accessor methods with, 338
nested subroutines, emulating with, 262
private objects, using for, 339-342
thr eads, 450

clustering in patterns, 185, 983
without capturing, reasons for, 185

cmp operator, 28, 789
code

ef ficiency of, 600
extracting and displaying with debugger,

513
insecur e, handling, 576-584

code masquerading as data, 581-584
safe compartments for, 577-581
safe examples, 579

mixing character semantics with byte
semantics, 404

reusing, 607
code generation, 466, 874
code generators, 476-478, 984

bytecode generator, 477
C code generators, 478

code subpatterns in regular expressions,
210

coder ef (see subroutine refer ences)
collating sequence, 984
combining character sequence

\X, matching with, 407

combining character sequence, matching
with \X, 165

comma (,) (see comma under Symbols)
command input operator (see backtick)
command interpreters, 486

quoting on Unix systems, 490
command line

calling Perl interpreter from, 18
Perl modules for editing, 550
modules for processing, 867
scr een appearance of, 520

command processing, 486-502
location of Perl, 491

command-line flags and switches (see
option processing)

commands
accessing under reduced privileges,

566-568
buf fering, 670, 984
debugger, 509-518

actions and, 514
br eakpoints, 511
documentation, viewing, 517
for display::display, 512
locating code, 513
options, manipulating, 517
quitting debugger, 516
restarting debugger, 516
stepping and running, 510
tracing, 512

hashes of functions, storing in, 282
history, debugger and, 507
for loop control, 120
names for, 16
in pod, 632
pr ocessing, 486
recalling, debugger option, 519

comments
definition, 49, 984
discarding before processing, 189
extending with /x pattern modifier, 148
multiline, 630
Perl vs. C syntax for, 589

comparing
files, 867
running time of alternate code versions,

874

strings, 100, 586
thr ead objects, 453

comparison operators, 27-28, 101
overloading, 354
sort function and, 789

compatibility decomposition, characters,
170

compilation, 530
order of, 484

compilation phase
pr ocessing Perl program, 531

compilation unit, 56, 984
compile phase vs. compile time, 467, 984
compiler, Perl, 660

backends for, 476
hints for, 664
modules related to, 549

compilers, 984
global declarations and, 127
regex compiler, 195

compilers, Perl
interpr eters, interaction with, 480-485
modules related to, 874

compile-time
contr olling debugger during, 509

compiling, 464-485
compiling your code, 467-473
embedded Perl program (in C), 539
life cycle of Perl programs, 465
life cycle, Perl programs

code generation phase, 466
compile phase, 465
parse tree reconstruction, 466

comp.lang.perl newsgroups, xxxi
complement (see negation)
complex data structures

cr eating in Perl, 268
repr esenting as scalars, 13

composite Unicode properties, 168
Compr ehensive Perl Archive Network (see

CPAN)
COMSPEC environment variable, 504
concatenation (.) operator, 23, 95, 598, 984

autogeneration via stringification han-
dler, 352

string constants, overloading, 360
condition variables, 459
conditional (?:) operator, 105, 125
conditional code execution, 27

conditional context (see Boolean context)
conditional statements, 114

without braces, writing, 113
(see also if statements; unless state-

ments)
conditionals

interpolation into patterns, 214
conditions, expressions in loops, 116
%Config hash, 539, 622
Config module, 873

operating system mapping between sig-
nal names and numbers, 414

configuration
Perl, for debugging, 494

configuration files
Perl modules for, 550

connect function, 694
connection, shutting down, 787
constant pragma, 295
constants, 295

inlining constant functions, 228
overloading, 359
Perl, loading fcntl.h definitions as, 869
System V IPC, defining for, 869

constructors, 248, 308, 317-321, 985
access checks, setting in, 341
bless function and, 317
class names or objects, working with,

319
inheritable, 318
initializers, 319
naming, 320
new method, 745
tied variable classes, 364

container classes holding pointers to self-
refer ential data structures, 331

context, 69-72, 985
Boolean context, 70
interpolative (double-quoted) context,

72
scalar and list context, 69
void, 71, 827
(see also list context; scalar context)

context stack, 474
continuation lines, 121, 663, 985
continue block, 115, 120-121

(see also loops)
continue command (in C), 589

Index 1021

1022 Index

contract between module and user, 302
contractions in words, avoiding confusion

with single quotes, 203
contr ol characters, 60

metasymbols in patterns, 163
non-ASCII on Macintosh, 491

contr ol structur es, 29-35
truth, defining, 29

contr ol variables, 118
Contr ol-A, 152
Contr ol-C, 61

signals, handler for, 413
Contr ol-C or Control-Z, generating signals

with, 412
Contr ol-D as end-of-file, 68, 618
Contr ol-Z as end-of-file, 68, 618
conversion operators

Boolean context, interpreting object in,
351

numification (nonnumeric variable con-
verted to number), 351

stringification, 351
converting

ASCII value to character, 692
between integers and UTF-8 characters,

408
between languages, 619
characters to ASCII values, 755
data types between C and Perl, 543
decimal numbers to binary, octal, or

hexadecimal, 797
hexadecimal numbers to decimal, 730
list values to strings, 733, 757
numbers to/from hexadecimal, 153
octal numbers to decimal, 746
strings to list values, 794, 819
time, 728, 738
Unicode value to character, 692

cookies (HTTP), setting and getting, 870
copy constructor, 357
copying filenames or filehandles, 867
copy-on-write semantics, 447
cor e dumps, 985

denial-of-service problems with pattern
matching, 583

dump function for, 703

signals triggering in C library, 413
Thr ead::Signal module, preventing with,

462
cor e files, 501
cor e modules, Perl, 549
CORE pseudopackage, 306, 324

CORE::GLOBAL pseudopackage, 306
cos (cosine) function, 694
counters

magical counter variables, 370
CPAN (Comprehensive Perl Archive Net-

work), 15, 289, 299, 547-556
CPAN.pm module as automated inter-

face to, 873, 881
installing modules with, 552
portability of, 627

modules
building, 552
categories of modules, 549
cr eating, 554-556
decompr essing and unpacking, 552
installing and building, 551
installing into Perl library, 553

modules directory, 549-551
subdir ectories, 547
tie modules on, 397-398

CPU
access in multitasking environment, 569
condition variables allowing threads to

relinquish, 459
CPU time, 816
CPU, yielding (threads), 454
cracker, 985
cr eation time (see modification time, file)
cr edit cards

Perl modules for, 551
CRLF, 622

in Internet programs, 443
(see also newlines)

crypt function, 695
cryptography, 800
$ctime file statistic, 801
curly braces (see braces under Symbols)
curr ent package, 985
Curses

Perl modules for, 550

customization
debugger, 518-521

debugger options, 519-521
editor support for, 518
functions for, 525
init files, using, 518

CV (internal code value), 985
Cwd module, 867

curr ent working directory for process,
deter mining, 881

D
-d (directory) file test operator, 28, 98
-d (debug) command-line switch, 493, 525
-D (debugging) command-line switch, 493
/d pattern modifier, 156-157
\d (digit) pattern metacharacter, 37
ˆD (Control-D) as end-of-file, 618
daemons

Perl modules for, 551
taint mode, importance of enabling for,

559
data

byte-oriented vs. character-oriented, 402
fixed-length, functions for, 680
insecur e handling, 558-568

code masquerading as data, 581-584
command and file access under

reduced privileges, 566-568
detecting and laundering tainted

data, 561-564
envir onment, cleaning up, 565

scr een dump, providing, 871
data access

thr eads, 454-463
condition variables, 459
deadlock, 457
locking methods, 459
locking subroutines, 457
synchr onizing with lock, 455
unlocking, 456

DATA filehandle, 660
data organization in Perl, 275
data structures, 268-287, 549, 985

arrays of hashes, 277-279
complex, repr esenting as scalars, 13
flat or linear in Perl, 242
hashes of arrays, 275-277
hashes of functions, 282

multidimensional hashes, 279-282
for objects, 317
objects (see objects)
persistent

pr oviding via tie, 398
records of elaborate, 283-286
refer ences to, 244
saving, 286
self-r efer ential, container classes holding

pointers to, 331
stringifying, 286

_ _DATA_ _ token, 68, 660
data types, 5, 985

built-in, 50-52
converting between C and Perl, 543
inter nal, Perl and C, 531
modules for, 866
scalars (see scalars)
TYPE declarations in Perl, 744
typeglobs, 78

Data::Dumper module, 286, 871, 882
databases

(see also DBI)
Perl connections to, 139
Perl modules for operating, 550
tying hash variables to, 363

datagrams, 438, 985
date function (see localtime function)
dates

Perl modules for, 549
dates, portability of, 627
DB_File module, 870

Data::Dumper module, using with, 882
DB module, 871

caller function, 688
DBD (Database drivers)

Perl modules for, 550
DBI (Database Interface)

Perl modules for, 550
DBM files, 985

complex data values, storing in, 882
dbmclose and dbmopen functions, 696
deleting from, 699
locking, 422
modules for, 870
portability of, 627
storing complex data values in, 397

dbmclose function, 363

Index 1023

1024 Index

dbmopen function, 363
use declarations with, 365

dbpr ofpp pr ogram, 526-528
deadlock in threads, 457
deallocating memory, 266
debugging, 493, 506-529, 559

backend modules for, 476
bug reports, xxxi
contr olling fr om pr ograms, 509
DB module, 871
debug level, setting through class or

instances, 344
debugger code, command for loading,

504
debugger customization, 518-521
debugger support, Perl, 523
debugger, unattended execution, 521
Devel::Peek module for XS programs,

871
global destruction of objects other refer-

ences, controlling, 505
overloading, 362
Perl debugger commands, 509-518
Perl, using C compiler -DDEBUGGING

option, 322
tur ning on in tied filehandle, 391
Unix security bugs, 569
(see also taint)

$DEBUGGING, 660
debugging flags, 660
decimal points, lining up, 235
declarations, 3, 111-138, 986

field with use fields pragma, S
for mats, 234
global, 127
global variables

lexically scoped, 133
methods

lvalues, indicating retur n of, 342
package, 14, 129, 290, 762
scoped, 129
structs, 336
subr outines, 127, 217, 804

without defining, 217
use declarations, 15
variables, 111, 130

declarative approach, regular expression
pr ogramming, 206

decomposing characters into simpler ones,
170

decompr essing CPAN modules, 552
decr ementing variables, 26, 986
decryption (see encryption)
default package, 129
DEFAULT pseudosignal, 414
defined function, 697
defining, 986

subr outines, 219
definitions

classes
object-oriented modules as, 299

subr outines
loading from other files, 128
loading with AUTOLOAD, 297

subr outines, declarations vs., 127
DEL in hexadecimal, 61
delete function, 699

tied arrays, not retur ning deleted value
for, 593

deleting
all debugger actions, 515
array elements, 764, 785, 793
br eakpoints, 511
characters, 689
dir ectories, 777, 819
files, 819
found but unreplaced characters, 156
hash elements, 699

delimiters, 986
patter n-matching operators and, 145

denial-of-service problems, security
concer ns with, 583

der efer ence operators, overloading, 356
der efer ence-addr ess operator (*), C

language, 110
der efer encing, 244, 251-253, 986

array elements, 271
hash values as functions, 283
operator for (see arrow operator)
typeglobs, 293
(see also refer ences)

derived classes, 309, 986
methods as wrappers around base class

methods, 324
descriptor (see file descriptor)

DESTROY method
sigtrap pragma and, 414

destr oying thr eads
detach method, 453
join method, 451

destruction of objects and other refer ences,
contr olling, 505

destructors, 330, 986
garbage collection with, 331
shar ed memory and semaphore, 437

detach method (in Thread module), 453
$dev file statistic, 801
Devel::DPr of module, 525, 871

pr ofiling subr outine execution with,
525-529

Devel::Peek module, 871
Devel::SelfStubber module, 873
Devel::SmallPr of module, 529
development support, modules for, 549
diagnostic messages (see error messages;

war ning messages)
diagnostics pragma, 871
die function, 700

exit function versus, 711
quit signal handling and, 413

digits, 37
in names, 55

dir ectives (pod), 632
dir ectories, 986

changing working, 688
closing, 694
cr eating, 741
cr eating or removing portably, 867
curr ent working, getting pathname of,

867
deleting, 777, 819
DirHandle module, 868
file test checks on trees, 867
functions dealing with, 681
handles, 755, 868, 986
IO::Dir module, 868
opendir function, 755
Perl modules for, 550
pr epending to @INC, 497
reading entries from, 770
rewinddir function, 777
root, redefining, 692
seekdir function, 780

disciplines, 753
filehandles, setting up with binmode,

685
division (see multiplicative operators)
DNS (domain name service), 438
do, 90

BLOCK, 112, 701
iterating, 123
ter minating, 123

FILE, 702
loop controls, 112, 123, 587
SUBROUTINE, 112, 703

doc directory (CPAN), official Perl
manpages, 547

documentation
books on Perl, xxviii
bug reports, xxxi
C library functions, 678
default system viewer, calling, 517
embedded in Perl programs, 629

(see also pod)
modules for, 872
Perl manpages, xxv
standard modules, 299

dollar sign ($) (see dollar sign under Sym-
bols)

dosish.h file, 489
. (dot) (see dot under Symbols)
double quotes, 7

strings, use in, 8
double-ended pipe, opening with tied file-

handle, 391
double-quote context, 72

scalar variables, expanding in, 152
double-quoted strings

interpolation and concatenation, 23
down method (in the Thread::Semaphor e

module), 462
DPr of (see Devel::Dprof module)
dump function, 703
Dumpvalue module, 871
duplicate replaced characters, eliminating,

156
dweomer, 986
dwimmer, 987
DynaLoader module, 298, 535, 873
dynamic linking, 534

C source code from Perl, 532

Index 1025

1026 Index

dynamic scoping, 129-131, 987
local operator, using on global variables,

135
patter n variables, 146, 152

E
-e (exists) file test, 98
-e (execute) command-line switch, 494
/e (evaluate) pattern modifier, 153, 209
each function, 281, 383, 703
editors

debugging, support for, 518
ef fective GID ($EFFECTIVE_GROUP_ID),

660
(see also the $) and $(variables)

ef fective UID ($EFFECTIVE_USER_ID), 661
(see also the $> and $< variables)

ef ficiency (see perfor mance)
pr ofiling, 525

elements in arrays, 9
elsif statements, 31
ellipses (. . .), 159
else statements, 31
emacs

-*- sequences, 488
editor support for debugger, 518
regular expressions, use of, 35

email (see mail)
embedding Perl, 538-544, 873, 987

adding Perl interpreter to C program,
539

compiling embedded programs, 539
evaluating Perl statements from C, 541
Perl interpreter program, 530
Perl stack, manipulating from C, 542

empty angle operator (<>), 21
empty subclass test, 321
encapsulation, 13, 255, 309, 987

namespace-based, 398
objects in closures, 339

encryption, 695
Perl modules for, 550, 870

_ _END_ _, 68, 618, 660
END blocks, 465

exit value of program, modifying, 483
order of running, 481
sigtrap pragma and, 414
skipping, 482

end of string, matching, 179

endgr ent function, 719
endhostent function, 721
ending (see terminating)
ending escape sequences for character

modification, 61
endless loop (see infinite loops)
endpr otoent function, 724
endpwent function, 725
endservent function, 726
English module, 238, 871
enqueue method (in the Thread module),

461
%ENV hash, 661

deleting from, 699
portability of, 625

Env module, 871
env program, starting Perl with, 488
envir onment, 987

cleaning up, 565
envir onment variables, 503-505, 661, 987

Env module, 871
modules, Perl use of, 505
PERL_DESTRUCT_LEVEL, 331
PERLDB_OPTS, setting debugger

options with, 522
portability of, 625
shells vs. Perl, 590
taint checking, 559

eof function, 32, 598, 704
tied filehandle, using on, 388

eq operator, 586
= (equal sign) assignment operator, (see

equal sign under Symbols)
equal method (in the Thread module), 453
erasing (see deleting)
err no, 987 (see also $OS_ERROR)
Err no module, 871
err or messages, 607, 916

user efficiency, improving with, 602
err ors, 713, 916

$@ variable for, 661
$! variable for, 669
$? variable for, 659
Carp module, 878
CGI::Carp module, handling of, 879
failed symbol exports, 305
insecur e data, 560
subr outines, 221

err ors (cont’d)
war n function, producing error mes-

sages, 827
writing to httpd or other CGI errors logs,

870
(see also STDERR filehandle)

ESC character, 61
escape sequences for control characters, 60
/etc/gr oup file, 599, 719
/etc/hosts file, 721
/etc/networks file, 722
/etc/passwd file, 599, 725
/etc/pr otocols file, 724
/etc/services file, 726
/etc/utmp file, 722
eval, 56
$EVAL_ERROR, 661
eval function, 90, 242, 594, 705

die function and, 700
loops and, 594
packages and, 292
in a sandbox (reval), 578
loop controls and, 123
thr eads, catching exceptions with, 452
translating with variables, 157

eval_sv and eval_pv functions, 541
exceptions, 987

in detached child threads, 453
die function and, 700
functions raising, 682
insecur e data, 560
intercepting, 673
modules for, 872
raising on failure, 871
raising to indicate subroutine errors, 221
thr eads, catching, 452
trapping, 705

$EXCEPTIONS_BEING_CAUGHT, 662
exclusive file locks, 419

obtaining, 421
exclusive or (xor) operator, 101, 109
exec function, 707, 987

filehandles, leaving open across calls,
424

list argument form, avoiding shell with,
582

portability of, 626
executable image file, 466
$EXECUTABLE_NAME, 662

executing
code, conditionally, 27
methods, 311-317
other programs from Perl, 811
Perl program, 18, 486

execution
code, order of, 484
Perl programs, 466
unattended, debugger, 521

execv function (in C), 708
execvp function (in C), 707
existence

of a file, 28, 98
of a hash entry (see exists function)
of a process, 415

exists function, 710
invoking on hash, 383

exit function, 711, 715
thr eads and, 451

exit status, 659
exiting

debugger, 520
if or unless blocks, 123
infinite loop, 117
once-thr ough blocks, 123
Perl debugger, 516
pr ograms, 3 (see also exit function)

exp function, 711
expansion, filename, 727
Expect module, 431, 551
explicit method invocations, 311
exponential notation, 59
exponentiation (**) operator, 92
exponentiation of integers, 543
@EXPOR T array, 662
@EXPOR T_OK array, 662
export_fail method, 305
%EXPOR T_TAGS hash, 662
export_to_level method, 304
Exporter module, 535, 873

module privacy and, 302-305
exporting symbols, 299, 301-302, 988

without using import method from
Exporter, 304

expr essions, 988
EXPR and LIST, 113
loops, separating with commas (,), 117
multiple, in loops, 116

Index 1027

1028 Index

expr essions (cont’d)
Perl, supplying in replacement strings,

207
EXPRs, 113

goto operator, use with, 126
$EXTENDED_OS_ERROR, 663
extending arrays, 76
extending Perl, 532-538

extensions, creating, 534-537, 871, 988
using functions from external C libraby,

538
XSUB input and output, 537
XSUBs and XS language, wrapping Perl

in, 533
exter nal subr outines

portability of, 626
extracting substrings, 805
ExtUtils::Command module, 873
ExtUtils::Embed module, 539, 873
ExtUtils::Install module, 873
ExtUtils::Installed module, 873
ExtUtils::Liblist module, 873
ExtUtils::MakeMaker, 554

(see also MakeMaker)
ExtUtils::MakeMaker module, 873
ExtUtils::Manifest module, 873
ExtUtils::Mkbootstrap module, 873
ExtUtils::Mksymlists module, 873
ExtUtils::MM_Cygwin module, 873
ExtUtils::MM_OS2 module, 873
ExtUtils::MM_Unix module, 873
ExtUtils::MM_VMS module, 873
ExtUtils::MM_Win32 module, 873
ExtUtils::Packlist module, 873
ExtUtils::testlib module, 873

F
-f (plain file) file test, 28, 98
-F (pattern to split on) command-line

switch, 493, 495
@F array, 663
$ˆF variable, 713
failed matches, searching past position of,

181
fallback overloading key, 358
false values, 7, 988
FAQ, Perl online, 585
Fast CGI protocol, 870
Fatal module, 871

fcntl function, 712
filehandle close-on exec flag,

manipulating, 424
security risks associated with, 575

Fcntl module, 869
field separator, specifying differ ent, 493,

988
%FIELDS hash, 663
fields pragma, 333-336, 871
FIFOs, 433, 988
file conversions

Perl modules for, 551
file descriptors, 713, 781

filehandles, passing with, 424
passing through environment variable or

command-line option, 425
retur ning for tied filehandles, 389

file test operators, 97-100
-p, checking for FIFO, 433
race conditions with, 571

_ _FILE_ _ token, 68, 618
File::Basename module, 624, 867
File::CheckTree module, 867
File::chmod module, 689
File::Compar e module, 867
File::Copy module, 867
File::DosGlob module, 867
File::Find module, 867
File::Glob module, 867
File::Path module, 867
File::Spec module, 624, 867
File::Spec::Functions module, 867
File::Spec::Mac module, 867
File::Spec::OS2 module, 867
File::Spec::Unix module, 867
File::Spec::VMS module, 867
File::Spec::Win32 module, 867
File::stat module, 867
File::Temp module

race conditions, dealing with, 575
file glob operator (see glob function)
FileHandle module, 238, 240, 868
filehandles, 20

angle operator and, 80
anonymous, 249
cr eating, 21
duplicating, reasons for, 752
ending with _TOP, 236, 664

filehandles (cont’d)
file locks on, 420
for mats associated with, default names

of, 234
functions dealing with, 681
implicit refer encing in, 244
indir ect, 748, 991
local, creating, 738
localizing, 79
names for, 54
object methods for, using, 868
open function, 747
passing, 227
passing in IPC, 423-426

thr ough standard filehandles, 423
piped, explicitly closing, 750
positioning file pointer for, 779
reading bytes of data from, 769
refer ences to, 249
selecting for output, 780
SelectSaver module, 868
syslog tying output to, 398
tying, 384-395

cr eative filehandles, 391
methods for, 385-395

typeglobs for, 78
use instead of filenames, security bene-

fits of, 572
filename globbing operator (see the glob

function)
filenames, 68, 988

& (ampersand) in, 752
changing name of, 773
expansions of, 727
exter nal data in, security risks of, 565
getting from symbolic links, 771
globbing, 626
%INC hash of, 664
linking symbolically, 806
linking with hard links, 736
mode, separating from, 748
renaming, 773
viewing differ ent pr ogram or eval state-

ment, 514
fileno function, 713 (see also file

descriptors)
files, 988

(see also filenames)
access and modification times, 801, 824

accessing under reduced privileges,
566-568

ages for, 100
changing name of, 773
closing, 693
cor e, 501
deleting, 819
descriptor, 988
do FILE operator, 702
end-of-file, 704
functions dealing with, 681
getting statistics of, 800
in interprocess communication, 418-426

locking mechanisms, 419
passing filehandles, 423-426

lexically scoped variables and, 57
modules, autoloading, 297
modules for cross-platfor m access

methods, 867
open function, 747
opening via low-level system call, 808
ownership and group, changing, 691
path components, separators for, 624
Perl module, housing in single, 289
Perl modules for, 550-551
per missions, 809, 817
portably opening, 625
read in binary mode, 685
reading via low-level system call, 810
renaming, 706, 773
retur ning curr ent position for, 813
scopes, 132
symbolically linking, 806
test operators, 28, 988
text/binary distinction, 753
truncating, 816
Win32API::File module, 875
writing via low-level system call, 812

filesystems, 988
portability problems caused by, 624

filtering output with forking open, 429
filters, source (see source filters)
find function, 36

traversing file trees like, 867
FindBin module, 873
findstr function, 35-36
fixed 8-bit chracters, 403
flags, 989 (see modifiers, switches)

Index 1029

1030 Index

floating-point numbers, 59, 761, 989
computer storage, order of, 623
Math::BigFloat module, 866
rand function, retur ning, 768

flock function, 369, 419, 714
alar ms and, 417

flow of program control, functions for, 681
flushing buffers automatically, 670
FMTEYEWTK, 989
fmt (Unix utility), 239
fonts, Perl modules for
footers, 240
for, 33, 112, 116

as an alias of foreach, 118
searching and replacing elements in

arrays, 154
for each loops, 33, 112, 118, 594

aliasing capability, using, 125
loop variable, Perl vs. shell program-

ming, 590
Perl versions, changes in, 593
searching and replacing elements in

arrays, 154
fork function, 428, 715, 753, 989

child processes, inheriting parent file-
handles, 423

cloned interpreter on Windows, 447
fork-open, 428, 751
locks, inheriting across calls to, 715
open command, two-argument form,

751
pipe open, avoiding shell in, 567
portability of, 626
servers, cloning themselves with, 442
zombie processes and, 415

for m feed, 663
for mal arguments, 659, 989
$FORMAT_FORMFEED, 663
$FORMAT_LINE_BREAK_CHARACTERS,

663
$FORMAT_LINES_LEFT, 663
$FORMAT_LINES_PER_PAGE, 663
$FORMAT_NAME, 664
$FORMAT_PAGE_NUMBER, 664
$FORMAT_TOP_NAME, 664
for mats, 234-241, 664, 989

accessing formatting internals, 240

argument lists for, evaluating in list con-
text, 592

B::Xr ef module, cross-r efer ences with C,
479

characters in, 758
declaring, 234, 716
fmt (Unix utility), 239
footers, 240
integers, 760
lexical variables in, 237
output accumulator, 717
pack/unpack, 757-762
for strings, 797-799
top-of-for m pr ocessing, 236
variables, 237

for mline function, 240, 717
Fortran, 49
fr ee-form languages, 49
fully-qualified names, 55
function templates

closur es as, 261
functions, 16, 89, 217, 677-830, 989

(see also subroutines and specific func-
tion names)

autoloading, 296-298, 328
built-in, listing by type, 872
by category, 680-681
byte-oriented wrappers for, 405
C library, 678
debugger, calling internal, 519
debugger customization, 525
default arguments, avoiding errors with,

588
generation of, 260
hashes of, 282
interpolating, 377
in list or scalar context, 679
modules, exporting to programs, 302
named unary operators, 95
names for, 606
operators and, 86
for overloading, 360
overriding, 306
Perl

platfor ms, varying across, 622
refer ences, using for both input and out-

put, 225
retur n operators in, 121

functions (cont’d)
retur ning tainted data, 682
signal-handling, 413
socket-r elated in Perl, 438
temporary filenames, generating, 574
Thr ead module, 450
Perl wrapping around C, 533

funny characters, 363, 989

G
-g (setgid) file test, 98
/g (global) pattern modifier, 150, 153
\G positional assertion, 151, 181
games

Perl modules for, 551
garbage collection, 266, 989

with DESTROY methods, 331
objects associated with tied variables,

370
GDBM (GNU DBM)

GDBM_File module, 870
locking files under, 422

ge operator, 28
generated patterns, 207
generators, Perl programs, 616-620

in other languages, 618
other languages in Perl, 617

getc function, 596, 718
in tied filehandles, 386

getgr ent function, 719
getgrgid function, 719
getgr nam function, 719
gethostbyaddr function

converting characters back into bytes,
403

gethost* functions, overriding built-in, 869
gethostbyaddr function, 720
gethostbyname function, 721
gethostent function, 721
getlogin function, 722
getnet* functions, overriding built-in, 869
getnetbyaddr function, 722
getnetbyname function, 722
getnetent function, 722
Getopt::Long module, 867
Getopt::Std module, 867
Getopts::* modules, 122
getpeer name function, 442, 723
getpgrp function, 723

getppid function, 723
getpriority function, 723
getpr oto* functions, overriding built-in, 869
getpr otobyname function, 724
getpr otobynumber function, 724
getpr otoent function, 724
getpwent function, 725
getpwnam function, 725
getpwuid function, 722, 726
getserv* functions, overriding built-in, 869
getservbyname function, 726
getservbyport function, 726
getservent function, 726
getsockname function, 727
getsockopt function, 727
$gid file statistic, 801
GID (group ID), 672, 691, 989

(see also the $(and $) variables)
assumed, 429
ef fective, 660
looking up files by, 719

GIFs, Perl modules for
Gimp, Perl modules for
glob function, 83, 84, 727, 989
global destruction, 990
global matching (see /g modifier)
global search and replace, 153
global (variables), 127, 130, 755, 990

contr olling use with strict pragma, 137
declaring, 133, 755
local operator, using on, 135
localizing, 737
package variables as, 290
pr edeclaring, vars module, 871
thr eads, accessing in, 454

globbing filenames, 83, 867
portability of, 626

glue language, Perl as, 20, 990
gmtime function, 728, 866
Gnome

Perl modules for, 550
goto function, 126, 297, 594, 729

Perl versions, changes in, 592
graphs

Perl modules for, 551
grave accents (see backticks)
gr eater than (>) operator, 100
gr eater than or equal (>=) operator, 100

Index 1031

1032 Index

gr eedy matching, 38, 177-178, 200, 990
tokens, 49

Gr eenwich Mean Time (GMT), 728
gr ep function, 35, 605, 730
gr ep utility, 36, 192, 990
gr oup ID (see GID)
gr ouping operator, 142, 159, 201

for expressions, 88
nesting of, 183

gr oups
names, 719
pr ocess

killing, 735
retur ning priority of, 723

pr ocesses, 414
functions dealing with, 681

users, 990
functions dealing with, 681
gr oup name, 719
members, login names, 719

gt operator, 28
Gtk

Perl modules for, 550
GUIs

Perl modules for, 550
using Perl/Tk, 602

guts, 530
GV (internal glob value), 531, 990

H
-h (help) command-line switch, 495
h2xs utility, 533-534, 554
hacker, 990
handlers, 990

overload, 348-349
as_string handler, 351
missing, 358

for signals, 413
handles, 6

dir ectories, 868
refer ences to, 249
tied, base class definitons for, 871

hard links
filenames, 736

hard refer ences, 90, 242, 245, 990
%SIG array, 413
using, 251-263

closur es, 259-263

hardwar e drivers, Perl modules for interact-
ing with, 549

hashes, 6, 8, 10, 51, 76-77, 990
anonymous

data structure for objects, 331
anonymous, refer ences to, 246

as object data structures::object, 317
of arrays

generating, 276
arrays of, 277-279

generating, 278
binding DBM files to, 696
cascading conditionals, using instead of,

126
of complex records, 285
deleting values from, 699
elements, giving temporary values to,

738
exists function and, 710
flat lookup tables, providing access to,

268
HV (hash value) typedef in C, 531
%INC for modules, 300
initializing with x operator, 94
instead of linear searches, 594
inverting, 776
keys, 10, 51, 76, 992

braces { }, enclosing in, 12
deleting, 378
finding number in, 78
module paths (in the %INC hash),

300
organizing and accessing data in, 275
pr oviding refer ences as, 871
retur ning with each function, 703
retur ning list of, 733
symbol tables, 293

key/value pairs, 10, 51, 76
capturing from string with m//g oper-

ator, 151
pr ecedence, 77

multidimensional, 279-282
accessing and printing, 281
generation of, 280

names for, 53
of arrays, 275-277

access and printing of, 276
output style, changing in debugger, 521

hashes (cont’d)
passing by refer ence into or out of func-

tions, 224
Perl data organization in, 275
printing out in sorted order, 118
pr ocessing, functions for, 680
refer ences as keys, 265
refer ences to, 244
restricted, implementing, 341
retur ning key/value pairs, 703
retur ning values of, 824
%SIG, refer ences to signal handlers, 412
symbol tables, 293-296

key/value pairs in, 293
typeglobs in, 293

taint in, 559
tying, 363, 378-384

methods for, S
Tie::Hash module, providing base

class definitions, 871
headers

for mat names, 240
her e documents, 66, 990

indentation of, 67
semicolon (;), omitting trailing, 586

hex function, 730
hexadecimal, 60, 730, 991

character numbers, specifying as, 164
converting numbers to, 153

hints, compiler, 664
history, command, 507
history of Perl, 645
home directory, 688, 991
home page, Perl, xxx
HOME variable, 503
hostnames

getting from network addresses, 720
Sys::Hostname module, 869
translating to addresses, 721-722

hosts file (see /etc/hosts file)
hosts (remote), checking for reachability,

869
household appliances

Perl modules for, 549
HTML

CGI module, generation of, 870
code, producing nicely formatted, 870
Perl modules for, 550
pod files, converting to, 872

HTTP (Hypertext Transfer Protocol)
cookies, setting and getting, 870
links, searching for, 36
Perl modules for, 550

hubris, 991
HV (internal hash value), 531, 991
- (hyphen)

- - (autodecr ement) operator, 26
hyphenating text, Perl module for, 550

I
-i (in-place editing) command-line switch,

495
-I (include path) command-line switch, 487,

497
/i (case insensitive) pattern modifier, 147,

150, 153
I18N::Collate module, 868
identifiers, 49, 55, 991

bar e, bar ewords vs., 65
ef fective UID or GID, setting back to

real, 566
ef fective user or group IDs, differing

fr om real, 558
enclosing in braces, 62
line-oriented quoting, 66
names vs., 55
Perl modules, 300
PIDs, guessing, 573
pr ocess gr oup ID, 414
pr ocesses (pid), 753
semaphor es, 783
shar ed memory segments, 786
single quotes (’) in, 60
starting with underscore (_), changes in

Perl versions, 591
thr ead IDs, 453
UIDs

translating to passwd file entries, 726
Unicode alphanumeric characters, con-

taining, 406
identifiers, package, 291

in package symbol table, 292
ideographic unary operators, 92
ideographs, 37

matching with \w, 407
idioms, Perl, 607-616

Index 1033

1034 Index

if statements, 27, 30, 112, 114
C language, differ ences fr om Perl, 589
in case structure, 124
logical operators and, 26

IGNORE pseudosignal, 414
impatience, 991
imperative programming style, 206
implicit method invocation, 311
implicit refer encing or derefer encing, 244
import method, 299, 304, 731, 991

overloading constants, 359
importing, 128, 302

(see also the Exporter module and
exporting symbols)

semantics into package, 822
subr outines fr om another module, 218
symbols from one package to another,

294
@INC array, 300, 664, 873

pr epending dir ectories to, 497
%INC hash, 300, 664
incr ementing variables, 26, 991
index function, 731, 991
indexes

hashes of arrays, adding to, 277
indir ect filehandles, 748, 991
indir ect objects, 313, 561, 991

ambiguities in, 314-317
indir ection, 58, 242, 991

between class use and implementation,
311

inequality (see equality operators; relational
operators)

inet_ntoa function, 720
infinite loops, 117
infix derefer ence operator (see arrow

operator)
infix operators, 22, 992
inheritance, 309, 992

base class, establishing at compile time,
871

class, 290, 321-330
single or multiple, 322

class accessors, 345
constructors, 318
inheritance, reuse through, 290
thr ough @ISA array, 322
modules, from Exporter class, 303
overloading and, 361

pseudohash implementation and, 335
restricted access and, 341

INIT blocks, 465
initializing variables before calling sub-

routine, 223
order of running, 481, 484

init program, 723
initial caps (see capitalization)
initialization

debugger, customizing with init files,
518

expr essions, 116
initializing

arrays and hash slices, 94
hash variables, 77
objects, 319
variables before calling subroutines, 223

inlining constant functions, 228
pr eventing inlining, 229

$ino file statistic, 801
inplace editing ($ˆI, $INPLACE_EDIT), 495,

665
input, 713

checking file descriptors for, 781
debugger, setting, 522
files, locating end with eof, 496
files, open mode for, 749
functions dealing with, 680
ioctl function, 732
operators, 79
pipes, 426-434

bidir ectional, 430
multistage pipelines, 427
tridir ectional, 431

record separator (see the $/ variable)
single-character, buf fered and

unbuf fered, 718
XSUBs, 537
(see also STDIN filehandle)

input filehandles, 20 (see also STDIN;
@ARGV)

$INPUT_LINE_NUMBER, 665
$INPUT_RECORD_SEPARATOR, 666
insecur e dependency errors, 560
installation

modules, CPAN, 551
into Perl library::Perl library, 553

modules supporting, 873

installed modules, inventory of, 873
instance data, 319, 331-342, 992

generating accessors with autoloading,
337

generating accessors with closures, 338
generating classes with Class::Struct, 336
new features, Perl 5.6, 342
separate functions, writing for each, 332
using closures for private objects,

339-342
instance methods, 308

object refer ences as invocants for, 311
instances, 308, 992
int function, 731
integers, 731, 760, 992

computer storage, order of, 623
converting to UTF-8 characters, 408
exponentiation, 543
for mats, 760, 798
IV typedef in C, 531
Math::BigInt module, 347
standard modules for arithmetic with,

866
strings as vectors of, 825

intercept signals, handlers to, 413
inter faces, 309, 992

byte vs. character semantics in, 404
inter nal variable names, Perl, 55
inter nationalization, 47, 628

Perl modules for, 550, 868
textual data, with Unicode, 401

Inter net pr otocols
Perl modules for, 549

Inter net services, CPAN modules for, 439
Inter net TCP clients/servers, 439
interpolating variables, 7

patter n matching, controlling with,
190-195

interpolation, 992
double quote, 143
array variables, 65
backr efer ence variables, 41
conditionals into patterns, 214
double-quoted strings, 23
functions, 377
glob operator, using for, 85
list, 73
match-time pattern interpolation, 213
scalar values, 60

characters into double-quoted strings,
60

variables
into patterns, 144

variables, in double-quoted strings, 62
interpolative context, 72
interpr eter, Perl, 18, 473, 475, 992

accessing from C, 538
adding to C program, 539
applications embedding, 476
compiler, interaction with, 480-485
multiple, running, 475
persistent, 539

interpr eters, 5
object destruction at shutdown, 331
thr eads, 447

interpr eters, Perl
invoking with #! (shebang) line, 487

interpr ocess communication
(see also System V IPC)
bidir ectional communication, 430-432
pipes, 426-434

interrupt signals, handler for, 413
intersection of sets, 224
ints, 760
inverting arrays and hashes, 776
invocant, 311, 992
invoking (see executing)
IO module, 551, 868
IO::Dir module, 868
IO::File module, 868
IO::Handle module, 868
IO::* modules, 551, 868
IO::Pipe module, 868
IO::Poll module, 868
IO::Pty module, 431
IO::Seekable module, 868
IO::Select module, 868
IO::Socket module, 438, 869
IO::Socket::INET module, 439, 869
IO::Socket::UNIX module, 869
ioctl function, 732
IP addresses

network names and, 722
using v-string notation for, 720
UTF-8 repr esentation of, 403

IP (Internet Protocol), 438

Index 1035

1036 Index

IPC (interprocess communication), 411-445
between processes on same machine,

412
modules for, 868-869
portability and, 626
signals, 412-418

IPC::Msg module, 869
IPC::Open2, 538
IPC::Open2 module, 869
IPC::Open3, 538
IPC::Open3 module, 869
IPC::Semaphor e module, 869
IPC::Shar eable module, 435
IPC::SysV module, 869
irr egular files, 29
@ISA array, 321, 667, 992

inheritance through, 322
isa method (in package UNIVERSAL), 326
iteration (see loops)
iterative operator, overloading, 355
iterative statements, 32

for loops, 33
for each statement, 33
until statements, 32
while loops, 32

ithr eads, 447
Perl API to, 475

itimer routines, 683
IV (internal integer value), 531, 992

J
JAPH, 992
Java

Perl modules for, 549
join function, 733
join method (in the Thread module), 451

catching exceptions from, 452
jumpenv stack, 474
justification, 235

K
-k (sticky) file test, 98
ker nels

autor eaping zombies on, 415
generating signals, 412
signal reliability on, 416
thr eads and, 448
Unix, set-id script bug in, 569

key mapping, pseudohashes, 334
keyboard sequences, generating signals

with, 412
keys function, 11, 43, 78, 383, 733
keys, hash (see hash keys)
kill function, 412, 414, 734

Micr osoft systems and, 415

L
-l (automatic line ending) command-line

switch, 497
-l (symbolic link) file test, 98
labels, 113, 120, 993

with goto statement, 126, 729
with loops, 115, 120, 605
names for, 54
packages and, 291

language extensions, Perl modules for, 549
languages

checking characters for, 171
natural vs. artificial, 4
translating, 619

last operator, 34, 117, 120-121, 125, 597,
605, 735

used in a do { } while, 123
$LAST_PAREN_MATCH, 668
laziness, 993
lc function, 736
lcfirst function, 736
le operator, 28
left justification, 239
leftmost longest matching, 178, 993
left-shift (<<) operator, 95, 993
length

of arrays, 76
function, 736

byte-oriented wrapper for, 405
of matched string, 178, 667
of strings, 596

less pragma, 871
less than (<) operator, 100
less than or equal (<=) operator, 100
lexer, 468

(see also lexical analysis)
lexical analysis, 531

in the Perl compiler, 468
lexical scopes, 53, 132, 993

package variables, searching for, 57

lexical scopes (cont’d)
pragmas and, 136
variables attached to, 56

lexical variables, 130, 237, 743, 993
accessing from functions, 222
file-scoped, storing anonymous subrou-

tine in, 329
in functions or files, showing, 874
persistence across function calls, 223
recursive lexical pad stack, 474
symbolic refer ences and, 264
thr eads, accessing in, 454

lexical warnings, 872
${ˆWARNING_BITS}, 676

lexically scoped declarations, 129
lib pragma, 300, 873
libraries, 993

C/C++, loading as Perl extensions, 873
extensions, uninstalled version from

MakeMaker, 873
ExtUtils::Liblist module, 873
math library, C, 538
Perl, installing modules into, 553
Perl library files, searching for, 503

life cycle, Perl programs, 465
code generation phase, 466
compilation phase, 465
execution phase, 466
parse tree reconstruction, 466

LIFO, 993
#line directive, 618
_ _LINE_ _ token, 68, 618
line input operators (see angle operator)
line numbers, 68, 993

of input file, 618, 665 (see also $. vari-
able)

line reading operator, 21
line separator character, 49
line terminators

Inter net pr ograms, 443
line-end processing, automatic, 497
line-oriented quoting, 66
lines, 993

boundary assertions, 179
link function, 736
links, 993

(see also symbolic links)
HTTP, searching for, 36

lint (C program verifier), 479

list context, 41-44, 69, 994
angle operator in, 81
backslash operator, supplying, 258
comma operator in, 108
conditional operator in, 105
evaluating expressions in (debugger),

512
forcing scalar context instead, 778
for each statements, providing, 34
functions in, 679
hash variables, using in, 77
hashes in, 11
list assignment in, 108
lvalues in, 131
m// (match) operator in, 150
m//g, listing all matches found, 150
operations behaving differ ently in, 588
range (..) operator in, 103
recognizing in debugger, 508
subr outines, calling and evaluating in,

219
list operators, 86, 89, 109, 994

unary operators, distinguishing from, 96
$LIST_SEPARATOR, 668
listen function, 737
listing code, 513
lists, 8, 42, 72, 113, 993

(see also arrays)
arrays vs., 72-76
assignment, 75
chopping, 690
converting to scalars, 12
flattening, 677
as function arguments, 677
interpolation, 73
map function and, 740
nested, 268
null, 73
order ed, data records in arrays, 275
pr ocessing, functions for, 680
replicating with x operator, 94
retur ning elements in reverse order, 776
scalars, subroutine retur n and parameter

values, 219
sorting, 789
syscall function with, 806

literals, 140, 994
pseudoliterals (see input operators)

Index 1037

1038 Index

literals (cont’d)
numeric (see numeric literals)
string (see string literals)
UTF-8, enabling use in, 406

little-endian, 623, 994
loading data structures, 285
local

filehandles, 79
signal handler assignment, 414
variables, 130, 737

my declarations, using for, 588
local declaration, 130, 132, 737

common programming errors with, 587
global variables, using on, 135
my declaration, using instead of, 588

locales
decimal points in formats, 235
declarations, string comparisons and,

100
modules and pragmas for, 550, 868
Perl character class shortcuts and, 167
Unicode and, 736
use locale pragma with POSIX character

classes, 175
localization, 550

(see also locale)
localized values, saving, 474
localtime function, 738, 866, 869
lock function, 739

data access control in threads, 455
refer ence as argument for, 244

locked attribute (subroutines), 231, 342,
457-458

locking files, 419
DBM files, 422, 697
dissolving locks by closing files, 420
flock function, 714
shar ed and exclusive locks, 419

locking methods, 459
log (logarithm) function, 739
LOGDIR variable, 503
logfiles

Perl modules for, 551
logical operators, 26, 102, 109, 994

and (&&) operator, 102
negation (!) operator, 92
or (||) operator, 102, 189

use with list operators, 128
overloading, 352

pr ecedence
&& vs. and, || vs. or, 314

separation, parent and child processes,
447

login names
functions dealing with, 681
getgr ent function, 719
getgrgid function, retur ning, 719
getgr nam function, retur ning, 719
getlogin function for, 722

long longs, 760
longs, 760
lookahead, 202
lookar ound, 202
lookbehind, 202
loops, 32, 115-123, 587, 605, 994

(see also loops)
comments and blank lines, discarding

befor e pr ocessing, 189
contr ol operators for

statements vs., 122
eval function within, 594
extracting slices, multidimensional

arrays, 272
for loops, 33
for each loops, 33
infinite, 117
iteration through, 117
labels for, 120
last operator, 34, 117, 735
next operator, 34, 745
redo operator and, 772
reset function and, 775
s/// (substitution) operator, using on

arrays, 154
using for, 116
using in (global substitutions), 155
using until, 115
using while, 32, 115
\G assertion, using in, 181

lowercase, converting to, 61
lstat function, 740, 867

(see also stat function)
lt operator, 28
lvalues, 51, 53, 994

assignment operators and, 107
lvalue attribute for subroutines, 231-232

lvalues (cont’d)
methods, declaring to indicate retur n of,

342
modifiers and, 131
operators and, 24-25
patter n-matching operators, use on, 145

M
-m (use module) command-line switch, 498
-M (use module) command-line switch, 498
-M (modification age) file test, 100
/m pattern modifier, 147, 150, 153
m// (match) operator, 72, 140, 149-152,

514, 587, 740
double quote interpolation, providing,

143
modifiers for, 147, 150
pos function and, 765
=˜ (binding) operator, using with, 144

m//g operator
Perl versions, changes in, 592

m?? (match) operator, 152, 514
reset function and, 775

Macintosh operating system
command-line interface in versions, 18
File::Spec::Mac module, 867
invoking Perl application on, 489
quoting on, 491

magic, 994
magical autodecrement and autoincrement,

91, 104, 353, 370
mail

Perl modules for, 551
sending, portability and, 626

main package, 57, 290
Makefile, creating for Perl extension, 873
Makefile.PL, 534, 551, 554
MakeMaker, 554
malloc

err ors, 668
PERL_DEBUG_MSTATS envir onment

variable, using with, 504
man command, xxv, 299, 517 (see also

perldoc)
MANIFEST file, 534, 873
manpages, xxv, 995

CPAN doc subdirectory, containing, 547
Pod::Man module, 872

map function, 43, 605, 740

mapping keys, pseudohashes, 334
marshalling modules, 882
$MATCH, 669
match (??) operator

reset function and, 775
match operator (see m// operator)
matching (see patterns)
matching patterns, 139-216

(see also patterns)
match-time pattern interpolation, 213
math

Perl modules for, 549
math library, C language, 538
Math::BigFloat module, 866
Math::BigInt module, 347, 866
Math::Complex module, 866
Math::Trig module, 866
mathematical functions, overloading, 355
mathematical operators, 22, 86
maximal matching, 159, 177
maximum and minimum item matches,

specifying, 38
member data, 319
memory, 995

ef ficiency of, 599
garbage collection, 266
shar ed memory segment ID, 786
shar ed, System V IPC, 434

contr olled access to, 435
statistics on, displaying, 504

memory errors, 668
memory management

destructors and, 330
message digests

Perl modules for, 550
messages

functions for, 741
IPC::Msg module, 869
passing with UDP, 443
printing on entry and exit from

subr outines, 520
receiving on sockets, 772
scripts embedded in, 502
sending on sockets, 784
System V IPC, 434

metacharacters, 140, 599, 995
escaping with backslash (\), 158
escaping with quotemeta, 768

Index 1039

1040 Index

metacharacters (cont’d)
in exec arguments, 707
in patterns, 158-165
shell, in pipe commands, 750
structural, 141

metasymbols, 995
alphanumeric, in patterns, 161
extension syntax for, 160
in patterns, 158-165

method attribute (in subroutines), 231, 342
Method (in the overload pragma), 360
methods, 255, 308, 995

adding to an existing class, 325
array-tying, 373-377
autoloading, 328
called by tied variables, 365
class data, working like accessors, 344
classes implementing tied arrays, 372
classes implementing tied filehandles,

384
classes implementing tied hashes, 378
declarations

lvalues, indicating retur n of, 342
hash-tying, 378-383
invoking, 311-317

explicitly or implicitly, 311
subr outine calls vs., 318
using arrow operator, 312
using indirect objects, 313-317

names for, 606
object methods

locking, 459
overriding, 324
Perl classes inheritance of, 331
private methods, ignoring inheritance

with, 329
refer ences to, 261
searching for

class inheritance, 322
inheritance through @ISA array, 322

subr outines as, 310
subr outines vs., 217, 312
Thr ead class, 450
tying scalars, 366-370
UNIVERSAL class, 326

adding to, 327

Micr osoft Windows
ActiveState Perl distribution, installing,

490
CPAN modules, installing on, 552
File::Spec::Win32 module, 867
file globbing, File::DosGlob module, 867
fork operation, cloning interpreter

objects, 447
modules for, 875
Perl modules for, 551
porting information (perlwin32), 412
registry, manipulating, 398
shell, setting alternative for Perl use, 504
signal number 0 on, 415
system calls using wide-character APIs,

404
Windows NT, quoting on, 491

MIDI
Perl modules for, 551

MIME
Perl modules for, 550

minimal matching, 39, 159, 177
minus (-) operator, 92
miscellaneous functions, 681
mkdir function, 741
mkfifo function, 433
MLDBM module, 397

Data::Dumper module, using with, 882
mmap syscall, 434
mod_perl module, 475, 539
$mode file statistic, 801
modems

Perl modules for, 549
modes, opening files in, 748
modification time, file, 801, 824
modifiers

patter n, 147-149
cloister ed, 186
with m// (match) operator, 150
with s/// (substitution) operator, 153
with tr/// (transliteration) operator,

156
statements

quantifiers vs., 142
simple, 112

modules, xx, 14, 289, 296, 299-307, 995
(see also packages)
backend, 476
built-in functions, overriding, 306
class system and, 323
classes, storing in for privacy, 329
classes vs., 289
CPAN, 15, 549-551

building, 552
categories of, 549
cr eating, 554-556
decompr essing and unpacking, 552
dir ectory for, 548
installing into Perl library, 553
mail, sending, 626
making available to programs, 551
portability of, 627
storing in, 289

cr eating, 301-305
privacy and the Exporter, 302-305
symbol exportation, preventing, 305
version checking, 305

exporting names to other modules, 731
functions dealing with, 681
importing, 873
names for, 605
splitting into separate files, 297
standard, 865-915

base classes and convenience, 871
command-line processing, 867
DBM file management libraries, load-

ing, 870
development support, 874
documentation support, 872
files, cross-platfor m methods of

access, 867
for data types::data, 866
inter nationalization and locales, 868
module installation support, 873
networking and interprocess

communication, 869
object-oriented file, directory, and

IPC access, 868
operating system interfaces,

manipulating, 869
Perl compiler and code generator,

874

Perl language extensions and
exter nals, 871

security, dealing with, 870
text, manipulating with, 866
user interfaces, providing, 870
war nings and exceptions, 872

testing, 534, 537, 555
thr ead modules, 461
thr ead safety and, 449
tie modules on CPAN, 397-398
user-defined, capitalization in names, 55

modulus (%) operator, 94, 995
mor e than sign (see right angle bracket,

under Symbols)
mortgages

Perl modules for, 551
MS-DOS operating system

invoking Perl applications on, 489
msgctl function, 741
msgget function, 742
msgrcv function, 742
msgsnd function, 742
$mtime file statistic, 801
mulitple inheritance

SUPER pseudopackage, working with,
325

multidimensional arrays, 13, 268-275, 995
multidimensional hashes, 279-282

accessing and printing, 281
generation of, 280

multiple inheritance, 322, 995
AUTOLOAD subroutine and, 328
methods, invoking overridden base

class, 327
multiplication, 23

strings, repeat operator, 23
multiplicative operators, 23, 94
multipr ocessing

pr ocessor access, unpredictability of,
569

thr ead model, 448-463
multithr eading, 446
mutators, copying and, 357
my function, 56, 111, 119, 130, 132, 742

closur es and, 259
context rules and, 69
local, using instead of, 588
local vs., 136

Index 1041

1042 Index

N
-n (loop) command-line switch, 498
\n, 3, 622 (see also newlines)
\NNN metasymbol, 163
named

characters, 61
metasymbol for, 164
inserting, 406

pipes, 433, 995
unary operators, 85, 95-97

listing of, 95
names, 53-58

arrays, 53
attributes, subroutines, 231
capitalization conventions, 54
classes, distinguishing from subroutines,

316
commands, 16
constructors, 320
file (see filenames)
for mat (see format names)
for mats associated with filehandles, 234
functions, 16
getting from network addresses, 720
gr oup names, 719
hashes, 53
hashes, storing in, 9
hostnames, translating to network

addr esses, 721
identifiers vs., 55
labels and filehandles, 54
login (see login names)
lookups of, 56-58
methods, tied variables, 365
modules, 300

capitalization in, 300
modules/packages, 605
network addresses, getting from, 722
packages, 292
parameters, not requiring, 220
ports, getting from number, 726
pr ogram (see $0 variable)
pr otocols, getting from port numbers,

726
pr otocols, translating to/from numbers,

724
scope, confining to, 130
signals, 414
subr outines, 218

capitalization in, 218
symbol tables, 293
temporary files, generating, 574
translating to network addresses, 722
typeglobs, 78
user (see usernames)
variable, 5, 52, 605

namespaces, 53, 995
(see also packages)
access, restricting with Safe module, 577
encapsulation based on, 398
for packages, 14
modules and, 302

naming
socket, 684

natural languages, 4
envir onment variables controlling Perl

handling of, 503
NDBM_File module, 870
ne operator, 586
negation

arithmetic (-)operator, 92
bitwise (˜) operator, 92
character classes, 166-167
logical (!) operator, 92
of character class, 38
POSIX character classes, 175

negation operator (!), overloading, 352
negative array subscripts, counting from

end of array, 592
negative lookahead assertions, 199, 203
negative subscripts in Perl, 51
nested

arrays, 268-275
data structures, 13, 512
destruction, 330
lists, 268
nested subroutines, 262

Net::hostent module, 721, 869
Class::Struct, using to create objects and

accessors, 880
Net::netent module, 722, 869
Net::Ping module, 869
Net::pr oto module, 724
Net::pr otoent module, 869
Net::servent module, 869
netnews (see Usenet)

networking
clients, 439
modules for, 869
modules implementing network proto-

cols, 549
network addresses, 996

translating to names, 722
network addresses, translating into

names, 720
network information, functions for

retrieving, 681
servers, 441-443
services, Perl module for interacting

with, 551
Win32 network modules, 875

networking modules, 439
networks file (see /etc/networks file)
new method, 450, 745
newlines, 49, 996

blank lines, truth values and, 32
chomp function, deleting with, 689
dot (.) metacharacter, matching, 164
in filenames, security risks of, 566
Perl program portability and, 622
removing, 22
in string literals, 61
strings containing, matches against, 147

newsgr oups (see Usenet)
next operator, 34, 115, 120-121, 745

in a do { } while, 123, 589
exiting once-through blocks with, 123
next if construct, 595

NFA (nondeter ministic finite-state
automaton), 197

NFS (network filesystems), 996
limitations of, 437

$nlink file statistic, 801
no declarations, 127, 136, 301, 371, 746

(see also pragmas)
nomethod overloading key, 358
nonbacktracking subpatterns, 204
nondeter ministic finite-state automaton

(NFA), 197
noninteractive mode, putting debugger in,

522
not (!) operator, 92
not equal to (!=) operator, 101
notational convenience, tied arrays, 377
nouns, 5

packages, handling of, 15
novice programmers, common mistakes of,

585-593
null

filehandle, angle operator and, 82
list, 73, 76
values, 7, 996

null device, Unix, 394
number width, 623
number ed variables, 657
numbers, 5

arrays, storing in, 9
bitwise operators, working with, 101
command (see command history,

debugger and)
commas, inserting into, 238
comparison operators for, 27
converting nonnumeric variables to, 351
\d (pattern metacharacter), 37
digits in names, 55
functions dealing with, 680
hexadecimal, 153, 730
justifying by decimal point, 235
large, underscore and, 60
of lines, (see _ _LINE_ _ token)
octal, 746
for pages, 664
ports, getting protocol names for, 726
pr otocol, 724
random, 768, 800
strings, converting to, 59
truncating with int, 731
truth values of, 30
typing in Perl, 59
width of, 623

numeric context, 70, 996
numeric literals, 59
NV (internal double value), 531, 996

O
-o (effective UID) file test, 98
-O (real UID) file test, 98
/o (once-only) pattern modifier, 147-148,

150, 153, 191
O module, 476, 479, 874
object methods

locking, 459
Thr ead objects, 450

Index 1043

1044 Index

object-oriented modules, 299
method calls, allowing, 301

object-oriented programming, 289, 308
abstraction in, 311
modules for file, directory, and IPC

access, 868
Perl modules for, 549
portable filename operations, 867
refer ences in Perl, emulating, 290

objects, 13, 308-346, 996
blessing, 90, 686
class data, managing, 343-346
classes, 289
constructors, 317-321

inheritable, 318
initializers, 319

destruction of (global), controlling, 505
functions dealing with, 681
indir ect, 991
inheritance

thr ough @ISA array, 322
instance data, managing, 331-336

generating accessors with closures,
338

generating accessors with
autoloading, 337

generating classes with Class::Struct,
336

new features, Perl 5.6, 342
private objects, using closures for,

339-342
instance destructors, 330

garbage collection with, 331
methods, 255
methods, refer ences to, 261

(see also closures)
Perl object system, S
refer ences to, in scalars, 7
storing within other objects vs.

inheritance, 331
stringifying, 258
tied variables, underlying, 364

br eaking refer ence to, 396
oct function, 60, 746
octal numbers, 60, 746, 996

characters, repr esenting, 163, 402
specifying $/ as, 492

octets (see bytes)

of fsets, 996
for m// successes, 765
read function and, 769
seek function, 779

OLE
Perl modules for, 551

one-liners, 19, 996
OOP (see object-oriented programming)
Opcode module, 870
opcodes, 468, 473, 531
open function, 21, 428, 747

$. and, 693
converting file descriptor to filehandle,

425
fileno function and, 713
fork-open, 428, 751
modes in three-argument form, 748
piped

list argument form, avoiding shell
with, 582

two-argument form, 751
for pipes, security risks posed by, 565
pipes, opening with, 426
portability of, 626

open source software, 996
Open2, Open3 modules, 431
opendir function, 755
opening

files via low-level system call, 808
sockets, 788

operand stack, 474
operating system, xvii, 996
operating systems

#! technique, simulating on non-Unix
systems, 489

command interpreters (see command
interpr eters)

flock support on, 419
fork operator, support for, 426
GUIs, relying on, 625
inter faces to, manipulating, 869
invoking interpreters with #! line, 487
module names, translating to directory

names, 300
name of, 669
newlines, variations in, 622
Perl interpreter, starting on, 18
Perl modules for, 549

operating systems (cont’d)
Perl program portability, 548, 621-628
signal reliability on, 416
signals and default behaviors of, 414
sockets, support for, 439
thr eading libraries, 449

operators, 22, 86-110, 996
access, restricting with Safe module, 579
assignment operators, 24-25
associativity of, 86
C language, missing in Perl, 110
logical operators, 26
matching and substitution, 140
overloadable, 350-356, 996

arithmetic operators, 352
assignment operators, 353
bitwise operators, 353
circular refer ences, pr oblems with,

356
comparison operators, 354
conversion operators, 351
der efer ence operators, 356
iterative operator, 355
logical negation operator, 352

overloading, 88, 347-362, 866
patter n-matching, 143-157

modifiers for, 147-149
positions or lengths, switching to char-

acter positions, 408
pr ecedence of, 23, 86

C precedence, retaining in Perl, 88
quotes, syntactic similarity to, 8
quoting operators, 63
scalar context, supplying to parameters,

7
string operators, 23
verbs as, 16

operators
for loop control, 120

ops pragma, 870
optimizing

in the Perl compiler, 468
per formance and, 594

option processing
Perl modules for, 550, 867

options (see modifiers, switches)
or operator, 27, 102, 103, 109, 189, 606

| (bitwise), 101
list operators, use with, 128

pr ecedence, or vs. ||, 314
ord function, 408, 755
order (see precedence)

of function precedence, 677
$OS_ERROR, 669
OS/2 operating system

File::Spec::OS2 module, 867
invoking Perl applications on, 489

ODBC
Perl modules for, 551

$OSNAME, 669 (see $ˆO variable)
our declarations, 56, 111, 130, 132, 755

context rules and, 69
global variables, lexically scoped, 133

out of memory errors, 668
output, 20-21, 713

(see also STDOUT filehandle)
array and hash, changing style (debug-

ger), 521
checking file descriptors for, 781
debugger, setting, 522
field separator (see $, variable)
files, open mode for, 749
for mat output accumulator, 717
functions dealing with, 680
ioctl function, 732
pipes, 426-434

bidir ectional, 430
filtering, 429
STDOUT as pipe to another program,

427
tridir ectional, 431

record formats, declaring, 234
record separator (see $\ variable)
selecting filehandles for, 780
XSUBs, 537

$OUTPUT_AUTOFLUSH, 670
$OUTPUT_FIELD_SEPARATOR, 670
$OUTPUT_RECORD_SEPARATOR, 670
overload handlers, 349
Overloaded (method in the overload

pragma), 360
overloaded string constants, translating text

with, 215
overloading, 69, 88, 347-362, 997

autogeneration of, 352
circular refer ences, avoiding, 356
constants, 359

Index 1045

1046 Index

overloading (cont’d)
copy constructor (=), 357
diagnostics, 362
functions for, 360
inheritance and, 361
mathematical functions, 355
nonmethod and fallback, 358
overload pragma, 348, 866
overloadable operators, 350-356
at run time, 361
sorting and, 354
stringifying, 390

overridden methods
base class, invoking all, 327

overriding, 997
base class methods, 324
functions, 306

overwriting existing files, race conditions
and, 572

ownership, file, 691, 997

P
-p (named pipe) file test, 97, 433
-p (print while looping) command-line

switch, 499
-P (C prepr ocessor) command-line switch,

499
\p (matches property), 407
\P (doesn’t match property), 407
pack function, 623, 757-762

template characters for, 758
unpack function

Unicode characters and, 408
package declaration, 129, 290, 762
package variables, 55, 57

declaring, 755
storing class data in, 343
thr eads, no protection in, 454
wrapping declaration in block scope,

344
packages, 14, 53, 55, 288-298, 997

(see also modules)
adding methods to existing, 326
binding variables to, 821
bless function arguments, 317
blessing objects into, 686
delimiters for, 291
identifiers, 291
importing semantics to, 822

in @ISA array, inheritance through, 322
methods and subroutines, resolving for,

312
names for, 65, 605
quoting, 316
splitting for autoloading, 873
symbol tables, 293-296, 521
tying variables to, 813

packed sockaddr, 723
pads, 53
page numbers, 664
pager option (debugger), 519
pages, 664
PalmPilot

Perl modules for, 549
paragraph mode, 492, 666
paragraph separator character, 49
parameters

scalar context, providing for, 7
subr outines

changing in place, 220
working with, 220

par ent classes, 309
par ent pr ocesses (see processes)
() (par entheses) (see parentheses under

Symbols)
parse trees, 465, 468

inter nal, keeping, 476
original, reconstituting and splicing into

curr ent parse tree, 478
reconstruction of, 466

parsing, 531, 997
double-quote interpolation and regular

expr essions, 143
in the Perl compiler, 468
text, Perl modules for, 550

passing by refer ence, 219
pr ototypes declaring function calls as,

244
passing by value, copying @_ values to my

list, 220
passing refer ences, 224
passwords, 800

crypt function and, 695
passwd file, 725
Perl modules for, 550

PA TH envir onment variable, 19, 500, 503
security and, 565

path for library searches, %INC, 664
pathnames

module installed on Windows system,
300

patter ns (and regular expressions), 35-41,
139-216, 740

(see also m// operator)
alphanumeric metasymbols, 161
assertions in, 141
assertions, defining your own, 215
autosplitting via -a switch, 495
backr efer ences, 41, 182
capturing and clustering in, 182-186
character classes, 37, 165-176

confusing with array subscripts, 65
characters in, 140-142
characters, matching instead of bytes,

406
clustering in, 185
code subpatterns and, 210
conditional interpolation in, 214
contr olling matching, 189-202

Perl flow control, deciding pattern
execution, 189

regex compiler, 195
debugger, commands for matching, 514
declarative approach in, 206
extension syntax, 160, 185

lookar ound assertions, 202-204
fancy patterns, 202-216
finding duplicate words in paragraphs,

149
functions for matching, 680
generated, 207
gr eedy matching, 38, 200
gr ep function and, 730
matching

operators for, 143-157
substrings corresponding to subpat-

ter ns, 146
$‘, $&, $’ variables and, 146

matching precedence, 197-202
match-time code evaluation, 210
match-time pattern interpolation, 213
metacharacters and metasymbols in,

158-165
metasymbols in, 163
minimal matching, 39

modifiers, 147-149
cloistering, 186

operators, 35
Perl code, interjecting into, 207
positions for matching, 178-182
pr ogramming style for, 206
quantifiers in, 159, 176-178, 199
quotes in, 63
re pragma, altering default regular

expr ession behavior, 871
recursive matching, 213
regex compiler, 195
replacements, changes in Perl versions,

591
security concerns, 583

denial-of-service problems, 583
special variables for matching, 146, 152
split function and, 144, 794
study function, 802
substitution evaluation, 209
ter minating delimiter for, 143
Unicode properties, matching on, 407
for untainting data, 562

PAUSE, 554
pausing scripts, 788
PDL (Perl Data Language), 549
percent (%) sign (see % under Symbols)
per formance

measuring, 816
Perl programs, efficiency in, 593-603

per formance, xx
period (see . (dot) under Symbols)
Perl

C, extending with
XSUB input and output, 537

C, using from, 532-538
cr eating extensions, 534-537
exter nal C library functions, using,

538
XSUBs and XS language, 533

CPAN (Comprehensive Perl Archive
Network), 547-556

embedding in C, 538-544
compiling embedded programs, 539
Perl interpreter, adding to C program,

539
Perl stack, manipulating from C, 542

Index 1047

1048 Index

Perl, embedding in C (cont’d)
Perl statement, evaluating from C,

541
Perl subroutine, calling from C, 540

extensions and internals, modules for,
871

location of, 491
models to interface or emulate other

languages, 550
pr ogramming, common practices,

585-620
pr ograms, life cycle of, 465
thr ead pr ogramming in, 449
use of Unicode, caveats on, 409

Perl Data Language (PDL) module, 272
PERL_DEBUG_MSTATS envir onment

variable, 504
PERL_DESTRUCT_LEVEL environment

variable, 505
PERL_DESTRUCT_LEVEL variable, 331
Perl, history of, 645
Perl interpreter, 18, 465

- - switch, 492
-0 switch, 487, 492
-a switch, 492, 663
-c switch, 493
-D switch, 493
-d switch, 493, 506, 525
-e switch, 18, 494
-F switch, 493, 495
-h switch, 495
-i switch, 495
-I switch, 487, 497
-l switch, 497
-m switch, 498
-M switch, 498
-n switch, 498
-p switch, 499
-P switch, 499
-S switch, 500
-s switch, 499
sticky bit, 599
-T switch, 443, 501, 558
-u switch, 501
-U switch, 501
-v switch, 501
-V switch, 501
-w switch, 20, 502, 916
-x switch, 487, 502

Perl language
special characters in, 6

Perl library, 553
$PERL_VERSION, 669, 671
Perl virtual machine, 473, 475
PERL5DB environment variable, 504

debugger, customizing with, 519
PERL5LIB environment variable, 503
PERL5OPT environment variable, 504
PERL5SHELL environment variable, 504
perlapi manpage, 541
perlcall manpage, 543
perlcc command, 477, 660

pbyscript resulting from, 477
$PERLDB, 671
PERLDB_OPTS environment variable

AutoTrace option, tracing compile-phase
statements, 509

debugger customization via, 518
perldoc command, xxv, 299

debugger invoking, 517
perlembed manpage, 539

eval_sv function, demonstrating, 542
perlfork manpage, 412
perllocale manpage, 736
perlmodinstall manpage, 551
perlport manpage, 412
Perl/Tk, 602

Perl modules for, 550
perlwin32 documentation, 412
per missions, 809, 817

file permission operators, interpreting,
98

users, granting limited, 558
persistent data structures, providing via tie,

398
persistent Perl interpreter, 539
pi, 684
pictur e lines, 235, 716
PID (process ID), 672

(see also processes)
getting process group, 784

pipe function, 764
portability of, 626

pipelines, 998
multistage, for input, 427
multistage, for output, 426

pipes, 997
closing, 693
double-ended, opening with tied

filehandle, 391
in interprocess communication, 426-434

named pipes, 433
pr ocess talking to itself, 428

IO::Pipe module, 868
open function, security risks posed by,

565
read-only filehandles, opening, 750

plain old documentation (see pod)
pluralities, 8
+ (plus) (see + under Symbols)
.pm files, 289

loading associated files with, 301
pod

embedding in Perl, 50
for mat, 629
modules, 638
Perl modules for, 549
translators, 629, 638

Pod::Checker module, 872
Pod::Functions module, 872
Pod::Html module, 872
Pod::InputObjects module, 872
Pod::Man module, 872
Pod::Parser module, 872
Pod::Select module, 872
Pod::Text module, 872
Pod::Text::Ter mcap module, 872
Pod::Usage module, 872
POE (Perl Object Environment), 549
poetry in Perl, 647
pointers, 50, 998

in the C language, 242
refer ences, unable to convert to, 59
to strings, 760

poll function, 868
polluting your namespace, 302
polymorphism, 309, 998
pop function, 52, 268, 764

for tied arrays, 377
popen function (C language), 538
portability

of files and filesystems, 624
functions, information on, 682
infor mation on, 412
of Perl programs, 621-628

scripts using gethostent function, 721
of signals, 626

porting, efficiency of, 601
ports

name/number translations for, 726
Perl, to operating systems, 548

pos function, 180-181, 765
positional assertions, 181

ordering of matching, changing with,
187

positions, 178-182
beginnings of strings, matching, 179
ends of strings, matching, 179
operators switching to character

positions, 408
position just after previous match,

specifying, 181
pr ecedence in pattern matching, 197
substr function, manipulating with, 178
word boundaries, matching, 180

positive lookahead assertions, 199, 203
POSIX module, 869

getattr function, 718
getting exported functions and variables

with, 301
signal blocking with, 418
str ftime function, 739

POSIX-style character classes, 165, 174-176
possible matches, specifying set of, 187
postincr ement and postdecrement

operators, 86
post-incr emented (post-decr emented)

variables, 26
$POSTMATCH, 671
Postscript

Perl modules for, 550
PPM (Perl Package Manager), 551-552
pragmas, 15, 128, 136, 289, 498, 822, 998

lexically scoped, 136
modules and, 301
names, capitalization in, 55
use charnames, 61

pr ecedence, 677, 998
diagnostic messages, 916
key/value pair (hashes), 77
logical operators, 26, 109, 314
modifiers vs. commas, 131
operator, table of, 86

Index 1049

1050 Index

pr ecedence (cont’d)
Perl versions, changes in, 591
regular expression matching, 197-202
unary operators, higher than binary, 96

pr edeclaring subr outines, 329, 871
pr e-extending arrays, 598
pr efix operators, 22, 86

metacharacters working as, 158
pr e-incr emented (pr e-decr emented)

variables, 26
$PREMATCH, 672
pr epending

dir ectories to @INC, 497
pr epending elements to arrays, 821
pr eprocessing Perl, 618, 998
print function, 21, 43, 594, 598, 765

comma error in, 586
for tied filehandle, 386

printf function, 105, 594, 766, 797
for tied filehandle, 388

printing
arrays of hashes, 279
hashes of arrays, 276
multidimensional arrays, 271, 275, 279
multidimensional hashes, 281, 283
nested data structures, 512
typeglob contents, 521

priority, process, 723, 784
privacy, 309

Perl modules and, 302-305
private methods

ignoring inheritance with, 329
private objects

closur es, using for, 339-342
private variables (see local variables)
pr ocedural pr ogramming style, 206
pr ocedures, 16
pr ocess gr oups, 414, 723, 784
$PROCESS_ID, 672
pr ocess ID (pid)

getting process group from, 723
retur ning, 723
retur ning with fork, 715
waitpid function, 827

pr ocesses, 998
checking for existence, 415
fork function, 715
functions dealing with, 681
getting group for, 784

ID (pid), 753
interpr ocess communication, 411-445

between processes on same machine,
412

files, 418-426
on the Internet, 411
sockets, 437-445
System V IPC, 434-437

killing, 734
multitasking environments, CPU access,

569
priority, setting, 784
pr ocess model, threads, 447
retur ning priority of, 723
signaling process groups, 414
standard input, output, and error in, 21
umask for, 817
variables for, 661
waiting for, 826
zombie, 415

pr ocessing shell commands, 486
pr ocessor (see CPU)
pr ofiler, Perl, 525-529
pr ofiling

Devel::DPr of module, 871
pr ogram arguments, shell vs. Perl, 590
pr ogram name

of Perl executable, 662
of Perl script, 672

$PROGRAM_NAME, 672
pr ogramming languages

Perl modules for interfacing with or
emulating, 550

pr ogramming, Perl, 585-620
common novice mistakes, 585-593
ef ficiency, 593-603
file-manipulating programs, writing

portable, 624
fluent, 607-616
portability, 621-628
pr ogram generation, 616-620

generating Perl in other languages,
618

pr ogram generators
other languages in Perl, 617
source filters, 619

pr ogramming with style, 603-607
pr ogramming style, patterns, 206

pr ograms
contr olling debugger from, 509
cor e dump of, 703
executing, 811
exiting, 3, 711
stepping through with debugger, 510
student grade averages, calculating and

printing, 17
pr ogressive matching, 181
pr ojects

large, benefits of strict pragma in, 16
pr operties, 319

case, Unicode, 408
Unicode, 165
Unicode database of, 408

pr otocols, name/number translations, 724
pr ototypes, 225-231, 999

& (ampersand), omitting from subrou-
tine names, 226

built-in functions, emulating, 226
car eful use of, 230
closur es, giving to, 262
implicit pass-by-refer ence in, 244
inlining constant functions, 228

pr ototyping, 225-231
pseudocommands, piping, 428
pseudohashes, 255, 999

implementing classes with, 744
inheritance and, 335

simulating with overload function, 356
use fields pragma, using with, 334

pseudoliterals (see input operators)
pseudo-operators, overloading and, 351
pumpkins and pumpkings, 999
punctuation characters

word boundary matching and, 180
punctuation variables

English module, handling with, 871
push function, 268, 767

for tied arrays, 376
push-pop (PP) codes, 473
PV (internal string value), 531, 999
pwd command (Unix), 599
Python, 49

Q
" (double quotes) (see double quotes under

Symbols)
q// (single quote) operator, 63, 359, 768
qq// (double quote) operator, 63
qr// (quote regex) operator, 63, 72, 144,

193
modifiers for, 147

Qt
Perl modules for, 550

quantifiers, 37-38, 142, 159, 176-178, 595,
999

atoms and, 199
character classes and, 166
dot (.) metacharacter, using with, 165
gr eedy, 178
minimal and maximal, 160, 177

quarantining suspicious code, 576
queues, 268
queues, in the Thread::Queue module, 461
quit signals, handler for, 413
quitting

infinite loop, 117
Perl debugger, 516

quotation marks
in braces, 62
in formline arguments, 717
interpolative context, 72
leaving out, 64
line-oriented quoting, 66
on non-Unix systems, 490
quoting operators, 63
strings, 60

changing style of string display, 521
quoted execution operator (see ‘ (backtick)

operator under Symbols)
quotemeta function, 768
quoting, 7, 8

line oriented, 66
packages, 316

qw (quote words) operator, 64, 74
qx// (quoted execution) operator, 63, 72,

80, 772
(see also ‘ (backtick) operator)

Index 1051

1052 Index

R
-r (readable by effective uid/gid) file test,

28, 98
-R (readable by real uid/gid) file test, 28, 98
race conditions

file locking and, 419
handling, 571-573

rand function, 89, 768 (see also the srand
function)

random numbers, 768, 800
pr oducing as handles or scalars, 394

range (.. and . . .) operator, 103
ranges

character sets, specifying in, 156
characters, 166

$rdev file statistic, 801
re pragma, 871
read function, 388, 769
readable file test, 28, 98
readdir function, 770
reading

data via low-level system call, 810
shar ed memory segment ID, 786

reading files, open mode and
ReadLine module

disabling support to debugger, 522
readline

packages, 870
for tied filehandles, 386

readlink function, 771
ready file descriptors, 781
real GID (see $(variable)
$REAL_GROUP_ID, 672
real UID (see $< variable)
$REAL_USER_ID, 672
real values, testing for with the defined

function, 697
reaping zombie processes, 415, 999

servers, 443
recompiling patterns, limiting with /o modi-

fier, 148
record delimiter (see $/ variable)
record mode, 666
records, 999

functions dealing with, 680
input, separator for (see the $/ variable)
of various data structures, 283-286

composing, accessing, and printing,
283

generating hash of, 285
output, separator for (see the $\ vari-

able)
variable-length, 236

recursion of subroutines
recursive lexical pad stacks, 474
recursive matching, 213
recursivity, locks
recv function, 772
redo operator, 120-121, 772
redundancy in Perl, 28
ref function, 258, 317, 773
refer ences, 7, 242-267, 999

to anonymous data, 245-248
blessing, 317
braces, brackets and quoting in, 264
casting to other pointer types, 59
checking for, 773
circular

in overloading::overloading, 356
memory uses of, 266

cr eating, 245-251
with backslash operator::backslash

operator, 245
to data structures, 244
defining, 242-244
destruction of, controlling, 505
to filehandles, 249, 748
to functions

storing in data structures, 283
hard, 90
hash keys, providing as, 871
to hashes

multidimensional hashes, 283
indir ection, 242
locking, 455
in multidimensional arrays, 269
object-oriented programming and, 290
for objects, 248, 255, 310, 317

invocants for instance methods, 311
overloading and, 347

passing, 219, 224
Perl, C pointers vs., 110
refer ences and, 58
to signal handlers (user-defined), 412
stringifying, 258, 265, 271-272
to subroutines, 218
to symbol tables, 250, 295

refer ences (cont’d)
in symbol tables to other symbol tables,

293
symbolic, 263
to tied arrays, 374
to tied scalar variables, 367
to tied variable objects, breaking, 396
to hashes, 275
to subroutines

retrieving from or passing to, 294
truth value of, 30
weak, 266
weakening or breaking, 331

refer ents, 243, 999
objects as, 310

reftype function, 317
regex (see patterns)
regexes (see patterns)
regexps (see patterns)
registry (Microsoft Windows), manipulating,

398, 875
regular files, testing for, 28
re-initialization expressions, loops, 116
relational databases

hashes, tying to, 397
relational operators, 100

nonassociation of, 100
removing (see deleting)
rename function, 773
repetition (x) operator, 23, 94
replacement of matched substrings (see the

s/// operator)
replacement strings

/e modifier, building with, 209
replacing array elements, 793
reports, generating, 234
requir e function, 128, 300, 664, 774

tie function and, 365
REs (see regular expressions)
reserved words, 54, 1000

bar ewords, possible conflict with, 64
reset function, 775
retur n function, 121, 776
retur n stack, 474
retur n value, 1000

curr ently executing subroutine,
displaying in debugger, 510

subr outine, 219

reused addresses, displaying contents of,
521

reusing code, 607
reval method, running suspicious code

with, 578
reverse, disallowing as sort subroutine

name, 592
reverse function, 43, 776
reversing print and printf statements (tied

filehandles), 384
revision (see version)
rewinddir function, 777
RFC, 1000
right justification, 239
right-shift (>>) operator, 95
rindex function, 777
rmdir function, 777
root, 1000
root directory, redefining, 692
rot13 encryption, 156
routines (see subroutines)
RS (awk variable) (see

$INPUT_RECORD_SEPARATOR)
RTF, Perl modules for
RTFM, 1000
run phase, 466, 1000
run phase vs. run time, 467, 1000
running (see executing)
RV (inter nal refer ence value), 531, 1000
rvalue, 51, 1000

S
-s (size) file test, 98
-S (socket) file test, 98
-s (switch) command-line switch, 499, 506
-S (search for script) command-line switch,

500
/s (single line) pattern modifier, 147, 150,

153, 156
\s (space) pattern metacharacter, 37
s/// (substitution) operator, 35, 72, 140,

143, 152-155, 209, 587, 1004
double-quote interpolation, providing,

143
modifiers for, 147
patter n modifiers used with, 153
=˜ and !˜ binding operators, using with,

144

Index 1053

1054 Index

Safe module, 577, 870
insecur e code, handling

restricting operator access, 579
insecur e code, handling with, 577-581

save stack, 474
saving

data structures, 286
scalar context, 69, 1000

Boolean values and, 70
comma operator in, 108, 592
conditional operator in, 105
expr essions in (see EXPRs)
forcing, 778
functions in, 679
/g pattern modifier, use in, 151
hash variables, evaluating in, 77
keys function, calling in, 383
list assignment in, 75, 108
lvalues in, 131
m// (match) operator in, 150
operations behaving differ ently in, 588
range (..) operator in, 103
recognizing in debugger, 508
subr outines, calling and evaluating in,

219
subtypes of, 70
void context, 71

scalar function, 408, 778
scalars, 5-6, 51-52, 58-68, 1001

in angle brackets, 83
characters, length of, 736
complex data structures, repr esenting as,

13
constants, 295

(see also constants)
in double-quote context, 152
functions for manipulating, 680
hard refer ences as, 244
her e documents, 66
interpolating array values, 65
list of (see arrays)
lists, converting to, 12
numeric literals, 59
operators for, 88
parameter and retur n lists, subroutines,

219
patter n-matching operators, applying to,

145
Perl, converting to C types, 542

refer ences, 7
string literals, 60-63
SV (scalar value) in C, 531
truth, evaluating in, 30
tying, 365-372

base class definitions, providing, 871
magical counter variables, 370
methods for, 366-370
pr eventing unlocalized use of $_

variables, 371
unorder ed set of (see hashes)
v-string literals, 67

scheduling and preemption policies,
thr eads, 449

scope, 53, 113, 1001
block, 113, 132
dynamic, 135
file, 132
lexical scope, 56, 132
loop variable in foreach, 119
modifiers, 130
my variables, 290
operators, 130
package declarations, 290
patter n-matching operations, 146
scope stack, 474
signal handling, 414
static (see scopes; lexical)
variables, 5

strict pragma and, 16
in if statements, 115
in three-part for loops, 117
in while loops, 116

scoping, 129
functions dealing with, 681
private variables (see lexical variables)
subr outines, 222
in threads, 461

scratchpad, 1001
scr een appearance of command line, 520
scripts, 1001

building with -e switch, 494
CGI, taint mode and, 559
CPAN directory of, 548
checking syntax of, 493
common mistakes of novices, 585-593
debugging, 493

(see also debugging)

scripts (cont’d)
dumping core files, 501
embedding in messages, 502
end marker for, 68
executing, 811
idiomatic Perl, using, 607-616
insecur e, 576
interpr etation, shells vs. Perl, 590
and kiddies, 1001
languages, checking for, 171
names of (see $0 variable)
pausing, 788
per formance of, 593-603
Perl interpreter, associating with, 19
pr ogramming with style, 603-607
searching for and compiling, 487
running time of, 100
searching for, 500
ter minating with exec, 707
test scripts, 874

SDBM_File module, 870
search and replace, global, 153
search path (see the @INC array)
Search::Dict module, 866
searching

gr ep function for, 730
linear, versus hashes, 594
pr ograms for, 35
rules for name searches, 57
for scripts, 500
for substrings, 152, 731, 777
text, Perl modules for

security, xxi, 557-584, 800
code masquerading as data, 581-584
of file test operators, 849
handling insecure code, 576-584

safe compartments for, 577-581
handling insecure data, 558-568

command and file access under
reduced privileges, 566-568

detecting and laundering tainted
data, 561-564

envir onment, cleaning up, 565
modules for, 870
Perl modules for, 550
timing glitches, handling, 569-576

race conditions, 571-573
temporary files, 573-576
Unix kernel security bugs, 569

Win32::FileSecurity module, 875
sed, 35, 155, 1001
seed, random number, 800
seek function, 779, 813

(see also tell function)
in tied filehandles, 387

seekable I/O objects, 868
seekdir function, 780
select function, 713, 766, 780-781, 868

for format variables, 237
select syscall

multiplexing I/O between clients, 442
SelectSaver module, 868
self method, thread accessing own thread

object, 453
SelfLoader module, 297, 873

Devel::SelfStubber module, using with,
873

self-matching characters, 201
semantics, 822
semaphor es, 1001

functions for, 783
IPC::Semaphor e module, 869
shar ed memory, 435
System V IPC, 434
thr ead safety and, 449
Thr ead::Semaphor e module, 462
use in file locking, 421
Win32::Semaphor e module, 875

semctl function, 783
semget function, 783
semop function, 783
send function, 784
separators, 1001

split operator, defining, 35
sequential matches, 199
serial ports

Perl modules for, 549
serializing Perl data structures, 871, 1001
server-push CGI scripting, 870
servers, 441-443, 1001

forking clones to handle incoming
connections, 442

Perl modules for, 551
taint mode, importance of enabling for,

559
servers, TCP, 439
service port name/number translations, 726

Index 1055

1056 Index

setgid, 429, 558, 1001
setgr ent function, 719
sethostent function, 721
set-id programs, 558

danger ous operations, UID and GID set-
ting to real, 566

Unix kernel bugs, security problems
with, 569

setpgrp function, 415, 784
setpriority function, 784
setpr otoent function, 724
setpwent function, 725
sets, intersection of, 224
setservent function, 726
setsockopt function, 785
setuid, 429, 558, 1001
shadow password entries, 725
shar ed file locks, 419
shar ed memory, System V IPC, 434

contr olled access to, 435
functions for, 786

shebang notation (see pound under Sym-
bols)

Shell module, 869
shells, 1001

alter native for Perl, Windows systems,
504

avoiding use of, 567
avoiding with multi-argument piped

open, 427
Bour ne shell (sh), 488
bypassing with -| piping

pseudocommand, 429
debugger commands and, 515
envir onment variables as security

hazards, 565
envir onment variables, using with, 503
I/O streams, setting up, 21
pipe commands with special characters,

handling, 426, 750
pr ogramming, Perl vs., 590
quotes, passing through, 495
security pitfalls with use, avoiding, 581
spawning, characters for, 519

shift operator, 33, 95, 268, 785
shmctl function, 786
ShMem package, 436
shmget function, 786
shmr ead function, 786

shmwrite function, 787
short-circuit operators (see logical opera-

tors)
overloading and, 352

short-circuit operators, 102
shortening arrays, 76
shorts, 798
shutdown function, 440, 787
%SIG hash, 412, 673
sigaction function, 416
SIGALRM signal, 683
signal handlers

defining as strings, 292
%SIG, Perl vs. C language, 589

signal handling
sigtrap module, 869

signals, 411-418, 1002
blocking, 418
cor e dumps, triggering in C library, 413
killing processes with, 734
portability of, 626
%SIG hash, 673
signaling process groups, 414
sources of, 412
Thr ead::Signal module, 462
thr eads, delivering to, 449
timing out slow operations, 417
trapping with sigtrap pragma, 413
zombie processes, reaping, 415

sigpr ocmask syscall, 418
sigtrap pragma, 413
sin (sine) function, 788
single inheritance, 322, 1002
single quotes (’)

(see also single quotes under Symbols)
contractions in words, avoiding confu-

sion with, 203
as package delimiters, 291
patter n recompilation and, 148
suppr essing variable interpolation and

translation escape processing, 7,
192

singularities, 6
$size file statistic, 801
sleep function, 788

select function instead of, 782
slices of arrays or hashes, 53, 1002
slices of multidimensional arrays, 272

slurping files, 1002
Perl, setting value for, 492

Socket module, 438, 869
inet_ntoa function, 720
networking client, connecting to server,

440
socketpair function, 432, 789
sockets, 1002

accepting connections from clients, 683
attaching address to, 684
closing, 693
closing one side, 787
connecting, 694
functions for, 727
functions (Perl), dealing with, 438
getting packed sockaddr address, 723
in interprocess communication, 437-445

message passing, 443
networking clients, 439
networking servers, 441-443

listen function for, 737
low-level access, functions for, 681
modules for, 869
newlines, sending across, 622
opening with socket function, 788
pr otocols and, 411
receiving messages on, 772
sending messages on, 784
setting options, 785
shutting down connection, 787
TCP and, 438
Unix-domain sockets, 438

sort
function, 43, 789-793
subr outines, comparison operators in, 28
variables, 658

sorting
arrays in hashes of, 277
hashes, 281
keys and values, hashes, 11, 733
lists, 789
overloading and, 354
sort function, 43, 789-793

source code
CPAN, for Perl distribution, 548
development tools for, 479
for eign code, executing, 557

window around breakpoint, examining,
508

source filters, 43, 477, 549, 619, 1002
space, 49
spaceship operator (<=>), 101
special characters, 201
special variables, 656
speed (see efficiency, perfor mance)
splice function, 793

Perl versions, changes in, 591
splicing tied arrays, 377
split function, 35, 144, 186, 598, 794
sprintf function, 388, 797-799
sqrt (square root) function, 799
srand function, 800 (see also rand)
src dir ectory (CPAN), 548
stacks, 10, 268, 1002

backtracing with T command, 508
disciplines, 755
expr ession evaluation, 52
Perl, manipulating from C, 542
Perl virtual machine, 474
subr outines, curr ent calls, 687

standard, 1002
standard error (see STDERR)
standard input (see STDIN)

scripts, passing by, 487
standard output (see STDOUT)
standard Unicode properties, 169
star (see asterisk under Symbols)
starting position of matched string, 667
stat function, 800, 867, 1003

file permissions as octal, 746
filehandles, calling on, 572

state
common, sharing by class objects, 343
inheritance with class data accessor

methods, 346
statements, 111-138, 1003

compound, 113
global declarations and, 127
if and unless, 114
loop-contr ol operators vs., 122
Perl, evaluating from C, 541
simple, 111

static linking, 534
static scoping (see lexical scope)
static variables, 222

Index 1057

1058 Index

statistics
Perl modules for, 549

status of exiting process, 659
STDERR filehandle, 607, 674, 713, 1003
STDIN filehandle, 21, 674, 713, 1003

reading single characters from, 718
STDIN, STDOUT, and STDERR

reassigning to client connection, 443
STDIN, STDOUT, and STDERR filehandles,

423
passing filehandles to new programs

thr ough, 423
STDOUT filehandle, 21, 674, 713, 1003

printing to, 765
stemming text, Perl modules for, 550
stepping through code, 510
sticky bit, 599
storage locations (l values), 24
storing complex data values in DBM file,

397
str eam, 1003
strict pragma, 15, 56, 137, 263, 871
string context, 70
string literals, 60

newlines in, 61
v-strings (vector or version), 67

stringification, 351, 1003
of data structures, 286
modules for, 882
of objects, 258
of refer ences, 258, 265, 271-272
overloading, 390

strings, 5, 1003
binary (see binary numbers)
bitwise operators, working with, 101
boundary assertions, 40, 179
br eaking (see $: variable)
capitalization of (see capitalization)
comparing, 100
comparison operators, 27
as compilation units, 56
concatenating, 95, 598
containing newlines, matches against,

147
context, 1003
converting to list values, 819
converting to numbers

0x, 0b, and 0 prefixes, handling of,
60

display, changing in debugger, 521
double-quoted

changes in Perl versions, 592
character interpolation in, 60

eval function and, 594
extracting substrings, 805
first character of, 657
for mats for, 797-799
hexadecimal (see hexadecimal numbers)
index function, 731
joining, 733
list values, converting to, 757-762
modifying, 154
numbers, converting to, 59
octal (see octal numbers)
operators, 23, 586
printing, 765
printing values in, 259
quoted, 8
range operator, working with, 104
refer ences and, 265
rindex function, 777
searching for and replacing substrings

(s/// operator), 152
splitting into substrings, 794
study function and, 802
truth values of, 30
vec function and, 825

stripping (see deleting characters)
Struct::Class module, 333
structs, 1003

emulating, 336
for matting, 761

structural metacharacters in regular
expr essions, 141

structural metasymbols, 159
StrVal (from the overload pragma), 360
stubs for modules, generating, 873
study function, 802
style, programming with, 603-607
sub declaration, 217, 227, 247, 804

(see also subroutine)
loop controls and, 123

subarrays and subhashes
refer ences to, in arrays, 9

subclasses, 309
attributes, overriding superclass ances-

tors, 333

subnamespaces
for variables, 54

subr outine call stack, 687
subr outines, 6, 217-233, 310, 1003

(see also functions and methods)
aborting with exit, 711
anonymous

refer ences to, 247
arguments, 659
atrributes, getting and setting, 871
autoloading, 296-298, 328, 873
B::Xr ef module, cross-r efer ences with C,

479
bar ewords, confusing with, 591
calling

method invocations vs., 318
calling indirectly, 218
classes with same names, 316
constant, 295
data, passing into and out of, 219
debugger command for pattern match

listings, 514
declaring, 127, 804
declaring in package for AUTOLOAD

management, 329
defining, 219
definitions

loading from other files, 128
do SUBROUTINE operator, 703
err ors, indicating, 221
executing without stepping through, 510
exter nal

portability of, 626
XSUBs, 532

importing from another module, 218
lexically scoped, 743
locking for threads, 457

locked attribute, 458
lvalue attribute, 342
method resolution, steps for, 322
methods vs., 312
named

compiler/interpr eter interaction, 480
names, 53-54, 218
nested, 262
parameter lists, working with, 220
passing refer ences in, 224
per formance and, 596
Perl, calling from C, 540

pr ototyping
car eful use of, 230

redefining, inlining and, 229
refer ences to

composing, 247
retrieving from or passing to, 294
in scalars, 7

retur n function, 776
retur n values, 219
retur ning refer ences, 248
scoping issues, 222
sorting, reverse disallowed as name for,

592
substituting with goto, 127, 729
timelocal (in the Time::Local module),

739
user-defined, 16

subs pragma, 871
overriding built-in functions with, 306

$SUBSCRIPT_SEPARATOR, 78, 674 (also see
$; variable)

subscripting, 594, 1003
in arrays, 9
negative, 51

subshells
envir onment variables, using with, 503

substitution
shells versus Perl, 590

substr function, 596, 805
chop function and, 690
manipulating string positions with, 178

substrings, 1004
searching for and replacing with s///

operator, 152
subtracting

fr om character sets, 173
subtracting pattern modifiers from cloisters,

186
subtraction (see additive operators)

overloaded objects, 349
SUPER pseudoclass, 324
superclasses, 309
superuser, 1004 (see also root)
SV (internal scalar value), 531
SWIG system, 533

XSUBs, automatically generating with,
533

switch statement, 124, 597, 1004

Index 1059

1060 Index

switch statement (cont’d)
Perl vs. C programming, 589

switches, command-line, 486, 492-502, 1004
default, taking switches as, 504
-e switch, 487
single character, processing with cluster-

ing, 867
-w switch, 678

Sx
Perl modules for, 550

symbol tables, 53, 55, 293-296, 1004
aliasing, 79
containing refer ences to other symbol

tables, 293
curr ent package, determining use of,

290
displaying for packages, 521
for mat name identifiers in, 717
in fully qualified names, 55
local operator, making temporary

changes with, 136
packages, 292, 763
refer ences to, 250
Symbol module, 866
symbolic refer ences naming entries in,

244
symbolic debugger, 1004 (see debugging)
symbolic derefer ences

checking with the strict pragma, 138
symbolic links, 806, 1004

getting filenames from, 771
lstat function and, 740
security risks in Unix, 569

symbolic refer ences, 242, 263, 1004
symbols

exporting from modules, 301
exporting, prevention of, 305
importing into current package, 300
leaving off export list or deleting from

import list, 303
metasymbols

generic wildcards, 164
symlink function, 806
synchr onization, 1004

data access in threads, 455
syntactic sugar, 1004
syntax, checking with -c, 493
syntax, Perl, 51
Sys::Hostname module, 869

Sys::Syslog module, 869
syscall function, 683, 806
syscalls, 1004

ioctl and fcntl retur ns, 732
per formance and, 599
Perl, C language vs., 589
restarting, 417
signal interruption of, 416

syslog
filehandle tying to, 398

sysopen function, 421, 433, 753, 808
file overwriting, controlling, 572

sysr ead function, 388, 810
system calls, 806
$SYSTEM_FD_MAX, 675
system function, 811

list argument form, avoiding shell with,
582

per formance and, 599
portability of, 626

System V IPC, 434-437
functions dealing with, 681
functions for semaphores, 783
IPC::SysV module, 869
killing process groups, 735
messages, syscalls for, 741
portability of, 626
shar ed memory, functions for, 786

System V IPC syscalls, 412
reliable signals, not supporting, 416

syswrite function, 384, 388, 812

T
-t (tty) file test, 98
-T (text) file test, 99
-T (taint checking) command-line switch,

438, 443, 501, 558
\t tab character assertion, 141
tabs, 141 (see also whitespace)
tables, 268

(see also multidimensional arrays)
tags

symbol sets, Exporter, 305
tags (HTML and XML), transforming text to,

215
taint, 1005

functions retur ning tainted data, 682

taint (cont’d)
tainted data, detecting and laundering,

443, 501, 559, 561-564, 576
taint mode, 557

automatic enabling of, 558
enabling explicitly with -T switch,

559
pr ograms needing to run with, 558

taintperl program, 592
tan (tangent) function, 684
tarballs (.tar.gz files), 551

(see also tar files)
tarring

Perl modules for, 551
TCP, 1005

over Internet-domain sockets, 438
TCP clients/servers, 439
tee program, Unix, 394
tell function, 813

using on tied filehandle, 388
telldir function, 813
templates

characters for pack/unpack, 758
templates, strings, 757-762
temporary files

security risks with, 573-576
temporary values, 52
Tengwar script, 406
Term::Cap module, 870
Term::Complete module, 870
Term::ReadKey module, 518, 718
Term::ReadLine module, 518, 870
Term::Rendezvous module, 522
ter minal, setting for debugging I/O, 522
ter minating

infinite loop, 117
pr ocesses, 734

ter ms, 1005
pr ecedence of, 89
relationships among, expressing with

operators, 86
ter ms in Perl, 51
ter nary operators (see trinary operator)
test command (Unix), 20
Test module, 874
test operators (files), 28
Test::Har ness module, 874

testing
if defined, 697
for tainted data, 561

testing modules, 555
exter nal testing, 556
inter nal testing, 555

test.pl, 534, 537
text

lexical scope and, 53
Perl modules for, 550, 866
pod data, converting to formatted ASCII,

872
pr ocessing, Perl capabilities, 139
Unicode as international medium for,

401
wrapping, 240

text editors
scripts, entering into, 19

text files
-T (file test) operator, 28

Text::Abbr ev module, 866
Text::ParseWords module, 866
Text::Wrap module, 866
thr ead model

contr ol, passing between threads, 460
data access, 454-463

Thr ead module, 450-454
detach method, shutting down threads

with, 453
identifying threads, 453
join method, catching exceptions from,

452
thr ead cr eation, 450
thr ead destruction, 451
yielding the processor, 454

Thr ead::Queue module, 461
Thr ead::Semaphor e module, 449, 459, 462
Thr ead::Signal module, 462
thr eads, 446-463, 739, 1005

locked and method attributes, using, 342
locking, 739
multiple, in single interpreter, 475
pr ocess model, 447
thr ead model, 448-463

tid method, 453
tie function, 363, 813, 1005

use or requir e declarations and, 365
tie modules on CPAN, 397-398

Index 1061

1062 Index

Tie::Array module, 372, 871
array-tying methods, 373-377

Tie::Counter module, 370
Tie::DBI module, 397
Tie::DevNull module, 393
Tie::DevRandom module, 393
Tie::Hash module, 378, 871
Tie::Persistent module, 398
Tie::RefHash module, 871
Tie::Scalar module, 366, 871
Tie::Secur eHash module, 341, 398
Tie::StdArray module, 372
Tie::StdHash module, 378
Tie::StdScalar module, 366
Tie::SubstrHash module, 871
Tie::Syslog module, 398
Tie::Tee module, 393
Tie::VecArray module, 398
Tie::Watch module, 398
tied function, 364, 815
tilde

home directory expansion of, 727
time, 815

file access/modification, 801, 824
file age, 100
Gr eenwich Mean (GMT), 728
for local timezone, 738
Perl functions for, 681
sleeping, 788
Time::Local module, 866
UDP program, getting from other

machines, 444
time base ($ˆT), 659
time function, 815, 866
Time::gmtime module, 869
Time::localtime module, 869
Time::tm module, 869
timelocal subroutine (in the Time::Local

module), 739
Timer::HiRes module, 684
times

Perl modules for, 549
times function, 816

portability of, 627
timing

with alarms, 683
comparing for subroutines’ execution,

526-529
glitches, handling, 569-576

race conditions, 571-573
temporary files, 573-576
Unix kernel security bugs, 569

running times of alternate code versions,
comparing, 875-877

script, 100
timing out slow operations, 417
titlecase

ucfirst, translating to, 407
\u and ucfirst function, using in

conversions, 157
Tk (see Perl/Tk)
TMTOWTDI, 1005
tokenization, 531, 1005

(see also lexical analysis)
tokens, 49, 468, 1005

ambiguous characters, problems with,
96

parsing text into list of, 866
topicalization, 14
top-level package, 57
top-of-for m pr ocessing, 236, 780, 829
top-of-page processing, 664
tr/// (transliteration) operator, 144, 155-157,

816, 830, 1005
characters, transliterating with, 407
modifiers for, 147
=˜ and !˜ binding operators, using with,

144
tracing

stack backtrace (debugger command),
508, 512

trailing spaces in string comparisons, 100
translating between languages, 619
translation, 816, 830
transliteration (see tr///)
transliteration escapes

pr ocessing by Perl regex compiler, 192
trapping

exceptions, 705
out-of-memory errors, 668
signals, 413

trigonometry
Math::Trig module, 866

trinary operator, 22, 86, 1005
?: as, 105, 125
overloading, not working with, 348

tr off, 1006

tr oubleshooting, 506
(see also debugging)
C code, 589
common mistakes of novices, 585-593
shell code, 590

tr oubleshooting
multidimensional arrays, 272

true values, 7, 1006
evaluating, 29
if and unless statements, evaluating

with, 30
truncate function, 816
truncating, 1006

argument list, 521
arrays, 76
numbers, 731

try block, 705
tty, 431
two-dimensional arrays

cr eating and accessing, 269
cr eating your own, 269

tying variables, 266, 363-398
arrays, 372-378
filehandles, 384-395
hashes, 378-384
scalars, 365-372
untying trap, 395-397

typecasting operator (in C), 110
typedefs (C language), 531, 1006
typeglobs, 6, 54, 78, 242, 259, 1006

anonymous, 249
generating with Symbol module, 866

autovivification of, 385
filehandle refer ences, cr eating, 249
IO::Handle object, 250
local function, using with, 738
printing contents of, 521
pr ototype symbol (*), 6
refer ences to typeglobs vs., 249
subr outines, resolving to, 312
symbol table aliasing with, 295
in symbol table hashes, 293
variables, tying to classes via, 364

typemap, 534
types (see data types)
typing variables

scalars, 58
subtypes, converting between, 59

U
-u (setuid) file test, 98
-u (dump core) command-line switch, 501
-U (unsafe) command-line switch, 501
\u escape, 152
uc function, 407, 817
ucfirst function, 407, 817
UDP, 1006

packets, 438
passing messages with, 443

UID (user ID), 661, 691, 1006
(see also the $< and $> variables)
assumed, 429
passwd file entry from, 726

$uid file statistic, 801
umask function, 817, 1006
unary operators, 22, 86-110, 1006

arithmetic, 26
Boolean, 29
class handler, invoking, 348
functions, behaving as, 89
ideographic, 92
list operators, distinguishing from, 96
named, 85, 89, 95-97

listing of, 95
pr ototyping functions as, 230

undef function, 598, 818
arrays, freeing memory from, 76

undef (value), 75, 697
undefined scalars, 58
undefined subroutines

calling with AUTOLOAD, 296
Underscor e module, 372
unequal (see equality operators; relational

operators)
Unicode, 48, 401-410, 1006

case translation tables, 407
converting to characters, 692
editors for, 406
infor mation about, 168
line separator character, 49
locales and, 736
paragraph separator character, 49
pr operties, 165, 167-174

bidir ectional rendering, 171
block properties, 171
decomposition of characters, 170

Index 1063

1064 Index

Unicode, properties (cont’d)
Perl character class shortcuts and,

167
Perl composites, 168
standard, 169
syllabaries, classifying by vowel

sounds, 171
pr operties database, 408
smiley face, 692
summary of, accessing, 408
support for, tur ning on, 868
titlecase, converting strings to, 157
Unicode Standard, Version 3.0, 409
use in Perl, caveats on, 409
wildcard metasymbols, matching with,

165
Unicode characters, 37

in identifiers, 55
smiley, 61

uninitialized
variables, 7

UNIVERSAL class, 326-328, 871
methods, adding to, 327

Unix, 7, 1006
CPAN modules, installing on, 552
File::Spec::Unix module, 867
file globbing, 867
security bugs, 569
sockets for, 869
test command, test scripts and, 20
truncating kernel interpretation of #!

line, 487
unless statements, 31, 112

if statements, using instead of, 114
unlink function, 70, 819
unorder ed lists (see hashes)
unpack function, 623, 819

template characters for, 758
unpacking CPAN modules, 552
unqualified

names, searching for, 56
unsafe operations, 501
unshift function, 268, 821
unsigned integers

lists of, storing, 825
unsigned shorts, 798
untie function, 363, 396, 696, 821

outstanding refer ences, not eliminating,
365

until loops, 112, 115
untying trap, 395-397
up method (in the Thread::Semaphor e

module), 462
uppercase, converting to, 61, 152, 220
use 15, 127, 128, 136, 289, 300, 531 (see

also modules, pragmas)
global and lexical scoping of, 129
tie function and, 365

use attributes pragma, 231
use base declarations, 323

pseudohash implementations, requir e-
ment with, 335

use bytes pragma, 405
use charnames pragma, 406
use fields pragma, 323

field declarations with, 333-336
use filetest pragma, 98
use overload pragma, 348
use strict, 588
use subs declarations, 329
use utf8 pragma, 165
use warnings pragma, 506
Usenet, xxxi

Perl modules for, 551
user

CPU times, 816
granting limited privileges to, 558

user efficiency, Perl programming, 602
user ID (see UID)
user interfaces, modules providing, 870
User::gr ent module, 719, 869
User::pwent module, 869

Class::Struct, using to create objects and
accessors, 880

user-defined functions (see subroutines)
user-defined subroutines, 16

(see also subroutines)
user name

passwd file entry from, 725
users

infor mation about, functions for getting,
681

utf8, 48, 403, 405, 868
converting to/from byte strings, 404
converting characters to integers, 408

utf8 (cont’d)
globally switching interfaces to, 676
variable-length character encoding, 402

utime function, 824
utmp file (see /etc/utmp file)
UV (internal unsigned integer value), 531

V
-v (version) command-line switch, 501
-V (version) command-line switch, 501
values, 1006

arrays (see arrays)
hashes, sorting, 734
list (see list values)
refer encing, 244
scalar (see scalar values)
scope, confining to, 130
undefined, truth value of, 30
undefining, 818
variables vs., 5

values function, 383, 824
variable interpolation, 62

glob operator, using, 85
variable-length records, 236
variable-length UTF-8 characters, 403
variables, 50, 52, 89, 242, 251, 1006

(see also data types and refer ences)
anonymous, 245
attributes, getting and setting, 871
B::Xr ef module, cross-r efer ences with C,

479
binding to packages, 821
class, 343
condition variables, 459
contr ol, in foreach loop, 118
debugger, customizing, 519
declaring, 111, 130, 133
dumping with V debugger command,

293
envir onment, 661
for mat, 237
fully-qualified, accessing from outside

package, 577
initializing before calling subroutines,

223
interpolating

into patterns::patter ns, 144
with double quotes::double quotes,

143

interpolation, 7
patter n matching, controlling with,

190-195
lexical scoping, 132, 743
local

common programming errors with,
587

my declarations, using instead of
local function, 588

localizing existing, 737
matching against known strings, 191
modules, exporting to programs, 302
my (see the my function)
names for, 5, 605
names in nested symbol tables, 55
our (see our declarations)
package

memory usage, 521
package, displaying, 513
package variables, 55
packages, associating with, 290
Perl vs. C, names of, 589
private (see local variables)
repeated substitutions, perfor ming on,

154
resetting values of, 775
scoping

strict pragma, use of, 16
shell programming, Perl vs., 590
special, 656
taint and, 559
translating with, 157
tying, 363-398, 813

arrays, 372-378
filehandles, 384-395
hashes, 378-384
scalars, 365-372
untying trap, 395-397

uninitialized, 7
values, assignment and, 25
values vs., 5
watch points, placing on, 398

variadic functions in Perl, 219, 1006
vars module (obsolete), 871
vec function, 825
vectors, strings as, 799, 825
verbosity

debugger, setting levels of, 519

Index 1065

1066 Index

verbosity (cont’d)
war nings, forcing in, 871

verbs, 16
packages, handling of, 15

version
module, checking for, 305
of Perl

deter mining with $ˆV, 671
placing in #! line, 488
specifying, 492

VERSION method, 327
versions

Perl, 669
changes between release 4 and 5,

590-593
vi editor

debugger, support for, 518
regular expressions, use of, 35

video
Perl modules for, 551

virtual circuits (as TCP streams), 438
virtual machine, Perl, 473
VMS operating system

File::Spec::VMS module, 867
invoking Perl applications on, 489

void context, 26, 71, 75, 827, 1007
recognizing in debugger, 508

vowel sounds, classifying syllabaries
according to, 171

VRML
Perl modules for, 551

v-strings (vector or version), 67, 1007
in $ˆV, 671

W
-w (writable by effective uid/gid) file test,

98
-W (writable by real uid/gid) file test, 98
\w (word character) in patterns, 37

matching ideograph with, 407
-w command-line switch, 137, 502, 663, 916

tur ning on warning messages with, 20
wait function, 659, 826
waitpid function, 827
wantarray function, 827
war n function, 827
$WARNING, 675
${ˆWARNING_BITS}, 676

war ning messages, 502, 827, 916
intercepting, 673
-w switch, turning on with, 20

war nings
about undefined values, 111
lexical (${ˆWARNING_BITS}), 676
modules for, 872
about remaining refer ences to tied

objects, 397
verbosity, forcing in, 871

war nings pragma, 137, 872
watch expressions, 512
watch points, placing on Perl variables, 398
weak refer ences, 266
WeakRef module, 331
weather

Perl modules for, 551
web, xxxi (see CGI, HTTP, HTML)

Perl modules for, 550, 870
while loop, 27, 32, 112, 115

angle operator and $_, 80
Boolean context, supplying, 71
eof function in, 704
list assignment in, 76

whitespace, 37, 49, 604, 677, 1007
canonicalizing in a variable, 154
characters in formats, 235
leading, removing in here documents,

67
quote characters, use in, 64
use as variable name or delimiter for

quote construct, changes in, 592
/x modifier in pattern matching, 148

wide
syscalls, 676

wide character APIs, enabling Perl use of
on target system, 493

${ˆWIDE_SYSTEM_CALLS}, 676
wide-character APIs, system calls using, 404
width

character repr esentation, 402
of numbers, 623

wildcard metasymbols, 164
character classes and, 166

Win32::ChangeNotify module, 875
Win32::Console module, 875
Win32::Event module, 875
Win32::EventLog module, 875

Win32::File module, 875
Win32::FileSecurity module, 875
Win32::Inter net module, 875
Win32::IPC module, 875
Win32::Mutex module, 875
Win32::NetAdmin module, 875
Win32::NetResource module, 875
Win32::ODBC module, 875
Win32::OLE module, 875
Win32::OLE::Const module, 875
Win32::OLE::Enum module, 875
Win32::OLE::NLS module, 875
Win32::OLE::Variant module, 875
Win32::Per fLib module, 875
Win32::Pipe module, 433
Win32::Pr ocess module, 875
Win32::Semaphor e module, 875
Win32::Service module, 875
Win32::Sound module, 875
Win32::T ieRegistry module, 398, 875
Win32API::File module, 875
Win32API::Net module, 875
Win32API::Registry module, 875
Windows (see Microsoft Windows)
word character, 37
word lists, 74
words

\b (word boundary assertion) metachar-
acter, 40

\w word metacharacter, 37, 407
capturing, 151
lists of, doing programmable command

completion on, 870
World Wide Web (WWW) (see web)
wrappers, 1007

C, around set-id scripts, 570
wrapping text, 240, 866

Perl module for, 550
writable file test operator, 28, 98
write function, 829

for mat function, declaring named
sequence of picture lines, 716

writing
data via low-level system call, 765-766,

812, 829
scripts (see scripts)
to files with the open function, 750
to shared memory segment ID, 787

X
-x (executable by effective uid/gid) file test,

98
-X (executable by real uid/gid) file test, 98
-x (extract program) command-line switch,

487, 502
/x pattern modifier, 147-148, 150, 153
\X wildcard metasymbol, 164

matching extended Unicode sequence
with, 407

x (repetition) operator, 23, 94
XML

Perl modules for, 550
xor logical operator, 27, 109
XS language, 1007

code, portability of, 626
debugging tools for, 871
exter nal subr outines, wrapping, 532
functions, mapping between C and Perl,

533
XSLoader module, 873
xsubpp compiler, 533
XSUBs, 532-533, 1007

input and output, 537
wrapping subroutines for Perl, 532
(see also XS)

x= (r epetition assignment) operator, 107

Y
y/// (transliteration) operator (see tr///)
yacc, 1007
yield function (in the Thread module), 454

Z
-z (zero size) file test, 98
\z (end of string) assertion, 179
\Z (end of string) assertion, 179
ˆZ (Control-Z) as eof, 618
zer o-width assertions, 141, 159, 178, 1007

quantifiers and, 142
zipping

Perl modules for, 551
zombie processes, 1007

reaping, 415
servers, 443

Index 1067

About the Authors
Larry Wall is the inventor of Perl. He has also authored some other popular free
programs available for Unix, including the rn news reader and the ubiquitous
patch program. By training Larry is actually a linguist, having wandered about both
U.C. Berkeley and U.C.L.A. as a grad student. Over the course of years, he has
spent time at Unisys, JPL, NetLabs, and Seagate, playing with everything from
discrete event simulators to network-management systems, with the occasional
spacecraft thrown in. It was at Unisys, while trying to glue together a bicoastal
configuration management system over a 1200 baud encrypted link using a
hacked-over version of Netnews, that Perl was born. Larry currently works for
O’Reilly & Associates.

Tom Christiansen is a freelance consultant specializing in Perl training and writing.
Tom has been involved with Perl since day zero of its initial public release in
1987. Lead author of Perl Cookbook and co-author of Learning Perl and Learning
Perl on Win32 Systems, Tom is also the major caretaker of Perl’s online documen-
tation. He holds undergraduate degrees in computer science and Spanish and a
Master’s in computer science. He now lives in Boulder, Colorado.

Dr. Jon Orwant is the CTO of O’Reilly & Associates and Editor in Chief of The Perl
Journal. He is the co-author of Mastering Algorithms with Perl (O’Reilly) and
author of the Perl 5 Interactive Course (Macmillan). Before joining O’Reilly, he was
a member of the Electronic Publishing Group at the MIT Media Lab, where he
received his Ph.D. for research involving the prediction of user behavior, the auto-
mation of game programming, and computer-generated personalized news and
entertainment. Jon also serves on the advisory boards of VerticalSearch.com,
Focalex, Inc., and YourCompass, Inc.

Jon is a frequent speaker at conferences, speaking to such diverse gatherings as
(most recently) programmers, journalists, and lottery executives. He enjoys writing
both code and prose, and his three biggest vices are gambling, wine, and mathe-
matics. He also created the world’s first Internet stock-picking game in 1994 (a Perl
TCP/IP server written in one night to settle a bet) but never thought of making
money from it. He is embarrassed to be related, however distantly, to both Billy
Crystal and Milton Berle.

Colophon
Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Programming Perl, Third Edition is a dromedary (one-
hump camel). Camels are large ruminant mammals, weighing between 1,000 and
1,600 pounds and standing six to seven feet tall at the shoulders. They are well
known for their use as draft and saddle animals in the desert regions, especially of
Africa and Asia. Camels can go for days without water. If food is scarce, they will
eat anything, even their owner’s tent. Camels live up to 50 years.

Melanie Wang was the production editor and copyeditor for Programming Perl,
Third Edition . Colleen Gorman and Maureen Dempsey provided quality control.
Maeve O’Meara, Mary Sheehan, Emily Quill, Jeffrey Holcomb, Ann Schirmer,
Colleen Gorman, Darren Kelly, Madeleine Newell, and Betty Hugh provided
production support. Ellen Troutman Zaig wrote the index.

Edie Freedman designed the cover of this book using a 19th-century engraving
from the Dover Pictorial Archive. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe’s ITC Garamond font.

Alicia Cech and David Futato designed the interior layout based on a series design
by Nancy Priest. The authors’ text in POD was converted by Lenny Muellner into
DocBook 3.1 SGML. The print version of this book was created by translating the
SGML source into a set of gtroff macros using a Perl filter developed at O’Reilly &
Associates by Norman Walsh. Steve Talbott designed and wrote the underlying
macro set on the basis of the GNU gtroff -ms macros; Lenny Muellner adapted
them to SGML and implemented the book design. The GNU groff text formatter
version 1.11 was used to generate PostScript output. Mike Sierra provided crucial
help with the Chinese and Japanese Unicode characters in Chapter 15. The text
and heading fonts are ITC Garamond Light and Garamond Book. The illustrations
that appear in the book were produced by Robert Romano and Rhon Porter using
Macromedia FreeHand 8 and Adobe Photoshop 5.

Whenever possible, our books use RepKover™, a durable and flexible lay-flat
binding. If the page count exceeds RepKover’s limit, perfect binding is used.

O’Reilly & Associates, Inc.
90 Sherman Street, Cambridge, Massachusetts 02140

617 354-5800 FAX 617 661-1116

To: Malloy June 29, 2000
From: Sue Willing
Subject: Programming Perl, Third Edition(0-596-0027-8)

July 2000: Third Edition.

PAGE NUMBER DESCRIPTION COMMENTS

i - iii title pages ii is blank.

iv copyright

v - xvi TOC xvi is blank.

xvii - xxxiv ch00 (preface) xxxiv is blank.

1 -2 part1 2 is blank.

3 - 44 ch01

45 -46 part2 46 is blank.

47 - 85 ch02

86 - 110 ch03

111 - 138 ch04

139 - 216 ch05

217 - 233 ch06

234 - 241 ch07

242 - 267 ch08

268 - 287 ch09

288 - 298 ch10

299 - 307 ch11

308 - 346 ch12

347 - 362 ch13

363 - 398 ch14

399 - 400 part3 400 is blank.

401 - 410 ch15

411 - 445 ch16

446 - 463 ch17

464 - 485 ch18

486 - 505 ch19

506 - 529 ch20

530 - 544 ch21

545 -546 part4 546 is blank.

547 - 556 ch22

557 - 584 ch23

585 - 620 ch24

621 - 628 ch25

629 - 644 ch26

645 - 650 ch27 650 is blank.

651 - 652 part5 652 is blank.

653 - 676 ch28 Black bleed on trim on all righthand pages.

677 - 830 ch29 Black bleed on trim on all righthand pages.

831 - 835 ch30 Black bleed on trim on all righthand pages.

836 - 864 ch31 Black bleed on trim on all righthand pages.

865 - 915 ch32 Black bleed on trim on all righthand pages.

916 - 978 ch33 Black bleed on trim on all righthand pages.

979 - 1008 glossary Black bleed on trim on all righthand pages.
1008 is blank.

1009 - 1068 index Grey bleeds on head, foot, and trim, all pages.
1068 is blank.

1069 - 1070 author/colophon

PAGE NUMBER DESCRIPTION COMMENTS

O’Reilly & Associates, Inc.

90 Sherman Street, Cambridge, Massachusetts 02140
617 354-5800 FAX 617 661-1116

Beth Drake

5411 Jackson Road

Ann Arbor, MI 48106

Malloy

Programming Perl, 3edTitle:

1104Page count:

7 x 9.1875Trim Size:

Thor 40# (692ppi)Text Stock:

BlackText Ink:

10 pt.Cover stock:

PerfectBinding:

Cover: QuarkXpress 4.11 due 6/27
Text: PDF files due 6/29

Copy:

NoneProofs:

Special Instructions will follow if necessary. PLEASE CONFIRM CARTON QTY. AFTER SHIPPING.Packing:

Shipping:

BBD:

90 daysTerms:

02781PO #:

Estimated at $96,979 (3.23) + 1500 = 98,479. Not to exceed 108,300 + s/h.Cost:

Flat Covers: 50 to CA and 15 to CambridgeComments:

blow-in card(s):8019A, 9574B

0

027-80-596-00ISBN:

Cover inks: PMS 313C Blue (Perl)2

Black

Components:

noneInsert:

noneMedia:

pages, plus pages backmatter

BRC: standard

Jul 2000

30KPrint Run

June 30, 2000

Third edition:

7/10/00

Follow standard order for new title, plus bindery shipment to OS Conference. See separate email.

	Programming Perl, 3rd
	Copyrght
	Table of Contents
	Part I - Overview
	Preface

	Part II - The Gory Details
	Chapter 1 - An Overview of Perl
	Chapter 2 - Bits and Pieces
	Chapter 3 - Unary and Binary Operators
	Chapter 4 - Statements and Declarations
	Chapter 5 - Pattern Matching
	Chapter 6 - Subroutines
	Chapter 7 - Formats
	Chapter 8 - References
	Chapter 9 - Data Structures
	Chapter 10 - Packages
	Chapter 11 - Modules
	Chapter 12 - Objects
	Chapter 13 - Overloading
	Chapter 14 - Tied Variables

	Part III - Perl as Technology
	Chapter 15 - Unicode
	Chapter 16 - Interprocess Communication
	Chapter 17 - Threads
	Chapter 18 - Compiling
	Chapter 19 - The Command-Line Interface
	Chapter 20 - The Perl Debugger
	Chapter 21 - Internals and Externals

	Part IV - Perl as Culture
	Chapter 22 - CPAN
	Chapter 23 - Security
	Chapter 24 - Common Practices
	Chapter 25 - Portable Perl
	Chapter 26 - Plain Old Documentation
	Chapter 27 - Perl Culture

	Part V - Reference Material
	Chapter 28 - Special Names
	Chapter 29 - Functions
	Chapter 30 - The Standard Perl Library
	Chapter 31 - Pragmatic Modules
	Chapter 32 - Standard Modules
	Chapter 33 - Diagnostic Messages

	Glossary
	Index
	About the Authors
	Colophon
	???

